1
|
Tobos CI, Woodrow KA. Dissolving microneedles for nucleic acid delivery: A systematic search, review, and data synthesis. Acta Biomater 2025:S1742-7061(25)00353-8. [PMID: 40349901 DOI: 10.1016/j.actbio.2025.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/10/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Dissolving microneedles deliver many classes of nucleic acids, overcoming susceptibility to enzymatic cleavage and poor intracellular delivery. Understanding the impact of microneedle formulation on nucleic acid therapeutic efficacy is critical for clinical translation. Here, we performed a systematic search to identify preclinical dissolving microneedle studies that deliver nucleic acid therapeutics including aptamers, DNA enzymes, mRNA, miRNA, plasmid DNA, recombinant viral vectors, and siRNA. This review quantitatively synthesizes preclinical data to identify correlations between microneedle form and function. Factors such as polymer molecular weight and incorporation of a nucleic acid carrier strongly influence mechanical and biological properties, while other design parameters allow for more flexibility. Altogether, 83 % of studies show equivalent or superior efficacy to existing nucleic acid administration routes including topical, subcutaneous, and intramuscular administration. Data especially supports the use of dissolving microneedles for viral and cancer vaccine applications, with a growing body of work exploring their utility for gene silencing. Nonetheless, several knowledge gaps remain. Emerging nucleic acid carrier chemistries that retain efficacy with improved toxicity profiles will define the next generation of formulations. Plasmid DNA and viral vectors show excellent long-term stability in dissolving microneedles, but further characterization is needed for long RNA transcripts. Finally, future work could explore the potential for non-dermal administration routes, as well as co-delivery of nucleic acids with small molecules to leverage synergistic effects. STATEMENT OF SIGNIFICANCE: This review comprehensively, critically, and quantitatively synthesizes preclinical dissolving microneedles for nucleic acid delivery. This approach identifies empirically supported correlations between microneedle form and function, highlighting evidence-based best practices and remaining challenges. The form-function relationships identified in this review will be valuable to those within the immediate microneedle field, as well as more broadly to audiences interested in nucleic acid therapeutics, drug delivery systems, microfabrication, and delivery strategies for low resource settings.
Collapse
Affiliation(s)
- Carmen I Tobos
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA.
| |
Collapse
|
2
|
Hassan J, Haigh C, Ahmed T, Uddin MJ, Das DB. Potential of Microneedle Systems for COVID-19 Vaccination: Current Trends and Challenges. Pharmaceutics 2022; 14:1066. [PMID: 35631652 PMCID: PMC9144974 DOI: 10.3390/pharmaceutics14051066] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
To prevent the coronavirus disease 2019 (COVID-19) pandemic and aid restoration to prepandemic normality, global mass vaccination is urgently needed. Inducing herd immunity through mass vaccination has proven to be a highly effective strategy for preventing the spread of many infectious diseases, which protects the most vulnerable population groups that are unable to develop immunity, such as people with immunodeficiencies or weakened immune systems due to underlying medical or debilitating conditions. In achieving global outreach, the maintenance of the vaccine potency, transportation, and needle waste generation become major issues. Moreover, needle phobia and vaccine hesitancy act as hurdles to successful mass vaccination. The use of dissolvable microneedles for COVID-19 vaccination could act as a major paradigm shift in attaining the desired goal to vaccinate billions in the shortest time possible. In addressing these points, we discuss the potential of the use of dissolvable microneedles for COVID-19 vaccination based on the current literature.
Collapse
Affiliation(s)
- Jasmin Hassan
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (J.H.); (T.A.)
| | - Charlotte Haigh
- Department of Chemical Engineering, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK;
| | - Tanvir Ahmed
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (J.H.); (T.A.)
| | - Md Jasim Uddin
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (J.H.); (T.A.)
- Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK;
| |
Collapse
|
3
|
Cordeiro AS, Patil-Sen Y, Shivkumar M, Patel R, Khedr A, Elsawy MA. Nanovaccine Delivery Approaches and Advanced Delivery Systems for the Prevention of Viral Infections: From Development to Clinical Application. Pharmaceutics 2021; 13:2091. [PMID: 34959372 PMCID: PMC8707864 DOI: 10.3390/pharmaceutics13122091] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Viral infections causing pandemics and chronic diseases are the main culprits implicated in devastating global clinical and socioeconomic impacts, as clearly manifested during the current COVID-19 pandemic. Immunoprophylaxis via mass immunisation with vaccines has been shown to be an efficient strategy to control such viral infections, with the successful and recently accelerated development of different types of vaccines, thanks to the advanced biotechnological techniques involved in the upstream and downstream processing of these products. However, there is still much work to be done for the improvement of efficacy and safety when it comes to the choice of delivery systems, formulations, dosage form and route of administration, which are not only crucial for immunisation effectiveness, but also for vaccine stability, dose frequency, patient convenience and logistics for mass immunisation. In this review, we discuss the main vaccine delivery systems and associated challenges, as well as the recent success in developing nanomaterials-based and advanced delivery systems to tackle these challenges. Manufacturing and regulatory requirements for the development of these systems for successful clinical and marketing authorisation were also considered. Here, we comprehensively review nanovaccines from development to clinical application, which will be relevant to vaccine developers, regulators, and clinicians.
Collapse
Affiliation(s)
- Ana Sara Cordeiro
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| | - Yogita Patil-Sen
- Wrightington, Wigan and Leigh Teaching Hospitals NHS Foundation Trust, National Health Service, Wigan WN6 0SZ, UK;
| | - Maitreyi Shivkumar
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| | - Ronak Patel
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Abdulwahhab Khedr
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed A. Elsawy
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| |
Collapse
|
4
|
Cai B, Gong Y, Wang Z, Wang L, Chen W. Microneedle arrays integrated with living organisms for smart biomedical applications. Theranostics 2021; 11:10012-10029. [PMID: 34815801 PMCID: PMC8581439 DOI: 10.7150/thno.66478] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/02/2021] [Indexed: 02/06/2023] Open
Abstract
Various living organisms have proven to influence human health significantly, either in a commensal or pathogenic manner. Harnessing the creatures may remarkably improve human healthcare and cure the intractable illness that is challenged using traditional drugs or surgical approaches. However, issues including limited biocompatibility, poor biosafety, inconvenience for personal handling, and low patient compliance greatly hinder the biomedical and clinical applications of living organisms when adopting them for disease treatment. Microneedle arrays (MNAs), emerging as a promising candidate of biomedical devices with the functional diversity and minimal invasion, have exhibited great potential in the treatment of a broad spectrum of diseases, which is expected to improve organism-based therapies. In this review, we systemically summarize the technologies employed for the integration of MNAs with specific living organisms including diverse viruses, bacteria, mammal cells and so on. Moreover, their applications such as vaccination, anti-infection, tumor therapy and tissue repairing are well illustrated. Challenges faced by current strategies, and the perspectives of integrating more living organisms, adopting smarter materials, and developing more advanced technologies in MNAs for future personalized and point-of-care medicine, are also discussed. It is believed that the combination of living organisms with functional MNAs would hold great promise in the near future due to the advantages of both biological and artificial species.
Collapse
Affiliation(s)
- Bo Cai
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yusheng Gong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
5
|
Polymeric microneedles for transdermal delivery of nanoparticles: Frontiers of formulation, sterility and stability aspects. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Yang L, Huang Q, Fu J, Lin Z, Mao Q, Zhao L, Gao X, Chen S, Hua G, Li S. A novel and efficient method to induce allospecific CD8 + memory T lymphocytes. J Clin Lab Anal 2021; 35:e23972. [PMID: 34465008 PMCID: PMC8529130 DOI: 10.1002/jcla.23972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/12/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
The aim of the current study was to establish a simple method for effectively inducing memory T lymphocytes by the intraperitoneal injection of spleen lymphocytes into mice. In total, 75 mice were divided into the following groups: an injection group administered three doses of spleen lymphocytes (1 × 106, 5 × 106, and 1 × 107 cells), a transplantation group in which a 0.25‐cm2 skin section from C57BL/6 mice was transplanted onto the back of the recipient, and a control group in which an equal volume of phosphate‐buffered saline was injected. At 1, 2, or 3 months following transplantation, the following parameters were evaluated: quantity of T lymphocytes, percentage of cluster of differentiation 8+ (CD8+) memory T cells, and proliferation index of purified CD8+ memory T cells. No significant differences among groups were detected at 1 month (p > .05). However, the injection group administered 1 × 106 cells exhibited the highest proportion of CD8+ memory T cells among all groups at 2 months, and the proportions of CD8+ T cells were higher in the three injection groups than in the skin transplantation and control groups at 3 months. The proportions of memory T cells were higher in the injection groups administered 5 × 106 or 1 × 107 cells than in the skin transplantation and control groups at 3 months. The newly established method effectively induces memory T lymphocytes via the intraperitoneal injection of spleen lymphocytes in vivo and has potential applications in the field of immunotherapy.
Collapse
Affiliation(s)
- Lei Yang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Qingyun Huang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Jianping Fu
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Zhimin Lin
- Guangxi University of Chinese Medicine, Nanning, China
| | - Qiqi Mao
- Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Lili Zhao
- The General Hospital of the Armed Police Force of Guangxi, Nanning, China
| | - Xingxin Gao
- The First Affiliated Hospital of Guangxi University, Nanning, China
| | - Songlin Chen
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Guangzong Hua
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Sheng Li
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
7
|
Depelsenaire ACI, Witham K, Veitch M, Wells JW, Anderson CD, Lickliter JD, Rockman S, Bodle J, Treasure P, Hickling J, Fernando GJP, Forster AH. Cellular responses at the application site of a high-density microarray patch delivering an influenza vaccine in a randomized, controlled phase I clinical trial. PLoS One 2021; 16:e0255282. [PMID: 34329337 PMCID: PMC8323919 DOI: 10.1371/journal.pone.0255282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 06/09/2021] [Indexed: 12/23/2022] Open
Abstract
Microarray patches (MAPs) have the potential to be a safer, more acceptable, easier to use and more cost-effective method for administration of vaccines when compared to the needle and syringe. Since MAPs deliver vaccine to the dermis and epidermis, a degree of local immune response at the site of application is expected. In a phase 1 clinical trial (ACTRN 12618000112268), the Vaxxas high-density MAP (HD-MAP) was used to deliver a monovalent, split inactivated influenza virus vaccine into the skin. HD-MAP immunisation led to significantly enhanced humoral responses on day 8, 22 and 61 compared with IM injection of a quadrivalent commercial seasonal influenza vaccine (Afluria Quadrivalent®). Here, the aim was to analyse cellular responses to HD-MAPs in the skin of trial subjects, using flow cytometry and immunohistochemistry. HD-MAPs were coated with a split inactivated influenza virus vaccine (A/Singapore/GP1908/2015 [H1N1]), to deliver 5 μg haemagglutinin (HA) per HD-MAP. Three HD-MAPs were applied to the volar forearm (FA) of five healthy volunteers (to achieve the required 15 μg HA dose), whilst five control subjects received three uncoated HD-MAPs (placebo). Local skin response was recorded for over 61 days and haemagglutination inhibition antibody titres (HAI) were assessed on days 1, 4, 8, 22, and 61. Skin biopsies were taken before (day 1), and three days after HD-MAP application (day 4) and analysed by flow-cytometry and immunohistochemistry to compare local immune subset infiltration. HD-MAP vaccination with 15 μg HA resulted in significant HAI antibody titres compared to the placebo group. Application of uncoated placebo HD-MAPs resulted in mild erythema and oedema in most subjects, that resolved by day 4 in 80% of subjects. Active, HA-coated HD-MAP application resulted in stronger erythema responses on day 4, which resolved between days 22-61. Overall, these erythema responses were accompanied by an influx of immune cells in all subjects. Increased cell infiltration of CD3+, CD4+, CD8+ T cells as well as myeloid CD11b+ CD11c+ and non-myeloid CD11b- dendritic cells were observed in all subjects, but more pronounced in active HD-MAP groups. In contrast, CD19+/CD20+ B cell counts remained unchanged. Key limitations include the use of an influenza vaccine, to which the subjects may have had previous exposure. Different results might have been obtained with HD-MAPs inducing a primary immune response. In conclusion, influenza vaccine administered to the forearm (FA) using the HD-MAP was well-tolerated and induced a mild to moderate skin response with lymphocytic infiltrate at the site of application.
Collapse
Affiliation(s)
| | | | - Margaret Veitch
- The University of Queensland Diamantina Institute, Woolloongabba, Queensland, Australia
| | - James W. Wells
- The University of Queensland Diamantina Institute, Woolloongabba, Queensland, Australia
| | | | | | - Steve Rockman
- Seqirus Pty Ltd, Parkville, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jesse Bodle
- Seqirus Pty Ltd, Parkville, Victoria, Australia
| | - Peter Treasure
- Peter Treasure Statistical Services Ltd, Kings Lynn, United Kingdom
| | | | - Germain J. P. Fernando
- Vaxxas Pty Ltd, Brisbane, Queensland, Australia
- The University of Queensland, School of Chemistry & Molecular Biosciences, Faculty of Science, Brisbane, Queensland, Australia
| | | |
Collapse
|
8
|
Paredes AJ, Ramöller IK, McKenna PE, Abbate MT, Volpe-Zanutto F, Vora LK, Kilbourne-Brook M, Jarrahian C, Moffatt K, Zhang C, Tekko IA, Donnelly RF. Microarray patches: Breaking down the barriers to contraceptive care and HIV prevention for women across the globe. Adv Drug Deliv Rev 2021; 173:331-348. [PMID: 33831475 DOI: 10.1016/j.addr.2021.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023]
Abstract
Despite the existence of a variety of contraceptive products for women, as well as decades of research into the prevention and treatment of human immunodeficiency virus (HIV), there is still a globally unmet need for easily accessible, acceptable, and affordable products to protect women's sexual and reproductive health. Microarray patches (MAPs) are a novel platform being developed for the delivery of hormonal contraception and antiretroviral drugs. MAPs provide enhanced drug delivery to the systemic circulation via the transdermal route when compared to transdermal patches, oral and injectable formulations. These minimally invasive patches can be self-administered by the user, reducing the burden on health care personnel. Since MAPs represent needle-free drug delivery, no sharps waste is generated after application, thereby eliminating possible MAP reuse and risk of needle-stick injuries. This review discusses the administration of contraceptive and antiretroviral drugs using MAPs, their acceptability by end-users, and the future perspective of the field.
Collapse
|
9
|
O’Shea J, Prausnitz MR, Rouphael N. Dissolvable Microneedle Patches to Enable Increased Access to Vaccines against SARS-CoV-2 and Future Pandemic Outbreaks. Vaccines (Basel) 2021; 9:320. [PMID: 33915696 PMCID: PMC8066809 DOI: 10.3390/vaccines9040320] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 01/02/2023] Open
Abstract
Vaccines are an essential component of pandemic preparedness but can be limited due to challenges in production and logistical implementation. While vaccine candidates were rapidly developed against severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), immunization campaigns remain an obstacle to achieving herd immunity. Dissolvable microneedle patches are advantageous for many possible reasons: improved immunogenicity; dose-sparing effects; expected low manufacturing cost; elimination of sharps; reduction of vaccine wastage; no need for reconstitution; simplified supply chain, with reduction of cold chain supply through increased thermostability; ease of use, reducing the need for healthcare providers; and greater acceptability compared to traditional hypodermic injections. When applied to coronavirus disease 2019 (COVID-19) and future pandemic outbreaks, microneedle patches have great potential to improve vaccination globally and save many lives.
Collapse
Affiliation(s)
- Jesse O’Shea
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, 500 Irvin Court, Suite 200, Decatur, Atlanta, GA 30030, USA;
| | - Mark R. Prausnitz
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Nadine Rouphael
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, 500 Irvin Court, Suite 200, Decatur, Atlanta, GA 30030, USA;
| |
Collapse
|
10
|
Nguyen TT, Oh Y, Kim Y, Shin Y, Baek SK, Park JH. Progress in microneedle array patch (MAP) for vaccine delivery. Hum Vaccin Immunother 2020; 17:316-327. [PMID: 32667239 PMCID: PMC7872046 DOI: 10.1080/21645515.2020.1767997] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A microneedle array patch (MAP) has been developed as a new delivery system for vaccines. Preclinical and clinical trials with a vaccine MAP showed improved stability, safety, and immunological efficacy compared to conventional vaccine administration. Various vaccines can be delivered with a MAP. Currently, microneedle manufacturers can mass-produce pharmaceutical MAP and cosmetic MAP and this mass-production system can be adapted to produce a vaccine MAP. Clinical trials with a vaccine MAP have shown comparable efficacy with conventional administration, and discussions about regulations for a vaccine MAP are underway. However, there are concerns of reasonable cost, mass production, efficacy, and safety standards that meet FDA approval, as well as the need for feedback regarding the best method of administration. Currently, microneedles have been studied for the delivery of many kinds of vaccines, and preclinical and clinical studies of vaccine microneedles are in progress. For the foreseeable future, some vaccines will continue to be administered with syringes and needles while the use of a vaccine MAP continues to be improved because of the advantages of less pain, self-administration, improved stability, convenience, and safety.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Pharmacy, Ho Chi Minh City University of Technology-HUTECH , Ho Chi Minh, Vietnam
| | - Yujeong Oh
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University , Seongnam, Republic of Korea
| | - Yunseo Kim
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University , Seongnam, Republic of Korea
| | - Yura Shin
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University , Seongnam, Republic of Korea
| | - Seung-Ki Baek
- QuadMedicine R&D Centre, QuadMedicine Inc , Seongnam, Republic of Korea
| | - Jung-Hwan Park
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University , Seongnam, Republic of Korea
| |
Collapse
|
11
|
Enhanced anti-tumor immunotherapy by dissolving microneedle patch loaded ovalbumin. PLoS One 2019; 14:e0220382. [PMID: 31386690 PMCID: PMC6684091 DOI: 10.1371/journal.pone.0220382] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 07/15/2019] [Indexed: 01/04/2023] Open
Abstract
The skin is a very suitable organ for the induction of immune responses to vaccine antigens. Antigen delivery systems to the skin by needle and syringe directly deposit the antigen into the epidermal-dermal compartment, one of the most immunocompetent sites due to the presence of professional antigen-presenting cells aimed at the induction of antigen-specific T cells. In this study, we analyzed the amount of ovalbumin as an antigen delivered to the skin by a microneedle. When ovalbumin protein as an antigen was delivered to the skin of mice using a dissolving microneedle, it induced an immune response through the enhanced proliferation and cytokines production by the splenocytes and lymph nodes. Also, it effectively increased the ovalbumin-specific CD8+ T cell and CD4+ T cell population and induced an ovalbumin-specific CTL response against the graft of ovalbumin-expressing EG7 tumor cells in the immunized mice. Also, we identified the inhibition of tumor growth and prevention of tumor formation in the context of the therapeutic and prophylactic vaccine, respectively through EG-7 tumor mouse model. Finally, these data show the potential of patches as attractive antigen delivery vehicles.
Collapse
|
12
|
Creighton RL, Woodrow KA. Microneedle-Mediated Vaccine Delivery to the Oral Mucosa. Adv Healthc Mater 2019; 8:e1801180. [PMID: 30537400 PMCID: PMC6476557 DOI: 10.1002/adhm.201801180] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/12/2018] [Indexed: 12/28/2022]
Abstract
The oral mucosa is a minimally invasive and immunologically rich site that is underutilized for vaccination due to physiological and immunological barriers. To develop effective oral mucosal vaccines, key questions regarding vaccine residence time, uptake, adjuvant formulation, dose, and delivery location must be answered. However, currently available dosage forms are insufficient to address all these questions. An ideal oral mucosal vaccine delivery system would improve both residence time and epithelial permeation while enabling efficient delivery of physicochemically diverse vaccine formulations. Microneedles have demonstrated these capabilities for dermal vaccine delivery. Additionally, microneedles enable precise control over delivery properties like depth, uniformity, and dosing, making them an ideal tool to study oral mucosal vaccination. Select studies have demonstrated the feasibility of microneedle-mediated oral mucosal vaccination, but they have only begun to explore the broad functionality of microneedles. This review describes the physiological and immunological challenges related to oral mucosal vaccine delivery and provides specific examples of how microneedles can be used to address these challenges. It summarizes and compares the few existing oral mucosal microneedle vaccine studies and offers a perspective for the future of the field.
Collapse
Affiliation(s)
- Rachel L Creighton
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
13
|
González García LE, MacGregor MN, Visalakshan RM, Ninan N, Cavallaro AA, Trinidad AD, Zhao Y, Hayball AJD, Vasilev K. Self-sterilizing antibacterial silver-loaded microneedles. Chem Commun (Camb) 2019; 55:171-174. [DOI: 10.1039/c8cc06035e] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Here we report the development of slef-sterilizing dissolving microneedles, a promising vehicle for vaccine and drug delivery.
Collapse
Affiliation(s)
- Laura E. González García
- Future Industries Institute
- University of South Australia
- Mawson Lakes SA 5095
- Australia
- School of Engineering
| | - Melanie N. MacGregor
- Future Industries Institute
- University of South Australia
- Mawson Lakes SA 5095
- Australia
- School of Engineering
| | | | - Neethu Ninan
- Future Industries Institute
- University of South Australia
- Mawson Lakes SA 5095
- Australia
- School of Engineering
| | - Alex A. Cavallaro
- Future Industries Institute
- University of South Australia
- Mawson Lakes SA 5095
- Australia
| | - Abigail D. Trinidad
- School of Pharmacy and Medical sciences
- University of South Australia
- Adelaide SA 5001
- Australia
- Experimental Therapeutics Laboratory
| | - Yunpeng Zhao
- Department of Orthopaedics
- Qilu Hospital
- Shandong University
- P. R. China
| | - A John D. Hayball
- School of Pharmacy and Medical sciences
- University of South Australia
- Adelaide SA 5001
- Australia
- Experimental Therapeutics Laboratory
| | - Krasimir Vasilev
- Future Industries Institute
- University of South Australia
- Mawson Lakes SA 5095
- Australia
- School of Engineering
| |
Collapse
|
14
|
Wei JCJ, Haridass IN, Crichton ML, Mohammed YH, Meliga SC, Sanchez WY, Grice JE, Benson HAE, Roberts MS, Kendall MAF. Space- and time-resolved investigation on diffusion kinetics of human skin following macromolecule delivery by microneedle arrays. Sci Rep 2018; 8:17759. [PMID: 30531828 PMCID: PMC6288161 DOI: 10.1038/s41598-018-36009-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/09/2018] [Indexed: 12/16/2022] Open
Abstract
Microscale medical devices are being developed for targeted skin delivery of vaccines and the extraction of biomarkers, with the potential to revolutionise healthcare in both developing and developed countries. The effective clinical development of these devices is dependent on understanding the macro-molecular diffusion properties of skin. We hypothesised that diffusion varied according to specific skin layers. Using three different molecular weights of rhodamine dextran (RD) (MW of 70, 500 and 2000 kDa) relevant to the vaccine and therapeutic scales, we deposited molecules to a range of depths (0-300 µm) in ex vivo human skin using the Nanopatch device. We observed significant dissipation of RD as diffusion with 70 and 500 kDa within the 30 min timeframe, which varied with MW and skin layer. Using multiphoton microscopy, image analysis and a Fick's law analysis with 2D cartesian and axisymmetric cylindrical coordinates, we reported experimental trends of epidermal and dermal diffusivity values ranging from 1-8 µm2 s-1 to 1-20 µm2 s-1 respectively, with a significant decrease in the dermal-epidermal junction of 0.7-3 µm2 s-1. In breaching the stratum corneum (SC) and dermal-epidermal junction barriers, we have demonstrated practical application, delivery and targeting of macromolecules to both epidermal and dermal antigen presenting cells, providing a sound knowledge base for future development of skin-targeting clinical technologies in humans.
Collapse
Affiliation(s)
- Jonathan C J Wei
- Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, 4102, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Isha N Haridass
- Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, 4102, Australia
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, 6102, Australia
| | - Michael L Crichton
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Yousuf H Mohammed
- Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Stefano C Meliga
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Washington Y Sanchez
- Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Jeffrey E Grice
- Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Heather A E Benson
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, 6102, Australia
| | - Michael S Roberts
- Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
- Basil Hetzel Institute for Translational Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5011, Australia.
| | | |
Collapse
|
15
|
Zaric M, Becker PD, Hervouet C, Kalcheva P, Ibarzo Yus B, Cocita C, O'Neill LA, Kwon SY, Klavinskis LS. Long-lived tissue resident HIV-1 specific memory CD8 + T cells are generated by skin immunization with live virus vectored microneedle arrays. J Control Release 2017; 268:166-175. [PMID: 29056444 PMCID: PMC5735037 DOI: 10.1016/j.jconrel.2017.10.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/13/2017] [Accepted: 10/14/2017] [Indexed: 11/23/2022]
Abstract
The generation of tissue resident memory (TRM) cells at the body surfaces to provide a front line defence against invading pathogens represents an important goal in vaccine development for a wide variety of pathogens. It has been widely assumed that local vaccine delivery to the mucosae is necessary to achieve that aim. Here we characterise a novel micro-needle array (MA) delivery system fabricated to deliver a live recombinant human adenovirus type 5 vaccine vector (AdHu5) encoding HIV-1 gag. We demonstrate rapid dissolution kinetics of the microneedles in skin. Moreover, a consequence of MA vaccine cargo release was the generation of long-lived antigen-specific CD8+ T cells that accumulate in mucosal tissues, including the female genital and respiratory tract. The memory CD8+ T cell population maintained in the peripheral mucosal tissues was attributable to a MA delivered AdHu5 vaccine instructing CD8+ T cell expression of CXCR3+, CD103+, CD49a+, CD69+, CD127+ homing, retention and survival markers. Furthermore, memory CD8+ T cells generated by MA immunization significantly expanded upon locally administered antigenic challenge and showed a predominant poly-functional profile producing high levels of IFNγ and Granzyme B. These data demonstrate that skin vaccine delivery using microneedle technology induces mobilization of long lived, poly-functional CD8+ T cells to peripheral tissues, phenotypically displaying hallmarks of residency and yields new insights into how to design and deliver effective vaccine candidates with properties to exert local immunosurveillance at the mucosal surfaces.
Collapse
Affiliation(s)
- Marija Zaric
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Pablo Daniel Becker
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Catherine Hervouet
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Petya Kalcheva
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Barbara Ibarzo Yus
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Clement Cocita
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Lauren Alexandra O'Neill
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| | | | - Linda Sylvia Klavinskis
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom.
| |
Collapse
|
16
|
Leone M, Mönkäre J, Bouwstra JA, Kersten G. Dissolving Microneedle Patches for Dermal Vaccination. Pharm Res 2017; 34:2223-2240. [PMID: 28718050 PMCID: PMC5643353 DOI: 10.1007/s11095-017-2223-2] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/26/2017] [Indexed: 12/31/2022]
Abstract
The dermal route is an attractive route for vaccine delivery due to the easy skin accessibility and a dense network of immune cells in the skin. The development of microneedles is crucial to take advantage of the skin immunization and simultaneously to overcome problems related to vaccination by conventional needles (e.g. pain, needle-stick injuries or needle re-use). This review focuses on dissolving microneedles that after penetration into the skin dissolve releasing the encapsulated antigen. The microneedle patch fabrication techniques and their challenges are discussed as well as the microneedle characterization methods and antigen stability aspects. The immunogenicity of antigens formulated in dissolving microneedles are addressed. Finally, the early clinical development is discussed.
Collapse
Affiliation(s)
- M Leone
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA, Leiden, the Netherlands
| | - J Mönkäre
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA, Leiden, the Netherlands
| | - J A Bouwstra
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA, Leiden, the Netherlands.
| | - G Kersten
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA, Leiden, the Netherlands.,Department of Analytical Development and Formulation, Intravacc, Bilthoven, the Netherlands
| |
Collapse
|
17
|
Zaric M, Ibarzo Yus B, Kalcheva PP, Klavinskis LS. Microneedle-mediated delivery of viral vectored vaccines. Expert Opin Drug Deliv 2016; 14:1177-1187. [PMID: 27591122 DOI: 10.1080/17425247.2017.1230096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Microneedle array platforms are a promising technology for vaccine delivery, due to their ease of administration with no sharp waste generated, small size, possibility of targeted delivery to the specified skin depth and efficacious delivery of different vaccine formulations, including viral vectors. Areas covered: Attributes and challenges of the most promising viral vector candidates that have advanced to the clinic and that have been leveraged for skin delivery by microneedles; The importance of understanding the immunobiology of antigen-presenting cells in the skin, in particular dendritic cells, in order to generate further improved skin vaccination strategies; recent studies where viral vectors expressing various antigens have been coupled with microneedle technology to examine their potential for improved vaccination. Expert opinion: Simple, economic and efficacious vaccine delivery methods are needed to improve health outcomes and manage possible outbreaks of new emerging viruses. Understanding what innate/inflammatory signals are required to induce both immediate and long-term responses remains a major hurdle in the development of the effective vaccines. One approach to meet these needs is microneedle-mediated viral vector vaccination. In order for this technology to fulfil this potential the industry must invest significantly to further develop its design, production, biosafety, delivery and large-scale manufacturing.
Collapse
Affiliation(s)
- Marija Zaric
- a Peter Gorer Department of Immunobiology , King's College London , London , UK
| | - Bárbara Ibarzo Yus
- a Peter Gorer Department of Immunobiology , King's College London , London , UK
| | | | | |
Collapse
|
18
|
Li N, Wang N, Wang X, Zhen Y, Wang T. Microneedle arrays delivery of the conventional vaccines based on nonvirulent viruses. Drug Deliv 2016; 23:3234-3247. [DOI: 10.3109/10717544.2016.1165311] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Ning Li
- School of Pharmacy, Anhui Medical University, Hefei, China, and
| | - Ning Wang
- School of Medical Engineering, Hefei University of Technology, Hefei, China
| | - Xueting Wang
- School of Pharmacy, Anhui Medical University, Hefei, China, and
| | - Yuanyuan Zhen
- School of Pharmacy, Anhui Medical University, Hefei, China, and
| | - Ting Wang
- School of Pharmacy, Anhui Medical University, Hefei, China, and
| |
Collapse
|
19
|
Meseda CA, Atukorale V, Kuhn J, Schmeisser F, Weir JP. Percutaneous Vaccination as an Effective Method of Delivery of MVA and MVA-Vectored Vaccines. PLoS One 2016; 11:e0149364. [PMID: 26895072 PMCID: PMC4760941 DOI: 10.1371/journal.pone.0149364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/29/2016] [Indexed: 12/22/2022] Open
Abstract
The robustness of immune responses to an antigen could be dictated by the route of vaccine inoculation. Traditional smallpox vaccines, essentially vaccinia virus strains, that were used in the eradication of smallpox were administered by percutaneous inoculation (skin scarification). The modified vaccinia virus Ankara is licensed as a smallpox vaccine in Europe and Canada and currently undergoing clinical development in the United States. MVA is also being investigated as a vector for the delivery of heterologous genes for prophylactic or therapeutic immunization. Since MVA is replication-deficient, MVA and MVA-vectored vaccines are often inoculated through the intramuscular, intradermal or subcutaneous routes. Vaccine inoculation via the intramuscular, intradermal or subcutaneous routes requires the use of injection needles, and an estimated 10 to 20% of the population of the United States has needle phobia. Following an observation in our laboratory that a replication-deficient recombinant vaccinia virus derived from the New York City Board of Health strain elicited protective immune responses in a mouse model upon inoculation by tail scarification, we investigated whether MVA and MVA recombinants can elicit protective responses following percutaneous administration in mouse models. Our data suggest that MVA administered by percutaneous inoculation, elicited vaccinia-specific antibody responses, and protected mice from lethal vaccinia virus challenge, at levels comparable to or better than subcutaneous or intramuscular inoculation. High titers of specific neutralizing antibodies were elicited in mice inoculated with a recombinant MVA expressing the herpes simplex type 2 glycoprotein D after scarification. Similarly, a recombinant MVA expressing the hemagglutinin of attenuated influenza virus rgA/Viet Nam/1203/2004 (H5N1) elicited protective immune responses when administered at low doses by scarification. Taken together, our data suggest that MVA and MVA-vectored vaccines inoculated by scarification can elicit protective immune responses that are comparable to subcutaneous vaccination, and may allow for antigen sparing when vaccine supply is limited.
Collapse
Affiliation(s)
- Clement A. Meseda
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| | - Vajini Atukorale
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| | - Jordan Kuhn
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| | - Falko Schmeisser
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| | - Jerry P. Weir
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food & Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| |
Collapse
|
20
|
Chen MC, Lin ZW, Ling MH. Near-Infrared Light-Activatable Microneedle System for Treating Superficial Tumors by Combination of Chemotherapy and Photothermal Therapy. ACS NANO 2016; 10:93-101. [PMID: 26592739 DOI: 10.1021/acsnano.5b05043] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Because of the aggressive and recurrent nature of cancers, repeated and multimodal treatments are often necessary. Traditional cancer therapies have a risk of serious toxicity and side effects. Hence, it is crucial to develop an alternative treatment modality that is minimally invasive, effectively treats cancers with low toxicity, and can be repeated as required. We developed a light-activatable microneedle (MN) system that can repeatedly and simultaneously provide photothermal therapy and chemotherapy to superficial tumors and exert synergistic anticancer effects. This system consists of embeddable polycaprolactone MNs containing a photosensitive nanomaterial (lanthanum hexaboride) and an anticancer drug (doxorubicin; DOX), and a dissolvable poly(vinyl alcohol)/polyvinylpyrrolidone supporting array patch. Because of this supporting array, the MNs can be completely inserted into the skin and embedded within the target tissue for locoregional cancer treatment. When exposed to near-infrared light, the embedded MN array uniformly heats the target tissue to induce a large thermal ablation area and then melts at 50 °C to release DOX in a broad area, thus destroying tumors. This light-activated heating and releasing behavior can be precisely controlled and switched on and off on demand for several cycles. We demonstrated that the MN-mediated synergistic therapy completely eradicated 4T1 tumors within 1 week after a single application of the MN and three cycles of laser treatment. No tumor recurrence and no significant body weight loss of mice were observed. Thus, the developed light-activatable MN with a unique embeddable feature offers an effective, user-friendly, and low-toxicity option for patients requiring long-term and multiple cancer treatments.
Collapse
Affiliation(s)
- Mei-Chin Chen
- Department of Chemical Engineering, National Cheng Kung University , Tainan, Taiwan 70101
| | - Zhi-Wei Lin
- Department of Chemical Engineering, National Cheng Kung University , Tainan, Taiwan 70101
| | - Ming-Hung Ling
- Department of Chemical Engineering, National Cheng Kung University , Tainan, Taiwan 70101
| |
Collapse
|
21
|
Teunissen MB, Zehrung D. Cutaneous vaccination – Protective immunization is just a skin-deep step away. Vaccine 2015; 33:4659-62. [DOI: 10.1016/j.vaccine.2015.07.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 07/22/2015] [Indexed: 11/25/2022]
|