1
|
Walker RI. Conserved antigens for enteric vaccines. Vaccine 2025; 50:126828. [PMID: 39914256 PMCID: PMC11878282 DOI: 10.1016/j.vaccine.2025.126828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/25/2025]
Abstract
Enterotoxigenic Escherichia coli (ETEC), Shigella, and Campylobacter have been identified as major causes of diarrheal diseases worldwide. In addition to overt disease and death, they are responsible for stunting in children with the risk of lifelong consequences on health and economic opportunities. All three of these bacterial pathogens, which collectively account for approximately 30 % of the cases of diarrheal diseases, are recognized as antimicrobial resistance (AMR) threats. In spite of the dangers these pathogens represent for both children and adults, there is as yet no licensed vaccine available for any of them. Fortunately, much has been accomplished to identify conserved antigens against each of these pathogens so that now relatively simple vaccines have the potential to be developed into multi-pathogen vaccines which could have a major impact on reduction of diarrheal diseases. Conserved antigens may be used even more efficiently if consolidated and expressed on a cellular vector or as part of a conjugate vaccine. A new mucosal adjuvant, double mutant heat-labile toxin (dmLT), has been shown to not only be among the conserved antigens against ETEC, but to also have properties which drive robust mucosal and systemic immune responses for antigens given orally or intramuscularly. Conserved antigens and the strategies for their use such as co-administration with dmLT will be presented in this review.
Collapse
Affiliation(s)
- Richard I Walker
- PATH, 455 Massachusetts Ave, Suite 1000, Washington, DC, 20001-2621, USA.
| |
Collapse
|
2
|
Barbosa MS, Sampaio BA, Spergser J, Rosengarten R, Marques LM, Chopra-Dewasthaly R. Mycoplasma agalactiae Vaccines: Current Status, Hurdles, and Opportunities Due to Advances in Pathogenicity Studies. Vaccines (Basel) 2024; 12:156. [PMID: 38400139 PMCID: PMC10892753 DOI: 10.3390/vaccines12020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Contagious agalactia (CA) is a serious multietiological disease whose classic etiological agent is Mycoplasma agalactiae and which causes high morbidity and mortality rates in infected herds. CA is classified as a notifiable disease by the World Organization for Animal Health due to its significant worldwide economic impact on livestock, primarily involving goat and sheep farms. The emergence of atypical symptoms and strains of M. agalactiae in wildlife ungulates reestablishes its highly plastic genome and is also of great epidemiological significance. Antimicrobial therapy is the main form of control, although several factors, such as intrinsic antibiotic resistance and the selection of resistant strains, must be considered. Available vaccines are few and mostly inefficient. The virulence and pathogenicity mechanisms of M. agalactiae mainly rely on surface molecules that have direct contact with the host. Because of this, they are essential for the development of vaccines. This review highlights the currently available vaccines and their limitations and the development of new vaccine possibilities, especially considering the challenge of antigenic variation and dynamic genome in this microorganism.
Collapse
Affiliation(s)
- Maysa Santos Barbosa
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitoria da Conquista 45029-094, Brazil; (M.S.B.)
| | | | - Joachim Spergser
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Wien, Austria
| | - Renate Rosengarten
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Wien, Austria
| | - Lucas Miranda Marques
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitoria da Conquista 45029-094, Brazil; (M.S.B.)
- Department of Microbiology, State University of Santa Cruz (UESC), Ilheus 45662-900, Brazil
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Sao Paulo 05508-000, Brazil
| | - Rohini Chopra-Dewasthaly
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Wien, Austria
| |
Collapse
|
3
|
Gutiérrez RL, Porter CK, Harro C, Talaat K, Riddle MS, DeNearing B, Brubaker J, Maciel M, Laird RM, Poole S, Chakraborty S, Maier N, Sack DA, Savarino SJ. Efficacy Evaluation of an Intradermally Delivered Enterotoxigenic Escherichia coli CF Antigen I Fimbrial Tip Adhesin Vaccine Coadministered with Heat-Labile Enterotoxin with LT(R192G) against Experimental Challenge with Enterotoxigenic E. coli H10407 in Healthy Adult Volunteers. Microorganisms 2024; 12:288. [PMID: 38399692 PMCID: PMC10892241 DOI: 10.3390/microorganisms12020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Enterotoxigenic E. coli (ETEC) is a principal cause of diarrhea in travelers, deployed military personnel, and children living in low to middle-income countries. ETEC expresses a variety of virulence factors including colonization factors (CF) that facilitate adherence to the intestinal mucosa. We assessed the protective efficacy of a tip-localized subunit of CF antigen I (CFA/I), CfaE, delivered intradermally with the mutant E. coli heat-labile enterotoxin, LTR192G, in a controlled human infection model (CHIM). METHODS Three cohorts of healthy adult subjects were enrolled and given three doses of 25 μg CfaE + 100 ng LTR192G vaccine intradermally at 3-week intervals. Approximately 28 days after the last vaccination, vaccinated and unvaccinated subjects were admitted as inpatients and challenged with approximately 2 × 107 cfu of CFA/I+ ETEC strain H10407 following an overnight fast. Subjects were assessed for moderate-to-severe diarrhea for 5 days post-challenge. RESULTS A total of 52 volunteers received all three vaccinations; 41 vaccinated and 43 unvaccinated subjects were challenged and assessed for moderate-to-severe diarrhea. Naïve attack rates varied from 45.5% to 64.7% across the cohorts yielding an overall efficacy estimate of 27.8% (95% confidence intervals: -7.5-51.6%). In addition to reducing moderate-severe diarrhea rates, the vaccine significantly reduced loose stool output and overall ETEC disease severity. CONCLUSIONS This is the first study to demonstrate protection against ETEC challenge after intradermal vaccination with an ETEC adhesin. Further examination of the challenge methodology is necessary to address the variability in naïve attack rate observed among the three cohorts in the present study.
Collapse
Affiliation(s)
- Ramiro L. Gutiérrez
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (M.S.R.); (R.M.L.); (S.P.); (S.J.S.)
| | - Chad K. Porter
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (M.S.R.); (R.M.L.); (S.P.); (S.J.S.)
| | - Clayton Harro
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21224, USA (K.T.); (B.D.); (D.A.S.)
| | - Kawsar Talaat
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21224, USA (K.T.); (B.D.); (D.A.S.)
| | - Mark S. Riddle
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (M.S.R.); (R.M.L.); (S.P.); (S.J.S.)
| | - Barbara DeNearing
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21224, USA (K.T.); (B.D.); (D.A.S.)
| | - Jessica Brubaker
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21224, USA (K.T.); (B.D.); (D.A.S.)
| | - Milton Maciel
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (M.S.R.); (R.M.L.); (S.P.); (S.J.S.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Renee M. Laird
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (M.S.R.); (R.M.L.); (S.P.); (S.J.S.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Steven Poole
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (M.S.R.); (R.M.L.); (S.P.); (S.J.S.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Subra Chakraborty
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | | | - David A. Sack
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21224, USA (K.T.); (B.D.); (D.A.S.)
| | - Stephen J. Savarino
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (M.S.R.); (R.M.L.); (S.P.); (S.J.S.)
| |
Collapse
|
4
|
Zhou S, Yu KOA, Mabrouk MT, Jahagirdar D, Huang WC, Guerra JA, He X, Ortega J, Poole ST, Hall ER, Gomez-Duarte OG, Maciel M, Lovell JF. Antibody induction in mice by liposome-displayed recombinant enterotoxigenic Escherichia coli (ETEC) colonization antigens. Biomed J 2023; 46:100588. [PMID: 36925108 PMCID: PMC10711177 DOI: 10.1016/j.bj.2023.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Enterotoxigenic Escherichia coli (ETEC) strains cause infectious diarrhea and colonize host intestine epithelia via surface-expressed colonization factors. Colonization factor antigen I (CFA/I), a prevalent ETEC colonization factor, is a vaccine target since antibodies directed to this fimbria can block ETEC adherence and prevent diarrhea. METHODS Two recombinant antigens derived from CFA/I were investigated with a vaccine adjuvant system that displays soluble antigens on the surface of immunogenic liposomes. The first antigen, CfaEB, is a chimeric fusion protein comprising the minor (CfaE) and major (CfaB) subunits of CFA/I. The second, CfaEad, is the adhesin domain of CfaE. RESULTS Owing to their His-tag, recombinant CfaEB and CfaEad, spontaneously bound upon admixture with nanoliposomes containing cobalt-porphyrin phospholipid (CoPoP), as well as a synthetic monophosphoryl lipid A (PHAD) adjuvant. Intramuscular immunization of mice with sub-microgram doses CfaEB or CfaEad admixed with CoPoP/PHAD liposomes elicited serum IgG and intestinal IgA antibodies. The smaller CfaEad antigen benefitted more from liposome display. Serum and intestine antibodies from mice immunized with liposome-displayed CfaEB or CfaEad recognized native CFA/I fimbria as evidenced by immunofluorescence and hemagglutination inhibition assays using the CFA/I-expressing H10407 ETEC strain. CONCLUSION These data show that colonization factor-derived recombinant ETEC antigens exhibit immunogenicity when delivered in immunogenic particle-based formulations.
Collapse
Affiliation(s)
- Shiqi Zhou
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, USA
| | - Karl O A Yu
- Division of Pediatrics Infectious Diseases, Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Moustafa T Mabrouk
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, USA
| | | | - Wei-Chiao Huang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, USA
| | - Julio A Guerra
- Division of Pediatrics Infectious Diseases, Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Xuedan He
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, USA
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Steven T Poole
- Naval Medical Research Center, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Eric R Hall
- Naval Medical Research Center, Silver Spring, MD, USA
| | - Oscar G Gomez-Duarte
- Division of Pediatrics Infectious Diseases, Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Milton Maciel
- Naval Medical Research Center, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; Department of Microbiology and Immunology, Uniformed Services University Health System, Bethesda, MD, USA.
| | - Jonathan F Lovell
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
5
|
Upadhyay I, Parvej SMD, Shen Y, Li S, Lauder KL, Zhang C, Zhang W. Protein-based vaccine candidate MecVax broadly protects against enterotoxigenic Escherichia coli intestinal colonization in a rabbit model. Infect Immun 2023; 91:e0027223. [PMID: 37874163 PMCID: PMC10652908 DOI: 10.1128/iai.00272-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/20/2023] [Indexed: 10/25/2023] Open
Abstract
There are no vaccines licensed against enterotoxigenic Escherichia coli (ETEC), a leading cause of children's diarrhea and the most common cause of travelers' diarrhea. Multivalent vaccine candidate MecVax unprecedentedly targets two ETEC enterotoxins (heat-stable toxin, STa; heat-labile toxin, LT) and the seven most prevalent ETEC adhesins (colonization factor antigen, CFA/I, coli surface antigens, CS1-CS6) and has been demonstrated preclinically to protect against STa- and LT-mediated ETEC clinical diarrhea and prevent intestinal colonization from ETEC strain H10407 (CFA/I, STa, LT). However, it is unattested whether MecVax broadly protects against intestinal colonization from ETEC strains producing the other six adhesins (CS1-CS6) also targeted by this product. In this study, we immunized rabbits with MecVax and challenged them with heterogeneous ETEC strains that express CS1-CS6 adhesins to evaluate MecVax's efficacy against bacterial intestinal colonization, thus providing broad vaccine protection against ETEC infection. Data revealed that rabbits intramuscularly immunized with MecVax developed robust responses to both ETEC enterotoxins (STa, LT) and seven adhesins (CFA/I, CS1-CS6), and when challenged with ETEC isolates expressing CS1/CS3, CS2/CS3, CS4/CS6, CS5/CS6, or CS6 adhesin, the immunized rabbits prevented over two logs (>99%) of bacteria from colonization in small intestines. Additionally, compared to a CFA-toxoid fusion protein, which is another potential ETEC vaccine antigen to target two ETEC enterotoxins and the seven adhesins, MecVax exhibited better protection against ETEC intestinal colonization. These results, in conjunction with the protection data from early studies, evidenced that MecVax is broadly protective, validating MecVax's candidacy as an effective vaccine against ETEC-associated diarrhea and accelerating ETEC vaccine development.
Collapse
Affiliation(s)
- Ipshita Upadhyay
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Shafiullah M. D. Parvej
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yiyang Shen
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Siqi Li
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kathryn L. Lauder
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Chongyang Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Weiping Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
6
|
Stone AE, Rambaran S, Trinh IV, Estrada M, Jarand CW, Williams BS, Murrell AE, Huerter CM, Bai W, Palani S, Nakanishi Y, Laird RM, Poly FM, Reed WF, White JA, Norton EB. Route and antigen shape immunity to dmLT-adjuvanted vaccines to a greater extent than biochemical stress or formulation excipients. Vaccine 2023; 41:1589-1601. [PMID: 36732163 PMCID: PMC10308557 DOI: 10.1016/j.vaccine.2023.01.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 02/04/2023]
Abstract
A key aspect to vaccine efficacy is formulation stability. Biochemical evaluations provide information on optimal compositions or thermal stability but are routinely validated by ex vivo analysis and not efficacy in animal models. Here we assessed formulations identified to improve or reduce stability of the mucosal adjuvant dmLT being investigated in polio and enterotoxigenic E. coli (ETEC) clinical vaccines. We observed biochemical changes to dmLT protein with formulation or thermal stress, including aggregation or subunit dissociation or alternatively resistance against these changes with specific buffer compositions. However, upon injection or mucosal vaccination with ETEC fimbriae adhesin proteins or inactivated polio virus, experimental findings indicated immunization route and co-administered antigen impacted vaccine immunogenicity more so than dmLT formulation stability (or instability). These results indicate the importance of both biochemical and vaccine-derived immunity assessment in formulation optimization. In addition, these studies have implications for use of dmLT in clinical settings and for delivery in resource poor settings.
Collapse
Affiliation(s)
- Addison E Stone
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Saraswatie Rambaran
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ivy V Trinh
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Curtis W Jarand
- Department of Physics and Engineering Physics, Tulane University School of Medicine, New Orleans, LA, USA
| | - Blake S Williams
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Amelie E Murrell
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Chelsea M Huerter
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - William Bai
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Surya Palani
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Renee M Laird
- Henry M. Jackson Foundation for Military Medicine, Bethesda, MD, USA; Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Frederic M Poly
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Wayne F Reed
- Department of Physics and Engineering Physics, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Elizabeth B Norton
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
7
|
Abd El Ghany M, Barquist L, Clare S, Brandt C, Mayho M, Joffre´ E, Sjöling Å, Turner AK, Klena JD, Kingsley RA, Hill-Cawthorne GA, Dougan G, Pickard D. Functional analysis of colonization factor antigen I positive enterotoxigenic Escherichia coli identifies genes implicated in survival in water and host colonization. Microb Genom 2021; 7:000554. [PMID: 34110281 PMCID: PMC8461466 DOI: 10.1099/mgen.0.000554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) expressing the colonization pili CFA/I are common causes of diarrhoeal infections in humans. Here, we use a combination of transposon mutagenesis and transcriptomic analysis to identify genes and pathways that contribute to ETEC persistence in water environments and colonization of a mammalian host. ETEC persisting in water exhibit a distinct RNA expression profile from those growing in richer media. Multiple pathways were identified that contribute to water survival, including lipopolysaccharide biosynthesis and stress response regulons. The analysis also indicated that ETEC growing in vivo in mice encounter a bottleneck driving down the diversity of colonizing ETEC populations.
Collapse
Affiliation(s)
- Moataz Abd El Ghany
- The Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Simon Clare
- The Wellcome Trust Sanger Institute (WTSI), the Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Cordelia Brandt
- The Wellcome Trust Sanger Institute (WTSI), the Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Matthew Mayho
- The Wellcome Trust Sanger Institute (WTSI), the Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Enrique Joffre´
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Sjöling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - A. Keith Turner
- The Wellcome Trust Sanger Institute (WTSI), the Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - John D. Klena
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Robert A. Kingsley
- The Wellcome Trust Sanger Institute (WTSI), the Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | | | - Gordon Dougan
- The Wellcome Trust Sanger Institute (WTSI), the Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Derek Pickard
- The Wellcome Trust Sanger Institute (WTSI), the Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Ramakrishnan A, Joseph SS, Reynolds ND, Poncet D, Maciel M, Nunez G, Espinoza N, Nieto M, Castillo R, Royal JM, Poole S, McVeigh A, Rollenhagen JE, Heinrichs J, Prouty MG, Simons MP, Renauld-Mongénie G, Savarino SJ. Evaluation of the immunogenicity and protective efficacy of a recombinant CS6-based ETEC vaccine in an Aotus nancymaae CS6 + ETEC challenge model. Vaccine 2020; 39:487-494. [PMID: 33357957 DOI: 10.1016/j.vaccine.2020.12.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
Colonization factors or Coli surface antigens (CFs or CS) are important virulence factors of Enterotoxigenic E. coli (ETEC) that mediate intestinal colonization and accordingly are targets of vaccine development efforts. CS6 is a highly prevalent CF associated with symptomatic ETEC infection both in endemic populations and amongst travelers. In this study, we used an Aotus nancymaae non-human primate ETEC challenge model with a CS6 + ETEC strain, B7A, to test the immunogenicity and protective efficacy (PE) of a recombinant CS6-based subunit vaccine. Specifically, we determined the ability of dscCssBA, the donor strand complemented recombinant stabilized fusion of the two subunits of the CS6 fimbriae, CssA and CssB, to elicit protection against CS6 + ETEC mediated diarrhea when given intradermally (ID) with the genetically attenuated double mutant heat-labile enterotoxin LT(R192G/L211A) (dmLT). ID vaccination with dscCssBA + dmLT induced strong serum antibody responses against CS6 and LT. Importantly, vaccination with dscCssBA + dmLT resulted in no observed diarrheal disease (PE = 100%, p = 0.03) following B7A challenge as compared to PBS immunized animals, with an attack rate of 62.5%. These data demonstrate the potential role that CS6 may play in ETEC infection and that recombinant dscCssBA antigen can provide protection against challenge with the homologous CS6 + ETEC strain, B7A, in the Aotus nancymaae diarrheal challenge model. Combined, these data indicate that CS6, and more specifically, a recombinant engineered derivative should be considered for further clinical development.
Collapse
Affiliation(s)
- A Ramakrishnan
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA
| | - S S Joseph
- Henry M Jackson Foundation for the Advancement of Military Medicine, 6720 Rockledge Drive, Bethesda, MD 20817, USA
| | - N D Reynolds
- Department of Bacteriology, Naval Medical Research Unit No. 6, Venezuela Ave. Block 36, Bellavista, Callao, Peru
| | - D Poncet
- Sanofi Pasteur, Research and External Innovation, 1541 Av. Marcel Mérieux, 69280 Marcy L'Etoile
| | - M Maciel
- Henry M Jackson Foundation for the Advancement of Military Medicine, 6720 Rockledge Drive, Bethesda, MD 20817, USA
| | - G Nunez
- Department of Bacteriology, Naval Medical Research Unit No. 6, Venezuela Ave. Block 36, Bellavista, Callao, Peru
| | - N Espinoza
- Department of Bacteriology, Naval Medical Research Unit No. 6, Venezuela Ave. Block 36, Bellavista, Callao, Peru
| | - M Nieto
- Department of Bacteriology, Naval Medical Research Unit No. 6, Venezuela Ave. Block 36, Bellavista, Callao, Peru
| | - R Castillo
- Department of Bacteriology, Naval Medical Research Unit No. 6, Venezuela Ave. Block 36, Bellavista, Callao, Peru
| | - J M Royal
- Department of Veterinary Services, Naval Medical Research Unit No. 6, Venezuela Ave. Block 36, Bellavista, Callao, Peru
| | - S Poole
- Henry M Jackson Foundation for the Advancement of Military Medicine, 6720 Rockledge Drive, Bethesda, MD 20817, USA
| | - A McVeigh
- Henry M Jackson Foundation for the Advancement of Military Medicine, 6720 Rockledge Drive, Bethesda, MD 20817, USA
| | - J E Rollenhagen
- Henry M Jackson Foundation for the Advancement of Military Medicine, 6720 Rockledge Drive, Bethesda, MD 20817, USA
| | | | - M G Prouty
- Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD 20910, USA.
| | - M P Simons
- Department of Bacteriology, Naval Medical Research Unit No. 6, Venezuela Ave. Block 36, Bellavista, Callao, Peru
| | - G Renauld-Mongénie
- Sanofi Pasteur, Research and External Innovation, 1541 Av. Marcel Mérieux, 69280 Marcy L'Etoile
| | - S J Savarino
- Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD 20910, USA
| |
Collapse
|
9
|
Abstract
Enteric viral and bacterial infections continue to be a leading cause of mortality and morbidity in young children in low-income and middle-income countries, the elderly, and immunocompromised individuals. Vaccines are considered an effective and practical preventive approach against the predominantly fecal-to-oral transmitted gastroenteritis particularly in the resource-limited countries or regions where implementation of sanitation systems and supply of safe drinking water are not quickly achievable. While vaccines are available for a few enteric pathogens including rotavirus and cholera, there are no vaccines licensed for many other enteric viral and bacterial pathogens. Challenges in enteric vaccine development include immunological heterogeneity among pathogen strains or isolates, a lack of animal challenge models to evaluate vaccine candidacy, undefined host immune correlates to protection, and a low protective efficacy among young children in endemic regions. In this article, we briefly updated the progress and challenges in vaccines and vaccine development for the leading enteric viral and bacterial pathogens including rotavirus, human calicivirus, Shigella, enterotoxigenic Escherichia coli (ETEC), cholera, nontyphoidal Salmonella, and Campylobacter, and introduced a novel epitope- and structure-based vaccinology platform known as MEFA (multiepitope fusion antigen) and the application of MEFA for developing broadly protective multivalent vaccines against heterogenous pathogens.
Collapse
Affiliation(s)
- Hyesuk Seo
- University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, USA
| | - Qiangde Duan
- University of Yangzhou, Institute of Comparative Medicine, Yangzhou, PR China
| | - Weiping Zhang
- University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, USA,CONTACT Weiping Zhang, University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, USA
| |
Collapse
|
10
|
Evaluation of the Immunogenicity and Protective Efficacy of an Enterotoxigenic Escherichia coli CFA/I Adhesin-Heat-Labile Toxin Chimera. Infect Immun 2020; 88:IAI.00252-20. [PMID: 32839188 DOI: 10.1128/iai.00252-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022] Open
Abstract
Recent efforts to develop an enterotoxigenic Escherichia coli (ETEC) vaccine have focused on the antigenically conserved tip adhesins of colonization factors. We showed previously that intranasal immunization with dsc19CfaE, a soluble variant of the in cis donor strand-complemented tip adhesin of a colonization factor of the class 5 family (CFA/I) fimbria, is highly immunogenic and protects against oral challenge with CFA/I-positive (CFA/I+) ETEC strain H10407 in the Aotus nancymaae nonhuman primate. We also reported a cholera toxin (CT)-like chimera (called dsc19CfaE-CTA2/CTB) in which the CTA1 domain of CT was replaced by dsc19CfaE that was strongly immunogenic when administered intranasally or orogastrically in mice. Here, we evaluate the immunogenicity and protective efficacy (PE) of a refined and more stable chimera comprised of a pentameric B subunit of ETEC heat-labile toxin (LTB) in lieu of the CTB pentamer and a donor strand truncation (dsc14) of CfaE. The refined chimera, dsc14CfaE-sCTA2/LTB, was highly immunogenic in mice when administered intranasally or intradermally, eliciting serum and fecal antibody responses against CfaE and LTB, as well as strong hemagglutination inhibition titers, a surrogate for neutralization of intestinal adhesion mediated by CfaE. Moreover, the chimera was safe and highly immunogenic when administered intradermally to guinea pigs. In A. nancymaae, intradermal (i.d.) immunization with chimera plus single-mutant heat-labile toxin [LT(R192G)] elicited strong serum anti-CfaE and anti-LTB antibody responses and conferred significant reduction of diarrhea compared to phosphate-buffered saline (PBS) controls (PE = 84.1%; P < 0.02). These data support the further evaluation of dsc14CfaE-sCTA2/LTB as an ETEC vaccine in humans.
Collapse
|
11
|
Preclinical optimization of an enterotoxigenic Escherichia coli adjuvanted subunit vaccine using response surface design of experiments. NPJ Vaccines 2020; 5:83. [PMID: 32983577 PMCID: PMC7486917 DOI: 10.1038/s41541-020-00228-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
Enterotoxigenic E. coli (ETEC) is a leading cause of moderate-to-severe diarrhoea. ETEC colonizes the intestine through fimbrial tip adhesin colonization factors and produces heat-stable and/or heat-labile (LT) toxins, stimulating fluid and electrolyte release leading to watery diarrhoea. We reported that a vaccine containing recombinant colonization factor antigen (CfaEB) targeting fimbrial tip adhesin of the colonization factor antigen I (CFA/I) and an attenuated LT toxoid (dmLT) elicited mucosal and systemic immune responses against both targets. Additionally, the toll-like receptor 4 ligand second-generation lipid adjuvant (TLR4-SLA) induced a potent mucosal response, dependent on adjuvant formulation. However, a combination of vaccine components at their respective individual optimal doses may not achieve the optimal immune profile. We studied a subunit ETEC vaccine prototype in mice using a response surface design of experiments (DoE), consisting of 64 vaccine dose-combinations of CfaEB, dmLT and SLA in four formulations (aqueous, aluminium oxyhydroxide, squalene-in-water stable nanoemulsion [SE] or liposomes containing the saponin Quillaja saponaria-21 [LSQ]). Nine readouts focusing on antibody functionality and plasma cell response were selected to profile the immune response of parenterally administered ETEC vaccine prototype. The data were integrated in a model to identify the optimal dosage of each vaccine component and best formulation. Compared to maximal doses used in mouse models (10 µg CfaEB, 1 µg dmLT and 5 µg SLA), a reduction in the vaccine components up to 37%, 60% and 88% for CfaEB, dmLT and SLA, respectively, maintained or even maximized immune responses, with SE and LSQ the best formulations. The DoE approach can help determine the best vaccine composition with a limited number of experiments and may accelerate development of multi-antigen/component ETEC vaccines.
Collapse
|
12
|
Gutiérrez RL, Porter CK, Jarell A, Alcala A, Riddle MS, Turiansky GW. A grading system for local skin reactions developed for clinical trials of an intradermal and transcutaneous ETEC vaccine. Vaccine 2020; 38:3773-3779. [PMID: 32253098 DOI: 10.1016/j.vaccine.2020.02.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 11/15/2022]
Abstract
BACKGROUND Trials assessing the safety of novel vaccine candidates are essential in the evaluation and development of candidate vaccines. Immunogenicity and dose-sparing features of vaccination approaches which target skin and associated tissues have garnered increased interest; for enteric vaccines, cutaneous vaccination has been of particular interest. Cutaneous vaccine site reactions are among the most common and visible vaccine related adverse events (AEs) when skin routes are used. Regulatory guidelines governing classification of severity focus on functional impact but are insufficient to characterize a spectrum of skin reaction and allow for comparisons of routes, doses and products with similar local cutaneous AEs. OBJECTIVES Our group developed a grading scale to evaluate and compare cutaneous vaccine site reactions ahead of early-phase clinical trials of intradermal (ID) and transcutaneous immunization (TCI) with enterotoxigenic E.coli (ETEC) vaccine candidates (adhesin-based vaccine co-administered with LTR192G). We reviewed existing methods for characterizing the appearance and severity of local vaccine site reactions following TCI and ID vaccination and devised a standardized vaccine site appearance grading scale (VSAGS) for use in the clinical development of novel ETEC vaccine candidates which focused on pathophysiologic manifestation of skin findings. RESULTS Available data from published reports revealed erythematous papules and pruritus were the most common local AEs associated with TCI. Frequency of reactions varied notably across studies as did TCI vaccination methodologies and products. ID vaccination commonly results in erythema and induration at the vaccine site as well as pigmentation changes. There was no published methodology to characterize the spectrum of dermatologic findings. CONCLUSION ID and TCI vaccination are associated with a largely predictable range of cutaneous AEs. A grading scale focused on the appearance of cutaneous changes was useful in comparing cutaneous AEs. A standardized grading scale will facilitate documentation and comparison of cutaneous AEs.
Collapse
Affiliation(s)
- Ramiro L Gutiérrez
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, United States.
| | - Chad K Porter
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, United States.
| | - Abel Jarell
- Dermatology Department, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Ashley Alcala
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, United States
| | - Mark S Riddle
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - George W Turiansky
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
13
|
Jobling MG, Poole ST, Rasulova-Lewis F, O’Dowd A, McVeigh AL, Balakrishnan A, Sincock SA, Prouty MG, Holmes RK, Savarino SJ. Biochemical and immunological characterization of an ETEC CFA/I adhesin cholera toxin B subunit chimera. PLoS One 2020; 15:e0230138. [PMID: 32176708 PMCID: PMC7075575 DOI: 10.1371/journal.pone.0230138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Surface-expressed colonization factors and their subunits are promising candidates for inclusion into a multivalent vaccine targeting enterotoxigenic Escherichia coli (ETEC), a leading cause of acute bacterial diarrhea in developing regions. However, soluble antigens are often poorly immunogenic in the absence of an adjuvant. We show here that the serum immune response to CfaE, the adhesin of the ETEC colonization factor CFA/I, can be enhanced in BALB/c mice by immunization with a chimeric antigen containing CfaE and pentameric cholera toxin B subunit (CTB) of cholera toxin from Vibrio cholerae. We constructed this antigen by replacing the coding sequence for the A1 domain of the cholera toxin A subunit (CTA) with the sequence of donor strand complemented CfaE (dscCfaE) within the cholera toxin operon, resulting in a dscCfaE-CTA2 fusion. After expression, via non-covalent interactions between CTA2 and CTB, the fusion and CTB polypeptides assemble into a complex containing a single dscCfaE-CTA2 protein bound to pentameric CTB (dscCfaE-CTA2/CTB). This holotoxin-like chimera retained the GM1 ganglioside binding activity of CTB, as well as the ability of CfaE to mediate the agglutination of bovine red blood cells when adsorbed to polystyrene beads. When administered intranasally to mice, the presence of CTB in the chimera significantly increased the serum immune response to CfaE compared to dscCfaE alone, stimulating a response similar to that obtained with a matched admixture of dscCfaE and CTB. However, by the orogastric route, immunization with the chimera elicited a superior functional immune response compared to an equivalent admixture of dscCfaE and CTB, supporting further investigation of the chimera as an ETEC vaccine candidate.
Collapse
Affiliation(s)
- Michael G. Jobling
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Steven T. Poole
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Fatima Rasulova-Lewis
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Aisling O’Dowd
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Annette L. McVeigh
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Amit Balakrishnan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Stephanie A. Sincock
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Michael G. Prouty
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Randall K. Holmes
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Stephen J. Savarino
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, United States of America
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| |
Collapse
|
14
|
Garzón-Ospina D, Buitrago SP. Igh locus structure and evolution in Platyrrhines: new insights from a genomic perspective. Immunogenetics 2019; 72:165-179. [PMID: 31838542 DOI: 10.1007/s00251-019-01151-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022]
Abstract
Non-human primates have been used as animal models because of their phylogenetic closeness to humans. However, the genetic differences between humans and non-human primates must be considered to select the appropriate animal models. Recently, New World monkeys (Platyrrhines) have generated a higher interest in biomedical research, especially in assessing vaccine safety and immunogenicity. Given the continued and renewed interest in Platyrrhines as biomedical models, it is a necessary to have a better and more complete understanding of their immune system and its implications for research. Immunoglobulins (Ig) are the main proteins that mediate humoral immunity. These proteins have evolved as part of an adaptive immune response system derived from ancient vertebrates. There are at least four Ig classes in Prosimians, whereas five have been reported in Catarrhines. Information on the structure and evolution of the loci containing immunoglobulin heavy chain constant genes (Igh) in Platyrrhines, however, is limited. Here, Igh loci were characterized in 10 Platyrrhines using the available whole genome sequences. Human and Macaca Igh loci were also assessed to compare them with their Platyrrhines counterparts. Differences in Igh locus structure were observed between Platyrrhines and Catarrhines. Noteworthy changes occur in the γ gene, which encodes a key Ig involved in organism defense that would favor protection after vaccination. The remarkable differences between the immunoglobulin proteins of Platyrrhines and Catarrhines warrant a cautionary message to biomedical researchers.
Collapse
Affiliation(s)
- Diego Garzón-Ospina
- Pgame - Population Genetics And Molecular Evolution, Fundación Scient, Carrera 16-3 # 35-41, Tunja, Boyacá, Colombia.
| | - Sindy P Buitrago
- Pgame - Population Genetics And Molecular Evolution, Fundación Scient, Carrera 16-3 # 35-41, Tunja, Boyacá, Colombia.
| |
Collapse
|
15
|
Evaluation of the reactogenicity, adjuvanticity and antigenicity of LT(R192G) and LT(R192G/L211A) by intradermal immunization in mice. PLoS One 2019; 14:e0224073. [PMID: 31682624 PMCID: PMC6827915 DOI: 10.1371/journal.pone.0224073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023] Open
Abstract
The development of an effective subunit vaccine is frequently complicated by the difficulty of eliciting protective immune responses, often requiring the co-administration of an adjuvant. Heat-labile toxin (LT), an enterotoxin expressed by enterotoxigenic E. coli (ETEC) with an AB5 structure similar to cholera toxin, is a strong adjuvant. While the mucosa represents the natural route of exposure to LT and related toxins, the clinical utility of LT and similar adjuvants given by mucosal routes has been limited by toxicity, as well as the association between intranasal delivery of LT and Bell's palsy. Single and double amino acid mutants of LT, LT(R192G)/mLT and LT(R192G/L211A)/dmLT respectively, have been proposed as alternatives to reduce the toxicity associated with the holotoxin. In the present study, we compared mLT and dmLT given via a non-mucosal route (i.e. intradermally) to investigate their adjuvanticity when co-administrated with an enterotoxigenic E. coli vaccine candidate, CfaEB. Antigenicity (i.e. ability to elicit response against LT) and reactogenicity at the injection site were also evaluated. BALB/c mice were immunized by the intradermal route with CfaEB plus increasing doses of either mLT or dmLT (0.01 to 2.5 μg). Both adjuvants induced dose-dependent skin reactogenicity, with dmLT being less reactogenic than mLT. Both adjuvants significantly boosted the anti-CfaE IgG and functional hemagglutination inhibiting (HAI) antibody responses, compared to the antigen alone. In addition to inducing anti-LT responses, even at the lowest dose tested (0.01 μg), the adjuvants also prompted in vitro cytokine responses (IFN-γ, IL-4, IL-5, IL-10 and IL-17) that followed different patterns, depending on the protein used for stimulation (CfaE or LTB) and/or the dose used for immunization. The two LT mutants evaluated here, mLT and dmLT, are potent adjuvants for intradermal immunization and should be further investigated for the intradermal delivery of subunit ETEC vaccines.
Collapse
|
16
|
Hosangadi D, Smith PG, Kaslow DC, Giersing BK. WHO consultation on ETEC and Shigella burden of disease, Geneva, 6–7th April 2017: Meeting report. Vaccine 2019; 37:7381-7390. [DOI: 10.1016/j.vaccine.2017.10.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/03/2017] [Indexed: 10/18/2022]
|
17
|
Intradermal or Sublingual Delivery and Heat-Labile Enterotoxin Proteins Shape Immunologic Responses to a CFA/I Fimbria-Derived Subunit Antigen Vaccine against Enterotoxigenic Escherichia coli. Infect Immun 2019; 87:IAI.00460-19. [PMID: 31427449 DOI: 10.1128/iai.00460-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/08/2019] [Indexed: 01/06/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of infectious diarrhea in children, travelers, and deployed military personnel. As such, development of a vaccine would be advantageous for public health. One strategy is to use subunits of colonization factors combined with antigen/adjuvant toxoids as an ETEC vaccine. Here, we investigated the intradermal (i.d.) or sublingual (s.l.) delivery of CFA/I fimbrial antigens, including CfaEB and a CfaE-heat-labile toxin B subunit (LTB) chimera admixed with double mutant heat-labile toxin (LT) LT-R192G/L211A (dmLT). In addition, we compared dmLT with other LT proteins to better understand the generation of adjuvanted fimbrial and toxoid immunity as well as the influence on any local skin reactogenicity. We demonstrate that immunization with dmLT admixed with CfaEB induces robust serum and fecal antibody responses to CFA/I fimbriae and LT but that i.d. formulations are not optimal for s.l. delivery. Improved s.l. vaccination outcomes were observed when higher doses of dmLT (1 to 5 μg) were admixed with CfaEB or, even better, when a CfaE-LTB chimera antigen was used instead. Serum anti-CFA/I total antibodies, detected by enzyme-linked immunosorbent assay, were the best predictor of functional antibodies, based on the inhibition of red blood cell agglutination by ETEC. Immunization with other LT proteins or formulations with altered B-subunit binding during i.d. immunization (e.g., by addition of 5% lactose, LTA1, or LT-G33D) minimally altered the development of antibody responses and cytokine recall responses but reduced skin reactogenicity at the injection site. These results reveal how formulations and delivery parameters shape the adaptive immune responses to a toxoid and fimbria-derived subunit vaccine against ETEC.
Collapse
|
18
|
Rollenhagen JE, Woods CM, O'Dowd A, Poole ST, Tian JH, Guebre-Xabier M, Ellingsworth L, Prouty MG, Glenn G, Savarino SJ. Evaluation of transcutaneous immunization as a delivery route for an enterotoxigenic E. coli adhesin-based vaccine with CfaE, the colonization factor antigen 1 (CFA/I) tip adhesin. Vaccine 2019; 37:6134-6138. [PMID: 31492474 DOI: 10.1016/j.vaccine.2019.08.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 10/26/2022]
Abstract
dscCfaE is a recombinant form of the CFA/I tip adhesin CfaE, expressed by a large proportion of enterotoxigenic E. coli (ETEC). It is highly immunogenic by the intranasal route in mice and Aotus nancymaae, protective against challenge with CFA/I+ ETEC in an A. nancymaae challenge model, and antibodies to dscCfaE passively protect against CFA/I+ ETEC challenge in human volunteers. Here, we show that transcutaneous immunization (TCI) with dscCfaE in mice resulted in strong anti-CfaE IgG serum responses, with a clear dose-response effect. Co-administration with heat-labile enterotoxin (LT) resulted in enhanced immune responses over those elicited by dscCfaE alone and strong anti-LT antibody responses. The highest dose of dscCfaE administered transcutaneously with LT elicited strong HAI titers, a surrogate for the neutralization of intestinal adhesion. Fecal anti-adhesin IgG and IgA antibody responses were also induced. These findings support the feasibility of TCI for the application of an adhesin-toxin based ETEC vaccine.
Collapse
Affiliation(s)
- Julianne E Rollenhagen
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Colleen M Woods
- Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Aisling O'Dowd
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Steven T Poole
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Jing-Hui Tian
- Iomai Corporation, 20 Firstfield Road, Suite 250, Gaithersburg, MD 20878, USA
| | - Mimi Guebre-Xabier
- Iomai Corporation, 20 Firstfield Road, Suite 250, Gaithersburg, MD 20878, USA
| | - Larry Ellingsworth
- Iomai Corporation, 20 Firstfield Road, Suite 250, Gaithersburg, MD 20878, USA
| | - Michael G Prouty
- Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | - Greg Glenn
- Iomai Corporation, 20 Firstfield Road, Suite 250, Gaithersburg, MD 20878, USA
| | - Stephen J Savarino
- Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
19
|
The TLR4 agonist adjuvant SLA-SE promotes functional mucosal antibodies against a parenterally delivered ETEC vaccine. NPJ Vaccines 2019; 4:19. [PMID: 31149350 PMCID: PMC6538625 DOI: 10.1038/s41541-019-0116-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/08/2019] [Indexed: 11/17/2022] Open
Abstract
Many pathogens establish infection at mucosal surfaces such as the enteric pathogen Enterotoxigenic E. coli (ETEC). Thus, there is a pressing need for effective vaccination strategies that promote protective immunity at mucosal surfaces. Toll-like receptor (TLR) ligands have been extensively developed as vaccine adjuvants to promote systemic immunity, whereas attenuated bacterial toxins including cholera toxin and heat-labile toxin (LT) have initially been developed to promote mucosal immunity. Here we evaluate the ability of the TLR4 agonist second-generation lipid adjuvant formulated in a stable emulsion (SLA-SE) to augment functional mucosal antibodies elicited by intramuscular immunization with a recombinant ETEC vaccine antigen. We find that, in mice, parenterally delivered SLA-SE is at least as effective as the double-mutant LT (LTR192G/L211A, dmLT) adjuvant in promoting functional antibodies and eliciting intestinal IgA responses to the vaccine antigen. In addition, SLA-SE enhanced both the IgG2a response in the mucosa and serum, and the production of LT neutralizing serum antibodies elicited by dmLT four to eightfold. These results reveal unexpected mucosal adjuvant properties of this TLR4 agonist adjuvant when delivered intramuscularly. This may have a substantial impact on the development of vaccines against enteric and other mucosal pathogens. Although offering great potential for generating intestinal immunity, vaccination by the oral route suffers from several barriers such as the breakdown of protein vaccines in the stomach and/or the induction of oral tolerance. To investigate whether these barriers can be circumvented, Mark T. Orr and colleagues at the Infectious Disease Research Institute use a parenteral (intramuscular) vaccination protocol in mice. Intramuscular immunization with an enterotoxigenic E. coli (ETEC) vaccine plus a Toll-like receptor 4 adjuvant in stable emulsion (SLA-SE) elicits a functional antibody response in both the gut and serum. Importantly, this intramuscular vaccination triggers robust production of IgA in the gut. These findings suggest that with the right adjuvant combination it might possible to generate potent protective mucosal immunity following parenteral immunization.
Collapse
|
20
|
Biochemical and Immunological Evaluation of Recombinant CS6-Derived Subunit Enterotoxigenic Escherichia coli Vaccine Candidates. Infect Immun 2019; 87:IAI.00788-18. [PMID: 30602504 DOI: 10.1128/iai.00788-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/16/2018] [Indexed: 12/23/2022] Open
Abstract
CS6, a prevalent surface antigen expressed in nearly 20% of clinical enterotoxigenic Escherichia coli (ETEC) isolates, is comprised of two major subunit proteins, CssA and CssB. Using donor strand complementation, we constructed a panel of recombinant proteins of 1 to 3 subunits that contained combinations of CssA and/or CssB subunits and a donor strand, a C-terminal extension of 16 amino acids that was derived from the N terminus of either CssA or CssB. While the entire panel of recombinant proteins could be obtained as soluble, folded proteins, it was observed that the proteins possessing a heterologous donor strand, derived from the CS6 subunit different from the C-terminal subunit, had the highest degree of physical and thermal stability. Immunological characterization of the proteins, using a murine model, demonstrated that robust anti-CS6 immune responses were generated from fusions containing both CssA and CssB. Proteins containing only CssA were weakly immunogenic. Heterodimers, i.e., CssBA and CssAB, were sufficient to recapitulate the anti-CS6 immune response elicited by immunization with CS6, including the generation of functional neutralizing antibodies, as no further enhancement of the response was obtained with the addition of a third CS6 subunit. Our findings here demonstrate the feasibility of including a recombinant CS6 subunit protein in a subunit vaccine strategy against ETEC.
Collapse
|
21
|
Establishment, Validation, and Application of a New World Primate Model of Enterotoxigenic Escherichia coli Disease for Vaccine Development. Infect Immun 2019; 87:IAI.00634-18. [PMID: 30510102 DOI: 10.1128/iai.00634-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/19/2018] [Indexed: 12/27/2022] Open
Abstract
The establishment of an animal model that closely approximates enterotoxigenic Escherichia coli (ETEC) disease in humans is critical for the development and evaluation of vaccines against this enteropathogen. Here, we evaluated the susceptibility of Aotus nancymaae, a New World monkey species, to ETEC infection. Animals were challenged orogastrically with 109 to 1011 CFU of the human pathogenic CFA/I+ ETEC strain H10407 and examined for evidence of diarrhea and fecal shedding of bacteria. A clear dose-range effect was obtained, with diarrheal attack rates of 40% to 80%, validated in a follow-on study demonstrating an attack rate of 80% with 1011 CFU of H10407 ETEC. To determine whether this model is an effective approach for assessing ETEC vaccine candidates, we used it to evaluate the ability of the donor strand-complemented CFA/I adhesin CfaE (dscCfaE) to protect against H10407 challenge. In a series of experiments, animals were intranasally vaccinated with dscCfaE alone, dscCfaE with either cholera toxin B-subunit (CTB) or heat-labile toxin (LTB), or phosphate-buffered saline (PBS) alone and then challenged with 1011 CFU of H10407. Control animals vaccinated with PBS had attack rates of 70 to 90% on challenge. Vaccination with dscCfaE, or dscCfaE admixed with CTB or LTB, resulted in a reduction of attack rates, with vaccine efficacies of 66.7% (P = 0.02), 77.7% (P = 0.006), and 42.9% (P = 0.370) to 83.3% (P = 0.041), respectively. In conclusion, we have shown the H10407 ETEC challenge of A. nancymaae to be an effective, reproducible model of ETEC disease, and importantly, we have demonstrated that in this model, vaccination with the prototype vaccine candidate dscCfaE is protective against CF-homologous disease.
Collapse
|
22
|
Vidal RM, Muhsen K, Tennant SM, Svennerholm AM, Sow SO, Sur D, Zaidi AKM, Faruque ASG, Saha D, Adegbola R, Hossain MJ, Alonso PL, Breiman RF, Bassat Q, Tamboura B, Sanogo D, Onwuchekwa U, Manna B, Ramamurthy T, Kanungo S, Ahmed S, Qureshi S, Quadri F, Hossain A, Das SK, Antonio M, Mandomando I, Nhampossa T, Acácio S, Omore R, Ochieng JB, Oundo JO, Mintz ED, O’Reilly CE, Berkeley LY, Livio S, Panchalingam S, Nasrin D, Farag TH, Wu Y, Sommerfelt H, Robins-Browne RM, Del Canto F, Hazen TH, Rasko DA, Kotloff KL, Nataro JP, Levine MM. Colonization factors among enterotoxigenic Escherichia coli isolates from children with moderate-to-severe diarrhea and from matched controls in the Global Enteric Multicenter Study (GEMS). PLoS Negl Trop Dis 2019; 13:e0007037. [PMID: 30608930 PMCID: PMC6343939 DOI: 10.1371/journal.pntd.0007037] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/23/2019] [Accepted: 11/28/2018] [Indexed: 12/29/2022] Open
Abstract
Background Enterotoxigenic Escherichia coli (ETEC) encoding heat-stable enterotoxin (ST) alone or with heat-labile enterotoxin (LT) cause moderate-to-severe diarrhea (MSD) in developing country children. The Global Enteric Multicenter Study (GEMS) identified ETEC encoding ST among the top four enteropathogens. Since the GEMS objective was to provide evidence to guide development and implementation of enteric vaccines and other interventions to diminish diarrheal disease morbidity and mortality, we examined colonization factor (CF) prevalence among ETEC isolates from children age <5 years with MSD and from matched controls in four African and three Asian sites. We also assessed strength of association of specific CFs with MSD. Methodology/Principal findings MSD cases enrolled at healthcare facilities over three years and matched controls were tested in a standardized manner for many enteropathogens. To identify ETEC, three E. coli colonies per child were tested by polymerase chain reaction (PCR) to detect genes encoding LT, ST; confirmed ETEC were examined by PCR for major CFs (Colonization Factor Antigen I [CFA/I] or Coli Surface [CS] antigens CS1-CS6) and minor CFs (CS7, CS12, CS13, CS14, CS17, CS18, CS19, CS20, CS21, CS30). ETEC from 806 cases had a single toxin/CF profile in three tested strains per child. Major CFs, components of multiple ETEC vaccine candidates, were detected in 66.0% of LT/ST and ST-only cases and were associated with MSD versus matched controls by conditional logistic regression (p≤0.006); major CFs detected in only 25.0% of LT-only cases weren’t associated with MSD. ETEC encoding exclusively CS14, identified among 19.9% of 291 ST-only and 1.5% of 259 LT/ST strains, were associated with MSD (p = 0.0011). No other minor CF exhibited prevalence ≥5% and significant association with MSD. Conclusions/Significance Major CF-based efficacious ETEC vaccines could potentially prevent up to 66% of pediatric MSD cases due to ST-encoding ETEC in developing countries; adding CS14 extends coverage to ~77%. Enterotoxigenic Escherichia coli (“ETEC”) were found to be one of the four most consistently important agents that cause moderate-to-severe diarrhea among children <5 years of age in a large case-control study, the Global Enteric Multicenter Study, performed in four countries in sub-Saharan Africa and three in South Asia. ETEC attach to the lining of the human small intestine by means of protein colonization factors (CFs), after which bacterial toxins stimulate intestinal secretion resulting in diarrhea. Moderate-to-severe diarrhea in young children in developing countries can lead to malnutrition and death. Vaccines are being developed to prevent ETEC diarrhea and its consequences. Several ETEC vaccines aim to stimulate antibodies (protective proteins) that will bind CFs and prevent the bacteria from attaching to intestinal cells, which should, in turn, prevent ETEC diarrhea. Different types of CFs exist. To guide the development of vaccines intending to provide broad protection against ETEC, one must know the frequency with which the different major CFs are produced by ETEC. This paper reports an extensive systematic survey of ETEC CFs and provides helpful information to guide the development of ETEC vaccines.
Collapse
Affiliation(s)
- Roberto M. Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Khitam Muhsen
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Sharon M. Tennant
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Ann-Mari Svennerholm
- Department of Microbiology and Immunology at Institute of Biomedicine, University of Göteborg, Göteborg, Sweden
| | - Samba O. Sow
- Centre pour le Développement des Vaccins du Mali (CVD-Mali), Bamako, Mali
| | - Dipika Sur
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Anita K. M. Zaidi
- Department of Paediatrics and Child Health, the Aga Khan University, Karachi, Pakistan
| | - Abu S. G. Faruque
- International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka, Bangladesh
| | - Debasish Saha
- Medical Research Council (United Kingdom) Unit, Fajara, The Gambia
| | - Richard Adegbola
- Medical Research Council (United Kingdom) Unit, Fajara, The Gambia
| | | | - Pedro L. Alonso
- Centro de Investigação em Saúde da Manhiça, Maputo, Mozambique
- ISGlobal, Barcelona Ctr. Int. Health Res. Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| | - Robert F. Breiman
- Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya
- Global Disease Detection Division, Kenya Office of the US Centers for Disease Control and Prevention, Nairobi, Kenya
| | - Quique Bassat
- Centro de Investigação em Saúde da Manhiça, Maputo, Mozambique
- ISGlobal, Barcelona Ctr. Int. Health Res. Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| | - Boubou Tamboura
- Centre pour le Développement des Vaccins du Mali (CVD-Mali), Bamako, Mali
| | - Doh Sanogo
- Centre pour le Développement des Vaccins du Mali (CVD-Mali), Bamako, Mali
| | - Uma Onwuchekwa
- Centre pour le Développement des Vaccins du Mali (CVD-Mali), Bamako, Mali
| | - Byomkesh Manna
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | | - Suman Kanungo
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shahnawaz Ahmed
- International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka, Bangladesh
| | - Shahida Qureshi
- Department of Paediatrics and Child Health, the Aga Khan University, Karachi, Pakistan
| | - Farheen Quadri
- Department of Paediatrics and Child Health, the Aga Khan University, Karachi, Pakistan
| | - Anowar Hossain
- International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka, Bangladesh
| | - Sumon K. Das
- International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka, Bangladesh
| | - Martin Antonio
- Medical Research Council (United Kingdom) Unit, Fajara, The Gambia
| | | | | | - Sozinho Acácio
- Centro de Investigação em Saúde da Manhiça, Maputo, Mozambique
| | - Richard Omore
- Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya
| | - John B. Ochieng
- Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Joseph O. Oundo
- Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Eric D. Mintz
- Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ciara E. O’Reilly
- Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Lynette Y. Berkeley
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Sofie Livio
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Sandra Panchalingam
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Dilruba Nasrin
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Tamer H. Farag
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Yukun Wu
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Halvor Sommerfelt
- Centre of Intervention Science in Maternal and Child Health, Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Norwegian Institute of Public Health, Oslo, Norway
| | - Roy M. Robins-Browne
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Victoria, Australia
| | - Felipe Del Canto
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Tracy H. Hazen
- The Institute of Genomic Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - David A. Rasko
- The Institute of Genomic Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Karen L. Kotloff
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - James P. Nataro
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Myron M. Levine
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
23
|
Identification and Characterization of Human Monoclonal Antibodies for Immunoprophylaxis against Enterotoxigenic Escherichia coli Infection. Infect Immun 2018; 86:IAI.00355-18. [PMID: 29866909 PMCID: PMC6056861 DOI: 10.1128/iai.00355-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/31/2018] [Indexed: 11/20/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) causes diarrheal illness in infants in the developing world and travelers to countries where the disease is endemic, including military personnel. ETEC infection of the host involves colonization of the small intestinal epithelium and toxin secretion, leading to watery diarrhea. Enterotoxigenic Escherichia coli (ETEC) causes diarrheal illness in infants in the developing world and travelers to countries where the disease is endemic, including military personnel. ETEC infection of the host involves colonization of the small intestinal epithelium and toxin secretion, leading to watery diarrhea. There is currently no vaccine licensed to prevent ETEC infection. CFA/I is one of the most common colonization factor antigens (CFAs). The CFA/I adhesin subunit, CfaE, is required for ETEC adhesion to host intestinal cells. Human antibodies against CfaE have the potential to block colonization of ETEC and serve as an immunoprophylactic against ETEC-related diarrhea. Mice transgenic for human immunoglobulin genes were immunized with CfaE to generate a panel of human monoclonal IgG1 antibodies (HuMAbs). The most potent IgG1 antibodies identified in the in vitro functional assays were selected and isotype switched to secretory IgA (sIgA) and tested in animal colonization assays via oral administration. Over 300 unique anti-CfaE IgG1 HuMAbs were identified. The lead IgG1 anti-CfaE HuMAbs completely inhibited hemagglutination and blocked adhesion of ETEC to Caco-2 cells. Epitope mapping studies revealed that HuMAbs recognized epitopes in the N-terminal domain of CfaE near the putative receptor binding site. Oral administration of anti-CfaE antibodies in either IgG or sIgA isotypes inhibited intestinal colonization in mice challenged with ETEC. A 2- to 4-log decrease in CFU was observed in comparison to mice challenged with irrelevant isotype controls. We identified fully human monoclonal antibodies against the CfaE adhesion domain that can be potentially employed as an immunoprophylactic to prevent ETEC-related diarrhea.
Collapse
|
24
|
Abstract
Escherichia coli has a complex and versatile nature and continuously evolves from non-virulent isolates to highly pathogenic strains causing severe diseases and outbreaks. Broadly protective vaccines against pathogenic E. coli are not available and the rising in both, multi-drug resistant and hypervirulent isolates, raise concern for healthcare and require continuous efforts in epidemiologic surveillance and disease monitoring. The evolving knowledge on E. coli pathogenesis mechanisms and on the mediated immune response following infection or vaccination, together with advances in the "omics" technologies, is opening new perspectives toward the design and development of effective and innovative E. coli vaccines.
Collapse
|
25
|
Wenzel H, Kaminski RW, Clarkson KA, Maciel M, Smith MA, Zhang W, Oaks EV. Improving chances for successful clinical outcomes with better preclinical models. Vaccine 2017; 35:6798-6802. [DOI: 10.1016/j.vaccine.2017.08.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 11/30/2022]
|
26
|
Nandre RM, Ruan X, Duan Q, Sack DA, Zhang W. Antibodies derived from an enterotoxigenic Escherichia coli (ETEC) adhesin tip MEFA (multiepitope fusion antigen) against adherence of nine ETEC adhesins: CFA/I, CS1, CS2, CS3, CS4, CS5, CS6, CS21 and EtpA. Vaccine 2016; 34:3620-5. [PMID: 27228947 DOI: 10.1016/j.vaccine.2016.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/17/2016] [Accepted: 04/01/2016] [Indexed: 10/21/2022]
Abstract
Diarrhea continues to be a leading cause of death in children younger than 5 years in developing countries. Enterotoxigenic Escherichia coli (ETEC) is a leading bacterial cause of children's diarrhea and travelers' diarrhea. ETEC bacteria initiate diarrheal disease by attaching to host receptors at epithelial cells and colonizing in small intestine. Therefore, preventing ETEC attachment has been considered the first line of defense against ETEC diarrhea. However, developing vaccines effectively against ETEC bacterial attachment encounters challenge because ETEC strains produce over 23 immunologically heterogeneous adhesins. In this study, we applied MEFA (multiepitope fusion antigen) approach to integrate epitopes from adhesin tips or adhesive subunits of CFA/I, CS1, CS2, CS3, CS4, CS5, CS6, CS21 and EtpA adhesins and to construct an adhesin tip MEFA peptide. We then examined immunogenicity of this tip MEFA in mouse immunization, and assessed potential application of this tip MEFA for ETEC vaccine development. Data showed that mice intraperitoneally immunized with this adhesin tip MEFA developed IgG antibody responses to all nine ETEC adhesins. Moreover, ETEC and E. coli bacteria expressing these nine adhesins, after incubation with serum of the immunized mice, exhibited significant reduction in attachment to Caco-2 cells. These results indicated that anti-adhesin antibodies induced by this adhesin tip MEFA blocked adherence of the most important ETEC adhesins, suggesting this multivalent tip MEFA may be useful for developing a broadly protective anti-adhesin vaccine against ETEC diarrhea.
Collapse
Affiliation(s)
- Rahul M Nandre
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, USA
| | - Xiaosai Ruan
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, USA
| | - Qiangde Duan
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, USA
| | - David A Sack
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Weiping Zhang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, USA.
| |
Collapse
|
27
|
Ma Y. Recent advances in nontoxicEscherichia coliheat-labile toxin and its derivative adjuvants. Expert Rev Vaccines 2016; 15:1361-1371. [DOI: 10.1080/14760584.2016.1182868] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
In silico analysis and recombinant expression of BamA protein as a universal vaccine against Escherichia coli in mice. Appl Microbiol Biotechnol 2016; 100:5089-98. [DOI: 10.1007/s00253-016-7467-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/07/2016] [Accepted: 03/10/2016] [Indexed: 02/05/2023]
|