1
|
Mourglia-Ettlin G, González-Porcile MC, Planells-Romeo V, Long-Albín A, Carrillo-Serradell L, Miles S, Lozano F, Velasco-de-Andrés M. In Vitro Analysis of Tandem Peptides from Human CD5 and CD6 Scavenger Receptors as Potential Anti-Cryptococcal Agents. J Fungi (Basel) 2024; 10:667. [PMID: 39452619 PMCID: PMC11508589 DOI: 10.3390/jof10100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024] Open
Abstract
Cryptococcus neoformans is included in the World Health Organization fungal priority pathogen list, complied to expedite improved research and public-health interventions. The limited number of available antifungal drugs, their associated toxicity, and the emergence of drug-resistant strains make the development of new therapeutic strategies mandatory. Pattern-recognition receptors (PRRs) from the host's innate immune system constitute a potential source of new antimicrobial agents. CD5 and CD6 are lymphoid members of the ancient scavenger receptor cysteine-rich superfamily (SRCR-SF) which bind pathogen-associated molecular patterns (PAMPs) of fungal and bacterial origin. Evidence supports the concept that such binding maps to 11-mer sequences present in each of their three SRCR extracellular domains. Herein, we have designed synthetic peptides containing tandems of such 11-mer sequences (namely CD5-T and CD6-T) and analyzed their C. neoformans-binding properties in vitro. Our results show both inhibitory effects on fungal growth and an ability to impact capsule formation and titanization, two critical virulence factors of C. neoformans involved in immune evasion. These effects hold promise for CD5-T and CD6-T peptides as single or adjuvant therapeutic agents against cryptococcosis.
Collapse
Affiliation(s)
- Gustavo Mourglia-Ettlin
- Área Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay; (G.M.-E.); (M.C.G.-P.); (A.L.-A.)
- Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
- Laboratorio de Inmunología, Instituto de Higiene ‘Prof. Arnoldo Berta’, Universidad de la República, Montevideo 11600, Uruguay
| | - María Clara González-Porcile
- Área Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay; (G.M.-E.); (M.C.G.-P.); (A.L.-A.)
- Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
- Laboratorio de Inmunología, Instituto de Higiene ‘Prof. Arnoldo Berta’, Universidad de la República, Montevideo 11600, Uruguay
- Graduate Program in Biotechnology, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Violeta Planells-Romeo
- Group of Immunoreceptors of the Innate and Adaptive System, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.P.-R.); (L.C.-S.)
| | - Antonella Long-Albín
- Área Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay; (G.M.-E.); (M.C.G.-P.); (A.L.-A.)
- Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
- Laboratorio de Inmunología, Instituto de Higiene ‘Prof. Arnoldo Berta’, Universidad de la República, Montevideo 11600, Uruguay
- Graduate Program in Biomedical Research (PROINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Laura Carrillo-Serradell
- Group of Immunoreceptors of the Innate and Adaptive System, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.P.-R.); (L.C.-S.)
| | - Sebastián Miles
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay;
| | - Francisco Lozano
- Group of Immunoreceptors of the Innate and Adaptive System, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.P.-R.); (L.C.-S.)
- Servei d’Immunologia, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - María Velasco-de-Andrés
- Group of Immunoreceptors of the Innate and Adaptive System, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.P.-R.); (L.C.-S.)
| |
Collapse
|
2
|
Bai Z, Wan D, Lan T, Hong W, Dong H, Wei Y, Wei X. Nanoplatform Based Intranasal Vaccines: Current Progress and Clinical Challenges. ACS NANO 2024; 18:24650-24681. [PMID: 39185745 PMCID: PMC11394369 DOI: 10.1021/acsnano.3c10797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 08/27/2024]
Abstract
Multiple vaccine platforms have been employed to develop the nasal SARS-CoV-2 vaccines in preclinical studies, and the dominating pipelines are viral vectored as protein-based vaccines. Among them, several viral vectored-based vaccines have entered clinical development. Nevertheless, some unsatisfactory results were reported in these clinical studies. In the face of such urgent situations, it is imperative to rapidly develop the next-generation intranasal COVID-19 vaccine utilizing other technologies. Nanobased intranasal vaccines have emerged as an approach against respiratory infectious diseases. Harnessing the power of nanotechnology, these vaccines offer a noninvasive yet potent defense against pathogens, including the threat of COVID-19. The improvements made in vaccine mucosal delivery technologies based on nanoparticles, such as lipid nanoparticles, polymeric nanoparticles, inorganic nanoparticles etc., not only provide stability and controlled release but also enhance mucosal adhesion, effectively overcoming the limitations of conventional vaccines. Hence, in this review, we overview the evaluation of intranasal vaccine and highlight the current barriers. Next, the modern delivery systems based on nanoplatforms are summarized. The challenges in clinical application of nanoplatform based intranasal vaccine are finally discussed.
Collapse
Affiliation(s)
| | | | | | - Weiqi Hong
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Haohao Dong
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Yuquan Wei
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Xiawei Wei
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
3
|
Bai D, Kim H, Wang P. Development of semisynthetic saponin immunostimulants. Med Chem Res 2024; 33:1292-1306. [PMID: 39132259 PMCID: PMC11315725 DOI: 10.1007/s00044-024-03227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/20/2024] [Indexed: 08/13/2024]
Abstract
Many natural saponins demonstrate immunostimulatory adjuvant activities, but they also have some inherent drawbacks that limit their clinical use. To overcome these limitations, extensive structure-activity-relationship (SAR) studies have been conducted. The SAR studies of QS-21 and related saponins reveal that their respective fatty side chains are crucial for potentiating a strong cellular immune response. Replacing the hydrolytically unstable ester side chain in the C28 oligosaccharide domain with an amide side chain in the same domain or in the C3 branched trisaccharide domain is a viable approach for generating robust semisynthetic saponin immunostimulants. Given the striking resemblance of natural momordica saponins (MS) I and II to the deacylated Quillaja Saponaria (QS) saponins (e.g., QS-17, QS-18, and QS-21), incorporating an amide side chain into the more sustainable MS, instead of deacylated QS saponins, led to the discovery of MS-derived semisynthetic immunostimulatory adjuvants VSA-1 and VSA-2. This review focuses on the authors' previous work on SAR studies of QS and MS saponins.
Collapse
Affiliation(s)
- Di Bai
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL AL35294 USA
| | - Hyunjung Kim
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL AL35294 USA
| | - Pengfei Wang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL AL35294 USA
| |
Collapse
|
4
|
Mobasher M, Ansari R, Castejon AM, Barar J, Omidi Y. Advanced nanoscale delivery systems for mRNA-based vaccines. Biochim Biophys Acta Gen Subj 2024; 1868:130558. [PMID: 38185238 DOI: 10.1016/j.bbagen.2024.130558] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
The effectiveness of messenger RNA (mRNA) vaccines, especially those designed for COVID-19, relies heavily on sophisticated delivery systems that ensure efficient delivery of mRNA to target cells. A variety of nanoscale vaccine delivery systems (VDSs) have been explored for this purpose, including lipid nanoparticles (LNPs), liposomes, and polymeric nanoparticles made from biocompatible polymers such as poly(lactic-co-glycolic acid), as well as viral vectors and lipid-polymer hybrid complexes. Among these, LNPs are particularly notable for their efficiency in encapsulating and protecting mRNA. These nanoscale VDSs can be engineered to enhance stability and facilitate uptake by cells. The choice of delivery system depends on factors like the specific mRNA vaccine, target cell types, stability requirements, and desired immune response. In this review, we shed light on recent advances in delivery mechanisms for self-amplifying RNA (saRNA) vaccines, emphasizing groundbreaking studies on nanoscale delivery systems aimed at improving the efficacy and safety of mRNA/saRNA vaccines.
Collapse
Affiliation(s)
- Maha Mobasher
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Rais Ansari
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Ana M Castejon
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
5
|
Alsakini KAMH, Çöven FO, Nalbantsoy A. Adjuvant effects of novel water/oil emulsion formulations on immune responses against infectious bronchitis (IB) vaccine in mice. Biologicals 2024; 85:101736. [PMID: 38101004 DOI: 10.1016/j.biologicals.2023.101736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/13/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Vaccines have long made use of adjuvants to boost the immune response of the body and reduce the amount of vaccine needed as well as the expense of producing the vaccine. Many vaccine adjuvants are in development, but their application in veterinary vaccinations is restricted due to their lack of efficacy or undesirable side effects. For this reason, it is essential to develop novel adjuvants. To address the issue that the currently available infectious bronchitis (IB) vaccine often fails to produce sufficient immune responses, Coral Biotechnology tested two of their newly developed water-in-oil (W/O) type emulsion adjuvants (Coralvac RZ 528 and Coralvac RZ 506) in the IB vaccine. These adjuvants were tested in a mouse model to determine whether it worked with an inactive IBV H120 vaccine. Vaccine formulations were prepared by combining a virus concentration of 1 × 106 EID50/0.1 ml with an emulsion of the W/O type in a specific ratio. Once the formulations were ready, it was injected intramuscularly as a single dosage, and the mice were monitored for 21 days afterwards. The results showed that anti-IB antibody titer (IgG and IgG1), CD3+ CD8+ T cell responses as well as IFN- γ cytokine production, and splenocyte proliferation were all considerably higher in the IBV H120 with Coralvac RZ 528 and IBV H120 with Coralvac RZ 506 formulation groups than in the viral control group. According to our findings, the humoral and cellular immune responses of mice were significantly enhanced by these novel vaccine adjuvants. Thus, our results provide evidence that the W/O type emulsion adjuvants developed by Coral Biotechnology may be a useful adjuvant in IBV vaccines.
Collapse
Affiliation(s)
| | - Furkan Ozan Çöven
- Department of Bioengineering, Natural and Applied Sciences Institute, Ege University, 35100, İzmir, Turkey.
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
6
|
Miao S, Jing Q, Wang X, Zheng W, Liu H, Tang L, Wang X, Ren F. Immuno-Enhancing Effect of Ginsenoside Rh2 Liposomes on Foot-and-Mouth Disease Vaccine. Mol Pharm 2024; 21:183-193. [PMID: 38015447 DOI: 10.1021/acs.molpharmaceut.3c00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The adjuvant is essential for vaccines because it can enhance or directly induce a strong immune response associated with vaccine antigens. Ginsenoside Rh2 (Rh2) had immunomodulatory effects but was limited by poor solubility and hemolysis. In this study, Rh2 liposomes (Rh2-L) were prepared by ethanol injection methods. The Rh2-L effectively dispersed in a double emulsion adjuvant system to form a Water-in-Oil-in-Water (W/O/W) emulsion and had no hemolysis. The physicochemical properties of the adjuvants were tested, and the immune activity and auxiliary effects indicated by the Foot-and-Mouth disease (FMDV) antigen were evaluated. Compared with the mice vaccinated with the FMD vaccine prepared with the double emulsion adjuvant alone, those with the FMD vaccine prepared with the double emulsion adjuvant containing Rh2-L had significantly higher neutralizing antibody titer and splenocyte proliferation rates and showed higher cellular and humoral immune responses. The results demonstrated that Rh2-L could further enhance the immune effect of the double emulsion adjuvant against Foot-and-Mouth Disease.
Collapse
Affiliation(s)
- Saiya Miao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Qiufang Jing
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China
| | - Xuanyu Wang
- Shanghai Baoshan Center for Disease Control and Prevention, Shanghai 201901, China
| | - Wenyun Zheng
- Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China
| | - Hui Liu
- Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China
| | - Liusiqi Tang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinzhu Wang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fuzheng Ren
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
7
|
Priyanka, Abusalah MAH, Chopra H, Sharma A, Mustafa SA, Choudhary OP, Sharma M, Dhawan M, Khosla R, Loshali A, Sundriyal A, Saini J. Nanovaccines: A game changing approach in the fight against infectious diseases. Biomed Pharmacother 2023; 167:115597. [PMID: 37783148 DOI: 10.1016/j.biopha.2023.115597] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
The field of nanotechnology has revolutionised global attempts to prevent, treat, and eradicate infectious diseases in the foreseen future. Nanovaccines have proven to be a valuable pawn in this novel technology. Nanovaccines are made up of nanoparticles that are associated with or prepared with components that can stimulate the host's immune system. In addition to their delivery capabilities, the nanocarriers have been demonstrated to possess intrinsic adjuvant properties, working as immune cell stimulators. Thus, nanovaccines have the potential to promote rapid as well as long-lasting humoral and cellular immunity. The nanovaccines have several possible benefits, including site-specific antigen delivery, increased antigen bioavailability, and a diminished adverse effect profile. To avail these benefits, several nanoparticle-based vaccines are being developed, including virus-like particles, liposomes, polymeric nanoparticles, nanogels, lipid nanoparticles, emulsion vaccines, exomes, and inorganic nanoparticles. Inspired by their distinctive properties, researchers are working on the development of nanovaccines for a variety of applications, such as cancer immunotherapy and infectious diseases. Although a few challenges still need to be overcome, such as modulation of the nanoparticle pharmacokinetics to avoid rapid elimination from the bloodstream by the reticuloendothelial system, The future prospects of this technology are also assuring, with multiple options such as personalised vaccines, needle-free formulations, and combination nanovaccines with several promising candidates.
Collapse
Affiliation(s)
- Priyanka
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda 151103, Punjab, India
| | - Mai Abdel Haleem Abusalah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa 13132, Jordan
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Abhilasha Sharma
- Department of Life Science, Gujarat University, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Suhad Asad Mustafa
- Scientific Research Center/ Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Om Prakash Choudhary
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda 151103, Punjab, India.
| | - Manish Sharma
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, Punjab, India; Trafford College, Altrincham, Manchester WA14 5PQ, UK.
| | - Rajiv Khosla
- Department of Biotechnology, Doaba College, Jalandhar 144004, Punjab, India
| | - Aanchal Loshali
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ankush Sundriyal
- School of Pharmaceutical Sciences and Research, Sardar Bhagwan Singh University, Balawala, Dehradun 248001, India
| | - Jyoti Saini
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda 151103, Punjab, India
| |
Collapse
|
8
|
Kehagia E, Papakyriakopoulou P, Valsami G. Advances in intranasal vaccine delivery: A promising non-invasive route of immunization. Vaccine 2023:S0264-410X(23)00529-7. [PMID: 37179163 PMCID: PMC10173027 DOI: 10.1016/j.vaccine.2023.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
The importance of vaccination has been proven particularly significant the last three years, as it is revealed to be the most efficient weapon for the prevention of several infections including SARS-COV-2. Parenteral vaccination is the most applicable method of immunization, for the prevention of systematic and respiratory infections, or central nervous system disorders, involving T and B cells to a whole-body immune response. However, the mucosal vaccines, such as nasal vaccines, can additionally activate the immune cells localized on the mucosal tissue of the upper and lower respiratory tract. This dual stimulation of the immune system, along with their needle-free administration favors the development of novel nasal vaccines to produce long-lasting immunity. In recent years, the nanoparticulate systems have been extensively involved in the formulation of nasal vaccines as polymeric, polysaccharide and lipid ones, as well as in the form of proteosomes, lipopeptides and virosomes. Advanced delivery nanosystems have been designed and evaluated as carriers or adjuvants for nasal vaccination. To this end, several nanoparticulate vaccines are undergone clinical trials as promising candidates for nasal immunization, while nasal vaccines against influenza type A and B and hepatitis B have been approved by health authorities. This comprehensive literature review aims to summarize the critical aspects of these formulations and highlight their potential for the future establishment of nasal vaccination. Both preclinical (in vitro and in vivo) and clinical studies are incorporated, summarized, and critically discussed, as well as the limitations of nasal immunization.
Collapse
Affiliation(s)
- Eleni Kehagia
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Greece
| | - Paraskevi Papakyriakopoulou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Greece.
| | - Georgia Valsami
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Greece
| |
Collapse
|
9
|
Chen K, Wang N, Zhang X, Wang M, Liu Y, Shi Y. Potentials of saponins-based adjuvants for nasal vaccines. Front Immunol 2023; 14:1153042. [PMID: 37020548 PMCID: PMC10067588 DOI: 10.3389/fimmu.2023.1153042] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/07/2023] [Indexed: 03/22/2023] Open
Abstract
Respiratory infections are a major public health concern caused by pathogens that colonize and invade the respiratory mucosal surface. Nasal vaccines have the advantage of providing protection at the primary site of pathogen infection, as they induce higher levels of mucosal secretory IgA antibodies and antigen-specific T and B cell responses. Adjuvants are crucial components of vaccine formulation that enhance the immunogenicity of the antigen to confer long-term and effective protection. Saponins, natural glycosides derived from plants, shown potential as vaccine adjuvants, as they can activate the mammalian immune system. Several licensed human vaccines containing saponins-based adjuvants administrated through intramuscular injection have demonstrated good efficacy and safety. Increasing evidence suggests that saponins can also be used as adjuvants for nasal vaccines, owing to their safety profile and potential to augment immune response. In this review, we will discuss the structure-activity-relationship of saponins, their important role in nasal vaccines, and future prospects for improving their efficacy and application in nasal vaccine for respiratory infection.
Collapse
Affiliation(s)
- Kai Chen
- Department of Radiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ning Wang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaomin Zhang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meng Wang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanyu Liu
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yun Shi
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yun Shi,
| |
Collapse
|
10
|
Hendy DA, Haven A, Bachelder EM, Ainslie KM. Preclinical developments in the delivery of protein antigens for vaccination. Expert Opin Drug Deliv 2023; 20:367-384. [PMID: 36731824 PMCID: PMC9992317 DOI: 10.1080/17425247.2023.2176844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 02/01/2023] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Vaccine technology has constantly advanced since its origin. One of these advancements is where purified parts of a pathogen are used rather than the whole pathogen. Subunit vaccines have no chance of causing disease; however, alone these antigens are often poorly immunogenic. Therefore, they can be paired with immune stimulating adjuvants. Further, subunits can be combined with delivery strategies such as nano/microparticles to enrich their delivery to organs and cells of interest as well as protect them from in vivo degradation. Here, we seek to highlight some of the more promising delivery strategies for protein antigens. AREAS COVERED We present a brief description of the different types of vaccines, clinically relevant examples, and their disadvantages when compared to subunit vaccines. Also, specific preclinical examples of delivery strategies for protein antigens. EXPERT OPINION Subunit vaccines provide optimal safety given that they have no risk of causing disease; however, they are often not immunogenic enough on their own to provide protection. Advanced delivery systems are a promising avenue to increase the immunogenicity of subunit vaccines, but scalability and stability can be improved. Further, more research is warranted on systems that promote a mucosal immune response to provide better protection against infection.
Collapse
Affiliation(s)
- Dylan A. Hendy
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Alex Haven
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Eric M. Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Kristy M. Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
11
|
Abushahba MF, Dadelahi AS, Lemoine EL, Skyberg JA, Vyas S, Dhoble S, Ghodake V, Patravale VB, Adamovicz JJ. Safe Subunit Green Vaccines Confer Robust Immunity and Protection against Mucosal Brucella Infection in Mice. Vaccines (Basel) 2023; 11:vaccines11030546. [PMID: 36992130 DOI: 10.3390/vaccines11030546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Brucellosis is a zoonotic disease that causes significant negative impacts on the animal industry and affects over half a million people worldwide every year. The limited safety and efficacy of current animal brucellosis vaccines, combined with the lack of a licensed human brucellosis vaccine, have led researchers to search for new vaccine strategies to combat the disease. To this end, the present research aimed to evaluate the safety and efficacy of a green vaccine candidate that combines Brucella abortus S19 smooth lipopolysaccharide (sLPS) with Quillaja saponin (QS) or QS-Xyloglucan mix (QS-X) against mucosal brucellosis in BALB/C mice. The results of the study indicate that administering two doses of either sLPS-QS or sLPS-QS-X was safe for the animals, triggered a robust immune response, and enhanced protection following intranasal challenge with S19. Specifically, the vaccine combinations led to the secretion of IgA and IgG1 in the BALF of the immunized mice. We also found a mixed IgG1/IgG2a systemic response indicating evidence of both Th1 and Th2 activation, with a predominance of the IgG1 over the IgG2a. These candidates resulted in significant reductions in the bioburden of lung, liver, and spleen tissue compared to the PBS control group. The sLPS-QS vaccination had conferred the greatest protection, with a 130-fold reduction in Brucella burdens in lung and a 55.74-fold reduction in the spleen compared to PBS controls. Vaccination with sLPS-QS-X resulted in the highest reduction in splenic Brucella loads, with a 364.6-fold decrease in bacterial titer compared to non-vaccinated animals. The study suggests that the tested vaccine candidates are safe and effective in increasing the animals’ ability to respond to brucellosis via mucosal challenge. It also supports the use of the S19 challenge strain as a safe and cost-effective method for testing Brucella vaccine candidates under BSL-2 containment conditions.
Collapse
Affiliation(s)
- Mostafa F Abushahba
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Alexis S Dadelahi
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Emily L Lemoine
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Jerod A Skyberg
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Swati Vyas
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga (E), Mumbai 400019, Maharashtra, India
| | - Sagar Dhoble
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga (E), Mumbai 400019, Maharashtra, India
| | - Vinod Ghodake
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga (E), Mumbai 400019, Maharashtra, India
| | - Vandana B Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga (E), Mumbai 400019, Maharashtra, India
| | - Jeffrey J Adamovicz
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
12
|
Aziz T, Nadeem AA, Sarwar A, Perveen I, Hussain N, Khan AA, Daudzai Z, Cui H, Lin L. Particle Nanoarchitectonics for Nanomedicine and Nanotherapeutic Drugs with Special Emphasis on Nasal Drugs and Aging. Biomedicines 2023; 11:354. [PMID: 36830891 PMCID: PMC9953552 DOI: 10.3390/biomedicines11020354] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
Aging is a multifunctional physiological manifestation. The nasal cavity is considered a major site for easy and cost-effective drug and vaccine administration, due to high permeability, low enzymatic activity, and the presence of a high number of immunocompetent cells. This review article primarily focuses on aging genetics, physical parameters, and the use of nanoparticles as delivery systems of drugs and vaccines via the nasal cavity. Studies have identified various genes involved in centenarian and average-aged people. VEGF is a key mediator involved in angiogenesis. Different therapeutic approaches induce vascular function and angiogenesis. FOLR1 gene codes for folate receptor alpha protein that helps in regulating the transport of vitamin B folate, 5-methyltetrahydrofolate and folate analogs inside the cell. This gene also aids in slowing the aging process down by cellular regeneration and promotes healthy aging by reducing aging symptoms. It has been found through the literature that GATA 6, Yamanaka factors, and FOLR1 work in synchronization to induce healthy and delayed aging. The role and applications of genes including CBS, CISD, SIRT 1, and SIRT 6 play a significant role in aging.
Collapse
Affiliation(s)
- Tariq Aziz
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Abad Ali Nadeem
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore 54590, Pakistan
| | - Abid Sarwar
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore 54590, Pakistan
| | - Ishrat Perveen
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore 54590, Pakistan
| | - Nageen Hussain
- Institute of Microbiology and Molecular Genetics, New Campus, University of the Punjab, Lahore 54590, Pakistan
| | - Ayaz Ali Khan
- Department of Biotechnology, University of Malakand, Chakdara 18800, Pakistan
| | - Zubaida Daudzai
- Department of Bioresources and Biotechnology, King Mongkut University of Technology, Bangkok 10140, Thailand
| | - Haiying Cui
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lin Lin
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
13
|
Silveira F, Rivera-Patron M, Deshpande N, Sienra S, Checa J, Moreno M, Chabalgoity JA, Cibulski SP, Baz M. Quillaja brasiliensis nanoparticle adjuvant formulation improves the efficacy of an inactivated trivalent influenza vaccine in mice. Front Immunol 2023; 14:1163858. [PMID: 37197659 PMCID: PMC10183569 DOI: 10.3389/fimmu.2023.1163858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/04/2023] [Indexed: 05/19/2023] Open
Abstract
The threat of viral influenza infections has sparked research efforts to develop vaccines that can induce broadly protective immunity with safe adjuvants that trigger robust immune responses. Here, we demonstrate that subcutaneous or intranasal delivery of a seasonal trivalent influenza vaccine (TIV) adjuvanted with the Quillaja brasiliensis saponin-based nanoparticle (IMXQB) increases the potency of TIV. The adjuvanted vaccine (TIV-IMXQB) elicited high levels of IgG2a and IgG1 antibodies with virus-neutralizing capacity and improved serum hemagglutination inhibition titers. The cellular immune response induced by TIV-IMXQB suggests the presence of a mixed Th1/Th2 cytokine profile, antibody-secreting cells (ASCs) skewed toward an IgG2a phenotype, a positive delayed-type hypersensitivity (DTH) response, and effector CD4+ and CD8+ T cells. After challenge, viral titers in the lungs were significantly lower in animals receiving TIV-IMXQB than in those inoculated with TIV alone. Most notably, mice vaccinated intranasally with TIV-IMXQB and challenged with a lethal dose of influenza virus were fully protected against weight loss and lung virus replication, with no mortality, whereas, among animals vaccinated with TIV alone, the mortality rate was 75%. These findings demonstrate that TIV-IMXQB improved the immune responses to TIV, and, unlike the commercial vaccine, conferred full protection against influenza challenge.
Collapse
Affiliation(s)
- Fernando Silveira
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Fernando Silveira, ; Mariana Baz,
| | - Mariana Rivera-Patron
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Nikita Deshpande
- World Health Organization Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Soledad Sienra
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jackeline Checa
- Unidad de Biología Parasitaria, Facultad de Ciencias, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - María Moreno
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jose A. Chabalgoity
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Samuel P. Cibulski
- Centro de Biotecnologia – CBiotec, Laboratório de Biotecnologia Celular e Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Mariana Baz
- World Health Organization Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- *Correspondence: Fernando Silveira, ; Mariana Baz,
| |
Collapse
|
14
|
Recent Advances in Cancer Vaccines: Challenges, Achievements, and Futuristic Prospects. Vaccines (Basel) 2022; 10:vaccines10122011. [PMID: 36560420 PMCID: PMC9788126 DOI: 10.3390/vaccines10122011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is a chronic disease, and it can be lethal due to limited therapeutic options. The conventional treatment options for cancer have numerous challenges, such as a low blood circulation time as well as poor solubility of anticancer drugs. Therapeutic cancer vaccines emerged to try to improve anticancer drugs' efficiency and to deliver them to the target site. Cancer vaccines are considered a viable therapeutic technique for most solid tumors. Vaccines boost antitumor immunity by delivering tumor antigens, nucleic acids, entire cells, and peptides. Cancer vaccines are designed to induce long-term antitumor memory, causing tumor regression, eradicate minimal residual illness, and prevent non-specific or unpleasant effects. These vaccines can assist in the elimination of cancer cells from various organs or organ systems in the body, with minimal risk of tumor recurrence or metastasis. Vaccines and antigens for anticancer therapy are discussed in this review, including current vaccine adjuvants and mechanisms of action for various types of vaccines, such as DNA- or mRNA-based cancer vaccines. Potential applications of these vaccines focusing on their clinical use for better therapeutic efficacy are also discussed along with the latest research available in this field.
Collapse
|
15
|
Valenzuela-Fernández A, Cabrera-Rodriguez R, Ciuffreda L, Perez-Yanes S, Estevez-Herrera J, González-Montelongo R, Alcoba-Florez J, Trujillo-González R, García-Martínez de Artola D, Gil-Campesino H, Díez-Gil O, Lorenzo-Salazar JM, Flores C, Garcia-Luis J. Nanomaterials to combat SARS-CoV-2: Strategies to prevent, diagnose and treat COVID-19. Front Bioeng Biotechnol 2022; 10:1052436. [PMID: 36507266 PMCID: PMC9732709 DOI: 10.3389/fbioe.2022.1052436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the associated coronavirus disease 2019 (COVID-19), which severely affect the respiratory system and several organs and tissues, and may lead to death, have shown how science can respond when challenged by a global emergency, offering as a response a myriad of rapid technological developments. Development of vaccines at lightning speed is one of them. SARS-CoV-2 outbreaks have stressed healthcare systems, questioning patients care by using standard non-adapted therapies and diagnostic tools. In this scenario, nanotechnology has offered new tools, techniques and opportunities for prevention, for rapid, accurate and sensitive diagnosis and treatment of COVID-19. In this review, we focus on the nanotechnological applications and nano-based materials (i.e., personal protective equipment) to combat SARS-CoV-2 transmission, infection, organ damage and for the development of new tools for virosurveillance, diagnose and immune protection by mRNA and other nano-based vaccines. All the nano-based developed tools have allowed a historical, unprecedented, real time epidemiological surveillance and diagnosis of SARS-CoV-2 infection, at community and international levels. The nano-based technology has help to predict and detect how this Sarbecovirus is mutating and the severity of the associated COVID-19 disease, thereby assisting the administration and public health services to make decisions and measures for preparedness against the emerging variants of SARS-CoV-2 and severe or lethal COVID-19.
Collapse
Affiliation(s)
- Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Romina Cabrera-Rodriguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Laura Ciuffreda
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Silvia Perez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Judith Estevez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | | - Julia Alcoba-Florez
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | | | - Helena Gil-Campesino
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Oscar Díez-Gil
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Health Sciences, University of Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Jonay Garcia-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
16
|
Bezbaruah R, Chavda VP, Nongrang L, Alom S, Deka K, Kalita T, Ali F, Bhattacharjee B, Vora L. Nanoparticle-Based Delivery Systems for Vaccines. Vaccines (Basel) 2022; 10:1946. [PMID: 36423041 PMCID: PMC9694785 DOI: 10.3390/vaccines10111946] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
Vaccination is still the most cost-effective way to combat infectious illnesses. Conventional vaccinations may have low immunogenicity and, in most situations, only provide partial protection. A new class of nanoparticle-based vaccinations has shown considerable promise in addressing the majority of the shortcomings of traditional and subunit vaccines. This is due to recent breakthroughs in chemical and biological engineering, which allow for the exact regulation of nanoparticle size, shape, functionality, and surface characteristics, resulting in improved antigen presentation and robust immunogenicity. A blend of physicochemical, immunological, and toxicological experiments can be used to accurately characterize nanovaccines. This narrative review will provide an overview of the current scenario of the nanovaccine.
Collapse
Affiliation(s)
- Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380008, Gujarat, India
| | - Lawandashisha Nongrang
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Shahnaz Alom
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India
| | - Kangkan Deka
- Department of Pharmacognosy, NETES Institute of Pharmaceutical Science, Mirza, Guwahati 781125, Assam, India
| | - Tutumoni Kalita
- Department of Pharmaceutical Chemistry, Girijananda Chowdhury Institute of Pharmaceutical Sciences, Azara, Guwahati 781017, Assam, India
| | - Farak Ali
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
- Department of Pharmaceutical Chemistry, Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India
| | - Bedanta Bhattacharjee
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India
| | | |
Collapse
|
17
|
Nian X, Zhang J, Huang S, Duan K, Li X, Yang X. Development of Nasal Vaccines and the Associated Challenges. Pharmaceutics 2022; 14:1983. [PMID: 36297419 PMCID: PMC9609876 DOI: 10.3390/pharmaceutics14101983] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 02/02/2024] Open
Abstract
Viruses, bacteria, fungi, and several other pathogenic microorganisms usually infect the host via the surface cells of respiratory mucosa. Nasal vaccination could provide a strong mucosal and systemic immunity to combat these infections. The intranasal route of vaccination offers the advantage of easy accessibility over the injection administration. Therefore, nasal immunization is considered a promising strategy for disease prevention, particularly in the case of infectious diseases of the respiratory system. The development of a nasal vaccine, particularly the strategies of adjuvant and antigens design and optimization, enabling rapid induction of protective mucosal and systemic responses against the disease. In recent times, the development of efficacious nasal vaccines with an adequate safety profile has progressed rapidly, with effective handling and overcoming of the challenges encountered during the process. In this context, the present report summarizes the most recent findings regarding the strategies used for developing nasal vaccines as an efficient alternative to conventional vaccines.
Collapse
Affiliation(s)
- Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Jiayou Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Shihe Huang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xinguo Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- China National Biotech Group Company Limited, Beijing 100029, China
| |
Collapse
|
18
|
Ghaemi A, Roshani Asl P, Zargaran H, Ahmadi D, Hashimi AA, Abdolalipour E, Bathaeian S, Miri SM. Recombinant COVID-19 vaccine based on recombinant RBD/Nucleoprotein and saponin adjuvant induces long-lasting neutralizing antibodies and cellular immunity. Front Immunol 2022; 13:974364. [PMID: 36159845 PMCID: PMC9494508 DOI: 10.3389/fimmu.2022.974364] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022] Open
Abstract
SARS-CoV-2 has caused a global pandemic, infecting millions of people. An effective preventive vaccine against this virus is urgently needed. Here, we designed and developed a novel formulated recombinant receptor-binding domain (RBD) nucleocapsid (N) recombinant vaccine candidates. The RBD and N were separately expressed in E. coli and purified using column chromatography. The female Balb/c mice were immunized subcutaneously with the combination of purified RBD and N alone or formulated with saponin adjuvant in a two-week interval in three doses. Neutralization antibody (Nabs) titers against the SARS-CoV-2 were detected by a Surrogate Virus Neutralization (sVNT) Test. Also, total IgG and IgG1, and IgG2a isotypes and the balance of cytokines in the spleen (IFN-γ, Granzyme B, IL-4, and IL-12) were measured by ELISA. The percentages of CD4+ and CD8+ T cells were quantified by flow cytometry. The lymphoproliferative activity of restimulated spleen cells was also determined. The findings showed that the combination of RBD and N proteins formulated with saponin significantly promoted specific total IgG and neutralization antibodies, elicited robust specific lymphoproliferative and T cell response responses. Moreover, marked increase in CD4+ and CD8+ T cells were observed in the adjuvanted RBD and N vaccine group compared with other groups. The results suggest that the formulations are able to elicit a specific long-lasting mixed Th1/Th2 balanced immune response. Our data indicate the significance of the saponin-adjuvanted RBD/N vaccine in the design of SARS-CoV-2 vaccines and provide a rationale for the development of a protective long-lasting and strong vaccine.
Collapse
Affiliation(s)
- Amir Ghaemi
- Department of Influenza and other respiratory viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Parisa Roshani Asl
- Department of Influenza and other respiratory viruses, Pasteur Institute of Iran, Tehran, Iran
| | | | - Delaram Ahmadi
- Department of Influenza and other respiratory viruses, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Sahar Bathaeian
- Department of Influenza and other respiratory viruses, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
19
|
Cibulski S, de Souza TA, Raimundo JP, Nascimento YM, Abreu LS, Suarez N, Miraballes I, Roehe PM, de Araújo DAM, Tavares JF, da Silva MS, Silveira F. ISCOM-Matrices Nanoformulation Using the Raw Aqueous Extract of Quillaja lancifolia (Q. brasiliensis). BIONANOSCIENCE 2022; 12:1166-1171. [PMID: 35967762 PMCID: PMC9362619 DOI: 10.1007/s12668-022-01023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2022] [Indexed: 11/10/2022]
Abstract
Quillaja saponins have an intrinsic capacity to interact with membrane lipids that self-assembles in nanoparticles (immunostimulating complexes or ISCOM-matrices) with outstanding immunoadjuvant activity and low toxicity profile. However, the expensive and laborious purification processes applied to purify Quillaja saponins used to assemble ISCOM-matrices show an important drawback in the large-scale use of this vaccine adjuvant. Thus, in this study, we describe a protocol to appropriately formulate ISCOM-matrices using the raw aqueous extract (AE) of Quillaja lancifolia leaves. In the presence of lipids, AE was able to self-assemble in nanostructures that resembles immunostimulating complexes (ISCOM). These negatively charged nanoparticles of approximately 40 nm were characterized by transmission electron microscopy and dynamic light scattering. In addition, well-known saponins with remarkable immunoadjuvant activity, as QS-21, were detected into nanoparticles. Thus, the easier, robust, cheaper, and environmentally friendly method developed here may be an alternative to the classical methods for ISCOM-matrices production that use high-purified saponins.
Collapse
|
20
|
Correa VA, Portilho AI, De Gaspari E. Immunological Effects of Dimethyldioctadecylammonium Bromide and Saponin as Adjuvants for Outer Membrane Vesicles from Neisseria meningitidis. Diseases 2022; 10:diseases10030046. [PMID: 35892740 PMCID: PMC9326571 DOI: 10.3390/diseases10030046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/13/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
The meningococcal disease is a global health threat, but is preventable through vaccination. Adjuvants improve meningococcal vaccines and are able to trigger different aspects of the immune response. The present work evaluated the immune response of mice against Neisseria meningitidis outer membrane vesicles (OMV) complexed with the adjuvants aluminium hydroxide (AH), via subcutaneous route; and dimethyldioctadecylammonium bromide (DDA) or Saponin (Sap), via intranasal/subcutaneous routes. ELISA demonstrated that all adjuvants increased IgG titers after the booster dose, remaining elevated for 18 months. Additionally, adjuvants increased the avidity of the antibodies and the bactericidal titer: OMVs alone were bactericidal until 1:4 dilution but, when adjuvanted by Alum, DDA or Sap, it increased to 1/32. DDA and Sap increased all IgG isotypes, while AH improved IgG1 and IgG2a levels. Thus, Sap led to the recognition of more proteins in Immunoblot, followed by DDA and AH. Sap and AH induced higher IL-4 and IL-17 release, respectively. The use of adjuvants improved both cellular and humoral immune response, however, each adjuvant contributed to particular parameters. This demonstrates the importance of studying different adjuvant options and their suitability to stimulate different immune mechanisms, modulating the immune response.
Collapse
Affiliation(s)
- Victor Araujo Correa
- Immunology Center, Adolfo Lutz Institute, Av. Dr. Arnaldo, 355, 11th Floor, Room 1116, Cerqueira César, São Paulo 01246-902, SP, Brazil; (V.A.C.); (A.I.P.)
- Graduate Program Interunits in Biotechnology, Biomedical Sciences Institute, São Paulo University, Av. Prof. Lineu Prestes, 2415, ICB Hall III, Cidade Universitária, São Paulo 05508-900, SP, Brazil
| | - Amanda Izeli Portilho
- Immunology Center, Adolfo Lutz Institute, Av. Dr. Arnaldo, 355, 11th Floor, Room 1116, Cerqueira César, São Paulo 01246-902, SP, Brazil; (V.A.C.); (A.I.P.)
- Graduate Program Interunits in Biotechnology, Biomedical Sciences Institute, São Paulo University, Av. Prof. Lineu Prestes, 2415, ICB Hall III, Cidade Universitária, São Paulo 05508-900, SP, Brazil
| | - Elizabeth De Gaspari
- Immunology Center, Adolfo Lutz Institute, Av. Dr. Arnaldo, 355, 11th Floor, Room 1116, Cerqueira César, São Paulo 01246-902, SP, Brazil; (V.A.C.); (A.I.P.)
- Graduate Program Interunits in Biotechnology, Biomedical Sciences Institute, São Paulo University, Av. Prof. Lineu Prestes, 2415, ICB Hall III, Cidade Universitária, São Paulo 05508-900, SP, Brazil
- Correspondence: ; Tel.: +55-11-3068-2898
| |
Collapse
|
21
|
Rivera-Patron M, Cibulski SP, Miraballes I, Silveira F. Formulation of IMXQB: Nanoparticles Based on Quillaja brasiliensis Saponins to be Used as Vaccine Adjuvants. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2469:183-191. [PMID: 35508839 DOI: 10.1007/978-1-0716-2185-1_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Adjuvants are essential components of subunit, recombinant, nonreplicating and killed vaccines, as they are substances that boost, shape, and/or enhance the immune response triggered by vaccination. Saponins obtained from the Chilean Q. saponaria tree are used as vaccine adjuvants in commercial vaccines, although they are scarce and difficult to obtain. In addition, tree felling is needed during its extraction, which has ecological impact. Q. brasiliensis leaf-extracted saponins arise as a more sustainable alternative, although its use is still limited to preclinical studies. Despite the remarkable immunostimulating properties of saponins, they are toxic to mammalian cells, due to their intrinsic characteristics. For these reasons they are mostly used in veterinary vaccines, although recently the Q. saponaria purified saponin QS-21 has been included in adjuvant systems for human vaccines, such as Mosquirix and Shingrix (GSK). In order to abrogate the toxicity of the saponins fractions, they can be formulated as immunostimulating complexes (ISCOMs). ISCOM-matrices are cage-like nanoparticles of approximately 40 nm, formulated combining saponins and lipids, without antigen, and are great adjuvants able to promote Th1-biased immune responses in a safe manner. Herein we describe how to formulate ISCOM-matrices nanoparticles using Q. brasiliensis purified saponin fractions (IMXQB) by the dialysis method. In addition, we indicate how to verify the appropriate size and homogeneity of the formulated nanoparticles.
Collapse
Affiliation(s)
- Mariana Rivera-Patron
- Department of Biotechnological Development, Hygiene Institute, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Samuel P Cibulski
- Cellular and Molecular Biology Laboratory, Center for Biotechnology-CBiotec, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Iris Miraballes
- Clinical Immunology-BIOCLIN Dept., Biotechnology Laboratory, Technological Pole Institute of Pando, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| | - Fernando Silveira
- Department of Biotechnological Development, Hygiene Institute, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
22
|
Structure Elucidation of Triterpenoid Saponins Found in an Immunoadjuvant Preparation of Quillaja brasiliensis Using Mass Spectrometry and 1H and 13C NMR Spectroscopy. Molecules 2022; 27:molecules27082402. [PMID: 35458600 PMCID: PMC9024837 DOI: 10.3390/molecules27082402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/02/2022] Open
Abstract
An immunoadjuvant preparation (named Fraction B) was obtained from the aqueous extract of Quillaja brasiliensis leaves, and further fractionated by consecutive separations with silica flash MPLC and reverse phase HPLC. Two compounds were isolated, and their structures elucidated using a combination of NMR spectroscopy and mass spectrometry. One of these compounds is a previously undescribed triterpene saponin (Qb1), which is an isomer of QS-21, the unique adjuvant saponin employed in human vaccines. The other compound is a triterpene saponin previously isolated from Quillaja saponaria bark, known as S13. The structure of Qb1 consists of a quillaic acid residue substituted with a β-d-Galp-(1→2)-[β-d-Xylp-(1→3)]-β-d-GlcpA trisaccharide at C3, and a β-d-Xylp-(1→4)-α-l-Rhap-(1→2)-[α-l-Arap-(1→3)]-β-d-Fucp moiety at C28. The oligosaccharide at C28 was further substituted at O4 of the fucosyl residue with an acyl group capped with a β-d-Xylp residue.
Collapse
|
23
|
ISCOM-like Nanoparticles Formulated with Quillaja brasiliensis Saponins Are Promising Adjuvants for Seasonal Influenza Vaccines. Vaccines (Basel) 2021; 9:vaccines9111350. [PMID: 34835281 PMCID: PMC8621233 DOI: 10.3390/vaccines9111350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/28/2022] Open
Abstract
Vaccination is the most effective public health intervention to prevent influenza infections, which are responsible for an important burden of respiratory illnesses and deaths each year. Currently, licensed influenza vaccines are mostly split inactivated, although in order to achieve higher efficacy rates, some influenza vaccines contain adjuvants. Although split-inactivated vaccines induce mostly humoral responses, tailoring mucosal and cellular immune responses is crucial for preventing influenza infections. Quillaja brasiliensis saponin-based adjuvants, including ISCOM-like nanoparticles formulated with the QB-90 saponin fraction (IQB90), have been studied in preclinical models for more than a decade and have been demonstrated to induce strong humoral and cellular immune responses towards several viral antigens. Herein, we demonstrate that a split-inactivated IQB90 adjuvanted influenza vaccine triggered a protective immune response, stronger than that induced by a commercial unadjuvanted vaccine, when applied either by the subcutaneous or the intranasal route. Moreover, we reveal that this novel adjuvant confers up to a ten-fold dose-sparing effect, which could be crucial for pandemic preparedness. Last but not least, we assessed the role of caspase-1/11 in the generation of the immune response triggered by the IQB90 adjuvanted influenza vaccine in a mouse model and found that the cellular-mediated immune response triggered by the IQB90-Flu relies, at least in part, on a mechanism involving the casp-1/11 pathway but not the humoral response elicited by this formulation.
Collapse
|
24
|
Hong S, Ruan S, Greenberg Z, He M, McGill JL. Development of surface engineered antigenic exosomes as vaccines for respiratory syncytial virus. Sci Rep 2021; 11:21358. [PMID: 34725399 PMCID: PMC8560785 DOI: 10.1038/s41598-021-00765-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/13/2021] [Indexed: 01/17/2023] Open
Abstract
Respiratory syncytial virus (RSV) is one of the main pathogens associated with lower respiratory tract infections in infants and young children worldwide. Exosomes secreted by antigen presenting cells (APCs) can elicit immune responses by carrying major histocompatibility complex (MHC) class I molecules complexed with antigenic peptides and other co-stimulating factors. Therefore, we developed novel immunomagnetic nanographene particles to sequentially isolate, surface engineer, and release intact dendritic cell (DC) exosomes for use as a potential vaccine platform against RSV. The H-2Db-restricted, immunodominant peptides from RSV (M187-195 and NS161-75) were introduced to MHC-I on DC-derived exosomes to express peptide/MHC-I (pMHC-I) complexes. A mouse model of RSV infection was used to define the immunogenicity of surface engineered exosomes for activating virus-specific immune responses. Ex vivo assays demonstrated that engineered exosomes carrying RSV-specific peptides can elicit interferon-gamma (IFN-γ) production by virus-specific CD8+ T cells isolated from RSV-infected C57BL/6 mice. In vivo assays demonstrated that subcutaneous administration of both M187-195 and NS161-75 engineered exosomes to mice, with or without additional adjuvant, appeared safe and well tolerated, however, did not prime antigen-specific CD8+ T cell responses. Surface engineered exosomes are immunogenic and promising for further development as a vaccine platform.
Collapse
Affiliation(s)
- Suyeon Hong
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Shaobo Ruan
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Zachary Greenberg
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Jodi L McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
25
|
Zhang X, Zhang Z, Xia N, Zhao Q. Carbohydrate-containing nanoparticles as vaccine adjuvants. Expert Rev Vaccines 2021; 20:797-810. [PMID: 34101528 DOI: 10.1080/14760584.2021.1939688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Adjuvants are essential to vaccines for immunopotentiation in the elicitation of protective immunity. However, classical and widely used aluminum-based adjuvants have limited capacity to induce cellular response. There are increasing needs for appropriate adjuvants with improved profiles for vaccine development toward emerging pathogens. Carbohydrate-containing nanoparticles (NPs) with immunomodulatory activity and particulate nanocarriers for effective antigen presentation are capable of eliciting a more balanced humoral and cellular immune response.Areas covered: We reviewed several carbohydrates with immunomodulatory properties. They include chitosan, β-glucan, mannan, and saponins, which have been used in vaccine formulations. The mode of action, the preparation methods, characterization of these carbohydrate-containing NPs and the corresponding vaccines are presented.Expert opinion: Several carbohydrate-containing NPs have entered the clinical stage or have been used in licensed vaccines for human use. Saponin-containing NPs are being evaluated in a vaccine against SARS-CoV-2, the pathogen causing the on-going worldwide pandemic. Vaccines with carbohydrate-containing NPs are in different stages of development, from preclinical studies to late-stage clinical trials. A better understanding of the mode of action for carbohydrate-containing NPs as vaccine carriers and as immunostimulators will likely contribute to the design and development of new generation vaccines against cancer and infectious diseases.
Collapse
Affiliation(s)
- Xinyuan Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Zhigang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, PR China.,School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China.,The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| |
Collapse
|
26
|
An Overview of Nanocarrier-Based Adjuvants for Vaccine Delivery. Pharmaceutics 2021; 13:pharmaceutics13040455. [PMID: 33801614 PMCID: PMC8066039 DOI: 10.3390/pharmaceutics13040455] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 12/12/2022] Open
Abstract
The development of vaccines is one of the most significant medical accomplishments which has helped to eradicate a large number of diseases. It has undergone an evolutionary process from live attenuated pathogen vaccine to killed whole organisms or inactivated toxins (toxoids), each of them having its own advantages and disadvantages. The crucial parameters in vaccination are the generation of memory response and protection against infection, while an important aspect is the effective delivery of antigen in an intelligent manner to evoke a robust immune response. In this regard, nanotechnology is greatly contributing to developing efficient vaccine adjuvants and delivery systems. These can protect the encapsulated antigen from the host’s in-vivo environment and releasing it in a sustained manner to induce a long-lasting immunostimulatory effect. In view of this, the present review article summarizes nanoscale-based adjuvants and delivery vehicles such as viral vectors, virus-like particles and virosomes; non-viral vectors namely nanoemulsions, lipid nanocarriers, biodegradable and non-degradable nanoparticles, calcium phosphate nanoparticles, colloidally stable nanoparticles, proteosomes; and pattern recognition receptors covering c-type lectin receptors and toll-like receptors.
Collapse
|
27
|
Cibulski S, Varela APM, Teixeira TF, Cancela MP, Sesterheim P, Souza DO, Roehe PM, Silveira F. Zika Virus Envelope Domain III Recombinant Protein Delivered With Saponin-Based Nanoadjuvant From Quillaja brasiliensis Enhances Anti-Zika Immune Responses, Including Neutralizing Antibodies and Splenocyte Proliferation. Front Immunol 2021; 12:632714. [PMID: 33746970 PMCID: PMC7969523 DOI: 10.3389/fimmu.2021.632714] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/09/2021] [Indexed: 11/26/2022] Open
Abstract
Nanoadjuvants that combine immunostimulatory properties and delivery systems reportedly bestow major improvements on the efficacy of recombinant, protein-based vaccines. Among these, self-assembled micellar formulations named ISCOMs (immune stimulating complexes) show a great ability to trigger powerful immunological responses against infectious pathogens. Here, a nanoadjuvant preparation, based on saponins from Quillaja brasiliensis, was evaluated together with an experimental Zika virus (ZIKV) vaccine (IQB80-zEDIII) and compared to an equivalent vaccine with alum as the standard adjuvant. The preparations were administered to mice in two doses (on days zero and 14) and immune responses were evaluated on day 28 post-priming. Serum levels of anti-Zika virus IgG, IgG1, IgG2b, IgG2c, IgG3 were significantly increased by the nanoadjuvant vaccine, compared to the mice that received the alum-adjuvanted vaccine or the unadjuvanted vaccine. In addition, a robust production of neutralizing antibodies and in vitro splenocyte proliferative responses were observed in mice immunized with IQB80-zEDIII nanoformulated vaccine. Therefore, the IQB80-zEDIII recombinant preparation seems to be a suitable candidate vaccine for ZIKV. Overall, this study identified saponin-based delivery systems as an adequate adjuvant for recombinant ZIKV vaccines and has important implications for recombinant protein-based vaccine formulations against other flaviviruses and possibly enveloped viruses.
Collapse
Affiliation(s)
- Samuel Cibulski
- Laboratório de Biotecnologia Celular e Molecular, Centro de Biotecnologia-CBiotec, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Ana Paula Muterle Varela
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thais Fumaco Teixeira
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Martín Pablo Cancela
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Sesterheim
- Centro de Cardiologia Experimental, Instituto de Cardiologia/Fundação Universitária de Cardiologia, Porto Alegre, Brazil
| | - Diogo Onofre Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Paulo Michel Roehe
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernando Silveira
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| |
Collapse
|
28
|
IMXQB-80: A Quillaja brasiliensis saponin-based nanoadjuvant enhances Zika virus specific immune responses in mice. Vaccine 2020; 39:571-579. [PMID: 33339669 DOI: 10.1016/j.vaccine.2020.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/13/2020] [Accepted: 12/01/2020] [Indexed: 12/23/2022]
Abstract
Vaccine adjuvants are compounds that enhance/prolong the immune response to a co-administered antigen. Saponins have been widely used as adjuvants for many years in several vaccines - especially for intracellular pathogens - including the recent and somewhat revolutionary malaria and shingles vaccines. In view of the immunoadjuvant potential of Q. brasiliensis saponins, the present study aimed to characterize the QB-80 saponin-rich fraction and a nanoadjuvant prepared with QB-80 and lipids (IMXQB-80). In addition, the performance of such adjuvants was examined in experimental inactivated vaccines against Zika virus (ZIKV). Analysis of QB-80 by DI-ESI-ToF by negative ion electrospray revealed over 29 saponins that could be assigned to known structures existing in their congener Q. saponaria, including the well-studied QS-21 and QS-7. The QB-80 saponins were a micrOTOF able to self-assembly with lipids in ISCOM-like nanoparticles with diameters of approximately 43 nm, here named IMXQB-80. Toxicity assays revealed that QB-80 saponins did present some haemolytical and cytotoxic potentials; however, these were abrogated in IMXQB-80 nanoparticles. Regarding the adjuvant activity, QB-80 and IMXQB-80 significantly enhanced serum levels of anti-Zika virus IgG and subtypes (IgG1, IgG2b, IgG2c) as well as neutralized antibodies when compared to an unadjuvanted vaccine. Furthermore, the nanoadjuvant IMXQB-80 was as effective as QB-80 in stimulating immune responses, yet requiring fourfold less saponins to induce the equivalent stimuli, and with less toxicity. These findings reveal that the saponin fraction QB-80, and particularly the IMXQB-80 nanoadjuvant, are safe and capable of potentializing immune responses when used as adjuvants in experimental ZIKV vaccines.
Collapse
|
29
|
Inflammasome-Mediated Immunogenicity of Clinical and Experimental Vaccine Adjuvants. Vaccines (Basel) 2020; 8:vaccines8030554. [PMID: 32971761 PMCID: PMC7565252 DOI: 10.3390/vaccines8030554] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
In modern vaccines, adjuvants can be sophisticated immunological tools to promote robust and long-lasting protection against prevalent diseases. However, there is an urgent need to improve immunogenicity of vaccines in order to protect mankind from life-threatening diseases such as AIDS, malaria or, most recently, COVID-19. Therefore, it is important to understand the cellular and molecular mechanisms of action of vaccine adjuvants, which generally trigger the innate immune system to enhance signal transition to adaptive immunity, resulting in pathogen-specific protection. Thus, improved understanding of vaccine adjuvant mechanisms may aid in the design of “intelligent” vaccines to provide robust protection from pathogens. Various commonly used clinical adjuvants, such as aluminium salts, saponins or emulsions, have been identified as activators of inflammasomes - multiprotein signalling platforms that drive activation of inflammatory caspases, resulting in secretion of pro-inflammatory cytokines of the IL-1 family. Importantly, these cytokines affect the cellular and humoral arms of adaptive immunity, which indicates that inflammasomes represent a valuable target of vaccine adjuvants. In this review, we highlight the impact of different inflammasomes on vaccine adjuvant-induced immune responses regarding their mechanisms and immunogenicity. In this context, we focus on clinically relevant adjuvants that have been shown to activate the NLRP3 inflammasome and also present various experimental adjuvants that activate the NLRP3-, NLRC4-, AIM2-, pyrin-, or non-canonical inflammasomes and could have the potential to improve future vaccines. Together, we provide a comprehensive overview on vaccine adjuvants that are known, or suggested, to promote immunogenicity through inflammasome-mediated signalling.
Collapse
|
30
|
Xyloglucan based mucosal nanovaccine for immunological protection against brucellosis developed by supercritical fluid technology. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2020; 2:100053. [PMID: 32776000 PMCID: PMC7397708 DOI: 10.1016/j.ijpx.2020.100053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 06/28/2020] [Accepted: 07/13/2020] [Indexed: 11/21/2022]
Abstract
Vaccines delivered via the mucosal route have logistic benefits over parenteral or intramuscular vaccines as they offer patient compliance. This study presents the first intranasal, controlled release, subunit nanovaccine comprising mucoadhesive tamarind seed polymer (xyloglucan) based nanoparticles produced using an efficient, environmentally compatible, and industrially scalable technique: rapid expansion of supercritical solution. The nanovaccine formulation aimed against brucellosis comprised xyloglucan nanoparticles loaded separately with antigenic acellular lipopolysaccharides from B. abortus (S19) and the immunoadjuvant quillaja saponin. The nanovaccine elicited prolonged humoral and cell-mediated immunity in female Balb/c mice. Nasal vaccination with the nanovaccine resulted in higher levels of mucosal IgA and IgG than with an aqueous solution of soluble lipopolysaccharides and quillaja saponin. Systemic immunity triggered by the nanovaccine was evidenced by higher IgG levels in sera post priming and boosting. The nanovaccine induced a mixed Th1/Th2 type of immunity with higher IgG2a levels and thus a polarized Th1 response. The results suggest that the nanovaccine administered by homologous nasal route can prime the immune system via the mucosal and systemic pathways and is a good candidate for vaccine delivery.
Collapse
|
31
|
Foamy matters: an update on Quillaja saponins and their use as immunoadjuvants. Future Med Chem 2019; 11:1485-1499. [DOI: 10.4155/fmc-2018-0438] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Immunoadjuvant Quillaja spp. tree saponins stimulate both cellular and humoral responses, significantly widening vaccine target pathogen spectra. Host toxicity of specific saponins, fractions and extracts may be rather low and further reduced using lipid-based delivery systems. Saponins contain a hydrophobic central aglycone decorated with several sugar residues, posing a challenge for viable chemical synthesis. These, however, may provide simpler analogs. Saponin chemistry affords characteristic interactions with cell membranes, which are essential for its mechanism of action. Natural sources include Quillaja saponaria barks and, more recently, Quillaja brasiliensis leaves. Sustainable large-scale supply can use young plants grown in clonal gardens and elicitation treatments. Quillaja genomic studies will most likely buttress future synthetic biology-based saponin production efforts.
Collapse
|
32
|
Fleck JD, Betti AH, da Silva FP, Troian EA, Olivaro C, Ferreira F, Verza SG. Saponins from Quillaja saponaria and Quillaja brasiliensis: Particular Chemical Characteristics and Biological Activities. Molecules 2019; 24:E171. [PMID: 30621160 PMCID: PMC6337100 DOI: 10.3390/molecules24010171] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/13/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022] Open
Abstract
Quillaja saponaria Molina represents the main source of saponins for industrial applications. Q. saponaria triterpenoids have been studied for more than four decades and their relevance is due to their biological activities, especially as a vaccine adjuvant and immunostimulant, which have led to important research in the field of vaccine development. These saponins, alone or incorporated into immunostimulating complexes (ISCOMs), are able to modulate immunity by increasing antigen uptake, stimulating cytotoxic T lymphocyte production (Th1) and cytokines (Th2) in response to different antigens. Furthermore, antiviral, antifungal, antibacterial, antiparasitic, and antitumor activities are also reported as important biological properties of Quillaja triterpenoids. Recently, other saponins from Q. brasiliensis (A. St.-Hill. & Tul.) Mart. were successfully tested and showed similar chemical and biological properties to those of Q. saponaria barks. The aim of this manuscript is to summarize the current advances in phytochemical and pharmacological knowledge of saponins from Quillaja plants, including the particular chemical characteristics of these triterpenoids. The potential applications of Quillaja saponins to stimulate further drug discovery research will be provided.
Collapse
Affiliation(s)
- Juliane Deise Fleck
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo 93525-075, RS, Brazil.
| | - Andresa Heemann Betti
- Bioanalysis Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo 93525-075, RS, Brazil.
| | - Francini Pereira da Silva
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo 93525-075, RS, Brazil.
| | - Eduardo Artur Troian
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo 93525-075, RS, Brazil.
| | - Cristina Olivaro
- Science and Chemical Technology Department, University Center of Tacuarembó, Udelar, Tacuarembó 45000, Uruguay.
| | - Fernando Ferreira
- Organic Chemistry Department, Carbohydrates and Glycoconjugates Laboratory, Udelar, Mondevideo 11600, Uruguay.
| | - Simone Gasparin Verza
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo 93525-075, RS, Brazil.
| |
Collapse
|
33
|
Cibulski SP, Rivera-Patron M, Mourglia-Ettlin G, Casaravilla C, Yendo ACA, Fett-Neto AG, Chabalgoity JA, Moreno M, Roehe PM, Silveira F. Quillaja brasiliensis saponin-based nanoparticulate adjuvants are capable of triggering early immune responses. Sci Rep 2018; 8:13582. [PMID: 30206376 PMCID: PMC6134118 DOI: 10.1038/s41598-018-31995-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 08/30/2018] [Indexed: 11/22/2022] Open
Abstract
Commercially available saponins are extracted from Quillaja saponaria barks, being Quil A® the most widely used. Nanoparticulate immunostimulating complexes (ISCOMs or ISCOMATRIX) formulated with these, are able to stimulate strong humoral and cellular immune responses. Recently, we formulated novel ISCOMs replacing QuilA® by QB-90 (IQB-90), a Quillaja brasiliensis leaf-extracted saponin fraction, and reported that IQB-90 improved antigen uptake, and induced systemic and mucosal antibody production, and T-cell responses. However, its mechanism of action remains unclear. In this study we provide a deeper insight into the immune stimulatory properties of QB-90 and ISCOMATRIX-like based on this fraction (IMXQB-90). We show herein that, when used as a viral vaccine adjuvant, QB-90 promotes an "immunocompetent environment". In addition, QB-90 and IMXQB-90 induce immune-cells recruitment at draining-lymph nodes and spleen. Subsequently, we prove that QB-90 or IMXQB-90 stimulated dendritic cells secret IL-1β by mechanisms involving Caspase-1/11 and MyD88 pathways, implying canonical inflammasome activation. Finally, both formulations induce a change in the expression of cytokines and chemokines coding genes, many of which are up-regulated. Findings reported here provide important insights into the molecular and cellular mechanisms underlying the adjuvant activity of Q. brasiliensis leaf-saponins and its respective nanoparticles.
Collapse
Affiliation(s)
- Samuel Paulo Cibulski
- Departamento de Microbiologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Biología Celular e Molecular. Centro de Biotecnologia - CBiotec., Universidade Federal da Paraíba. Cidade Universitária, CEP 58051-900, João Pessoa, Paraíba, Brazil
| | - Mariana Rivera-Patron
- Departamento de Desarrollo Biotecnológico. Instituto de Higiene - Facultad de Medicina, Universidad de la República (UdelaR). Av. Alfredo Navarro 3051. CP., 11600, Montevideo, Uruguay
| | - Gustavo Mourglia-Ettlin
- Área Inmunología, Departamento de Biociencias/Instituto de Química Biológica - Facultad de Química/Ciencias, Universidad de la República (UdelaR). Av. Alfredo Navarro 3051. CP., 11600, Montevideo, Uruguay
| | - Cecilia Casaravilla
- Área Inmunología, Departamento de Biociencias/Instituto de Química Biológica - Facultad de Química/Ciencias, Universidad de la República (UdelaR). Av. Alfredo Navarro 3051. CP., 11600, Montevideo, Uruguay
| | - Anna Carolina Alves Yendo
- Laboratório de Fisiologia Vegetal, Centro de Biotecnologia e Departamento de Botânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande Do Sul, Brazil
| | - Arthur Germano Fett-Neto
- Laboratório de Fisiologia Vegetal, Centro de Biotecnologia e Departamento de Botânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande Do Sul, Brazil
| | - José Alejandro Chabalgoity
- Departamento de Desarrollo Biotecnológico. Instituto de Higiene - Facultad de Medicina, Universidad de la República (UdelaR). Av. Alfredo Navarro 3051. CP., 11600, Montevideo, Uruguay
| | - María Moreno
- Departamento de Desarrollo Biotecnológico. Instituto de Higiene - Facultad de Medicina, Universidad de la República (UdelaR). Av. Alfredo Navarro 3051. CP., 11600, Montevideo, Uruguay
| | - Paulo Michel Roehe
- Departamento de Microbiologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fernando Silveira
- Departamento de Desarrollo Biotecnológico. Instituto de Higiene - Facultad de Medicina, Universidad de la República (UdelaR). Av. Alfredo Navarro 3051. CP., 11600, Montevideo, Uruguay.
| |
Collapse
|
34
|
Affiliation(s)
- Christopher C L Chase
- Department of Veterinary and Biomedical Sciences, South Dakota State University, PO Box 2175, SAR Room 125, North Campus Drive, Brookings, SD 57007, USA.
| |
Collapse
|
35
|
Abstract
Most pathogens gain access to the human body and initiate systemic infections through mucosal sites. A large number of currently marketed licensed vaccines are parenterally administered; they generate strong systemic immunity but not mucosal immunity. Nasal vaccination is an appealing strategy for the induction of mucosal-specific immunity; however, its development is mostly challenged by several factors, such as inefficient antigen uptake, its rapid mucociliary clearance, size-restricted permeation across epithelial barriers and absence of safe human mucosal adjuvants. Therefore, a safer mucosal-adjuvanting strategy or efficient mucosal delivery platform is much warranted. This review summarizes challenges and the rationale for nasal vaccine development with a special focus on the use of nanoparticles based on polymers and lipids for mucosal vaccine delivery.
Collapse
|
36
|
Orbegozo-Medina RA, Martínez-Sernández V, González-Warleta M, Castro-Hermida JA, Mezo M, Ubeira FM. Vaccination of sheep with Quil-A® adjuvant expands the antibody repertoire to the Fasciola MF6p/FhHDM-1 antigen and administered together impair the growth and antigen release of flukes. Vaccine 2018. [DOI: 10.1016/j.vaccine.2018.02.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
37
|
Corthésy B, Bioley G. Lipid-Based Particles: Versatile Delivery Systems for Mucosal Vaccination against Infection. Front Immunol 2018; 9:431. [PMID: 29563912 PMCID: PMC5845866 DOI: 10.3389/fimmu.2018.00431] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/19/2018] [Indexed: 12/19/2022] Open
Abstract
Vaccination is the process of administering immunogenic formulations in order to induce or harness antigen (Ag)-specific antibody and T cell responses in order to protect against infections. Important successes have been obtained in protecting individuals against many deleterious pathological situations after parenteral vaccination. However, one of the major limitations of the current vaccination strategies is the administration route that may not be optimal for the induction of immunity at the site of pathogen entry, i.e., mucosal surfaces. It is now well documented that immune responses along the genital, respiratory, or gastrointestinal tracts have to be elicited locally to ensure efficient trafficking of effector and memory B and T cells to mucosal tissues. Moreover, needle-free mucosal delivery of vaccines is advantageous in terms of safety, compliance, and ease of administration. However, the quest for mucosal vaccines is challenging due to (1) the fact that Ag sampling has to be performed across the epithelium through a relatively limited number of portals of entry; (2) the deleterious acidic and proteolytic environment of the mucosae that affect the stability, integrity, and retention time of the applied Ags; and (3) the tolerogenic environment of mucosae, which requires the addition of adjuvants to elicit efficient effector immune responses. Until now, only few mucosally applicable vaccine formulations have been developed and successfully tested. In animal models and clinical trials, the use of lipidic structures such as liposomes, virosomes, immune stimulating complexes, gas-filled microbubbles and emulsions has proven efficient for the mucosal delivery of associated Ags and the induction of local and systemic immune reponses. Such particles are suitable for mucosal delivery because they protect the associated payload from degradation and deliver concentrated amounts of Ags via specialized sampling cells (microfold cells) within the mucosal epithelium to underlying antigen-presenting cells. The review aims at summarizing recent development in the field of mucosal vaccination using lipid-based particles. The modularity ensured by tailoring the lipidic design and content of particles, and their known safety as already established in humans, make the continuing appraisal of these vaccine candidates a promising development in the field of targeted mucosal vaccination.
Collapse
Affiliation(s)
- Blaise Corthésy
- R&D Laboratory, Division of Immunology and Allergy, Centre des Laboratoires d'Epalinges, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Gilles Bioley
- R&D Laboratory, Division of Immunology and Allergy, Centre des Laboratoires d'Epalinges, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
38
|
Suartha IN, Suartini GAA, Wirata IW, Dewi NMARK, Putra GNN, Kencana GAY, Mahardika GN. Intranasal administration of inactivated avian influenza virus of H5N1 subtype vaccine-induced systemic immune response in chicken and mice. Vet World 2018; 11:221-226. [PMID: 29657407 PMCID: PMC5891878 DOI: 10.14202/vetworld.2018.221-226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/16/2018] [Indexed: 12/26/2022] Open
Abstract
Aim The need for non-parenteral administration of inactivated avian influenza virus of H5N1 subtype (AIV-H5N1) vaccine is paramount. Here, we provide preliminary data on the immune response of chicken and mice after intranasal administration of AIV-H5N1-inactivated vaccine with ISCOMS, Inmunair (INM), and combined ISCOMS and INM as an adjuvant. Materials and Methods The AIV isolate of A/Chicken/Denpasar/01/2004 (H5N1) was cultivated in specific pathogen-free chicken eggs and inactivated with formaldehyde. The vaccine preparation was added with those adjuvants for intranasal administration and aluminum hydroxide for subcutaneous injection. The chicken and mouse were vaccinated at the age of 3 weeks or 1 month and repeated 2 weeks thereafter. In one experiment, chicken was injected with Newcastle disease virus (NDV) at the same time with AIV vaccine. The sera were collected at one (serum 1) and 2 w (serum 2) after booster vaccination. The anti-AIV-H5 and NDV antibodies in chicken sera were detected using hemagglutination inhibition (HI) assay. Mouse IgG anti-AIV-H5N1 antibody was detected using ELISA. Results The result shows that the geometric mean titers (GMTs) of chicken sera of intranasal vaccinated with inactivated AIV-H5N1 vaccine with mixed ISCOM- INM as adjuvant were <20.0 and 22.7 unit HI-unit (HIU) in serum 1 and serum 2, respectively. The GMTs of the positive control group were 23.7 and 25.7 HIU in serum 1 and serum 2, respectively. The result of the second experiment shows that IgG anti-AIV-H5N1 was detected in mouse sera. In the third experiment, the GMTs of anti-NDV in chicken vaccinated subsequently with inactivated NDV vaccine and AIV-H5N1 with mixed ISCOMS-INM administrated intranasally and aluminum hydroxide adjuvant administrated through subcutaneous injection as well as positive control group receiving NDV vaccine only were 28.0, 28.0, and 27.4 HIU in serum 1 while were 29.6, 29.2, and 28.2 HIU in serum 2, respectively. Conclusion Intranasal administration of inactivated AIV-H5N1 vaccine-induced a systemic immune response in chicken and mice after adding ISCOMS and/or INM as adjuvants. The adjuvant and the intranasal administration caused no immunosuppressive effect on the chicken immune response to NDV vaccine.
Collapse
Affiliation(s)
- I N Suartha
- Department of Internal Medicine, Animal Hospital, Faculty of Veterinary Medicine Udayana University, Jl. Sesetan-Markisa 6, Denpasar 80226, Bali, Indonesia
| | - G A A Suartini
- Department of Biochemistry, Faculty of Veterinary Medicine Udayana University, Jl. Sudirman, Denpasar 80225, Bali, Indonesia
| | - I W Wirata
- Department of Internal Medicine, Animal Hospital, Faculty of Veterinary Medicine Udayana University, Jl. Sesetan-Markisa 6, Denpasar 80226, Bali, Indonesia
| | - N M A R K Dewi
- Department of Animal Biomedical and Molecular Biology Laboratory Faculty of Veterinary Medicine Udayana University, Jl. Sesetan-Markisa 6, Denpasar 80226, Bali, Indonesia
| | - G N N Putra
- Department of Animal Biomedical and Molecular Biology Laboratory Faculty of Veterinary Medicine Udayana University, Jl. Sesetan-Markisa 6, Denpasar 80226, Bali, Indonesia
| | - G A Y Kencana
- Department of Virology, Faculty of Veterinary Medicine Udayana University, Jl. Sudirman, Denpasar 80225, Bali, Indonesia
| | - G N Mahardika
- Department of Animal Biomedical and Molecular Biology Laboratory Faculty of Veterinary Medicine Udayana University, Jl. Sesetan-Markisa 6, Denpasar 80226, Bali, Indonesia.,Department of Virology, Faculty of Veterinary Medicine Udayana University, Jl. Sudirman, Denpasar 80225, Bali, Indonesia
| |
Collapse
|
39
|
Leaf saponins of Quillaja brasiliensis enhance long-term specific immune responses and promote dose-sparing effect in BVDV experimental vaccines. Vaccine 2018; 36:55-65. [DOI: 10.1016/j.vaccine.2017.11.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/24/2017] [Accepted: 11/13/2017] [Indexed: 11/18/2022]
|
40
|
Bernocchi B, Carpentier R, Betbeder D. Nasal nanovaccines. Int J Pharm 2017; 530:128-138. [PMID: 28698066 DOI: 10.1016/j.ijpharm.2017.07.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 01/08/2023]
Abstract
Nasal administration of vaccines is convenient for the potential stimulation of mucosal and systemic immune protection. Moreover the easy accessibility of the intranasal route renders it optimal for pandemic vaccination. Nanoparticles have been identified as ideal delivery systems and adjuvants for vaccine application. Heterogeneous protocols have been used for animal studies. This complicates the understanding of the formulation influence on the immune response and the comparison of the different nanoparticles approaches developed. Moreover anatomical and immunological differences between rodents and humans provide an additional hurdle in the rational development of nasal nanovaccines. This review will give a comprehensive expertise of the state of the art in nasal nanovaccines in animals and humans focusing on the nanomaterial used.
Collapse
Affiliation(s)
- B Bernocchi
- Inserm, LIRIC-UMR 995, F-59000 Lille, France; Université de Lille, LIRIC-UMR 995, F-59000 Lille, France; CHRU de Lille, LIRIC-UMR 995, F-59000 Lille, France
| | - R Carpentier
- Inserm, LIRIC-UMR 995, F-59000 Lille, France; Université de Lille, LIRIC-UMR 995, F-59000 Lille, France; CHRU de Lille, LIRIC-UMR 995, F-59000 Lille, France.
| | - D Betbeder
- Inserm, LIRIC-UMR 995, F-59000 Lille, France; Université de Lille, LIRIC-UMR 995, F-59000 Lille, France; CHRU de Lille, LIRIC-UMR 995, F-59000 Lille, France; University of Artois, 62000 Arras, France
| |
Collapse
|
41
|
Replicon RNA Viral Vectors as Vaccines. Vaccines (Basel) 2016; 4:vaccines4040039. [PMID: 27827980 PMCID: PMC5192359 DOI: 10.3390/vaccines4040039] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/14/2016] [Accepted: 10/28/2016] [Indexed: 12/22/2022] Open
Abstract
Single-stranded RNA viruses of both positive and negative polarity have been used as vectors for vaccine development. In this context, alphaviruses, flaviviruses, measles virus and rhabdoviruses have been engineered for expression of surface protein genes and antigens. Administration of replicon RNA vectors has resulted in strong immune responses and generation of neutralizing antibodies in various animal models. Immunization of mice, chicken, pigs and primates with virus-like particles, naked RNA or layered DNA/RNA plasmids has provided protection against challenges with lethal doses of infectious agents and administered tumor cells. Both prophylactic and therapeutic efficacy has been achieved in cancer immunotherapy. Moreover, recombinant particles and replicon RNAs have been encapsulated by liposomes to improve delivery and targeting. Replicon RNA vectors have also been subjected to clinical trials. Overall, immunization with self-replicating RNA viruses provides high transient expression levels of antigens resulting in generation of neutralizing antibody responses and protection against lethal challenges under safe conditions.
Collapse
|
42
|
Abstract
Several modes of vaccine delivery have been developed in the last 25 years, which induce strong immune responses in pre-clinical models and in human clinical trials. Some modes of delivery include, adjuvants (aluminum hydroxide, Ribi formulation, QS21), liposomes, nanoparticles, virus like particles, immunostimulatory complexes (ISCOMs), dendrimers, viral vectors, DNA delivery via gene gun, electroporation or Biojector 2000, cell penetrating peptides, dendritic cell receptor targeting, toll-like receptors, chemokine receptors and bacterial toxins. There is an enormous amount of information and vaccine delivery methods available for guiding vaccine and immunotherapeutics development against diseases.
Collapse
|