1
|
Meilleur C, Kus J, Navarro C, Dubey V, Lucidarme J, Borrow R, Tsang RSW. Genetically distinct Hajj and South American-related strains of serogroup W Neisseria meningitidis causing invasive meningococcal disease in Ontario, Canada, January 1, 2015 to June 30, 2024. J Infect Public Health 2025; 18:102728. [PMID: 40056891 DOI: 10.1016/j.jiph.2025.102728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/10/2025] Open
Abstract
OBJECTIVES To characterize the recent trends in serogroup W isolates from invasive meningococcal disease (IMD) cases (MenW) in Ontario, Canada since 2015. METHODS IMD case isolates in Ontario between January 1, 2015 and June 30, 2024 were examined by phenotypic and genetic methods for possession of vaccine antigen genes and clonal characteristics. MenW ST-11 clonal complex (CC) strains were compared against global MenW isolates by core-genome multi-locus sequence typing (cgMLST). RESULTS The percentage of culture-confirmed IMD caused by MenW in Ontario increased from 10 % in 2015-40.9 % in the first half of 2024, consisting entirely of strains belonging to the ST-11 CC. cgMLST comparison of the Ontario invasive MenW isolates versus international MenW ST-11CC strains showed that the Ontario isolates were related to those found globally, with a recent cluster of eight cases from one city due to a strain highly related to international Umrah outbreak strains. Most MenW IMD cases (60 %) occurred in individuals older than 40 years of age and the majority (83.3 %) predicted to express antigens covered by the 4CMenB vaccine. CONCLUSIONS Multiple different introductions of international MenW strains likely accounted for the recent shift towards invasive MenW disease in Ontario.
Collapse
Affiliation(s)
- Courtney Meilleur
- Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Julianne Kus
- Public Health Ontario, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Vinita Dubey
- Toronto Public Health, Toronto, Ontario, Canada; Dalla Lana School of Public Health, University of Toronto, Ontario, Canada
| | - Jay Lucidarme
- Meningococcal Reference Unit, UK Health Security Agency, Manchester Medical Microbiology Partnership, Manchester Royal Infirmary, Manchester, UK
| | - Ray Borrow
- Meningococcal Reference Unit, UK Health Security Agency, Manchester Medical Microbiology Partnership, Manchester Royal Infirmary, Manchester, UK
| | - Raymond S W Tsang
- Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.
| |
Collapse
|
2
|
Koski S, Martinon-Torres F, Rämet M, Zolotas L, Newton R, Maansson R, Cutler M, Peyrani P, Findlow J, Balmer P, Jodar L, Gruber WC, Anderson AS, Beeslaar J. A Phase 3B, Open-Label Study to Evaluate the Immunogenicity and Safety of the Quadrivalent Meningococcal Nimenrix ® Vaccine When Given to Healthy Infants at 3 and 12 Months of Age. Infect Dis Ther 2025; 14:463-481. [PMID: 39883399 PMCID: PMC11829884 DOI: 10.1007/s40121-024-01098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/10/2024] [Indexed: 01/31/2025] Open
Abstract
INTRODUCTION Infants and young children typically have the highest age-related risk of invasive meningococcal disease. The immunogenicity and safety of a single primary dose and a booster of a meningococcal A/C/W/Y tetanus toxoid conjugate vaccine (MenACWY-TT; Nimenrix®) in infants were evaluated. METHODS In this phase 3b, open-label, single-arm study, healthy 3-month-old infants received a single Nimenrix dose followed by a booster at age 12 months (1 + 1 series). Functional antibodies before and 1 month after each vaccination were evaluated with serum bactericidal antibody assays using rabbit (rSBA) or human (hSBA) complement for each A/C/W/Y serogroup. Primary endpoints were rSBA seroprotection (titers ≥ 1:8) rates and geometric mean titers (GMTs); supportive secondary endpoints included hSBA seroprotection (titers ≥ 1:4) rates and GMTs. Local reactions and systemic events occurring within 7 days, adverse events (AEs), serious AEs, and newly diagnosed chronic medical conditions following vaccination were assessed. RESULTS Overall, 147 and 143 participants received the primary and booster Nimenrix doses, respectively. rSBA seroprotection rates across serogroups were 82.3-91.1% at 1 month after the primary dose and increased to 100% at 1 month after the booster. rSBA GMTs were considerably higher after the booster (1299.5‒2714.1) than after the primary dose (54.7‒202.4). In hSBA evaluations performed as supportive to rSBA evaluations, seroprotection rates increased from 38.8 to 95.5% after the primary dose to 100% after the booster, with corresponding GMT increases (8.8‒149.8 to 1208.4‒7299.6). Local reactions and most systemic events were mild to moderate in severity; no new safety concerns were identified. CONCLUSION Nimenrix given at ages 3 and 12 months had a favorable safety profile and elicited protective immune responses and robust anamnestic booster responses across A/C/W/Y serogroups. These results provide important support for this alternative Nimenrix 1 + 1 immunization schedule for infants < 6 months, allowing flexibility in infant meningococcal immunization. TRIAL REGISTRATION ClinicalTrials.gov, NCT04819113.
Collapse
Affiliation(s)
- Susanna Koski
- Helsinki South Vaccine Research Clinic, Tampere University and FVR‒Finnish Vaccine Research, Helsinki, Finland
| | - Federico Martinon-Torres
- Genetics, Vaccines, and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario and University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Mika Rämet
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Vaccine Research (FVR), Tampere, Finland
| | - Lefteris Zolotas
- Vaccine Research and Development, Pfizer R&D UK Ltd, Marlow, UK.
- Marlow International, Parkway, Marlow, SL7 1YL, UK.
| | - Ryan Newton
- Vaccine Research and Development, Pfizer R&D UK Ltd, Marlow, UK
| | - Roger Maansson
- Vaccine Clinical Research and Development, Pfizer Inc, Collegeville, PA, USA
| | - Mark Cutler
- Vaccine Research and Development, Pfizer Inc, Pearl River, NY, USA
| | - Paula Peyrani
- Pfizer Global Medical Affairs, Vaccines and Antivirals, Pfizer Inc, Collegeville, PA, USA
| | - Jamie Findlow
- Pfizer Global Medical Affairs, Vaccines and Antivirals, Pfizer Ltd, Tadworth, UK
| | - Paul Balmer
- Pfizer Global Medical Affairs, Vaccines and Antivirals, Pfizer Inc, Collegeville, PA, USA
- Marlow International, Parkway, Marlow, SL7 1YL, UK
| | - Luis Jodar
- Pfizer Global Medical Affairs, Vaccines and Antivirals, Pfizer Inc, Collegeville, PA, USA
| | - William C Gruber
- Vaccine Research and Development, Pfizer Inc, Pearl River, NY, USA
| | | | | |
Collapse
|
3
|
Mikhari RL, Meiring S, de Gouveia L, Chan WY, Jolley KA, Van Tyne D, Harrison LH, Marjuki H, Ismail A, Quan V, Cohen C, Walaza S, von Gottberg A, du Plessis M. Genomic Diversity and Antimicrobial Susceptibility of Invasive Neisseria meningitidis in South Africa, 2016-2021. J Infect Dis 2024; 230:e1311-e1321. [PMID: 38687883 PMCID: PMC11646611 DOI: 10.1093/infdis/jiae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Invasive meningococcal isolates in South Africa have in previous years (<2008) been characterized by serogroup B, C, W, and Y lineages over time, with penicillin intermediate resistance (peni) at 6%. We describe the population structure and genomic markers of peni among invasive meningococcal isolates in South Africa, 2016-2021. METHODS Meningococcal isolates were collected through national, laboratory-based invasive meningococcal disease (IMD) surveillance. Phenotypic antimicrobial susceptibility testing and whole-genome sequencing were performed, and the mechanism of reduced penicillin susceptibility was assessed in silico. RESULTS Of 585 IMD cases reported during the study period, culture and PCR-based capsular group was determined for 477/585 (82%); and 241/477 (51%) were sequenced. Predominant serogroups included NmB (210/477; 44%), NmW (116/477; 24%), NmY (96/477; 20%), and NmC (48/477; 10%). Predominant clonal complexes (CC) were CC41/44 in NmB (27/113; 24%), CC11 in NmW (46/56; 82%), CC167 in NmY (23/44; 53%), and CC865 in NmC (9/24; 38%). Peni was detected in 16% (42/262) of isolates, and was due to the presence of a penA mosaic, with the majority harboring penA7, penA9, or penA14. CONCLUSIONS IMD lineages circulating in South Africa were consistent with those circulating prior to 2008; however, peni was higher than previously reported, and occurred in a variety of lineages.
Collapse
Affiliation(s)
- Rito L Mikhari
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Susan Meiring
- Division of Public Health Surveillance and Response, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Linda de Gouveia
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Wai Yin Chan
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria, South Africa
- Wits Diagnostic Innovative Hub, Faculty of Health Science, University of the Witwatesrand, Johannesburg, South Africa
| | - Keith A Jolley
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Daria Van Tyne
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lee H Harrison
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Henju Marjuki
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering, and Agriculture, University of Venda, Thohoyandou, South Africa
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Vanessa Quan
- Division of Public Health Surveillance and Response, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Cheryl Cohen
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sibongile Walaza
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mignon du Plessis
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
4
|
Shen S, Findlow J, Peyrani P. Global Epidemiology of Meningococcal Disease-Causing Serogroups Before and After the COVID-19 Pandemic: A Narrative Review. Infect Dis Ther 2024; 13:2489-2507. [PMID: 39509011 PMCID: PMC11582116 DOI: 10.1007/s40121-024-01063-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/02/2024] [Indexed: 11/15/2024] Open
Abstract
Invasive meningococcal disease (IMD) is associated with high morbidity and mortality and predominantly caused by five Neisseria meningitidis serogroups (A/B/C/W/Y). Polysaccharide conjugate vaccines induce T-cell-dependent immune responses, are immunogenic in infants and adults, and reduce carriage, and vaccination of age groups associated with high-carriage can provide indirect protection in the unvaccinated (herd immunity). Successful vaccination programs must be tailored to local epidemiology, which varies geographically, temporally, and by age and serogroup. Serogroup A IMD once predominated globally, but has largely disappeared following mass vaccination programs. Serogroup B was a predominant cause of IMD in many global regions from 2010 to 2018, typically affecting younger age groups. Spread of serogroup C clonal complex-11 IMD in the 1990s prompted implementation of MenC vaccine programs in many countries, resulting in declines in prevalence. Serogroup C still caused > 20% of global IMD through the mid-2010s. Serogroup W became a significant contributor to global IMD after Hajj pilgrimage outbreaks in 2000; subsequent increases of endemic disease and outbreaks were reported pre-pandemic in many regions. Serogroup Y emerged in the 1990s as a significant cause of IMD throughout various regions and prevalence had increased or stabilized from 2010 to 2018. Serogroup X is uncommon outside the African meningitis belt, and its prevalence has declined since before the COVID-19 pandemic. Global IMD declines during the pandemic were followed by resurgences generally caused by serogroups that were prevalent pre-pandemic and affecting mainly unvaccinated age groups (particularly adolescents/young adults). Recent IMD epidemiology underscores the importance of vaccinating at-risk age groups against regionally prevalent serogroups; for example, the anti-serogroup X component of the recently prequalified MenACWXY vaccine is likely to provide limited protection outside the African meningitis belt. In other regions, comprehensive vaccination against MenB and MenACWY, which could be streamlined by the recently approved MenABCWY vaccine, seems more appropriate.
Collapse
Affiliation(s)
- Steven Shen
- Pfizer Global Medical Affairs, Vaccines and Antivirals, Pfizer Canada ULC, Kirkland, QC, H9J 2M5, Canada.
| | - Jamie Findlow
- Pfizer Global Medical Affairs, Vaccines and Antivirals, Pfizer Ltd, Tadworth, UK
| | - Paula Peyrani
- Pfizer Global Medical Affairs, Vaccines and Antivirals, Pfizer Inc, Collegeville, PA, USA
| |
Collapse
|
5
|
Chan H, Beresford N, Rudd TR, Rigsby P, Vipond C, Gao F, Matejtschuk P, Malik K, Duru C, Atkinson E, Burkin K, De Benedetto G, Lockyer K, Bolgiano B. Evaluation of candidate International Standards for meningococcal capsular polysaccharide groups W and Y. Biologicals 2024; 87:101780. [PMID: 38970883 DOI: 10.1016/j.biologicals.2024.101780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/08/2024] Open
Abstract
Two candidate International Standards for meningococcal capsular group W and Y (MenW and MenY, respectively) polysaccharides were assessed for their suitability as quantitative standards in various physicochemical assays. The study was designed to evaluate the intended purpose of these standards, namely, to standardize the quantification of the respective polysaccharide content in meningococcal polysaccharide and conjugate vaccines and their intermediate components. Twelve laboratories from eleven different countries participated in the collaborative study of candidate preparations for International Standards for MenW and MenY polysaccharide (coded 16/152 and 16/206, respectively). Unitage was assigned using the Resorcinol assay. Our proposals, on the basis of data from the Resorcinol assay were: 1) candidate standard for MenW polysaccharide (16/152) to be assigned a content of 1.015 ± 0.071 mg MenW polysaccharide per ampoule (expanded uncertainty with coverage factor k = 2.13, corresponding to a 95 % level of confidence) and 2) candidate standard for MenY polysaccharide (16/206) be assigned a content of 0.958 ± 0.076 mg MenY polysaccharide per ampoule (expanded uncertainty with coverage factor k = 2.26, corresponding to a 95 % level of confidence). The amount of polysaccharide per ampoule remained consistent under all stability conditions over a 36-month period.
Collapse
Affiliation(s)
- Hannah Chan
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK.
| | - Nicola Beresford
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Timothy R Rudd
- Analytical and Biological Sciences Division, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Peter Rigsby
- Analytical and Biological Sciences Division, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Caroline Vipond
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Fang Gao
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Paul Matejtschuk
- Analytical and Biological Sciences Division, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Kiran Malik
- Analytical and Biological Sciences Division, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Chinwe Duru
- Analytical and Biological Sciences Division, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Eleanor Atkinson
- Analytical and Biological Sciences Division, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Karena Burkin
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Gianluigi De Benedetto
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Kay Lockyer
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Barbara Bolgiano
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| |
Collapse
|
6
|
Sotheran E, Lane CR, Horan K, Stevens K, Guglielmino C, Bradbury S, Kennedy K, Cooley L, McEwan B, Kahler CM, Mowlaboccus S, Speers DJ, Baird R, Freeman K, Leong L, Warner M, Williamson DA, McVernon J, Lahra M, Jennison AV, Howden BP, Andersson P. Genomic Surveillance of Invasive Meningococcal Disease During a National MenW Outbreak in Australia, 2017-2018. Open Forum Infect Dis 2024; 11:ofae249. [PMID: 38854393 PMCID: PMC11161896 DOI: 10.1093/ofid/ofae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/30/2024] [Indexed: 06/11/2024] Open
Abstract
Background In Australia, invasive meningococcal disease (IMD) incidence rapidly increased between 2014 and 2017 due to rising serogroup W (MenW) and MenY infections. We aimed to better understand the genetic diversity of IMD during 2017 and 2018 using whole genome sequencing data. Methods Whole genome sequencing data from 440 Australian IMD isolates collected during 2017 and 2018 and 1737 international MenW:CC11 isolates collected in Europe, Africa, Asia, North America, and South America between 1974 and 2020 were used in phylogenetic analyses; genetic relatedness was determined from single-nucleotide polymorphisms. Results Australian isolates were as follows: 181 MenW (41%), 144 MenB (33%), 88 MenY (20%), 16 MenC (4%), 1 MenW/Y (0.2%), and 10 nongenogroupable (2%). Eighteen clonal complexes (CCs) were identified, and 3 (CC11, CC23, CC41/44) accounted for 78% of isolates (343/440). These CCs were associated with specific serogroups: CC11 (n = 199) predominated among MenW (n = 181) and MenC (n = 15), CC23 (n = 80) among MenY (n = 78), and CC41/44 (n = 64) among MenB (n = 64). MenB isolates were highly diverse, MenY were intermediately diverse, and MenW and MenC isolates demonstrated the least genetic diversity. Thirty serogroup and CC-specific genomic clusters were identified. International CC11 comparison revealed diversification of MenW in Australia. Conclusions Whole genome sequencing comprehensively characterized Australian IMD isolates, indexed their genetic variability, provided increased within-CC resolution, and elucidated the evolution of CC11 in Australia.
Collapse
Affiliation(s)
- Emily Sotheran
- Microbiological Diagnostic Unit Public Health Laboratory at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Courtney R Lane
- Microbiological Diagnostic Unit Public Health Laboratory at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Kristy Horan
- Microbiological Diagnostic Unit Public Health Laboratory at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Kerrie Stevens
- Microbiological Diagnostic Unit Public Health Laboratory at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Christine Guglielmino
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Brisbane, Australia
| | - Susan Bradbury
- Department of Clinical Microbiology and Infectious Diseases, Canberra Health Services, Australian National University Medical School, Canberra, Australia
| | - Karina Kennedy
- Department of Clinical Microbiology and Infectious Diseases, Canberra Health Services, Australian National University Medical School, Canberra, Australia
| | - Louise Cooley
- Department of Microbiology and Infectious Diseases, Royal Hobart Hospital, Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Belinda McEwan
- Department of Microbiology and Infectious Diseases, Royal Hobart Hospital, Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Charlene M Kahler
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Shakeel Mowlaboccus
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - David J Speers
- PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, Australia
| | - Robert Baird
- Royal Darwin Hospital Pathology, Darwin, Australia
| | | | | | | | - Deborah A Williamson
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Jodie McVernon
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Monica Lahra
- New South Wales Health Pathology, Microbiology Randwick, The Prince of Wales Hospital, Sydney, Australia
| | - Amy V Jennison
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Brisbane, Australia
| | - Benjamin P Howden
- Microbiological Diagnostic Unit Public Health Laboratory at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
- Centre for Pathogen Genomics, Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Patiyan Andersson
- Microbiological Diagnostic Unit Public Health Laboratory at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
7
|
Borrow R, Findlow J. The important lessons lurking in the history of meningococcal epidemiology. Expert Rev Vaccines 2024; 23:445-462. [PMID: 38517733 DOI: 10.1080/14760584.2024.2329618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/08/2024] [Indexed: 03/24/2024]
Abstract
INTRODUCTION The epidemiology of invasive meningococcal disease (IMD), a rare but potentially fatal illness, is typically described as unpredictable and subject to sporadic outbreaks. AREAS COVERED Meningococcal epidemiology and vaccine use during the last ~ 200 years are examined within the context of meningococcal characterization and classification to guide future IMD prevention efforts. EXPERT OPINION Historical and contemporary data highlight the dynamic nature of meningococcal epidemiology, with continued emergence of hyperinvasive clones and affected regions. Recent shifts include global increases in serogroup W disease, meningococcal antimicrobial resistance (AMR), and meningococcal urethritis; additionally, unvaccinated populations have experienced disease resurgences following lifting of COVID-19 restrictions. Despite these changes, a close analysis of meningococcal epidemiology indicates consistent dominance of serogroups A, B, C, W, and Y and elevated IMD rates among infants and young children, adolescents/young adults, and older adults. Demonstrably effective vaccines against all 5 major disease-causing serogroups are available, and their prophylactic use represents a powerful weapon against IMD, including AMR. The World Health Organization's goal of defeating meningitis by the year 2030 demands broad protection against IMD, which in turn indicates an urgent need to expand meningococcal vaccination programs across major disease-causing serogroups and age-related risk groups.
Collapse
Affiliation(s)
- Ray Borrow
- Meningococcal Reference Unit, UKHSA, Manchester Royal Infirmary, Manchester, UK
| | - Jamie Findlow
- Global Medical Affairs, Vaccines and Antivirals, Pfizer Ltd, Tadworth, UK
| |
Collapse
|
8
|
Mikucki A, Kahler CM. Microevolution and Its Impact on Hypervirulence, Antimicrobial Resistance, and Vaccine Escape in Neisseria meningitidis. Microorganisms 2023; 11:3005. [PMID: 38138149 PMCID: PMC10745880 DOI: 10.3390/microorganisms11123005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neisseria meningitidis is commensal of the human pharynx and occasionally invades the host, causing the life-threatening illness invasive meningococcal disease. The meningococcus is a highly diverse and adaptable organism thanks to natural competence, a propensity for recombination, and a highly repetitive genome. These mechanisms together result in a high level of antigenic variation to invade diverse human hosts and evade their innate and adaptive immune responses. This review explores the ways in which this diversity contributes to the evolutionary history and population structure of the meningococcus, with a particular focus on microevolution. It examines studies on meningococcal microevolution in the context of within-host evolution and persistent carriage; microevolution in the context of meningococcal outbreaks and epidemics; and the potential of microevolution to contribute to antimicrobial resistance and vaccine escape. A persistent theme is the idea that the process of microevolution contributes to the development of new hyperinvasive meningococcal variants. As such, microevolution in this species has significant potential to drive future public health threats in the form of hypervirulent, antibiotic-resistant, vaccine-escape variants. The implications of this on current vaccination strategies are explored.
Collapse
Affiliation(s)
- August Mikucki
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Charlene M. Kahler
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
9
|
Zhong L, Zhang M, Sun L, Yang Y, Wang B, Yang H, Shen Q, Xia Y, Cui J, Hang H, Ren Y, Pang B, Deng X, Zhan Y, Li H, Zhou Z. Distributed genotyping and clustering of Neisseria strains reveal continual emergence of epidemic meningococcus over a century. Nat Commun 2023; 14:7706. [PMID: 38001084 PMCID: PMC10673917 DOI: 10.1038/s41467-023-43528-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Core genome multilocus sequence typing (cgMLST) is commonly used to classify bacterial strains into different types, for taxonomical and epidemiological applications. However, cgMLST schemes require central databases for the nomenclature of new alleles and sequence types, which must be synchronized worldwide and involve increasingly intensive calculation and storage demands. Here, we describe a distributed cgMLST (dcgMLST) scheme that does not require a central database of allelic sequences and apply it to study evolutionary patterns of epidemic and endemic strains of the genus Neisseria. We classify 69,994 worldwide Neisseria strains into multi-level clusters that assign species, lineages, and local disease outbreaks. We divide Neisseria meningitidis into 168 endemic lineages and three epidemic lineages responsible for at least 9 epidemics in the past century. According to our analyses, the epidemic and endemic lineages experienced very different population dynamics in the past 100 years. Epidemic lineages repetitively emerged from endemic lineages, disseminated worldwide, and apparently disappeared rapidly afterward. We propose a stepwise model for the evolutionary trajectory of epidemic lineages in Neisseria, and expect that the development of similar dcgMLST schemes will facilitate epidemiological studies of other bacterial pathogens.
Collapse
Affiliation(s)
- Ling Zhong
- Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, 215123, China
- Key Laboratory of Alkene-Carbon Fibers-Based Technology & Application for Detection of Major Infectious Diseases, Soochow University, Suzhou, 215123, China
| | - Menghan Zhang
- Suzhou Center for Disease Control and Prevention, Suzhou, 215004, China
| | - Libing Sun
- Department of Pathology, East District of Suzhou Municipal Hospital, Suzhou, 215000, China
| | - Yu Yang
- Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Bo Wang
- Suzhou Center for Disease Control and Prevention, Suzhou, 215004, China
| | - Haibing Yang
- Suzhou Center for Disease Control and Prevention, Suzhou, 215004, China
| | - Qiang Shen
- Suzhou Center for Disease Control and Prevention, Suzhou, 215004, China
| | - Yu Xia
- Suzhou Center for Disease Control and Prevention, Suzhou, 215004, China
| | - Jiarui Cui
- Suzhou Center for Disease Control and Prevention, Suzhou, 215004, China
| | - Hui Hang
- Suzhou Center for Disease Control and Prevention, Suzhou, 215004, China
| | - Yi Ren
- Iotabiome Biotechnology Inc, Suzhou, 215000, China
| | - Bo Pang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiangyu Deng
- Center for Food Safety, University of Georgia, Griffin, GA, USA
| | - Yahui Zhan
- Suzhou Center for Disease Control and Prevention, Suzhou, 215004, China.
| | - Heng Li
- Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
- Key Laboratory of Alkene-Carbon Fibers-Based Technology & Application for Detection of Major Infectious Diseases, Soochow University, Suzhou, 215123, China.
- Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Soochow University, Suzhou, 215123, China.
| | - Zhemin Zhou
- Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
- Key Laboratory of Alkene-Carbon Fibers-Based Technology & Application for Detection of Major Infectious Diseases, Soochow University, Suzhou, 215123, China.
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
10
|
Takahashi H, Morita M, Yasuda M, Ohama Y, Kobori Y, Kojima M, Shimuta K, Akeda Y, Ohnishi M. Detection of Novel US Neisseria meningitidis Urethritis Clade Subtypes in Japan. Emerg Infect Dis 2023; 29:2210-2217. [PMID: 37877502 PMCID: PMC10617353 DOI: 10.3201/eid2911.231082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
Neisseria meningitidis causes invasive meningococcal diseases and has also been identified as a causative agent of sexually transmitted infections, including urethritis. Unencapsulated sequence type 11 meningococci containing the gonococcal aniA-norB locus and belonging to the United States N. meningitidis urethritis clade (US_NmUC) are causative agents of urethral infections in the United States, predominantly among men who have sex with men. We identified 2 subtypes of unencapsulated sequence type 11 meningococci in Japan that were phylogenetically close to US_NmUC, designated as the Japan N. meningitidis urethritis clade (J_NmUC). The subtypes were characterized by PCR, serologic testing, and whole-genome sequencing. Our study suggests that an ancestor of US_NmUC and J_NmUS urethritis-associated meningococci is disseminated worldwide. Global monitoring of urethritis-associated N. meningitidis isolates should be performed to further characterize microbiologic and epidemiologic characteristics of urethritis clade meningococci.
Collapse
|
11
|
Oostdijk C, Ferreira JA, Ruijs WLM, Mollema L, Van Zoonen K. Adolescent and parental decision-making for the MenACWY vaccination: influential predictors and parental-adolescent differences among households in the Netherlands. BMC Public Health 2023; 23:947. [PMID: 37231425 DOI: 10.1186/s12889-023-15872-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Between 2015 and 2018 The Netherlands experienced increases of invasive meningococcal disease (IMD) serogroup W (MenW). Therefore in 2018 the MenACWY vaccination was introduced in the National Immunisation Programme (NIP) and a catch-up campaign was initiated targeting adolescents. This study aimed to gain insight into what factors played a role in the decision-making process regarding the MenACWY vaccination. The focus was on the differences in the decision-making of parents and adolescents in order to assess what factors influence the decisions made. METHODS An online questionnaire was offered to adolescents and one of their parents. We used random forest analyses to determine which factors best predict the outcome of the MenACWY vaccination decision. We carried out ROC (receiver-operator characteristics) analyses to confirm the predictive value of the variables. RESULTS Among parents several factors stand out, centring on the process of the decision, their attitude about the MenACWY vaccination, trust in the vaccination, and ideas of important people around them. Among adolescents the three stand-out predictors are the ideas of important people around them, the process of the decision and trust in the vaccination. Parents have prominent influence in the decision-making, while the adolescent's influence in the household decision-making is more limited. Adolescents tend to be less engaged and spend less time thinking about the decision compared to parents. Opinions of parents and adolescents from the same households concerning the factors that are influential do not differ a lot in the final decision-making. CONCLUSIONS Information about MenACWY vaccination might be mainly addressed to the parents of the adolescents and whereby the dialogue about MenACWY vaccination between parents and adolescents will be stimulated. With regard to the predictor trust in vaccination, raising the frequency of use of certain sources, especially those deemed very reliable among households such as conversations with a GP or the provider of the vaccination (GGD/JGZ), might prove a useful strategy to solidify vaccination uptake numbers.
Collapse
Affiliation(s)
- C Oostdijk
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA, Bilthoven, The Netherlands
| | - J A Ferreira
- Department of Statistics, Informatics and Mathematical Modeling, National Institute for Public Health and the Environment (RIVM), PO box 1, Bilthoven, 3720 BA, the Netherlands
| | - W L M Ruijs
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA, Bilthoven, The Netherlands
| | - L Mollema
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA, Bilthoven, The Netherlands.
| | - K Van Zoonen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA, Bilthoven, The Netherlands
| |
Collapse
|
12
|
Valmas C, Arcà E, Hensen M, Rashid H. A policy review of the introduction of the MenACWY vaccine in toddlers across multiple countries. Expert Rev Vaccines 2022; 21:1637-1646. [PMID: 36222056 DOI: 10.1080/14760584.2022.2128771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Immunization is the best strategy to protect individuals from invasive meningococcal disease (IMD). To support decision-making around immunization, this paper considers what has led four countries and regions of two more to introduce the quadrivalent MenACWY vaccine in toddlers (ages 12-24 months). AREAS COVERED A narrative literature review was conducted to identify countries that have introduced a MenACWY vaccination program for toddlers. Information from peer-reviewed publications, reports, and policy documents for each identified country was extracted. Australia, Chile, the Netherlands, Switzerland, and regions of Italy and Spain have introduced the MenACWY vaccine in their toddler programs, driven by the rising incidence of MenW and MenY and the vaccine's ability to provide protection against other serogroups. Australia and the Netherlands considered the economic impacts of implementing a MenACWY toddler vaccination program. Vaccination uptake and effects are reported for three countries; however, in two, isolating the vaccine's effect from the collateral effect of COVID-related measures is difficult. EXPERT OPINION Increased convergence of vaccination policies and programs is needed internationally, as IMD recognizes no borders.PL AIN LANGUAGE SUMMARYVaccination is the best defense against meningitis, a deadly disease. While someone of any age can contract it, children 0-24 months of age are disproportionately affected. The increasing number of cases of meningitis has led four countries plus regions of two more to introduce into their vaccination schedules for toddlers (ages 12-24 months) a vaccine that protects against four different serogroups rather than one serogroup alone. This paper considers what has driven that shift.
Collapse
Affiliation(s)
| | - Emanuele Arcà
- Research Consultant, Strategic Market Access, OPEN Health, Rotterdam, The Netherlands
| | - Marja Hensen
- Senior Director, Strategic Market Access, OPEN Health, Rotterdam, The Netherlands
| | - Habeeda Rashid
- Value & Access Associate, Market Access Department, Sanofi, Reading, UK
| |
Collapse
|
13
|
Public health perspective of a pentavalent meningococcal vaccine combining antigens of MenACWY-CRM and 4CMenB. J Infect 2022; 85:481-491. [PMID: 36087745 DOI: 10.1016/j.jinf.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Invasive meningococcal disease (IMD) is a life-threatening disease that can rapidly progress to death or leave survivors with severe, life-long sequelae. Five meningococcal serogroups (A, B, C, W and Y) account for nearly all IMD. Meningococcal serogroup distribution fluctuates over time across the world and age groups. Here, we consider the potential public health impact of a pentavalent MenABCWY vaccine developed to help further control meningococcal disease and improve immunisation rates. RESULTS The GSK MenABCWY vaccine combines the antigenic components of MenACWY-CRM (Menveo®) and 4CMenB (Bexsero®), building on a wide body of clinical experience and real-world evidence. Both approved vaccines have acceptable safety profiles, demonstrate immunogenicity, and are broadly used, including in national immunisation programmes in several countries. Since the advent of quadrivalent vaccines, public health in relation to IMD has improved, with a decline in the overall incidence of IMD and an increase in vaccine coverage. CONCLUSION A pentavalent MenABCWY has the potential to provide further public health benefits through practical, broad IMD protection programmes encompassing serogroups A, B, C, W and Y, and is currently in late-stage development.
Collapse
|
14
|
Kumar V, Pouw RB, Autio MI, Sagmeister MG, Phua ZY, Borghini L, Wright VJ, Hoggart C, Pan B, Tan AKY, Binder A, Brouwer MC, Pinnock E, De Groot R, Hazelzet J, Emonts M, Van Der Flier M, Reiter K, Nöthen MM, Hoffmann P, Schlapbach LJ, Bellos E, Anderson S, Secka F, Martinón-Torres F, Salas A, Fink C, Carrol ED, Pollard AJ, Coin LJ, Zenz W, Wouters D, Ang LT, Hibberd ML, Levin M, Kuijpers TW, Davila S. Variation in CFHR3 determines susceptibility to meningococcal disease by controlling factor H concentrations. Am J Hum Genet 2022; 109:1680-1691. [PMID: 36007525 PMCID: PMC9502058 DOI: 10.1016/j.ajhg.2022.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/31/2022] [Indexed: 11/16/2022] Open
Abstract
Neisseria meningitidis protects itself from complement-mediated killing by binding complement factor H (FH). Previous studies associated susceptibility to meningococcal disease (MD) with variation in CFH, but the causal variants and underlying mechanism remained unknown. Here we attempted to define the association more accurately by sequencing the CFH-CFHR locus and imputing missing genotypes in previously obtained GWAS datasets of MD-affected individuals of European ancestry and matched controls. We identified a CFHR3 SNP that provides protection from MD (rs75703017, p value = 1.1 × 10-16) by decreasing the concentration of FH in the blood (p value = 1.4 × 10-11). We subsequently used dual-luciferase studies and CRISPR gene editing to establish that deletion of rs75703017 increased FH expression in hepatocyte by preventing promotor inhibition. Our data suggest that reduced concentrations of FH in the blood confer protection from MD; with reduced access to FH, N. meningitidis is less able to shield itself from complement-mediated killing.
Collapse
Affiliation(s)
- Vikrant Kumar
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore; Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Richard B Pouw
- Division of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, the Netherlands; Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Matias I Autio
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore; Cardiovascular Research Institute, Centre for Translational Medicine, National University Health System, Singapore
| | | | - Zai Yang Phua
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Lisa Borghini
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; GenPoB Research Group, Instituto de Investigación Sanitaria de Santiago, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - Victoria J Wright
- Section of Paediatric Infectious Disease, Division of Infectious Disease, Department of Medicine, Imperial College London, London, UK
| | - Clive Hoggart
- Section of Paediatric Infectious Disease, Division of Infectious Disease, Department of Medicine, Imperial College London, London, UK
| | - Bangfen Pan
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore; Cardiovascular Research Institute, Centre for Translational Medicine, National University Health System, Singapore
| | - Antson Kiat Yee Tan
- Cancer Stem Cell Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Alexander Binder
- Department of General Paediatrics, Medical University of Graz, Graz, Austria
| | - Mieke C Brouwer
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | | | - Ronald De Groot
- Section of Pediatric Infectious Diseases, Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan Hazelzet
- Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, University Medical Center, Rotterdam, the Netherlands
| | - Marieke Emonts
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK; National Institute for Health and Care Research Newcastle Biomedical Research Centre Based at Newcastle Upon Tyne Hospitals National Health Service Trust and Newcastle University, Newcastle Upon Tyne, UK; Paediatric Infectious Diseases and Immunology Department, Newcastle Upon Tyne Hospitals Foundation Trust, Great North Children's Hospital, Newcastle Upon Tyne, UK
| | - Michiel Van Der Flier
- Section of Pediatric Infectious Diseases, Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Karl Reiter
- Department of Paediatrics, Division of Paediatric Intensive Care Medicine, Ludwig Maximilian University of Munich and Dr. von Hauner's Children's Hospital, Munich, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | | | - Luregn J Schlapbach
- Child Health Research Centre, The University of Queensland, Brisbane, Australia; Paediatric Intensive Care Unit, Queensland Children's Hospital, Brisbane, Australia; Department of Intensive Care and Neonatology and Children`s Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Evangelos Bellos
- Section of Paediatric Infectious Disease, Division of Infectious Disease, Department of Medicine, Imperial College London, London, UK
| | | | - Fatou Secka
- Medical Research Council Unit Gambia, Banjul, The Gambia
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain; Genetics, Vaccines, Infectious Diseases, and Pediatrics Research Group, Instituto de Investigación Sanitaria de Santiago, Universidad de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Salas
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; GenPoB Research Group, Instituto de Investigación Sanitaria de Santiago, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - Colin Fink
- Micropathology, University of Warwick, Coventry, UK
| | - Enitan D Carrol
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Lachlan J Coin
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Werner Zenz
- Department of General Paediatrics, Medical University of Graz, Graz, Austria
| | - Diana Wouters
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Lay Teng Ang
- Cancer Stem Cell Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Martin L Hibberd
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore; Infectious and Tropical Disease, London School of Hygiene & Tropical Medicine, London, UK
| | - Michael Levin
- Section of Paediatric Infectious Disease, Division of Infectious Disease, Department of Medicine, Imperial College London, London, UK
| | - Taco W Kuijpers
- Division of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, the Netherlands.
| | - Sonia Davila
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore; Duke-National University of Singapore Medical School, Singapore, Singapore; SingHealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore.
| |
Collapse
|
15
|
Moerman G, Verleyen D, Rogiers P, Hoste J, Mattheus W, Floré K. Meningococcal pericarditis caused by the MenW:cc11 strain in an older adult. Acta Clin Belg 2022; 78:254-256. [PMID: 35904255 DOI: 10.1080/17843286.2022.2107315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
INTRODUCTION Invasive meningococcal disease (IMD) caused by Neisseria meningitidis is a disease with a high mortality and morbidity rate. Serogroup W meningococci (MenW) used to be associated with sporadic disease worldwide. In recent years, a surge in MenW incidence is being observed. REPORT An older adult presenting with acute onset shortness of breath, chest pain and fever, was diagnosed with pericarditis with meningococcemia due to MenW:ST11 strain. MenW infections are reported to have a higher case fatality rate and atypical clinical presentations: MenW has been identified in patients presenting with pneumonia, gastro-intestinal symptoms, arthritis, and pericarditis. DISCUSSION In Belgium, the National Reference Laboratory is also noticing an increase in serogroup Wmeningococcal disease. Recent epidemiological data for Belgium is reported in the article. MenW infections are reported to have a higher case fatality rate and atypical clinical presentations: MenW has been identified in patients presenting with pneumonia, gastro-intestinal symptoms, arthritis, and pericarditis. CONCLUSION When factors for poor prognosis are present in patients with pericarditi clinicians should be vigilant and search for the underlying aetiology .
Collapse
Affiliation(s)
| | - D Verleyen
- Cardiology, AZ Sint Lucas, Brugge, Belgium
| | - Ph Rogiers
- Pulmonology, AZ Sint Lucas, Brugge, Belgium
| | - J Hoste
- Internal Medicine, AZ Sint Lucas, Brugge, Belgium
| | - W Mattheus
- Sciensano, Meningococcal National Reference Centre, Ukkel, Belgium
| | - K Floré
- Laboratory Medicine, Medical Microbiology, AZ Sint Lucas Brugge, Belgium
| |
Collapse
|
16
|
Lemos APSD, Gorla MCO, de Moraes C, Willemann MC, Sacchi CT, Fukasawa LO, Camargo CH, Barreto G, Rodrigues DS, Gonçalves MG, Higa FT, Salgado MM, de Moraes JC. Emergence of Neisseria meningitidis W South American sublineage strain variant in Brazil: disease and carriage. J Med Microbiol 2022; 71. [PMID: 35144719 DOI: 10.1099/jmm.0.001484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Introduction. Invasive meningococcal disease is a major health problem, impacting morbidity and mortality worldwide. Exploratory genomics has revealed insights into adaptation, transmissibility and virulence to elucidate endemic, outbreaks or epidemics caused by Neisseria meningitidis serogroup W (MenW) strains.Gap Statement. Limited information on the genomics of Neisseria meningitis serogroup W ST11/cc11 is available from emerging countries, especially in contemporary isolates.Aim. To (i) describe the antigenic diversity and distribution of genetic lineages of N. meningitidis serogroup W circulating in Brazil; (ii) study the carriage prevalence of hypervirulent clones in adolescents students and (iii) analyse the potential risk factors for meningococcal carriage.Methodology. Using whole-genome sequencing, we analysed the genomic diversity of 92 invasive N. meningitidis serogroup W isolates circulating in Brazil from 2016 to 2019. A cross-sectional survey of meningococcal carriage was conducted in 2019, in the city of Florianópolis, Brazil, among a representative sample of 538 students.Results. A predominance (58.5 %, 41/82) of ST11/cc11 presenting PorB2-144, PorA VR1-5, VR2-2, FetA 1-1, and a novel fHbp peptide 1241 was found on invasive N. meningitidis W isolates, on the other hand, a high diversity of clonal complexes was found among carriage isolates. The overall carriage rate was 7.5 % (40/538). A total of 28 of 538 swab samples collected were culture positive for N. meningitidis, including four serogroup/genogroup B isolates (14.8 %;4/27), 1 serogroup/genogroup Y isolate (3.7 %;1/27), 22 (81.5 %; 22/27) non-groupable isolates. No MenW isolate was identified among carriages isolates.Conclusion. This report describes the emergence of the new MenW ST11/cc11 South America sublineage variant, named here, 2016 strain, carrying a novel fHbp peptide 1241, but its emergence, was not associated with an increased MenW carriage prevalence. Continuous surveillance is necessary to ascertain the role of this sublineage diversification and how its emergence can impact transmission.
Collapse
Affiliation(s)
| | | | - Camile de Moraes
- Coordenação Geral de Emergências em Saúde Pública, Brasília, Distrito Federal, Brazil
| | | | | | | | | | - Gisele Barreto
- Vigilância Epidemiológica de Santa Catarina, Santa Catarina, Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Zhang Y, Deng X, Jiang Y, Zhang J, Zhan L, Mei L, Lu H, Yao P, He H. The Epidemiology of Meningococcal Disease and Carriage, Genotypic Characteristics and Antibiotic Resistance of Neisseria meningitidis Isolates in Zhejiang Province, China, 2011–2021. Front Microbiol 2022; 12:801196. [PMID: 35140696 PMCID: PMC8819144 DOI: 10.3389/fmicb.2021.801196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/03/2021] [Indexed: 11/26/2022] Open
Abstract
Neisseria meningitidis (Nm) remains a worldwide leading cause of epidemic meningitis. During 2011–July 2021, 55 meningococcal disease (MD) cases were reported with a case fatality rate of 5.45% in Zhejiang Province, China. The median age was 7 years. The annual incidence was 0.0017–0.0183 per 100,000 population. The highest age-specific incidence was observed in the group younger than 1 year. Serogroup was identified in 30 laboratory-confirmed MD cases, and MenB was most predominant. MenB was mainly observed in two age groups: younger than 5 and older than 35 years. MenB incidence was significantly increasing from 0.0018 per 100,000 in 2013 to 0.0070 per 100,000 in 2019. During 2015–2020, 17 positive samples were detected from 2,827 throat swabs from healthy population, of which 70.59% was MenB. Twenty multilocus sequence typing sequence types (STs) containing eight newly assigned STs (ST15881–ST15888) were determined in all Nm isolates. Either in MD cases or in healthy population, MenB CC ST-4821 was the predominant ST. It was worth noting that two MenY CC ST-23 cases occurred in 2019 and 2021, respectively. MenY CC ST-23 MD cases increased gradually in China. Phylogeny results based on genome sequencing indicated that Chinese MenW CC ST-11 isolates were genetically linked and grouped together with Japanese isolates, separated from MenW CC ST-11 isolates from Saudi Arabia Hajj outbreak, Europe, South Africa, South America, North America, and Oceania. MenW CC ST-11 isolates from East Asia might have evolved locally. Antibiotic susceptibility tests revealed a relatively high resistance rate (22.86%) of Nm isolates to penicillin. This study provided valuable data for Chinese public health authorities to grasp the temporal epidemiological characteristics of MD and healthy carriage.
Collapse
Affiliation(s)
- Yunyi Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Xuan Deng
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junyan Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Li Zhan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Lingling Mei
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Hangjing Lu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Pingping Yao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
- *Correspondence: Pingping Yao,
| | - Hanqing He
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
- Hanqing He,
| |
Collapse
|
18
|
Soumahoro L, Abitbol V, Vicic N, Bekkat-Berkani R, Safadi MAP. Meningococcal Disease Outbreaks: A Moving Target and a Case for Routine Preventative Vaccination. Infect Dis Ther 2021; 10:1949-1988. [PMID: 34379309 PMCID: PMC8572905 DOI: 10.1007/s40121-021-00499-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/05/2021] [Indexed: 12/04/2022] Open
Abstract
Outbreaks of invasive meningococcal disease (IMD) are unpredictable, can be sudden and have devastating consequences. We conducted a non-systematic review of the literature in PubMed (1997-2020) to assess outbreak response strategies and the impact of vaccine interventions. Since 1997, IMD outbreaks due to serogroups A, B, C, W, Y and X have occurred globally. Reactive emergency mass vaccination campaigns have encompassed single institutions (schools, universities) through to whole sections of the population at regional/national levels (e.g. serogroup B outbreaks in Saguenay-Lac-Saint-Jean region, Canada and New Zealand). Emergency vaccination responses to IMD outbreaks consistently incurred substantial costs (expenditure on vaccine supplies, personnel costs and interruption of other programmes). Impediments included the limited pace of transmission of information to parents/communities/healthcare workers; issues around collection of informed consents; poor vaccine uptake by older adolescents/young adults, often a target age group; issues of reimbursement, particularly in the USA; and difficulties in swift supply of large quantities of vaccines. For serogroup B outbreaks, the need for two doses was a significant issue that contributed substantially to costs, delayed onset of protection and non-compliance with dose 2. Real-world descriptions of outbreak control strategies and the associated challenges systematically show that reactive outbreak management is administratively, logistically and financially costly, and that its impact can be difficult to measure. In view of the unpredictability, fast pace and potential lethality of outbreak-associated IMD, prevention through routine vaccination appears the most effective mitigation tool. Highly effective vaccines covering five of six disease-causing serogroups are available. Preparedness through routine vaccination programmes will enhance the speed and effectiveness of outbreak responses, should they be needed (ready access to vaccines and need for a single booster dose rather than a primary series).
Collapse
Affiliation(s)
| | | | | | | | - Marco A P Safadi
- Department of Pediatrics, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| |
Collapse
|
19
|
Oostdijk C, Van Zoonen K, Ruijs WLM, Mollema L. Household decision-making for the MenACWY vaccination: How parents and adolescents deal with an adolescent vaccination decision. Vaccine 2021; 39:4283-4290. [PMID: 34172331 DOI: 10.1016/j.vaccine.2021.06.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Between 2015 and 2018 The Netherlands experienced increases of invasive meningococcal disease (IMD) serogroup W (MenW), from 0.02 cases/100,000 people between 2010 and 2014 up to 0.5 cases/100,000 in 2017. Therefore in 2018 the MenACWY vaccination was introduced in the National Immunisation Programme (NIP) and a catch-up campaign was initiated among adolescents. This study aimed to gain insight into the decision-making process within households regarding the MenACWY vaccination. The focus was on the differences in the decision-making process of parents and adolescents and of those that had accepted the MenACWY vaccination and those that had not, in order to assess how these types of decisions are made within households. METHOD We conducted a total of 38 semi-structured interviews in 20 households (7 not vaccinated) with 20 parents and 18 adolescents (18 dyads) across The Netherlands concerning their decision-making process. Interview guides were constructed based on the Precaution Adaption Process (PAP) model. We performed thematic analysis using qualitative data analysis software (MAXQDA). RESULTS Parents are the main actors in the household decision-making process regarding the MenACWY vaccination. Parents start their decision-making process before adolescents are even aware of the issue. Households in the study took different approaches in involving the adolescent in the decision-making, resulting in three styles of household decision-making: parents decide without the adolescent, parents involve the adolescent, or parents leave it up to the adolescent to decide. CONCLUSION Parents influence adolescent reasoning, engagement and involvement during the MenACWY vaccination decision-making. And this is the case both among those that have accepted and rejected the MenACWY vaccination. Adolescent engagement with the MenACWY vaccination decision-making is either short-lived or non-existent. However, the moment offers opportunities to engage adolescents on vaccinations and decision-making, with parents as key figures to promote this.
Collapse
Affiliation(s)
- C Oostdijk
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, the Netherlands.
| | - K Van Zoonen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, the Netherlands
| | - W L M Ruijs
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, the Netherlands
| | - L Mollema
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, the Netherlands
| |
Collapse
|
20
|
Birrell MT, Strachan J, Holmes NE, Stevens K, Howden BP, Franklin LJ, Ivan M, Kwong JC. Clinical manifestations of invasive meningococcal disease in Victoria with the emergence of serogroup W and serogroup Y Neisseria meningitidis. Intern Med J 2021; 51:390-397. [PMID: 32043702 DOI: 10.1111/imj.14771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Historically, Australian cases of invasive meningococcal disease (IMD) have been most frequently caused by Neisseria meningitidis serogroup B, but recently an increase in cases due to serogroup W (MenW) and serogroup Y (MenY) has occurred. AIM To determine whether clinical manifestations of IMD have changed due to increased incidence of MenW and MenY. METHODS We performed a retrospective review of IMD cases notified to the Department of Health and Human Services in Victoria, Australia. We compared the period between January 2013 and June 2015 (defined as P1) immediately before the increase in MenW and MenY was noted, with the equal time period of July 2015 to December 2017 (P2), when this increase was observed. RESULTS IMD was notified more frequently in P2 than P1 (1.24 vs 0.53 per 100 000 person-years, P < 0.001). IMD cases in P2 were older (46 vs 19 years, P < 0.001), and more likely due to MenW (92/187, 49.2% vs 11/80, 13.8%, P < 0.001) or MenY (31/187, 16.6% vs 4/80, 5.0%, P = 0.01). IMD cases from P2 were more likely bacteraemic (151/187, 80.7% vs 55/80, 68.8%, P = 0.04), while meningitis (68/187, 36.4% vs 41/80, 51.3%, P = 0.03) and rash (65/181, 35.9% vs 45/78, 57.7%, P = 0.002) were less frequent. Intensive care unit admission rates and in-hospital mortality were unchanged. CONCLUSION Alongside an increase in IMD in Victoria, the proliferation of cases of MenW and MenY occurred in older patients, and were more often identified through bacteraemia rather than meningitis or purpura fulminans. Clinicians should be aware of these changes to facilitate earlier identification and treatment of IMD.
Collapse
Affiliation(s)
- Michael T Birrell
- Victorian Department of Health and Human Services, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Austin Health, Melbourne, Victoria, Australia
| | - Janet Strachan
- Victorian Department of Health and Human Services, Melbourne, Victoria, Australia
| | - Natasha E Holmes
- Department of Infectious Diseases, Austin Health, Melbourne, Victoria, Australia
| | - Kerrie Stevens
- Microbiological Diagnostic Unit Public Health Laboratory, University of Melbourne, Melbourne, Victoria, Australia
| | - Benjamin P Howden
- Department of Infectious Diseases, Austin Health, Melbourne, Victoria, Australia.,Microbiological Diagnostic Unit Public Health Laboratory, University of Melbourne, Melbourne, Victoria, Australia
| | - Lucinda J Franklin
- Victorian Department of Health and Human Services, Melbourne, Victoria, Australia
| | - Mihaela Ivan
- Victorian Department of Health and Human Services, Melbourne, Victoria, Australia
| | - Jason C Kwong
- Department of Infectious Diseases, Austin Health, Melbourne, Victoria, Australia.,Microbiological Diagnostic Unit Public Health Laboratory, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
BOCCALINI SARA, PANATTO DONATELLA, MENNINI FRANCESCOSAVERIO, MARCELLUSI ANDREA, BINI CHIARA, AMICIZIA DANIELA, LAI PIEROLUIGI, MICALE ROSANNATINDARA, FRUMENTO DAVIDE, AZZARI CHIARA, RICCI SILVIA, BONITO BENEDETTA, DI PISA GIULIA, IOVINE MARIASILVIA, LODI LORENZO, GIOVANNINI MATTIA, MOSCADELLI ANDREA, PAOLI SONIA, PENNATI BEATRICEMARINA, PISANO LAURA, BECHINI ANGELA, BONANNI PAOLO. [ Health Technology Assessment (HTA) of the introduction of additional cohorts for anti-meningococcal vaccination with quadrivalent conjugate vaccines in Italy]. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2021; 62:E1-E128. [PMID: 34622076 PMCID: PMC8452280 DOI: 10.15167/2421-4248/jpmh2021.62.1s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- SARA BOCCALINI
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze
- Autore corrispondente: Sara Boccalini, Dipartimento di Scienze della Salute, Università degli Studi di Firenze, 50134 Firenze, Italia - Tel.: 055-2751084 E-mail:
| | - DONATELLA PANATTO
- Dipartimento di Scienze della Salute, Università degli Studi di Genova
| | - FRANCESCO SAVERIO MENNINI
- Economic Evaluation and HTA - CEIS (EEHTA - CEIS), Facoltà di Economia, Università di Roma "Tor Vergata"
- Institute for Leadership and Management in Health, Kingston University, London, UK
| | - ANDREA MARCELLUSI
- Economic Evaluation and HTA - CEIS (EEHTA - CEIS), Facoltà di Economia, Università di Roma "Tor Vergata"
| | - CHIARA BINI
- Economic Evaluation and HTA - CEIS (EEHTA - CEIS), Facoltà di Economia, Università di Roma "Tor Vergata"
| | - DANIELA AMICIZIA
- Dipartimento di Scienze della Salute, Università degli Studi di Genova
| | - PIERO LUIGI LAI
- Dipartimento di Scienze della Salute, Università degli Studi di Genova
| | | | - DAVIDE FRUMENTO
- Dipartimento di Scienze della Salute, Università degli Studi di Genova
| | - CHIARA AZZARI
- Immunologia, Clinica Pediatrica II, AOU Meyer, Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | - SILVIA RICCI
- Immunologia, Clinica Pediatrica II, AOU Meyer, Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | - BENEDETTA BONITO
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | - GIULIA DI PISA
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | | | - LORENZO LODI
- Immunologia, Clinica Pediatrica II, AOU Meyer, Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | - MATTIA GIOVANNINI
- Immunologia, Clinica Pediatrica II, AOU Meyer, Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | - ANDREA MOSCADELLI
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | - SONIA PAOLI
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | | | - LAURA PISANO
- Immunologia, Clinica Pediatrica II, AOU Meyer, Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | - ANGELA BECHINI
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | - PAOLO BONANNI
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| |
Collapse
|
22
|
Willerton L, Lucidarme J, Walker A, Lekshmi A, Clark SA, Gray SJ, Borrow R. Increase in penicillin-resistant invasive meningococcal serogroup W ST-11 complex isolates in England. Vaccine 2021; 39:2719-2729. [PMID: 33858720 DOI: 10.1016/j.vaccine.2021.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/01/2021] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Invasive meningococcal disease (IMD) caused by serogroup W meningococci belonging to the ST-11 complex (MenW:cc11) has been increasing globally since the early 2000s. Penicillin resistance among meningococci due to the production of beta-lactamase remains relatively rare. Isolates displaying resistance and reduced susceptibility to penicillin due to alterations in the penA gene (encoding Penicillin Binding Protein 2) are increasingly reported. In 2016, a penicillin-resistant clade of MenW:cc11 isolates with altered penA genes was identified in Australia. More recently, an increase in penicillin-resistant invasive MenW:cc11 isolates was observed in England. Here, we investigate the distribution of penicillin resistance among English invasive MenW:cc11 isolates. METHODS Isolates from IMD cases in England from July 2010 to August 2019 underwent whole genome sequencing and antibiotic susceptibility testing as part of routine surveillance. The PubMLST Neisseria database was used to determine the distribution of penicillin resistance among English MenW:cc11 isolates and to identify other closely related isolates. RESULTS Twenty-five out of 897 English invasive MenW:cc11 isolates were resistant to penicillin; identified among six distinct sublineages and a singleton. Expansion of the Australian penicillin-resistant clade included isolates from several new countries as well as 20 English isolates. A newly identified penicillin resistance-associated lineage was also identified among several countries. CONCLUSION Penicillin resistance among diverse MenW:cc11 isolates is increasing. Surveillance of antibiotic resistance among meningococci is essential to ensure continued effective use.
Collapse
Affiliation(s)
- Laura Willerton
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom.
| | - Jay Lucidarme
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Andrew Walker
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Aiswarya Lekshmi
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Stephen A Clark
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Steve J Gray
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| |
Collapse
|
23
|
Four-component Meningococcal Serogroup B Vaccine Induces Antibodies With Bactericidal Activity Against Diverse Outbreak Strains in Adolescents. Pediatr Infect Dis J 2021; 40:e66-e71. [PMID: 33060520 DOI: 10.1097/inf.0000000000002957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Neisseria meningitidis serogroup B (MenB) causes most meningitis outbreaks worldwide. We evaluated the ability of the 4-component MenB vaccine (4CMenB) to induce bactericidal activity against outbreak strains in adolescents. METHODS Individual sera from 20 United States and 23 Chilean adolescents who received 2 doses of 4CMenB 2 months apart were assayed at prevaccination and 1 month after second dose using a human complement serum bactericidal antibody assay (hSBA) against a full or subset strain panel consisting of 14 MenB outbreak strains and 1 MenW hyperendemic strain collected between 2001 and 2017 in the United States, United Kingdom, and France. Bactericidal activity was determined as the percentage of adolescents with hSBA titer ≥1:4 or ≥1:8. RESULTS One month after the second 4CMenB dose, antibodies from 65% to 100% of the US adolescents were able to kill 12 of 15 strains at 1:4 dilution. The remaining 3 strains were killed by 45%, 25%, and 15% of US adolescent sera. Similar percentages exhibited hSBA titers of ≥1:8. Across a subset of 4 strains, point estimates for the percentages of Chilean and US adolescents with hSBA titers of ≥1:4 after the second 4CMenB dose were similar (100% for strain M27703, 74% vs. 80% for M26312, 52% vs. 45% for M08 0240745), except for strain M39090 (91% vs. 65%). CONCLUSIONS This study was the first to evaluate bactericidal activity elicited by a MenB vaccine against 15 outbreak strains. Two doses of 4CMenB elicited bactericidal activity against MenB outbreak strains and a hyperendemic MenW strain.
Collapse
|
24
|
Gao F, Beresford N, Lockyer K, Burkin K, Rigsby P, Bolgiano B. Saccharide dosage content of meningococcal polysaccharide conjugate vaccines determined using WHO International Standards for serogroup A, C, W, Y and X polysaccharides. Biologicals 2021; 70:53-58. [PMID: 33518432 DOI: 10.1016/j.biologicals.2021.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/13/2021] [Accepted: 01/17/2021] [Indexed: 10/22/2022] Open
Abstract
Potency of meningococcal polysaccharide-protein conjugate vaccines relies on the polysaccharide content to prevent meningitis. NIBSC, as the official national control laboratory in UK, analysed ten different mono- and multi-meningococcal conjugate vaccines, using established International Standards for meningococcal serogroups A, C, W, Y and X, by resorcinol or HPAEC-PAD assay. Most saccharide contents were within ±20% of their claimed content for licensure with taking different O-acetylation levels into consideration, with only MenC content in two vaccines below (by 60% and 54%) the labelled value, however, previous study showed different dosage was not necessarily correlated to the immunogenicity of those vaccines. This study demonstrated the use of International Standards to quantify saccharide content in polysaccharide-based vaccines with different percentage of O-acetylation. These International Standards are suitable to serve as either quantitative standard or calibrator of in-house standards, with supplied stability data.
Collapse
Affiliation(s)
- Fang Gao
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK.
| | - Nicola Beresford
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Kay Lockyer
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Karena Burkin
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Peter Rigsby
- Biostatistics, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Barbara Bolgiano
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| |
Collapse
|
25
|
Loenenbach AD, van der Ende A, de Melker HE, Sanders EAM, Knol MJ. The Clinical Picture and Severity of Invasive Meningococcal Disease Serogroup W Compared With Other Serogroups in the Netherlands, 2015-2018. Clin Infect Dis 2021; 70:2036-2044. [PMID: 31556938 PMCID: PMC7201410 DOI: 10.1093/cid/ciz578] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/15/2019] [Indexed: 01/06/2023] Open
Abstract
Background An increase in invasive meningococcal disease (IMD) serogroup W (IMD-W) cases caused by sequence type-11 clonal complex (cc11) was observed from October 2015 in the Netherlands. We compared the clinical picture and disease outcome of IMD-W cases with other serogroups, adjusting for host characteristics. Methods We included IMD cases reported from January 2015 to June 2018 in the Netherlands and assessed clinical manifestation and symptoms at disease onset and calculated case fatality rates (CFRs). We used logistic regression to compare clinical manifestations and mortality of IMD-W with IMD caused by meningococci serogroup B, Y, or C, adjusting for age, gender, and comorbidities. Results A total of 565 IMD cases were reported, of which 204 were IMD-W, 270 IMD-B, 63 IMD-Y, and 26 IMD-C. Most IMD-W isolates belonged to cc11 (93%; 175/188). Compared with other serogroups, IMD-W patients were diagnosed more often with septicemia (46%) or pneumonia (12%) and less often with meningitis (17%, P < .001). IMD-W cases presented more often with respiratory symptoms (45%, P < .001); 16% of IMD-W patients presented with diarrhea without IMD-specific symptoms (P = .061). The CFR for IMD-W was 16% (32/199, P < .001). The differences between IMD-W and other serogroups remained after adjusting for age, gender, and comorbidities. Conclusions The atypical presentation and severe outcome among IMD-W cases could not be explained by age, gender, and comorbidities. Almost all our IMD-W cases were caused by cc11. More research is needed to identify the bacterial factors involved in clinical presentation and severity of IMD-W cc11.
Collapse
Affiliation(s)
- Anna D Loenenbach
- Centre for Infectious Disease Control Netherlands (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven.,European Programme for Intervention Epidemiology Training, European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Arie van der Ende
- Amsterdam UMC, University of Amsterdam, Netherlands Reference Laboratory for Bacterial Meningitis, The Netherlands
| | - Hester E de Melker
- Centre for Infectious Disease Control Netherlands (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven
| | - Elisabeth A M Sanders
- Centre for Infectious Disease Control Netherlands (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven
| | - Mirjam J Knol
- Centre for Infectious Disease Control Netherlands (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven
| |
Collapse
|
26
|
Vaccines against Meningococcal Diseases. Microorganisms 2020; 8:microorganisms8101521. [PMID: 33022961 PMCID: PMC7601370 DOI: 10.3390/microorganisms8101521] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 01/12/2023] Open
Abstract
Neisseria meningitidis is the main cause of meningitis and sepsis, potentially life-threatening conditions. Thanks to advancements in vaccine development, vaccines are now available for five out of six meningococcal disease-causing serogroups (A, B, C, W, and Y). Vaccination programs with monovalent meningococcal serogroup C (MenC) conjugate vaccines in Europe have successfully decreased MenC disease and carriage. The use of a monovalent MenA conjugate vaccine in the African meningitis belt has led to a near elimination of MenA disease. Due to the emergence of non-vaccine serogroups, recommendations have gradually shifted, in many countries, from monovalent conjugate vaccines to quadrivalent MenACWY conjugate vaccines to provide broader protection. Recent real-world effectiveness of broad-coverage, protein-based MenB vaccines has been reassuring. Vaccines are also used to control meningococcal outbreaks. Despite major improvements, meningococcal disease remains a global public health concern. Further research into changing epidemiology is needed. Ongoing efforts are being made to develop next-generation, pentavalent vaccines including a MenACWYX conjugate vaccine and a MenACWY conjugate vaccine combined with MenB, which are expected to contribute to the global control of meningitis.
Collapse
|
27
|
IGIDBASHIAN S, BERTIZZOLO L, TOGNETTO A, AZZARI C, BONANNI P, CASTIGLIA P, CONVERSANO M, ESPOSITO S, GABUTTI G, ICARDI G, LOPALCO P, VITALE F, PARISI S, CHECCUCCI LISI G. Invasive meningococcal disease in Italy: from analysis of national data to an evidence-based vaccination strategy. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2020; 61:E152-E161. [PMID: 32802999 PMCID: PMC7419122 DOI: 10.15167/2421-4248/jpmh2020.61.2.1589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/23/2020] [Indexed: 01/12/2023]
Abstract
Introduction Invasive meningococcal disease (IMD) is one of the most severe vaccine-preventable disease not yet under control. In Italy, although different anti-meningococcal vaccines are available, their offer among regions is heterogeneous. The aim of this study is to describe the epidemiology of IMD in Italy based on analysis of national surveillance data for 2011-2017 to optimize the vaccination strategy. Methods IMD surveillance data from the Italian National Health Institute were analysed. Microsoft Excel was used to present trend analysis, stratifying by age and serogroups. Results In Italy, during the period 2011-2017, the incidence of IMD increased from 0.25 cases/100,000 inhabitants in 2011 to 0.33 cases/100,000 in 2017. Most cases after 2012 were caused by non-B serogroups. The number of cases in subjects aged 25-64 years increased steadily after 2012 (36 cases in 2011, 79 in 2017), mostly due to non-B serogroups, representing more than 65% of cases in those aged 25+ years. Conclusions In the period from 2011 to 2017, the incidence of IMDs increased in Italy. The increase, probably due also to a better surveillance, highlights the importance of the disease in the adult population and the high level of circulation of non-B serogroups in particular after 2012. Our analysis supports an anti-meningococcal vaccination plan in Italy that should include the highest number of preventable serogroups and be aimed at vaccinating a wider population through a multicohort strategy.
Collapse
Affiliation(s)
- S. IGIDBASHIAN
- Sanofi Pasteur, Milan, Italy
- Correspondence: Sarah Igidbashian, Sanofi Pasteur Italia, viale Luigi Bodio 37/b, 20158 Milan, Italy - E-mail:
| | | | - A. TOGNETTO
- Section of Hygiene, Institute of Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - C. AZZARI
- Department of Health Sciences, University of Florence, Italy
- Meyer Children’s University Hospital, Florence, Italy
| | - P. BONANNI
- Department of Health Sciences, University of Florence, Italy
| | - P. CASTIGLIA
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Italy
| | - M. CONVERSANO
- Department of Prevention, Local Health Authority of Taranto, Italy
| | - S. ESPOSITO
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Italy
| | - G. GABUTTI
- Department of Medical Sciences, University of Ferrara, Italy
| | - G. ICARDI
- Department of Health Sciences, University of Genoa, Italy; IRCCS San Martino Policlinic Hospital, Genoa, Italy
| | - P.L. LOPALCO
- Department of Translational Research, New Technologies in Medicine & Surgery, University of Pisa, Italy
| | - F. VITALE
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Italy
| | | | | |
Collapse
|
28
|
Fazio C, Neri A, Vacca P, Ciammaruconi A, Arghittu M, Barbui AM, Vocale C, Bernaschi P, Isola P, Galanti IA, Mencacci A, De Nittis R, Chironna M, Giammanco A, Pagani E, Bisbano A, Stefanelli P. Cocirculation of Hajj and non-Hajj strains among serogroup W meningococci in Italy, 2000 to 2016. ACTA ACUST UNITED AC 2020; 24. [PMID: 30696530 PMCID: PMC6352001 DOI: 10.2807/1560-7917.es.2019.24.4.1800183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In Italy, B and C are the predominant serogroups among meningococci causing invasive diseases. Nevertheless, in the period from 2013 to 2016, an increase in serogroup W Neisseria meningitidis (MenW) was observed. This study intends to define the main characteristics of 63 MenW isolates responsible of invasive meningococcal disease (IMD) in Italy from 2000 to 2016. We performed whole genome sequencing on bacterial isolates or single gene sequencing on culture-negative samples to evaluate molecular heterogeneity. Our main finding was the cocirculation of the Hajj and the South American sublineages belonging to MenW/clonal complex (cc)11, which gradually surpassed the MenW/cc22 in Italy. All MenW/cc11 isolates were fully susceptible to cefotaxime, ceftriaxone, ciprofloxacin, penicillin G and rifampicin. We identified the full-length NadA protein variant 2/3, present in all the MenW/cc11. We also identified the fHbp variant 1, which we found exclusively in the MenW/cc11/Hajj sublineage. Concern about the epidemic potential of MenW/cc11 has increased worldwide since the year 2000. Continued surveillance, supported by genomic characterisation, allows high-resolution tracking of pathogen dissemination and the detection of epidemic-associated strains.
Collapse
Affiliation(s)
- Cecilia Fazio
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Arianna Neri
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Vacca
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Ciammaruconi
- Molecular Biology Section, Army Medical and Veterinary Research Center, Rome, Italy
| | - Milena Arghittu
- Microbiology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Maria Barbui
- Microbiology and Virology Laboratory, Molinette Hospital, Turin, Italy
| | - Caterina Vocale
- Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, St. Orsola Malpighi University Hospital, Bologna, Italy
| | | | - Patrizia Isola
- Clinical Pathology Department, Azienda USL 6, Livorno, Italy
| | | | - Antonella Mencacci
- Medical Microbiology Section, Dept. of Medicine, University of Perugia, Perugia, Italy
| | | | - Maria Chironna
- Biomedical Sciences and Human Oncology Department - Hygiene Section, University Hospital, Bari, Italy
| | - Anna Giammanco
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Elisabetta Pagani
- Microbiology and Virology Laboratory, Azienda Sanitaria dell'Alto Adige, Bolzano, Italy
| | | | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
29
|
Parikh SR, Campbell H, Bettinger JA, Harrison LH, Marshall HS, Martinon-Torres F, Safadi MA, Shao Z, Zhu B, von Gottberg A, Borrow R, Ramsay ME, Ladhani SN. The everchanging epidemiology of meningococcal disease worldwide and the potential for prevention through vaccination. J Infect 2020; 81:483-498. [PMID: 32504737 DOI: 10.1016/j.jinf.2020.05.079] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 05/31/2020] [Indexed: 12/31/2022]
Abstract
Neisseria meningitidis is a major cause of bacterial meningitis and septicaemia worldwide and is associated with high case fatality rates and serious life-long complications among survivors. Twelve serogroups are recognised, of which six (A, B, C, W, X and Y) are responsible for nearly all cases of invasive meningococcal disease (IMD). The incidence of IMD and responsible serogroups vary widely both geographically and over time. For the first time, effective vaccines against all these serogroups are available or nearing licensure. Over the past two decades, IMD incidence has been declining across most parts of the world through a combination of successful meningococcal immunisation programmes and secular trends. The introduction of meningococcal C conjugate vaccines in the early 2000s was associated with rapid declines in meningococcal C disease, whilst implementation of a meningococcal A conjugate vaccine across the African meningitis belt led to near-elimination of meningococcal A disease. Consequently, other serogroups have become more important causes of IMD. In particular, the emergence of a hypervirulent meningococcal group W clone has led many countries to shift from monovalent meningococcal C to quadrivalent ACWY conjugate vaccines in their national immunisation programmes. Additionally, the recent licensure of two protein-based, broad-spectrum meningococcal B vaccines finally provides protection against the most common group responsible for childhood IMD across Europe and Australia. This review describes global IMD epidemiology across each continent and trends over time, the serogroups responsible for IMD, the impact of meningococcal immunisation programmes and future needs to eliminate this devastating disease.
Collapse
Affiliation(s)
- Sydel R Parikh
- Immunisation and Countermeasures Division, Public Health England, 61 Colindale Avenue, London, UK
| | - Helen Campbell
- Immunisation and Countermeasures Division, Public Health England, 61 Colindale Avenue, London, UK
| | - Julie A Bettinger
- Vaccine Evaluation Center, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lee H Harrison
- Infectious Diseases Epidemiology Research Unit, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Helen S Marshall
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide and Women's and Children's Health Network, Adelaide, South Australia
| | - Federico Martinon-Torres
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Hospital Clínico Universitario and Universidad de Santiago de Compostela (USC), Galicia, Spain
| | - Marco Aurelio Safadi
- Department of Pediatrics, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Zhujun Shao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bingqing Zhu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Mary E Ramsay
- Immunisation and Countermeasures Division, Public Health England, 61 Colindale Avenue, London, UK
| | - Shamez N Ladhani
- Immunisation and Countermeasures Division, Public Health England, 61 Colindale Avenue, London, UK; Paediatric Infectious Diseases Research Group (PIDRG), St. George's University of London, Cranmer Terrace, London SW17 0RE, UK.
| |
Collapse
|
30
|
Domenech de Cellès M, Campbell H, Borrow R, Taha MK, Opatowski L. Transmissibility and pathogenicity of the emerging meningococcal serogroup W sequence type-11 complex South American strain: a mathematical modeling study. BMC Med 2020; 18:109. [PMID: 32316986 PMCID: PMC7175556 DOI: 10.1186/s12916-020-01552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The recent emergence of strains belonging to the meningococcal serogroup W (MenW) sequence type-11 clonal complex and descending from the South American sub-lineage (MenW:cc11/SA) has caused significant shifts in the epidemiology of meningococcal disease worldwide. Although MenW:cc11/SA is deemed highly transmissible and invasive, its epidemiological characteristics have not yet been quantified. METHODS We designed a mathematical model of MenW transmission, carriage, and infection to analyze the recent epidemiology of invasive disease caused by MenW:cc11/SA strains and by other MenW strains in England and in France. We confronted that model with age-stratified incidence data to estimate the transmissibility and the invasiveness of MenW:cc11/SA in England, using the data in France as a validation cohort. RESULTS During the epidemiological years 2010/2011-2014/2015 in England, the transmissibility of MenW:cc11/SA relative to that of other MenW strains was estimated at 1.20 (95% confidence interval, 1.15 to 1.26). The relative invasiveness of MenW:cc11/SA was also found to exceed unity and to increase with age, with estimates ranging from 4.0 (1.6 to 9.7) in children aged 0-4 years to 20 (6 to 34) in adults aged ≥ 25 years. In France, the model calibrated in England correctly reproduced the early increase of MenW:cc11/SA disease during 2012/2013-2016/2017. Most recent surveillance data, however, indicated a decline in MenW:cc11/SA disease. In both countries, our results suggested that the transmission of MenW:cc11/SA carriage possibly started several months before the first reported case of MenW:cc11/SA disease. DISCUSSION Our results confirm earlier suggestions about the transmission and the pathogenic potential of MenW:cc11/SA. The main limitation of our study was the lack of age-specific MenW carriage data to confront our model predictions with. Furthermore, the lesser model fit to the most recent data in France suggests that the predictive accuracy of our model might be limited to 5-6 years. CONCLUSIONS Our study provides the first estimates of the transmissibility and of the invasiveness of MenW:cc11/SA. Such estimates may be useful to anticipate changes in the epidemiology of MenW and to adapt vaccination strategies. Our results also point to silent, prolonged transmission of MenW:cc11/SA carriage, with potentially important implications for epidemic preparedness.
Collapse
Affiliation(s)
- Matthieu Domenech de Cellès
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, CESP, Anti-infective evasion and pharmacoepidemiology team, F-78180, Montigny-Le-Bretonneux, France. .,Institut Pasteur, Epidemiology and Modelling of Evasion to Antibiotics, F-75015, Paris, France. .,Max Planck Institute for Infection Biology, Charitéplatz 1, Campus Charité Mitte, 10117, Berlin, Germany.
| | - Helen Campbell
- Public Health England, NIS Immunisation and Countermeasures, London, England
| | - Ray Borrow
- Public Health England Meningococcal Reference Unit, Manchester, England
| | - Muhamed-Kheir Taha
- Institut Pasteur, National Reference Centre for Meningococci and Invasive Bacterial Infections Unit, Paris, France
| | - Lulla Opatowski
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, CESP, Anti-infective evasion and pharmacoepidemiology team, F-78180, Montigny-Le-Bretonneux, France.,Institut Pasteur, Epidemiology and Modelling of Evasion to Antibiotics, F-75015, Paris, France
| |
Collapse
|
31
|
Bennett DE, Meyler KL, Cafferkey MT, Cunney RJ. Diversity of meningococci associated with invasive meningococcal disease in the Republic of Ireland over a 19 year period, 1996-2015. PLoS One 2020; 15:e0228629. [PMID: 32053601 PMCID: PMC7018037 DOI: 10.1371/journal.pone.0228629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/20/2020] [Indexed: 12/19/2022] Open
Abstract
This study examined the capsular phenotype and genotype of invasive meningococcal disease (IMD)-associated Neisseria meningitidis recovered in the Republic of Ireland (RoI) between 1996 and 2015. This time period encompasses both pre- (when IMD was hyperendemic in the RoI) and post- meningococcal serogroup C conjugate (MCC) vaccine introduction. In total, 1327 isolates representing over one-third of all laboratory-confirmed cases of IMD diagnosed each epidemiological year (EY), were characterised. Serogroups B (menB) and C (menC) predominated throughout, although their relative abundance changed; with an initial increase in the proportion of menC in the late 1990s followed by their dramatic reduction post-MCC vaccine implementation and a concomitant dominance of menB, despite an overall decline in IMD incidence. While the increase in menC was associated with expansion of specific clonal-complexes (cc), cc11 and cc8; the dominance of menB was not. There was considerable variation in menB-associated cc with declines in cc41/44 and cc32, and increases in cc269 and cc461, contributing to a significant increase in the clonal diversity of menB isolates over the study. This increase in diversity was also displayed among the serosubtyping data, with significant declines in proportions of menB isolates expressing p1.4 and p1.15 antigens. These data highlight the changing diversity of IMD-associated meningococci since 1996 in the RoI and emphasise the need for on-going surveillance particularly in view of the recent introduction of a menB vaccine.
Collapse
Affiliation(s)
- Désirée E. Bennett
- Irish Meningitis and Sepsis Reference Laboratory, Children’s Health Ireland, Dublin, Ireland
- * E-mail:
| | - Kenneth L. Meyler
- Irish Meningitis and Sepsis Reference Laboratory, Children’s Health Ireland, Dublin, Ireland
| | - Mary T. Cafferkey
- Irish Meningitis and Sepsis Reference Laboratory, Children’s Health Ireland, Dublin, Ireland
- Department of Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Robert J. Cunney
- Irish Meningitis and Sepsis Reference Laboratory, Children’s Health Ireland, Dublin, Ireland
- Department of Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Clinical Microbiology, Children’s Health Ireland, Dublin, Ireland
| |
Collapse
|
32
|
Deghmane AE, Haeghebaert S, Hong E, Jousset A, Barret AS, Taha MK. Emergence of new genetic lineage, ST-9316, of Neisseria meningitidis group W in Hauts-de-France region, France 2013-2018. J Infect 2020; 80:519-526. [PMID: 32032620 DOI: 10.1016/j.jinf.2020.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND The epidemiology of invasive meningococcal disease (IMD) is continuously changing in incidence, age distribution and/or the expansion of new strains of Neisseria meningitidis. The epidemiology of IMD due to group W (IMDW) has changed recently at a global level with the emergence of isolates belonging to the clonal complex ST-11 (CC11) derived from the South America-UK strain. A more recent change has been detected in France with the emergence of a new genotype distinct from CC11 that we aimed to analyse. METHODS Epidemiological and microbiological surveillance data in France were used in combination with whole genome sequencing (WGS) to detect emerging phenotypes and genotypes of IMD causing strains, and their susceptibility to immunity induced by the 4CMenB vaccine. Transgenic mice expressing the human transferrin were used to analyse the virulence of emerging strain isolates by direct comparison with CC11 isolates. FINDINGS Our data showed a local increase of IMDW isolates in north France since 2013. The isolates belonged to ST-9316 and few were ST-11 isolates. WGS clustered ST-9316 isolates together and were distantly separated from the isolates of the clonal complex ST-11 (CC11). Unlike cases due to W/CC11 isolates, cases due to W/ST-9316 isolates were mostly observed amongst infants under the age of 1 year but with lower mortality compared to W/CC11 cases. Genomic comparison showed that the W/ST-9316, unlike W/CC11 isolates, lacked the hmbR gene encoding the haemoglobin receptor that is a virulence factor involved in the acquisition of iron from haemoglobin. W/ST-9316 further showed lower virulence in mice compared to W/CC11 isolates. INTERPRETATION We report the emergence of a novel sequence type (ST-9316) mostly associated with serogroup W, and exhibiting a lower virulence and a distinct age specific incidence profile than W/CC11 isolates. Surveillance requires powerful approaches combining WGS and pathophysiological analysis to adapt control measures.
Collapse
Affiliation(s)
- Ala-Eddine Deghmane
- Institut Pasteur, National Reference center for meningococci and Haemophilus influenzae, F-75724 Paris, France
| | - Sylvie Haeghebaert
- Santé publique France, French National Public Health Agency, F-94415, Saint-Maurice, France
| | - Eva Hong
- Institut Pasteur, National Reference center for meningococci and Haemophilus influenzae, F-75724 Paris, France
| | - Améliane Jousset
- Santé publique France, French National Public Health Agency, F-94415, Saint-Maurice, France
| | - Anne-Sophie Barret
- Santé publique France, French National Public Health Agency, F-94415, Saint-Maurice, France
| | - Muhamed-Kheir Taha
- Institut Pasteur, National Reference center for meningococci and Haemophilus influenzae, F-75724 Paris, France.
| |
Collapse
|
33
|
Sidikou F, Potts CC, Zaneidou M, Mbaeyi S, Kadadé G, Paye MF, Ousmane S, Issaka B, Chen A, Chang HY, Issifou D, Lingani C, Sakande S, Bienvenu B, Mahamane AE, Diallo AO, Moussa A, Seidou I, Abdou M, Sidiki A, Garba O, Haladou S, Testa J, Obama Nse R, Mainassara HB, Wang X. Epidemiology of Bacterial Meningitis in the Nine Years Since Meningococcal Serogroup A Conjugate Vaccine Introduction, Niger, 2010-2018. J Infect Dis 2019; 220:S206-S215. [PMID: 31671439 DOI: 10.1093/infdis/jiz296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND In 2010, Niger and other meningitis belt countries introduced a meningococcal serogroup A conjugate vaccine (MACV). We describe the epidemiology of bacterial meningitis in Niger from 2010 to 2018. METHODS Suspected and confirmed meningitis cases from January 1, 2010 to July 15, 2018 were obtained from national aggregate and laboratory surveillance. Cerebrospinal fluid specimens were analyzed by culture and/or polymerase chain reaction. Annual incidence was calculated as cases per 100 000 population. Selected isolates obtained during 2016-2017 were characterized by whole-genome sequencing. RESULTS Of the 21 142 suspected cases of meningitis, 5590 were confirmed: Neisseria meningitidis ([Nm] 85%), Streptococcus pneumoniae ([Sp] 13%), and Haemophilus influenzae ([Hi] 2%). No NmA cases occurred after 2011. Annual incidence per 100 000 population was more dynamic for Nm (0.06-7.71) than for Sp (0.18-0.70) and Hi (0.01-0.23). The predominant Nm serogroups varied over time (NmW in 2010-2011, NmC in 2015-2018, and both NmC and NmX in 2017-2018). Meningococcal meningitis incidence was highest in the regions of Niamey, Tillabery, Dosso, Tahoua, and Maradi. The NmW isolates were clonal complex (CC)11, NmX were CC181, and NmC were CC10217. CONCLUSIONS After MACV introduction, we observed an absence of NmA, the emergence and continuing burden of NmC, and an increase in NmX. Niger's dynamic Nm serogroup distribution highlights the need for strong surveillance programs to inform vaccine policy.
Collapse
Affiliation(s)
- Fati Sidikou
- Centre de Recherche Médicale et Sanitaire, Ministry of Public Health, Institut Pasteur International Network, Niamey, Niger
| | - Caelin C Potts
- Meningitis and Vaccine Preventable Diseases Branch, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Maman Zaneidou
- Direction de la Surveillance et Riposte aux Epidémies, Ministry of Health, Niamey, Niger
| | - Sarah Mbaeyi
- Meningitis and Vaccine Preventable Diseases Branch, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Goumbi Kadadé
- Direction de la Surveillance et Riposte aux Epidémies, Ministry of Health, Niamey, Niger
| | - Marietou F Paye
- Meningitis and Vaccine Preventable Diseases Branch, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sani Ousmane
- Centre de Recherche Médicale et Sanitaire, Ministry of Public Health, Institut Pasteur International Network, Niamey, Niger
| | - Bassira Issaka
- Centre de Recherche Médicale et Sanitaire, Ministry of Public Health, Institut Pasteur International Network, Niamey, Niger
| | - Alexander Chen
- Meningitis and Vaccine Preventable Diseases Branch, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - How-Yi Chang
- Meningitis and Vaccine Preventable Diseases Branch, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Djibo Issifou
- Direction de la Surveillance et Riposte aux Epidémies, Ministry of Health, Niamey, Niger
| | - Clement Lingani
- World Health Organization-Intercountry Support Team, Ouagadougou, Burkina Faso
| | | | | | - Ali Elhadji Mahamane
- Centre de Recherche Médicale et Sanitaire, Ministry of Public Health, Institut Pasteur International Network, Niamey, Niger
| | - Alpha Oumar Diallo
- Meningitis and Vaccine Preventable Diseases Branch, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Amadou Moussa
- Centre de Recherche Médicale et Sanitaire, Ministry of Public Health, Institut Pasteur International Network, Niamey, Niger
| | - Issaka Seidou
- Centre de Recherche Médicale et Sanitaire, Ministry of Public Health, Institut Pasteur International Network, Niamey, Niger
| | - Moussa Abdou
- Centre de Recherche Médicale et Sanitaire, Ministry of Public Health, Institut Pasteur International Network, Niamey, Niger
| | - Ali Sidiki
- Centre de Recherche Médicale et Sanitaire, Ministry of Public Health, Institut Pasteur International Network, Niamey, Niger
| | - Omar Garba
- Centre de Recherche Médicale et Sanitaire, Ministry of Public Health, Institut Pasteur International Network, Niamey, Niger
| | - Sani Haladou
- Centre de Recherche Médicale et Sanitaire, Ministry of Public Health, Institut Pasteur International Network, Niamey, Niger
| | - Jean Testa
- Centre de Recherche Médicale et Sanitaire, Ministry of Public Health, Institut Pasteur International Network, Niamey, Niger
| | | | - Halima Boubacar Mainassara
- Centre de Recherche Médicale et Sanitaire, Ministry of Public Health, Institut Pasteur International Network, Niamey, Niger
| | - Xin Wang
- Meningitis and Vaccine Preventable Diseases Branch, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
34
|
Green LR, Dave N, Adewoye AB, Lucidarme J, Clark SA, Oldfield NJ, Turner DPJ, Borrow R, Bayliss CD. Potentiation of Phase Variation in Multiple Outer-Membrane Proteins During Spread of the Hyperinvasive Neisseria meningitidis Serogroup W ST-11 Lineage. J Infect Dis 2019; 220:1109-1117. [PMID: 31119276 PMCID: PMC6735796 DOI: 10.1093/infdis/jiz275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/21/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Since 2009, increases in the incidence of invasive meningococcal disease have occurred in the United Kingdom due to a sublineage of the Neisseria meningitidis serogroup W ST-11 clonal complex (hereafter, the "original UK strain"). In 2013, a descendent substrain (hereafter, the "2013 strain") became the dominant disease-causing variant. Multiple outer-membrane proteins of meningococci are subject to phase-variable switches in expression due to hypermutable simple-sequence repeats. We investigated whether alterations in phase-variable genes may have influenced the relative prevalence of the original UK and 2013 substrains, using multiple disease and carriage isolates. METHODS Repeat numbers were determined by either bioinformatics analysis of whole-genome sequencing data or polymerase chain reaction amplification and sizing of fragments from genomic DNA extracts. Immunoblotting and sequence-translation analysis was performed to identify expression states. RESULTS Significant increases in repeat numbers were detected between the original UK and 2013 strains in genes encoding PorA, NadA, and 2 Opa variants. Invasive and carriage isolates exhibited similar repeat numbers, but the absence of pilC gene expression was frequently associated with disease. CONCLUSIONS Elevated repeat numbers in outer-membrane protein genes of the 2013 strain are indicative of higher phase-variation rates, suggesting that rapid expansion of this strain was due to a heightened ability to evade host immune responses during transmission and asymptomatic carriage.
Collapse
Affiliation(s)
- Luke R Green
- Department of Genetics and Genome Biology, University of Leicester, Leicester
| | - Neelam Dave
- Department of Genetics and Genome Biology, University of Leicester, Leicester
| | - Adeolu B Adewoye
- Department of Genetics and Genome Biology, University of Leicester, Leicester
| | - Jay Lucidarme
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester
| | - Stephen A Clark
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester
| | - Neil J Oldfield
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - David P J Turner
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester
| | | |
Collapse
|
35
|
Zhu B, Lucidarme J, Bai X, Guo P, Zhang A, Borrow R, Gao W, Xu L, Gao Y, Shao Z. Comparative genomic analyses of Chinese serogroup W ST-11 complex Neisseria meningitidis isolates. J Infect 2019; 80:54-60. [PMID: 31473270 DOI: 10.1016/j.jinf.2019.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/22/2019] [Accepted: 08/23/2019] [Indexed: 10/26/2022]
Abstract
Although serogroup W ST-11 complex (cc11) (W:cc11) Neisseria meningitidis has been widespread in China over the past ten years, its origin and genetic relatedness has not yet been described. In this study, we described the genetic relatedness and discuss the possible origin of Chinese W:cc11 isolates by comparing their genome sequences with those of other cc11 strains globally. Comparative genomic analysis with geo-temporally diverse cc11 isolates showed that the Chinese W:cc11 isolates exclusively formed two closely related subclusters within a distinct sublineage (proposed as the Chinese-strain sublineage) of lineage 11.1 close to the interface between the Hajj-strain sublineage and the South American-strain sublineage. Several isolates from Africa and Europe were closely related to the Chinese subclusters which were largely segregated from one another among distinct provinces of China. No alleles were identified that were unique to the Chinese isolates as a whole, though each subcluster possessed unique alleles differentiating itself from the other subcluster as well as closely related isolates within the extended sublineage. Three genes differentiated the two subclusters with allele combinations that were each present among the non-Chinese isolates within the wider sublineage. These results indicate that the Chinese W:cc11 isolates formed part of a previously undescribed W:cc11 sublineage that is closely related to, but distinct from, the Hajj-strain sublineage and South American-strain sublineage. The geographical source of the Chinese subclusters was indeterminate based on available data.
Collapse
Affiliation(s)
- Bingqing Zhu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Jay Lucidarme
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Xilian Bai
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Pengbo Guo
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Aiyu Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Wanying Gao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Li Xu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Yuan Gao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Zhujun Shao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China; State Key Laboratory for Infectious Disease Prevention and Control, Beijing, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China.
| |
Collapse
|
36
|
Li S, Liu C, Liu Y, Ma Q, Wang Y, Wang Y. Development of a multiple cross displacement amplification combined with nanoparticles-based biosensor assay to detect Neisseria meningitidis. Infect Drug Resist 2019; 12:2077-2087. [PMID: 31406466 PMCID: PMC6642637 DOI: 10.2147/idr.s210735] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/17/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Neisseria meningitidis is a leading pathogen of meningococcal disease in humans worldwide. Multiple cross displacement mplification (MCDA) combined with nanoparticles-based lateral flow biosensor (MCDA-LFB) has been reported for the rapid detection of several bacterial pathogens in recent years. Here, therefore we developed an MCDA-LFB assay for the rapid detection of N. meningitis. METHODS A set of 10 primers specifically to recognize 10 different regions of the ctrA gene of N. meningitidis were designed. MCDA was developed and combined with a LFB to detect the ctrA gene of N. meningitidis. The reaction time and temperature condition for the MCDA-LFB were optimized and then the MCDA-LFB was applied to detect the DNA from clinical samples. RESULTS MCDA-LFB assay was successfully established for the detection of N. meningitidis based on the ctrA gene. The MCDA assay was optimized at 64°C for only 35 mins and the products of amplification were directly sensed by LFB. The whole operation, including DNA template preparation (~20 mins), MCDA reaction (35 mins) and results interpretation (~2 mins) could be finished in no more than 60 mins. The detection limit was as low as 10 fg/reaction (around 3 CFUs/reaction) of pure N. meningitidis DNA, with no cross-reaction with other bacterial DNA. CONCLUSION The MCDA-LFB techniques developed in the present study are an effective tool for the rapid detection of N. meningitidis, especially in resource-poor countries in meningococcal disease epidemic period.
Collapse
Affiliation(s)
- Shijun Li
- Laboratory of Bacterial Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, 550004, People’s Republic of China
| | - Chunting Liu
- Laboratory of Bacterial Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, 550004, People’s Republic of China
| | - Ying Liu
- Laboratory of Bacterial Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, 550004, People’s Republic of China
| | - Qing Ma
- Laboratory of Bacterial Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, 550004, People’s Republic of China
| | - Yue Wang
- Laboratory of Bacterial Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, 550004, People’s Republic of China
| | - Yi Wang
- Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, 10045, People’s Republic of China
- Ministry of Education, National Key Discipline of Pediatrics (Capital Medial University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health
, Beijing, 10045, People’s Republic of China
| |
Collapse
|
37
|
Frank T, Hong E, Mbecko JR, Lombart JP, Taha MK, Rubbo PA. Emergence of Neisseria meningitidis Serogroup W, Central African Republic, 2015-2016. Emerg Infect Dis 2019; 24:2080-2083. [PMID: 30334720 PMCID: PMC6199983 DOI: 10.3201/eid2411.170817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We analyzed data from the 2015 and 2016 meningitis epidemic seasons in Central African Republic as part of the national disease surveillance. Of 80 tested specimens, 66 belonged to meningococcal serogroup W. Further analysis found that 97.7% of 44 isolates belonged to the hyperinvasive clonal complex sequence type 11.
Collapse
|
38
|
Bogaerts B, Winand R, Fu Q, Van Braekel J, Ceyssens PJ, Mattheus W, Bertrand S, De Keersmaecker SCJ, Roosens NHC, Vanneste K. Validation of a Bioinformatics Workflow for Routine Analysis of Whole-Genome Sequencing Data and Related Challenges for Pathogen Typing in a European National Reference Center: Neisseria meningitidis as a Proof-of-Concept. Front Microbiol 2019; 10:362. [PMID: 30894839 PMCID: PMC6414443 DOI: 10.3389/fmicb.2019.00362] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/12/2019] [Indexed: 12/22/2022] Open
Abstract
Despite being a well-established research method, the use of whole-genome sequencing (WGS) for routine molecular typing and pathogen characterization remains a substantial challenge due to the required bioinformatics resources and/or expertise. Moreover, many national reference laboratories and centers, as well as other laboratories working under a quality system, require extensive validation to demonstrate that employed methods are "fit-for-purpose" and provide high-quality results. A harmonized framework with guidelines for the validation of WGS workflows does currently, however, not exist yet, despite several recent case studies highlighting the urgent need thereof. We present a validation strategy focusing specifically on the exhaustive characterization of the bioinformatics analysis of a WGS workflow designed to replace conventionally employed molecular typing methods for microbial isolates in a representative small-scale laboratory, using the pathogen Neisseria meningitidis as a proof-of-concept. We adapted several classically employed performance metrics specifically toward three different bioinformatics assays: resistance gene characterization (based on the ARG-ANNOT, ResFinder, CARD, and NDARO databases), several commonly employed typing schemas (including, among others, core genome multilocus sequence typing), and serogroup determination. We analyzed a core validation dataset of 67 well-characterized samples typed by means of classical genotypic and/or phenotypic methods that were sequenced in-house, allowing to evaluate repeatability, reproducibility, accuracy, precision, sensitivity, and specificity of the different bioinformatics assays. We also analyzed an extended validation dataset composed of publicly available WGS data for 64 samples by comparing results of the different bioinformatics assays against results obtained from commonly used bioinformatics tools. We demonstrate high performance, with values for all performance metrics >87%, >97%, and >90% for the resistance gene characterization, sequence typing, and serogroup determination assays, respectively, for both validation datasets. Our WGS workflow has been made publicly available as a "push-button" pipeline for Illumina data at https://galaxy.sciensano.be to showcase its implementation for non-profit and/or academic usage. Our validation strategy can be adapted to other WGS workflows for other pathogens of interest and demonstrates the added value and feasibility of employing WGS with the aim of being integrated into routine use in an applied public health setting.
Collapse
Affiliation(s)
- Bert Bogaerts
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Raf Winand
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Qiang Fu
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Julien Van Braekel
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | | | | | | | | - Nancy H C Roosens
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| |
Collapse
|
39
|
Ezeoke I, Galac MR, Lin Y, Liem AT, Roth PA, Kilianski A, Gibbons HS, Bloch D, Kornblum J, Del Rosso P, Janies DA, Weiss D. Tracking a serial killer: Integrating phylogenetic relationships, epidemiology, and geography for two invasive meningococcal disease outbreaks. PLoS One 2018; 13:e0202615. [PMID: 30485280 PMCID: PMC6261407 DOI: 10.1371/journal.pone.0202615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/05/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND While overall rates of meningococcal disease have been declining in the United States for the past several decades, New York City (NYC) has experienced two serogroup C meningococcal disease outbreaks in 2005-2006 and in 2010-2013. The outbreaks were centered within drug use and sexual networks, were difficult to control, and required vaccine campaigns. METHODS Whole Genome Sequencing (WGS) was used to analyze preserved meningococcal isolates collected before and during the two outbreaks. We integrated and analyzed epidemiologic, geographic, and genomic data to better understand transmission networks among patients. Betweenness centrality was used as a metric to understand the most important geographic nodes in the transmission networks. Comparative genomics was used to identify genes associated with the outbreaks. RESULTS Neisseria meningitidis serogroup C (ST11/ET-37) was responsible for both outbreaks with each outbreak having distinct phylogenetic clusters. WGS did identify some misclassifications of isolates that were more distant from the outbreak strains, as well as those that should have been included based on high genomic similarity. Genomes for the second outbreak were more similar than the first and no polymorphism was found to either be unique or specific to either outbreak lineage. Betweenness centrality as applied to transmission networks based on phylogenetic analysis demonstrated that the outbreaks were transmitted within focal communities in NYC with few transmission events to other locations. CONCLUSIONS Neisseria meningitidis is an ever changing pathogen and comparative genomic analyses can help elucidate how it spreads geographically to facilitate targeted interventions to interrupt transmission.
Collapse
Affiliation(s)
- Ifeoma Ezeoke
- Bureau of Communicable Disease, Department of Health and Mental Hygiene, New York, NY, United States of America
| | - Madeline R. Galac
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC, United States of America
| | - Ying Lin
- Bureau of Public Health Laboratory, Department of Health and Mental Hygiene, New York, NY, United States of America
| | - Alvin T. Liem
- Department of Microbiology, US Army Edgewood Chemical and Biological Center, Aberdeen Proving Ground, MD, United States of America
- DCS Corporation, Alexandria, VA, United States of America
| | - Pierce A. Roth
- Department of Microbiology, US Army Edgewood Chemical and Biological Center, Aberdeen Proving Ground, MD, United States of America
- DCS Corporation, Alexandria, VA, United States of America
| | - Andrew Kilianski
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC, United States of America
| | - Henry S. Gibbons
- Department of Microbiology, US Army Edgewood Chemical and Biological Center, Aberdeen Proving Ground, MD, United States of America
| | - Danielle Bloch
- Bureau of Communicable Disease, Department of Health and Mental Hygiene, New York, NY, United States of America
| | - John Kornblum
- Bureau of Public Health Laboratory, Department of Health and Mental Hygiene, New York, NY, United States of America
| | - Paula Del Rosso
- Bureau of Communicable Disease, Department of Health and Mental Hygiene, New York, NY, United States of America
| | - Daniel A. Janies
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC, United States of America
| | - Don Weiss
- Bureau of Communicable Disease, Department of Health and Mental Hygiene, New York, NY, United States of America
| |
Collapse
|
40
|
Booy R, Gentile A, Nissen M, Whelan J, Abitbol V. Recent changes in the epidemiology of Neisseria meningitidis serogroup W across the world, current vaccination policy choices and possible future strategies. Hum Vaccin Immunother 2018; 15:470-480. [PMID: 30296197 PMCID: PMC6505668 DOI: 10.1080/21645515.2018.1532248] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Invasive meningococcal disease (IMD) is a serious disease that is fatal in 5–15% and disabling in 12–20% of cases. The dynamic and unpredictable epidemiology is a particular challenge of IMD prevention. Although vaccination against meningococcal serogroups A (MenA), MenC and, more recently, MenB, are proving successful, other serogroups are emerging as major IMD causes. Recently, surges in MenW incidence occurred in South America, Europe, Australia and parts of sub-Saharan Africa, with hypervirulent strains being associated with severe IMD and higher fatality rates. This review describes global trends in MenW-IMD epidemiology over the last 5–10 years, with emphasis on the response of national/regional health authorities to increased MenW prevalence in impacted areas. Several countries (Argentina, Australia, Chile, the Netherlands and UK) have implemented reactive vaccination campaigns to reduce MenW-IMD, using MenACWY conjugate vaccines. Future vaccination programs should consider the evolving epidemiology of MenW-IMD and the most impacted age groups.
Collapse
Affiliation(s)
- Robert Booy
- a The Discipline of Child and Adolescent Health , Sydney Medical School, University of Sydney , Sydney , New South Wales , Australia.,b Westmead Institute of Medical Research , University of Sydney , Sydney , New South Wales , Australia
| | - Angela Gentile
- c Department of Epidemiology , Ricardo Gutiérrez Children's Hospital , Buenos Aires , Argentina
| | - Michael Nissen
- d Research and Development , GSK Intercontinental , Singapore
| | - Jane Whelan
- e Clinical Research and Development , GSK , Amsterdam , The Netherlands
| | | |
Collapse
|
41
|
Honskus M, Okonji Z, Musilek M, Kozakova J, Krizova P. Whole genome sequencing of Neisseria meningitidis W isolates from the Czech Republic recovered in 1984-2017. PLoS One 2018; 13:e0199652. [PMID: 30212468 PMCID: PMC6136696 DOI: 10.1371/journal.pone.0199652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 08/23/2018] [Indexed: 11/18/2022] Open
Abstract
Introduction The study presents the analysis of whole genome sequence (WGS) data for Neisseria meningitidis serogroup W isolates recovered in the Czech Republic in 1984–2017 and their comparison with WGS data from other countries. Material and methods Thirty-one Czech N. meningitidis W isolates, 22 from invasive meningococcal disease (IMD) and nine from healthy carriers were analysed. The 33-year study period was divided into three periods: 1984–1999, 2000–2009, and 2010–2017. Results Most study isolates from IMD and healthy carriers were assigned to clonal complex cc22 (n = 10) in all study periods. The second leading clonal complex was cc865 (n = 8) presented by IMD (n = 7) and carriage (n = 1) isolates that emerged in the last study period, 2010–2017. The third clonal complex was cc11 (n = 4) including IMD isolates from the first (1984–1999) and third (2010–2017) study periods. The following clonal complex was cc174 (n = 3) presented by IMD isolates from the first two study periods, i.e. 1984–1999 and 2000–2009. One isolate of each cc41/44 and cc1136 originated from healthy carriers from the second study period, 2000–2009. The comparison of WGS data for N. meningitidis W isolates recovered in the Czech Republic in the study period 1984–2017 and for isolates from other countries recovered in the same period showed that clonal complex cc865, ST-3342 is unique to the Czech Republic since 2010. Moreover, the comparison shows that cc11 in the Czech Republic does not comprise novel hypervirulent lineages reported from both European and non-European countries. All 31 study isolates were assigned to Bexsero® Antigen Sequence Types (BAST), and seven of them were of newly described BASTs. Conclusions WGS analysis contributed considerably to a more detailed molecular characterization of N. meningitidis W isolates recovered in the Czech Republic over a 33-year period and allowed for a spatial and temporal comparison of these characteristics between isolates from the Czech Republic and other countries. The most interesting finding of this study is that eight of 31 Czech isolates of N. meningitidis W belong to clonal complex cc865, which is uncommon for serogroup W. In addition, the WGS data precised the base for the update of the recommendation for vaccination in the Czech Republic.
Collapse
Affiliation(s)
- Michal Honskus
- National Reference Laboratory for Meningococcal Infections, Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czech Republic
| | - Zuzana Okonji
- National Reference Laboratory for Meningococcal Infections, Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czech Republic
| | - Martin Musilek
- National Reference Laboratory for Meningococcal Infections, Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czech Republic
| | - Jana Kozakova
- National Reference Laboratory for Meningococcal Infections, Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czech Republic
| | - Pavla Krizova
- National Reference Laboratory for Meningococcal Infections, Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
42
|
Aung M, Raith E, Williams E, Burrell AJ. Severe meningococcal serogroup W sepsis presenting as myocarditis: A case report and review of literature. J Intensive Care Soc 2018; 20:182-186. [PMID: 31037113 DOI: 10.1177/1751143718794127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The global incidence of invasive meningococcal disease due to serogroup W (MenW) has risen over the last decade. The following case emphasises the atypical features of MenW meningococcaemia, which included myocarditis, a rare but important complication. It also highlights the potential novel role that cardiac magnetic resonance imaging can provide in the diagnosis of MenW myocarditis. Complications of these infections can be avoided with early recognition and susceptibility testing to prevent the use of inappropriate antibiotics and treatment failure.
Collapse
Affiliation(s)
- Myat Aung
- Department of Anaesthesia and Perioperative Medicine, The Alfred Hospital, Melbourne, VIC, Australia
| | - Eamon Raith
- Department of Intensive Care Medicine, The Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Eloise Williams
- Department of Infectious Diseases and Microbiology, The Alfred Hospital, Melbourne, VIC, Australia
| | - Aidan Jc Burrell
- Department of Intensive Care, The Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
43
|
Lamelas A, Hamid AWM, Dangy JP, Hauser J, Jud M, Röltgen K, Hodgson A, Junghanss T, Harris SR, Parkhill J, Bentley SD, Pluschke G. Loss of Genomic Diversity in a Neisseria meningitidis Clone Through a Colonization Bottleneck. Genome Biol Evol 2018; 10:2102-2109. [PMID: 30060167 PMCID: PMC6110524 DOI: 10.1093/gbe/evy152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2018] [Indexed: 01/11/2023] Open
Abstract
Neisseria meningitidis is the leading cause of epidemic meningitis in the "meningitis belt" of Africa, where clonal waves of colonization and disease are observed. Point mutations and horizontal gene exchange lead to constant diversification of meningococcal populations during clonal spread. Maintaining a high genomic diversity may be an evolutionary strategy of meningococci that increases chances of fixing occasionally new highly successful "fit genotypes". We have performed a longitudinal study of meningococcal carriage and disease in northern Ghana by analyzing cerebrospinal fluid samples from all suspected meningitis cases and monitoring carriage of meningococci by twice yearly colonization surveys. In the framework of this study, we observed complete replacement of an A: sequence types (ST)-2859 clone by a W: ST-2881 clone. However, after a gap of 1 year, A: ST-2859 meningococci re-emerged both as colonizer and meningitis causing agent. Our whole genome sequencing analyses compared the A population isolated prior to the W colonization and disease wave with the re-emerging A meningococci. This analysis revealed expansion of one clone differing in only one nonsynonymous SNP from several isolates already present in the original A: ST-2859 population. The colonization bottleneck caused by the competing W meningococci thus resulted in a profound reduction in genomic diversity of the A meningococcal population.
Collapse
Affiliation(s)
- Araceli Lamelas
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Switzerland
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Xalapa, Veracruz, México
| | - Abdul-Wahab M Hamid
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Switzerland
- Navrongo Health Research Centre, Ministry of Health, Navrongo, Ghana
| | - Jean-Pierre Dangy
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Switzerland
| | - Julia Hauser
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Switzerland
| | - Maja Jud
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Switzerland
| | - Katharina Röltgen
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Switzerland
| | - Abraham Hodgson
- Navrongo Health Research Centre, Ministry of Health, Navrongo, Ghana
- Research and Development Division, Ghana Health Service, Accra, Ghana
| | - Thomas Junghanss
- Section of Clinical Tropical Medicine, University Hospital Heidelberg, Germany
| | - Simon R Harris
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Julian Parkhill
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Stephen D Bentley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Switzerland
| |
Collapse
|
44
|
Enfermedad invasiva por Neisseria meningitidis serogrupo W. Med Clin (Barc) 2018; 150:e41. [DOI: 10.1016/j.medcli.2017.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/07/2017] [Accepted: 10/19/2017] [Indexed: 11/21/2022]
|
45
|
MenACWY-TT is immunogenic when co-administered with Tdap and AS04-HPV16/18 in girls and young women: Results from a phase III randomized trial. Vaccine 2018; 36:3967-3975. [DOI: 10.1016/j.vaccine.2018.05.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 12/16/2022]
|
46
|
Dretler AW, Rouphael NG, Stephens DS. Progress toward the global control of Neisseria meningitidis: 21st century vaccines, current guidelines, and challenges for future vaccine development. Hum Vaccin Immunother 2018; 14:1146-1160. [PMID: 29543582 PMCID: PMC6067816 DOI: 10.1080/21645515.2018.1451810] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/21/2018] [Accepted: 03/09/2018] [Indexed: 12/21/2022] Open
Abstract
The control of meningitis, meningococcemia and other infections caused by Neisseria meningitidis is a significant global health challenge. Substantial progress has occurred in the last twenty years in meningococcal vaccine development and global implementation. Meningococcal protein-polysaccharide conjugate vaccines to serogroups A, C, W, and Y (modeled after the Haemophilus influenzae b conjugate vaccines) provide better duration of protection and immunologic memory, and overcome weak immune responses in infants and young children and hypo-responsive to repeated vaccine doses seen with polysaccharide vaccines. ACWY conjugate vaccines also interfere with transmission and reduce nasopharyngeal colonization, thus resulting in significant herd protection. Advances in serogroup B vaccine development have also occurred using conserved outer membrane proteins with or without OMV as vaccine targets. Challenges for meningococcal vaccine research remain including developing combination vaccines containing ACYW(X) and B, determining the ideal booster schedules for the conjugate and MenB vaccines, and addressing issues of waning effectiveness.
Collapse
Affiliation(s)
- A. W. Dretler
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - N. G. Rouphael
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - D. S. Stephens
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
47
|
Parikh SR, Campbell H, Gray SJ, Beebeejaun K, Ribeiro S, Borrow R, Ramsay ME, Ladhani SN. Epidemiology, clinical presentation, risk factors, intensive care admission and outcomes of invasive meningococcal disease in England, 2010-2015. Vaccine 2018; 36:3876-3881. [PMID: 29699791 DOI: 10.1016/j.vaccine.2018.02.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 01/08/2023]
Abstract
The epidemiology of invasive meningococcal disease (IMD) is constantly changing as new strains are introduced into a population and older strains are removed through vaccination, population immunity or natural trends. Consequently, the clinical disease associated with circulating strains may also change over time. In England, IMD incidence has declined from 1.8/100,000 in 2010/2011 to 1.1/100,000 in 2013/2014, with a small increase in 2014/2015 to 1.3/100,000. Between 01 January 2011 and 30 June 2015, MenB was responsible for 73.0% (n = 2489) of 3411 laboratory-confirmed IMD cases, followed by MenW (n = 371, 10.9%), MenY (n = 373, 10.9%) and MenC (n = 129, 3.8%); other capsular groups were rare (n = 49, 1.4%). Detailed questionnaires were completed for all 3411 laboratory-confirmed cases. Clinical presentation varied by capsular group and age. Atypical presentations were uncommon (244/3411; 7.2%), increasing from 1.2% (41/3411) in children to 3.5% (120/3411) in older adults. Known IMD risk factors were rare (18/3411; 0.5%) and included complement deficiency (n = 11), asplenia (n = 6) or both (n = 1). Nearly a third of cases required intensive care (1069/3411; 31.3%), with rates highest in adults. The 28-day CFR was 6.9% (n = 237), with the lowest rates in 0-14 year-olds (85/1885, 4.5%) and highest among 85+ year-olds (30/94, 31.9%). These observations provide a useful baseline for the current burden of IMD in a European country with enhanced national surveillance.
Collapse
Affiliation(s)
- Sydel R Parikh
- Immunisation, Hepatitis and Blood Safety Department, Public Health England, London, United Kingdom.
| | - Helen Campbell
- Immunisation, Hepatitis and Blood Safety Department, Public Health England, London, United Kingdom
| | - Stephen J Gray
- Meningococcal Reference Unit, Public Health England, Manchester, United Kingdom
| | - Kazim Beebeejaun
- Immunisation, Hepatitis and Blood Safety Department, Public Health England, London, United Kingdom
| | - Sonia Ribeiro
- Immunisation, Hepatitis and Blood Safety Department, Public Health England, London, United Kingdom
| | - Ray Borrow
- St. George's University of London, United Kingdom
| | - Mary E Ramsay
- Immunisation, Hepatitis and Blood Safety Department, Public Health England, London, United Kingdom
| | - Shamez N Ladhani
- Immunisation, Hepatitis and Blood Safety Department, Public Health England, London, United Kingdom; St. George's University of London, United Kingdom
| |
Collapse
|
48
|
Whole genome typing of the recently emerged Canadian serogroup W Neisseria meningitidis sequence type 11 clonal complex isolates associated with invasive meningococcal disease. Int J Infect Dis 2018; 69:55-62. [DOI: 10.1016/j.ijid.2018.01.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/20/2018] [Accepted: 01/23/2018] [Indexed: 12/25/2022] Open
|
49
|
Immunogenicity and safety of one or two doses of the quadrivalent meningococcal vaccine MenACWY-TT given alone or with the 13-valent pneumococcal conjugate vaccine in toddlers: A phase III, open-label, randomised study. Vaccine 2018; 36:1908-1916. [PMID: 29503112 DOI: 10.1016/j.vaccine.2018.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND We evaluated the immunogenicity and safety of 1 and 2 doses of quadrivalent meningococcal serogroup A, C, W and Y tetanus toxoid-conjugate vaccine (MenACWY-TT) given alone or co-administered with 13-valent pneumococcal conjugate vaccine (PCV13) in toddlers. METHODS In this phase III, open-label, controlled, multicentre study (NCT01939158), healthy toddlers aged 12-14 months were randomised into 4 groups to receive 1 dose of MenACWY-TT at month (M) 0 (ACWY_1), 2 doses of MenACWY-TT at M0 and M2 (ACWY_2), MenACWY-TT and PCV13 at M0 (Co-ad), or PCV13 at M0 and MenACWY-TT at M2 (PCV13/ACWY). Immune responses were assessed 1 month post-each vaccination. Solicited and unsolicited symptoms were recorded for 4 and 31 days post-each vaccination, respectively; serious adverse events (SAEs) and new onset of chronic illnesses (NOCIs) up to M9 from first vaccination. RESULTS 802 toddlers were vaccinated. Post-dose 1 of MenACWY-TT, ≥92.8% of toddlers had rSBA titres ≥1:8, and ≥62.5% had hSBA titres ≥1:4 for each meningococcal serogroup. Post-dose 2 of MenACWY-TT, rSBA titres ≥1:8 were observed in ≥98.0% and hSBA titres ≥1:4 in ≥95.3% of toddlers. Percentages of toddlers with hSBA titres ≥1:4 were higher after 2 doses versus 1 dose of MenACWY-TT for MenW (97.1% versus 62.5-68.9%) and MenY (95.3% versus 64.3-67.6%). Non-inferiority of immune responses to co-administered MenACWY-TT and PCV13 over their separate administration was demonstrated. AEs incidence was comparable among groups. SAEs were reported for 4.9%, 5.1%, 5.5% and 7.5%, and NOCIs for 2.0%, 3.0%, 0.5% and 3.5% of toddlers in the ACWY_1, ACWY_2, Co-ad and PCV13/ACWY groups, respectively; 4 SAEs reported in 3 toddlers were vaccine-related. Two fatal vaccine-unrelated SAEs were reported. CONCLUSION MenACWY-TT was immunogenic when administered as a single dose at 12-14 months of age. A second dose in toddlers increased hSBA responses against MenW and MenY. MenACWY-TT and PCV13 can be co-administered without impairing the immunogenicity or safety profile of either vaccine.
Collapse
|
50
|
Oldfield NJ, Green LR, Parkhill J, Bayliss CD, Turner DPJ. Limited Impact of Adolescent Meningococcal ACWY Vaccination on Neisseria meningitidis Serogroup W Carriage in University Students. J Infect Dis 2018; 217:608-616. [PMID: 29155998 PMCID: PMC5853931 DOI: 10.1093/infdis/jix596] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/14/2017] [Indexed: 12/20/2022] Open
Abstract
Background In the United Kingdom, rising levels of disease due to Neisseria meningitidis serogroup W clonal complex (cc) sequence type (ST) 11 (MenW:cc11) strains led to introduction of meningococcal conjugate vaccine (MenACWY) for teenagers. We investigated the impact of immunization on carriage of meningococci targeted by the vaccine, using whole-genome sequencing of isolates recovered from a cohort of vaccinated university students. Methods Strain designation data were extracted from whole-genome sequencing data. Genomes from carried and invasive MenW:cc11 strains were compared using a gene-by-gene approach. Serogrouping identified isolates expressing capsule antigens targeted by the vaccine. Results Isolates with a W: P1.5,2: F1-1: ST-11 (cc11) designation and belonging to the emerging 2013-strain of the South American-United Kingdom MenW:cc11 sublineage were responsible for an increase in carried group W strains. A multifocal expansion was evident, with close transmission networks extending beyond individual dormitories. Carried group Y isolates were predominantly from cc23 but showed significant heterogeneity, and individual strain designations were only sporadically recovered. No shifts toward acapsulate phenotypes were detected in targeted meningococcal populations. Conclusions In a setting with high levels of MenACWY use, expansion of capsule-expressing isolates from the 2013-strain of MenW:cc11 but not MenY:cc23 isolates is indicative of differential susceptibilities to vaccine-induced immunity.
Collapse
Affiliation(s)
- Neil J Oldfield
- School of Life Sciences, University of Nottingham, Nottingham
| | - Luke R Green
- Department of Genetics and Genome Biology, University of Leicester, Leicester
| | | | | | | |
Collapse
|