1
|
Wang S, Yang Y, Yue X, Liu Z, Yuan F, Yang K, Zhu J, Liu W, Tian Y, Wu Q, Gao T, Li C, Song H, Zhou D, Bei W. Preparation and Evaluation of Novel Epitope-Based ETEC K88-K99 Bivalent Vaccine. Vet Sci 2025; 12:381. [PMID: 40284883 PMCID: PMC12030781 DOI: 10.3390/vetsci12040381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is one of the primary pathogens causing diarrhea in piglets, causing significant economic losses in the swine farming industry. Due to the numerous serotypes of ETEC, traditional vaccines fail to provide sufficient cross-protection, and subunit vaccines based on epitope design have emerged as a safer and more effective approach for prevention and control. Unlike vaccine development strategies that involve the tandem arrangement of multiple antigenic epitopes, this study used the K88-FaeG protein as a backbone and incorporated the antigenic epitopes of K99-FanC to achieve a better immunogenicity. By using bioinformatics software to predict B-cell linear epitopes (score of over 0.6), B-cell epitopes from three-dimensional structures (50% amino acid score of ≥0.2), and B-cell epitope IgG antibody subtypes, as well as docking analysis with Sus scrofa aminopeptidase N (APN) receptors, six antigenic epitopes of K99-FanC were selected. Through Western blotting and competitive ELISA, we confirmed that all six recombinant proteins exhibited binding capabilities to K88- and K99-positive serum. The ELISA results showed that the serum levels of specific IgG and IgA antibodies increased after immunization, with FaeG-Ep3 and FaeG-Ep5 inducing the highest antibody titers against FanC-IgG (Log2 = 14.96) and FaeG-IgG (Log2 = 17.96), respectively. Bacterial adhesion assays revealed that only FaeG-Ep3 effectively blocked the adhesion of both K99 and K88 to IPEC-J2 cells. Immunization challenge experiments showed that, in the unimmunized group, mice infected with K88 and K99 experienced weight loss (p < 0.05) with intestinal villus shedding and intestinal wall structural damage. However, in the FaeG-Ep3-immunized group, no significant weight loss occurred after infection, and the villus protection rate (83%) was the same as that in the FaeG and FanC immunized groups. Overall, the FaeG-Ep3 recombinant protein identified in this study shows potential vaccine application value and provides new insights for developing multivalent vaccines against ETEC.
Collapse
Affiliation(s)
- Shuangshuang Wang
- National Key Laboratory of Agricultural Microbial Resources Discovery and Utilization, Huazhong Agricultural University, Wuhan 430070, China; (S.W.); (X.Y.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Y.); (Z.L.); (F.Y.); (K.Y.); (J.Z.); (W.L.); (Y.T.); (Q.W.); (T.G.); (C.L.); (H.S.)
| | - Yuxin Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Y.); (Z.L.); (F.Y.); (K.Y.); (J.Z.); (W.L.); (Y.T.); (Q.W.); (T.G.); (C.L.); (H.S.)
| | - Xinru Yue
- National Key Laboratory of Agricultural Microbial Resources Discovery and Utilization, Huazhong Agricultural University, Wuhan 430070, China; (S.W.); (X.Y.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Y.); (Z.L.); (F.Y.); (K.Y.); (J.Z.); (W.L.); (Y.T.); (Q.W.); (T.G.); (C.L.); (H.S.)
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Y.); (Z.L.); (F.Y.); (K.Y.); (J.Z.); (W.L.); (Y.T.); (Q.W.); (T.G.); (C.L.); (H.S.)
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Y.); (Z.L.); (F.Y.); (K.Y.); (J.Z.); (W.L.); (Y.T.); (Q.W.); (T.G.); (C.L.); (H.S.)
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Y.); (Z.L.); (F.Y.); (K.Y.); (J.Z.); (W.L.); (Y.T.); (Q.W.); (T.G.); (C.L.); (H.S.)
| | - Jiajia Zhu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Y.); (Z.L.); (F.Y.); (K.Y.); (J.Z.); (W.L.); (Y.T.); (Q.W.); (T.G.); (C.L.); (H.S.)
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Y.); (Z.L.); (F.Y.); (K.Y.); (J.Z.); (W.L.); (Y.T.); (Q.W.); (T.G.); (C.L.); (H.S.)
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Y.); (Z.L.); (F.Y.); (K.Y.); (J.Z.); (W.L.); (Y.T.); (Q.W.); (T.G.); (C.L.); (H.S.)
| | - Qiong Wu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Y.); (Z.L.); (F.Y.); (K.Y.); (J.Z.); (W.L.); (Y.T.); (Q.W.); (T.G.); (C.L.); (H.S.)
| | - Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Y.); (Z.L.); (F.Y.); (K.Y.); (J.Z.); (W.L.); (Y.T.); (Q.W.); (T.G.); (C.L.); (H.S.)
| | - Chang Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Y.); (Z.L.); (F.Y.); (K.Y.); (J.Z.); (W.L.); (Y.T.); (Q.W.); (T.G.); (C.L.); (H.S.)
| | - Haofei Song
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Y.); (Z.L.); (F.Y.); (K.Y.); (J.Z.); (W.L.); (Y.T.); (Q.W.); (T.G.); (C.L.); (H.S.)
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Y.); (Z.L.); (F.Y.); (K.Y.); (J.Z.); (W.L.); (Y.T.); (Q.W.); (T.G.); (C.L.); (H.S.)
| | - Weicheng Bei
- National Key Laboratory of Agricultural Microbial Resources Discovery and Utilization, Huazhong Agricultural University, Wuhan 430070, China; (S.W.); (X.Y.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Zhang C, Li S, Upadhyay I, Vakamalla SSR, Lauder KL, Hansen C, Massey KA, Hayes C, Herndon NL, Zhang W. Heterologous prime-boost immunization of two-component vaccine candidate PWDVax protected pigs against F18 enterotoxigenic Escherichia coli post-weaning diarrhea. Infect Immun 2025; 93:e0040624. [PMID: 40071919 PMCID: PMC11977305 DOI: 10.1128/iai.00406-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/14/2025] [Indexed: 04/09/2025] Open
Abstract
Post-weaning diarrhea (PWD) is associated predominantly with enterotoxigenic Escherichia coli (ETEC) and continuously causes significant economic losses to swine producers worldwide. Currently, there are no effective countermeasures against this significant swine disease. Challenges persist in developing vaccines against PWD since ETEC strains produce heterogeneous virulence factors, including F4 (K88) and F18 fimbria and heat-labile toxin (LT), heat-stable toxin type I (STa), heat-stable toxin II (STb), and Shiga toxin type 2e (Stx2e, also causes edema disease). An effective PWD vaccine would induce broadly protective immunity, ideally against two fimbriae and four toxins. In this study, by applying a novel epitope- and structure-based multiepitope-fusion-antigen (MEFA) vaccinology platform, we created a monomeric polyvalent fimbria-toxin protein (fimbria-toxin MEFA) and a holotoxin-structured protein to target PWD virulence determinants (F4 and F18 fimbriae and LT, STa, STb, and Stx2e toxins) and developed a two-component multivalent PWD vaccine candidate, PWDVax. We further applied a heterologous prime-boost immunization strategy and assessed vaccine protection against F18 ETEC-associated PWD. Piglets, after being primed intramuscularly with a fimbria-toxin MEFA monomer protein and boosted orally with live Escherichia coli bacteria producing GM1-binding holotoxin-structured fimbria-toxin MEFA, developed IgG and secretory IgA responses to the target fimbriae and toxins. Challenged with an F18ac ETEC strain, the immunized piglets were protected against watery diarrhea (87.5%) or any diarrhea (66.7%). These data indicated that PWDVax protects against F18 ETEC-associated PWD and can become an effective PWD vaccine. The two-component vaccine and heterologous prime-boost immunization strategy may be instructive for developing neonatal vaccines in general.IMPORTANCEEnterotoxigenic Escherichia coli (ETEC)-associated post-weaning diarrhea (PWD) is a global swine disease, remains a major threat to pig health and well-being, and causes significant economic losses. Currently, there are no effective vaccines available against this disease because of challenges including heterogeneity among ETEC strains (or virulence factors) and difficulties in inducing protective immunity against some key virulence determinants. PWDVax, a two-component PWD vaccine candidate, unprecedentedly targeted two ETEC fimbriae (F4 and F18) and four toxins (LT, STa, STb, and Stx2e), the virulence factors associated with nearly all PWD clinical cases. Under a heterologous prime-boost immunization schedule, it induced broad systemic and mucosal antigen-specific antibodies but also protected weaned piglets against F18 ETEC diarrhea. This makes PWDVax potentially an effective vaccine to protect against PWD, particularly the current F18 ETEC-associated severe PWD outbreaks in the United States. Additionally, the two-component vaccine and heterologous prime-boost immunization strategy may also facilitate the development of effective neonatal vaccines for humans.
Collapse
Affiliation(s)
- Chongyang Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Siqi Li
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ipshita Upadhyay
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | - Kathyrn L. Lauder
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Chance Hansen
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kristen Ann Massey
- Department of Clinical Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Courtney Hayes
- Department of Clinical Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Nicole L. Herndon
- Animal Care Program for Laboratory Animals, Division of Animal Resource, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Weiping Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
3
|
Miralles A, Ramis G, Pallarés FJ, Párraga-Ros E, Seva J. Medium- and Long-Term Immune Responses in the Small Intestine in Piglets from Oral Vaccination against Escherichia coli. Animals (Basel) 2024; 14:2779. [PMID: 39409727 PMCID: PMC11476012 DOI: 10.3390/ani14192779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Post-weaning stress, together with Escherichia coli, are two of the key factors in the occurrence of post-weaning diarrhea. There are different commercial vaccines that induce immunity at the local or systemic level, improving farm health and avoiding economic losses in the pork industry. That is why the objective of this study was to evaluate the effect of an oral enterotoxigenic E. coli F4/F18 vaccine on immunity and intestinal integrity in the middle and long term after inoculation. The gene expression of the biomarkers indicative of cellular infiltration (calprotectin, CAL), tight junction proteins (occludin, OCL; zonulin, ZON; and claudin, CLA) and a panel of proinflammatory (interleukins, IL: IL1α, IL1β, IL6, IL8, IL12p35 and IL12p40; interferons, IFN: IFNα and IFNγ; and tumoral necrosis factor, TNF: TNFα) and anti-inflammatory mediator cytokines (TGFβ and IL10) were analyzed, as well as histomorphology in jejunum and ileum, the cell density of goblet cells, intraepithelial lymphocytes and IgA-producing cells. Differences were observed in ZON, CLA and CAL, with greater gene expression in observed in vaccinated piglets at 42 days post vaccination (dpv) in the ileum. Regarding the expression of cytokines, the vaccinated animals showed significant differences in IL1α, IL6, IL12p35, IL12p40, IFNα, IFNγ, TNFα and TGFβ at 42 dpv in the jejunum or ileum. The villi showed greater height in the vaccinated piglets and the ratio between villus height and crypt depth was significantly greater in the vaccinated group in the jejunum at 84 dpv. The count of IgA-producing cells shows higher values for the unvaccinated group in the ileum, while intraepithelial lymphocytes show a significant increase in both jejunum and ileum in vaccinated piglets. We can conclude that oral vaccination against E. coli produces an evident effect, which manifests itself even in the middle and long term after the challenge, including immune response, decrease in antimicrobials usage, better histological structure in intestine and the improvement of performance.
Collapse
Affiliation(s)
- Aida Miralles
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain; (A.M.); (E.P.-R.); (J.S.)
- CEFU, S.A., 30840 Alhama de Murcia, Spain
| | - Guillermo Ramis
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain
| | - Francisco J. Pallarés
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Universidad de Córdoba, 14071 Córdoba, Spain;
| | - Ester Párraga-Ros
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain; (A.M.); (E.P.-R.); (J.S.)
| | - Juan Seva
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain; (A.M.); (E.P.-R.); (J.S.)
| |
Collapse
|
4
|
Nguyet LTY, Ounjai P, Ngamwongsatit N, Kaeoket K. The immune response of pregnant sow after vaccination with crude fimbriae (F4) extracts vaccine and immunoprotection of nursery pig against pathogenic E. coli (F4 +ETEC). Acta Trop 2024; 254:107173. [PMID: 38503364 DOI: 10.1016/j.actatropica.2024.107173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Neonatal and post-weaning diarrhea is a concern disease caused by enterotoxigenic Escherichia coli fimbriae F4 (F4+ETEC) in pig farms. Diarrhea outbreaks are often severe and costly due to the high prevalence and spread of the disease within the same herd. Vaccine is one of strategic solution in protecting pig against F4+ETEC infection in particular pig farm. In present study, we conducted two trials of vaccination with crude F4 fimbriae extract vaccine in pregnant sow and nursery pigs. METHODS In experiment 1 (20 sows; non-vaccinated control, n=10), we vaccinated pregnant sows (n=10) twice at 4 wk and 2 wk before farrowing and evaluated impact of vaccination on maternal immunity. The sow serum and colostrum were collected before vaccination, 2 and 4 weeks after vaccination, 6 hours after farrowing, respectively, and the piglet's serum from both groups (2 piglet/sow, 10 piglets from each group) were also collected on 3 days old to measure F4 specific IgG, F4 specific IgA using in house ELISA kit. In experiment 2, to optimize doses and dosage of candidate vaccine in piglets, 18 piglets (3 piglets/group) were allocated into five immunized groups and one control group (unimmunized group), we immunized piglets twice at 4 and 6 weeks old with difference doses (i.e., 0, 50, 100, 150, 200 µg), and for a dose 150 µg, we immunized with two dosages at 1 ml and 2 ml. Piglets were challenged with a 3 ml dose of 3 × 109 CFU/ml bacterial culture of enterotoxigenic Escherichia coli (F4+ETEC) in order to evaluate the efficacy of vaccine. After challenging, the clinical sign of the piglets was daily observed and the rectal swab was performed every day for investigation of the fecal shedding of Escherichia coli (F4+ETEC) by using PCR technique. Serum were collected before, 2 and 4 weeks after vaccination and 1 week after challenge to measure F4 specific IgG, F4 specific IgA using in house ELISA kit and cytokines levels (i.e., IL-1 beta, IL-6, IL-8 and TNF alpha) before and 1 week after challenge using commercial ELISA kit. RESULTS The levels of antibody results showed that in experiment 1, the anti-F4 antibody levels both F4 specific IgG and F4 specific IgA in serum and colostrum of vaccinated sow increased significantly after vaccination. The piglets of immunized sows have antibody level both F4 specific IgG and F4 specific IgA in their serum higher than those piglets of unimmunized sows significantly (p < 0.01). In experiment 2, irrespective of different doses and dosage, there is no difference in term of F4 specific IgG and F4 specific IgA levels among immunized groups. However, all of vaccinated piglets showed F4 specific IgG and F4 specific IgA levels higher and the elimination of Escherichia coli (F4+ETEC) in feces post challenge faster (< 3 days) than unvaccinated group (> 5 days). For cytokines levels, a higher level of IL-1 beta, IL-6, IL-8 and TNF alpha at 1 week after challenge in vaccinated groups was found when compared with the levels in non-vaccinated group. CONCLUSIONS Our results suggest that crude F4 fimbriae extract autogenous vaccine is a candidate vaccine for protecting piglets against diarrhea disease caused by enterotoxigenic Escherichia coli (F4+ETEC) and vaccination the pregnant sow twice before farrowing is one of strategies to provide maternal derived antibody to the newborn piglets for against enterotoxigenic Escherichia coli (F4+ETEC) during early life.
Collapse
Affiliation(s)
- Luong Thi Yen Nguyet
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand; Laboratory of Bacteria, Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Kampon Kaeoket
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
5
|
Song Y, Mehl F, Zeichner SL. Vaccine Strategies to Elicit Mucosal Immunity. Vaccines (Basel) 2024; 12:191. [PMID: 38400174 PMCID: PMC10892965 DOI: 10.3390/vaccines12020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccines are essential tools to prevent infection and control transmission of infectious diseases that threaten public health. Most infectious agents enter their hosts across mucosal surfaces, which make up key first lines of host defense against pathogens. Mucosal immune responses play critical roles in host immune defense to provide durable and better recall responses. Substantial attention has been focused on developing effective mucosal vaccines to elicit robust localized and systemic immune responses by administration via mucosal routes. Mucosal vaccines that elicit effective immune responses yield protection superior to parenterally delivered vaccines. Beyond their valuable immunogenicity, mucosal vaccines can be less expensive and easier to administer without a need for injection materials and more highly trained personnel. However, developing effective mucosal vaccines faces many challenges, and much effort has been directed at their development. In this article, we review the history of mucosal vaccine development and present an overview of mucosal compartment biology and the roles that mucosal immunity plays in defending against infection, knowledge that has helped inform mucosal vaccine development. We explore new progress in mucosal vaccine design and optimization and novel approaches created to improve the efficacy and safety of mucosal vaccines.
Collapse
Affiliation(s)
- Yufeng Song
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Frances Mehl
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Steven L. Zeichner
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
6
|
Arnold M, Echtermann T, Nathues H. Infectious Enteric Diseasses in Pigs. PRODUCTION DISEASES IN FARM ANIMALS 2024:223-269. [DOI: 10.1007/978-3-031-51788-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Collins A, Bowring B. Pre-Treatment with Bromelain Prevents Intestinal Dysbiosis in Pigs with Post-Weaning Diarrhea, without Increasing Antimicrobial Resistance in Escherichia coli. Animals (Basel) 2023; 13:3229. [PMID: 37893953 PMCID: PMC10603644 DOI: 10.3390/ani13203229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Pigs are especially vulnerable to intestinal pathogens and dysbiosis in the first two weeks after weaning. Infection with enterotoxigenic strains of Escherichia coli (ETEC) in combination with poor nutrition and hygiene can lead to diarrhea, poor growth and increased mortality. While neomycin and zinc oxide can prevent post-weaning diarrhea (PWD), their broad-spectrum activity also kills commensal microbiota and can lead to the emergence of heavy metal and antimicrobial resistance. Bromelain prevents attachment of F4 ETEC to intestinal enterocytes by cleaving the host receptor. In controlled environmental facilities, weaned pigs treated with either therapeutic levels of neomycin sulfate, zinc oxide, bromelain or non-treated were monitored for diarrhea, weight gain, feed intake, feed efficiency, excretion of F4 ETEC, changes to their intestinal microbiomes and antimicrobial resistance in E. coli. The treatment effects were evaluated at weaning, during two weeks of treatment and for three weeks after treatments ceased. Minimal clinical signs of PWD were observed, except in zinc-treated pigs post treatment. Intestinal dysbiosis was observed in response to diarrhea and in pigs treated with both neomycin and zinc. Antimicrobial resistance increased in commensal E. coli isolated from neomycin- and zinc-treated pigs. In contrast, bromelain controlled PWD and prevented intestinal dysbiosis without inducing antimicrobial resistance.
Collapse
Affiliation(s)
- Alison Collins
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
| | - Bethany Bowring
- Centre for Infectious Diseases and Microbiology, the Westmead Institute for Medical Research, Sydney, NSW 2145, Australia;
| |
Collapse
|
8
|
López-Lorenzo G, Prieto A, Díaz-Cao JM, López-Novo C, García-Dios D, López C, Panadero R, Iglesias A, Díez-Baños P, Fernández G. Evaluation of the efficacy of two postweaning colibacillosis vaccines in a field herd with PRRS circulation during postweaning stage. Vet Microbiol 2023; 285:109870. [PMID: 37708615 DOI: 10.1016/j.vetmic.2023.109870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
Postweaning diarrhea (PWD) and PRRS are two major concerns in swine production, which association has not been consistently explored. In the current scenario of restrictions in the use of antibiotics and ZnO, vaccination is more relevant to control PWD, but PRRS virus circulation may compromise the immune protection conferred by postweaning colibacillosis vaccines. We evaluated the efficacy of two postweaning colibacillosis vaccines (parenteral and oral) in a commercial herd affected by an outbreak of PWD and with PRRS circulation in postweaning. Five groups were studied during the postweaning period: one control (Group 1) and four vaccinated: two with each postweaning colibacillosis vaccine administered alone (Groups 2 and 3) or with sow vaccination against PRRS (Groups 4 and 5). We evaluated the effects on piglet weight, average daily weight gain and in the percentage of piglets with diarrhea, its duration, lethality and mortality. PRRS viremia and anti-PRRS antibodies were evaluated by qPCR and ELISA. Regarding control group, colibacillosis vaccination generally improved most of the measured parameters; but significant improvements were only observed in Groups 4 and 5 (p < 0.05). Moreover, cases of diarrhea occurred at different ages: in Groups 2 and 3 the peak of cases occurred just after ZnO was removed from the feed compared to Group 1, while in Groups 4 and 5 no peak was observed. This suggests that postweaning colibacillosis vaccination may be compromised by the PRRS circulation. In PRRS endemic herds an effective protection against PWD through vaccination may require PRRS vaccination to obtain a better performance.
Collapse
Affiliation(s)
- Gonzalo López-Lorenzo
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Campus Terra, Universidade de Santiago de Compostela, Lugo 27002, Spain
| | - Alberto Prieto
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Campus Terra, Universidade de Santiago de Compostela, Lugo 27002, Spain
| | - José Manuel Díaz-Cao
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Campus Terra, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| | - Cynthia López-Novo
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Campus Terra, Universidade de Santiago de Compostela, Lugo 27002, Spain
| | - David García-Dios
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Campus Terra, Universidade de Santiago de Compostela, Lugo 27002, Spain
| | - Ceferino López
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Campus Terra, Universidade de Santiago de Compostela, Lugo 27002, Spain
| | - Rosario Panadero
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Campus Terra, Universidade de Santiago de Compostela, Lugo 27002, Spain
| | - Antonio Iglesias
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, IBADER., Universidade de Santiago de Compostela, Lugo 27002, Spain
| | - Pablo Díez-Baños
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Campus Terra, Universidade de Santiago de Compostela, Lugo 27002, Spain
| | - Gonzalo Fernández
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Campus Terra, Universidade de Santiago de Compostela, Lugo 27002, Spain
| |
Collapse
|
9
|
Liu G, Li C, Liao S, Guo A, Wu B, Chen H. C500 variants conveying complete mucosal immunity against fatal infections of pigs with Salmonella enterica serovar Choleraesuis C78-1 or F18+ Shiga toxin-producing Escherichia coli. Front Microbiol 2023; 14:1210358. [PMID: 37779705 PMCID: PMC10536267 DOI: 10.3389/fmicb.2023.1210358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Salmonella enterica serovar Choleraesuis (S. Choleraesuis) C500 strain is a live, attenuated vaccine strain that has been used in China for over 40 years to prevent piglet paratyphoid. However, this vaccine is limited by its toxicity and does not offer protection against diseases caused by F18+ Shiga toxin-producing Escherichia coli (STEC), which accounts for substantial economic losses in the swine industry. We recently generated a less toxic derivative of C500 strain with both asd and crp deletion (S. Choleraesuis C520) and assessed its efficacy in mice. In addition, we demonstrate that C520 is also less toxic in pigs and is effective in protecting pigs against S. Choleraesuis when administered orally. To develop a vaccine with a broader range of protection, we prepared a variant of C520 (S. Choleraesuis C522), which expresses rSF, a fusion protein comprised of the fimbriae adhesin domain FedF and the Shiga toxin-producing IIe B domain antigen. For comparison, we also prepared a control vector strain (S. Choleraesuis C521). After oral vaccination of pigs, these strains contributed to persistent colonization of the intestinal mucosa and lymphoid tissues and elicited both cytokine expression and humoral immune responses. Furthermore, oral immunization with C522 elicited both S. Choleraesuis and rSF-specific immunoglobulin G (IgG) and IgA antibodies in the sera and gut mucosa, respectively. To further evaluate the feasibility and efficacy of these strains as mucosal delivery vectors via oral vaccination, we evaluated their protective efficacy against fatal infection with S. Choleraesuis C78-1, as well as the F18+ Shiga toxin-producing Escherichia coli field strain Ee, which elicits acute edema disease. C521 conferred complete protection against fatal infection with C78-1; and C522 conferred complete protection against fatal infection with both C78-1 and Ee. Our results suggest that C520, C521, and C522 are competent to provide complete mucosal immune protection against fatal infection with S. Choleraesuis in swine and that C522 equally qualifies as an oral vaccine vector for protection against F18+ Shiga toxin-producing Escherichia coli.
Collapse
Affiliation(s)
- Guoping Liu
- College of Animal Science, Yangtze University, Jingzhou, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Hubei Institute of Cross Biological Health Industry Technology, Jingzhou, China
| | - Chunqi Li
- College of Animal Science, Yangtze University, Jingzhou, China
- Hubei Institute of Cross Biological Health Industry Technology, Jingzhou, China
| | - Shengrong Liao
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Song D, Lee J, Kwak W, Oh H, Chang S, An J, Cho H, Park S, Jeon K, Cho J. Effects of stimbiotic supplementation on gut health, immune response, and intestinal microbiota in weaned piglets challenged with E. coli. Front Vet Sci 2023; 10:1187002. [PMID: 37538167 PMCID: PMC10394646 DOI: 10.3389/fvets.2023.1187002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/27/2023] [Indexed: 08/05/2023] Open
Abstract
In order to make piglet diets more effective, it is necessary to investigate effective methods for breaking down xylan in cereal. The objective of this study was to determine the effects of dietary stimbiotic (STB) supplementation on growth performance, intestinal morphology, immune response and intestinal microbiota in weaned piglets. A total of 24 (Duroc × Yorkshire × Landrace) weaned pigs (initial body weight of 8.01 ± 0.38 kg and 28 ± 3 d old), were assigned to 4 treatments with 6 replicates per treatment. Pigs were housed in individual pens for 17 days, including 5 days adaption period and 12 days after the first Escherichia coli (E. coli) challenge. The experiment was conducted in a 2 × 2 factorial arrangement of treatments consisting of two levels of challenge (challenge and non-challenge) and two levels of STB (0 and 0.5 g/kg diet). Supplementations of STB 0.5 g/kg improved the gain to feed ratio (G:F) (P < 0.05) in piglets challenged with shiga toxigenic E. coli (STEC). STB supplementation decreased (P < 0.05) white blood cells, neutrophils, lymphocytes, and expression levels of tumor necrosis factor-alpha and interleukin-6. Supplementation of STB improved (P < 0.05) the lymphocytes and neutrophils in piglets challenged with STEC on 12 dpi. Supplementation of STB also improved (P < 0.05) the villus height to-crypt depth ratio of ileum in piglets challenged with STEC. Supplementation of STB increased (P < 0.05) the expression levels of claudin-1 of ileum. In genus level, supplementation of STB increased (P < 0.001) the abundance of Prevotella compared to non-supplementation of STB groups in pre-inoculation period. Also, supplementation of STB decreased (P < 0.05) the abundance of Faecalibacterium and Eubacterium_coprostanoligenes_group compared to non-supplementation of STB groups in post-inoculation period. In phylum level, supplementation of STB increased (P < 0.05) the abundance of Desulfobacterota and Fibrobacterota in pre-inoculation period. E. coli challenge increased the abundance of Fibrobacterota compared to non-challenged group in post-inoculation period. In conclusion, these findings indicated that STB supplementation could alleviate a decrease of the performance, immune response, and inflammatory response in piglets induced by the STEC challenge.
Collapse
Affiliation(s)
- Dongcheol Song
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Jihwan Lee
- Department of Poultry Science, University of Georgia (UGA), Athens, GA, United States
| | - Woogi Kwak
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Hanjin Oh
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Seyeon Chang
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Jaewoo An
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyunah Cho
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Sehyun Park
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Kyeongho Jeon
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Jinho Cho
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
11
|
Cull CA, Singu VK, Bromm JJ, Lechtenberg KF, Amachawadi RG, Cull BJ. Effects of Core Antigen Bacterin with an Immunostimulant on Piglet Health and Performance Outcomes When Challenged with Enteric and Respiratory Pathogens. Antibiotics (Basel) 2023; 12:599. [PMID: 36978466 PMCID: PMC10045215 DOI: 10.3390/antibiotics12030599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
A total of 90 pigs, approximately one day of age, were used in a 42-day study to evaluate whether Endovac-Porci, a core antigen vaccine with an immunostimulant, provides piglets with broad-spectrum protection against the enteric and respiratory effects of Gram-negative bacteria. This study was a single-site, randomized, prospective, blinded, comparative placebo-controlled design. Individual pigs were randomly allocated to 1 of 2 treatments in a randomized design. An individual pig was considered the experimental unit for the farrowing phase (Study day 0 to 21), and the pen was considered the experimental unit for the nursery phase (Study day 21 to 42). Thus, there were 45 replications per treatment during the farrowing phase and 15 replications per treatment during the nursery phase. Treatments included a control product (saline; CP) and an investigational product (Endovac-Porci; IVP). On Study day 23, all pigs were challenged with enterotoxigenic Escherichia coli strain expressing K88 (F4) fimbriae and Pasteurella multocida. Individual pigs were weighed and feed consumption was measured to determine body weight gain, average daily gain, and feed-to-gain ratio. Clinical and fecal scores and overall health were recorded daily. Overall, administering the IVP to pigs led to an increase (p < 0.01) in body weight gain and average daily gain compared to pigs administered the CP. Pigs administered the IVP had reduced (p < 0.01) mortality compared to pigs administered the CP. There was a Study day × treatment interaction on clinical and fecal scores (p < 0.01). There was also a main effect of Study day where clinical and fecal scores increased (p < 0.01) as the Study day increased. Treatment also had an effect on clinical and fecal scores, where pigs administered the IVP had lower (p < 0.01) clinical and fecal scores compared to pigs administered the CP. In conclusion, administering pigs with the Endovac-Porci vaccination significantly improved the performance (i.e., body weight, body weight gain, and average daily gain) and health (i.e., clinical and fecal scores), while reducing the overall mortality in pigs challenged with E. coli K88 orally and Pasteurella multocida intranasally post-weaning. Results from this study suggest that Endovac-Porci could provide broad-spectrum protection against enteric and respiratory effects of Gram-negative bacteria in piglets.
Collapse
Affiliation(s)
- Charley A. Cull
- Midwest Veterinary Services, Inc., Oakland, NE 68045, USA; (V.K.S.); (J.J.B.); (K.F.L.); (B.J.C.)
- Central States Research Centre, Inc., Oakland, NE 68045, USA
| | - Vijay K. Singu
- Midwest Veterinary Services, Inc., Oakland, NE 68045, USA; (V.K.S.); (J.J.B.); (K.F.L.); (B.J.C.)
- Central States Research Centre, Inc., Oakland, NE 68045, USA
| | - Jenna J. Bromm
- Midwest Veterinary Services, Inc., Oakland, NE 68045, USA; (V.K.S.); (J.J.B.); (K.F.L.); (B.J.C.)
- Central States Research Centre, Inc., Oakland, NE 68045, USA
| | - Kelly F. Lechtenberg
- Midwest Veterinary Services, Inc., Oakland, NE 68045, USA; (V.K.S.); (J.J.B.); (K.F.L.); (B.J.C.)
- Central States Research Centre, Inc., Oakland, NE 68045, USA
| | - Raghavendra G. Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA;
| | - Brooke J. Cull
- Midwest Veterinary Services, Inc., Oakland, NE 68045, USA; (V.K.S.); (J.J.B.); (K.F.L.); (B.J.C.)
- Central States Research Centre, Inc., Oakland, NE 68045, USA
| |
Collapse
|
12
|
Correa F, Luise D, Amatucci L, Palumbo F, Virdis S, Negrini C, Clavenzani P, Vecchi M, Mazzoni M, Bosi P, Trevisi P. Effect of an Escherichia coli F4/F18 bivalent oral live vaccine on gut health and performance of healthy weaned pigs. Animal 2022; 16:100654. [DOI: 10.1016/j.animal.2022.100654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/01/2022] Open
|
13
|
Castro J, Barros MM, Araújo D, Campos AM, Oliveira R, Silva S, Almeida C. Swine enteric colibacillosis: Current treatment avenues and future directions. Front Vet Sci 2022; 9:981207. [PMID: 36387374 PMCID: PMC9650617 DOI: 10.3389/fvets.2022.981207] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/10/2022] [Indexed: 09/10/2023] Open
Abstract
Enteric colibacillosis is a common disease in nursing and weanling pigs. It is caused by the colonization of the small intestine by enterotoxigenic strains of Escherichia coli (ETEC) that make use of specific fimbria or pili to adhere to the absorptive epithelial cells of the jejunum and ileum. Once attached, and when both the immunological systems and the gut microbiota are poorly developed, ETEC produce one or more enterotoxins that can have local and, further on, systemic effects. These enterotoxins cause fluid and electrolytes to be secreted into the intestinal lumen of animals, which results in diarrhea, dehydration, and acidosis. From the diversity of control strategies, antibiotics and zinc oxide are the ones that have contributed more significantly to mitigating post-weaning diarrhea (PWD) economic losses. However, concerns about antibiotic resistance determined the restriction on the use of critically important antimicrobials in food-producing animals and the prohibition of their use as growth promoters. As such, it is important now to begin the transition from these preventive/control measures to other, more sustainable, approaches. This review provides a quick synopsis of the currently approved and available therapies for PWD treatment while presenting an overview of novel antimicrobial strategies that are being explored for the control and treatment of this infection, including, prebiotics, probiotics, synbiotics, organic acids, bacteriophages, spray-dried plasma, antibodies, phytogenic substances, antisense oligonucleotides, and aptamers.
Collapse
Affiliation(s)
- Joana Castro
- National Institute for Agrarian and Veterinarian Research (INIAV), Vila do Conde, Portugal
| | - Maria Margarida Barros
- National Institute for Agrarian and Veterinarian Research (INIAV), Vila do Conde, Portugal
| | - Daniela Araújo
- National Institute for Agrarian and Veterinarian Research (INIAV), Vila do Conde, Portugal
| | - Ana Maria Campos
- National Institute for Agrarian and Veterinarian Research (INIAV), Vila do Conde, Portugal
| | - Ricardo Oliveira
- National Institute for Agrarian and Veterinarian Research (INIAV), Vila do Conde, Portugal
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Sónia Silva
- National Institute for Agrarian and Veterinarian Research (INIAV), Vila do Conde, Portugal
- Centre of Biological Engineering, Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - Carina Almeida
- National Institute for Agrarian and Veterinarian Research (INIAV), Vila do Conde, Portugal
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- Centre of Biological Engineering, Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
14
|
Oral and Parenteral Vaccination against Escherichia coli in Piglets Results in Different Responses. Animals (Basel) 2022; 12:ani12202758. [PMID: 36290144 PMCID: PMC9597725 DOI: 10.3390/ani12202758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
The available E. coli vaccines involve two main types (inactivated and live non-pathogenic) and two routes of administration (oral and parenteral) but the mechanism by which both vaccines and routes of administration work is not yet fully elucidated. The influence of a parenteral vaccine (PV) and an oral one (OV) was studied by analyzing the gene expression of biomarkers indicating cellular infiltration (calprotectin, CAL), tight junction proteins (occludin OCL, and zonulin ZON) that maintain intestinal paracellular integration and two proinflammatory (IFN-γ) and anti-inflammatory (TGF-β) mediator cytokines, as well as histomorphology and IgA production cell density. Differences were observed in CAL, more infiltrated in orally vaccinated animals; OCL also increased in orally vaccinated animals, and higher density of IgA-producing cells in ileum for orally vaccinated groups. Cytokine expression is also different; and there is a lower mRNA for IFN-γ in the parenteral than in the oral vaccinated animals. Finally, the villus height-to-crypt depth ratio was higher in the orally vaccinated groups. The data collectively show clear and different effects derived from the use of each type of vaccine, route of administration and regimen. The results suggest a more rapid and direct effect of oral vaccination and a state of suppression in the absence of a second oral stimulus by the pathogen.
Collapse
|
15
|
Canibe N, Højberg O, Kongsted H, Vodolazska D, Lauridsen C, Nielsen TS, Schönherz AA. Review on Preventive Measures to Reduce Post-Weaning Diarrhoea in Piglets. Animals (Basel) 2022; 12:2585. [PMID: 36230326 PMCID: PMC9558551 DOI: 10.3390/ani12192585] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 02/08/2023] Open
Abstract
In many countries, medical levels of zinc (typically as zinc oxide) are added to piglet diets in the first two weeks post-weaning to prevent the development of post-weaning diarrhoea (PWD). However, high levels of zinc constitute an environmental polluting agent, and may contribute to the development and/or maintenance of antimicrobial resistance (AMR) among bacteria. Consequently, the EU banned administering medical levels of zinc in pig diets as of June 2022. However, this may result in an increased use of antibiotic therapeutics to combat PWD and thereby an increased risk of further AMR development. The search for alternative measures against PWD with a minimum use of antibiotics and in the absence of medical levels of zinc has therefore been intensified over recent years, and feed-related measures, including feed ingredients, feed additives, and feeding strategies, are being intensively investigated. Furthermore, management strategies have been developed and are undoubtedly relevant; however, these will not be addressed in this review. Here, feed measures (and vaccines) are addressed, these being probiotics, prebiotics, synbiotics, postbiotics, proteobiotics, plants and plant extracts (in particular essential oils and tannins), macroalgae (particularly macroalgae-derived polysaccharides), dietary fibre, antimicrobial peptides, specific amino acids, dietary fatty acids, milk replacers, milk components, creep feed, vaccines, bacteriophages, and single-domain antibodies (nanobodies). The list covers measures with a rather long history and others that require significant development before their eventual use can be extended. To assess the potential of feed-related measures in combating PWD, the literature reviewed here has focused on studies reporting parameters of PWD (i.e., faeces score and/or faeces dry matter content during the first two weeks post-weaning). Although the impact on PWD (or related parameters) of the investigated measures may often be inconsistent, many studies do report positive effects. However, several studies have shown that control pigs do not suffer from diarrhoea, making it difficult to evaluate the biological and practical relevance of these improvements. From the reviewed literature, it is not possible to rank the efficacy of the various measures, and the efficacy most probably depends on a range of factors related to animal genetics and health status, additive doses used, composition of the feed, etc. We conclude that a combination of various measures is probably most recommendable in most situations. However, in this respect, it should be considered that combining strategies may lead to additive (e.g., synbiotics), synergistic (e.g., plant materials), or antagonistic (e.g., algae compounds) effects, requiring detailed knowledge on the modes of action in order to design effective strategies.
Collapse
Affiliation(s)
- Nuria Canibe
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | | | | | | | | | | | | |
Collapse
|
16
|
Vangroenweghe FACJ, Boone M. Vaccination with an Escherichia coli F4/F18 Vaccine Improves Piglet Performance Combined with a Reduction in Antimicrobial Use and Secondary Infections Due to Streptococcus suis. Animals (Basel) 2022; 12:ani12172231. [PMID: 36077950 PMCID: PMC9454454 DOI: 10.3390/ani12172231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Post-weaning diarrhea (PWD) due to Escherichia coli (E. coli) remains a major cause of economic losses for the pig industry. Therapy to combat PWD typically consists of antibiotic treatment or supplementation of zinc oxide to the feed. The emergence of antimicrobial resistance and new EU regulations prompt the need for alternative control strategies, such as immunization. The aim of the field study was to evaluate the effect of an oral live non-pathogenic E. coli vaccine on piglet performance, health, and antimicrobial use. We compared 10 batches receiving a standard antimicrobial control treatment to 10 batches vaccinated with the oral E. coli vaccine. The vaccine-treated groups demonstrated a significant improvement in performance, mortality weight, and antimicrobial use. In addition, secondary infections due to Streptococcus suis in the second part of nursery were reduced, as indicated by the reduction in amoxicillin use. In conclusion, the present study demonstrates the efficacy of an oral live non-pathogenic E. coli vaccine for the active immunization of piglets against PWD under field conditions. Therefore, vaccination against PWD may be considered a valuable alternative for strengthening piglet performance while meeting the new EU requirements concerning the prudent use of antimicrobials in intensive pig production. Abstract Post-weaning diarrhea (PWD) due to Escherichia coli (E. coli) remains a major cause of economic losses for the pig industry. Therapy to combat PWD typically consists of antibiotic treatment or supplementation of zinc oxide to the feed. The emergence of antimicrobial resistance to E. coli and new EU regulations prompt the need for alternative control strategies, such as immunization. The aim of the field study was to evaluate the effect of an oral live non-pathogenic E. coli vaccine on piglet performance, health, and antimicrobial use. We evaluated vaccination with an oral live non-pathogenic E. coli F4/F18 under field conditions in 10 consecutive batches against a standard antimicrobial treatment in 10 historical control batches. The vaccine-treated groups demonstrated a significant improvement in feed conversion rate, mortality weight, and antimicrobial use. From a general health perspective, secondary infections due to Streptococcus suis (S. suis) in the second part of nursery were markedly reduced, as indicated by the reduction in amoxicillin use. In conclusion, the present study demonstrates the efficacy of an oral live non-pathogenic E. coli vaccine for active immunization of piglets against PWD under field conditions. The vaccine-treated groups showed an improvement in several economically important performance parameters while reducing the overall antimicrobial use and infection pressure due to S. suis. Therefore, vaccination against PWD may be considered a valuable alternative for consolidating piglet performance while meeting the new EU requirements concerning the prudent use of antimicrobials in intensive pig production.
Collapse
Affiliation(s)
- Frédéric A. C. J. Vangroenweghe
- Elanco Animal Health Benelux, BU Swine & Ruminants, 2018 Antwerpen, Belgium
- Unit of Porcine Health Management, Faculty of Veterinary Medicine, Department of Internal Medicine–Reproduction–Population Medicine, Ghent University, 9820 Merelbeke, Belgium
- Correspondence: ; Tel.: +32-477-558-562
| | | |
Collapse
|
17
|
Ntakiyisumba E, Lee S, Won G. Evidence-Based Approaches for Determining Effective Target Antigens to Develop Vaccines against Post-Weaning Diarrhea Caused by Enterotoxigenic Escherichia coli in Pigs: A Systematic Review and Network Meta-Analysis. Animals (Basel) 2022; 12:2136. [PMID: 36009725 PMCID: PMC9405027 DOI: 10.3390/ani12162136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/13/2022] [Accepted: 08/13/2022] [Indexed: 11/24/2022] Open
Abstract
In this study, we conducted a meta-analysis (MA) and systematic review to evaluate the effectiveness of vaccines against post-weaning diarrhea (PWD), caused by enterotoxigenic Escherichia coli (ETEC), in piglets. A Bayesian network meta-analysis (NMA) was also performed to compare the effects of combining different target antigens on vaccine efficacy. Relevant electronic databases were searched using pre-specified search terms, and 17 studies were selected based on three outcomes: diarrhea, mortality, and average daily weight gain (ADWG). In pairwise MA, the vaccinated group showed a significant decrease in diarrhea (OR = 0.124 [0.056, 0.275]) and mortality (OR = 0.273 [0.165, 0.451]), and a significant increase in ADWG (SMD = 0.699 [0.107, 1.290]) compared with those in controls. Furthermore, NMA results showed that all vaccine groups, except for group D (LT enterotoxin), were effective against PWD. Rank probabilities indicated that the F4 + F18 + LT combination was the best regimen for preventing diarrhea (SUCRA score = 0.92) and mortality (SUCRA score = 0.89). NMA also demonstrated that, among the vaccine groups, those inducing simultaneous anti-adhesion and antitoxin immunity had the highest efficacy. Our results provide evidence-based information on the efficacy of vaccines in reducing PWD incidence in pigs and may serve as guidelines for antigen selection for commercial vaccine development in the future.
Collapse
Affiliation(s)
| | | | - Gayeon Won
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, Gobong-ro 79, Iksan 54596, Korea
| |
Collapse
|
18
|
Oliveira GS, Freire HPS, Romano CC, Rezende RP, Evangelista AG, Meneghetti C, Costa LB. Bioprotective potential of lactic acid bacteria and their metabolites against enterotoxigenic Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35849513 DOI: 10.1099/mic.0.001216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Escherichia coli is one of the main pathogens that impacts swine production. Given the need for methods for its control, the in vitro effect of lactic acid bacteria (LAB) and their metabolites against E. coli F4 was evaluated through cell culture and microbiological analysis. The strains Limosilactobacillus fermentum 5.2, Lactiplantibacillus plantarum 6.2, and L. plantarum 7.1 were selected. To evaluate the action of their metabolites, lyophilized cell-free supernatants (CFS) were used. The effect of CFS was evaluated in HT-29 intestinal lineage cells; in inhibiting the growth of the pathogen in agar; and in inhibiting the formation of biofilms. The bioprotective activity of LAB was evaluated via their potential for autoaggregation and coaggregation with E. coli. The CFS did not show cytotoxicity at lower concentrations, except for L. fermentum 5.2 CFS, which is responsible for cell proliferation at doses lower than 10 mg ml-1. The CFS were also not able to inhibit the growth of E. coli F4 in agar; however, the CFS of L. plantarum 7.1 resulted in a significant decrease in biofilm formation at a dose of 40 mg ml-1. Regarding LAB, their direct use showed great potential for autoaggregation and coaggregation in vitro, thus suggesting possible effectiveness in animal organisms, preventing E. coli fixation and proliferation. New in vitro tests are needed to evaluate lower doses of CFS to control biofilms and confirm the bioprotective potential of LAB, and in vivo tests to assess the effect of LAB and their metabolites interacting with animal physiology.
Collapse
Affiliation(s)
- Gabriel Souza Oliveira
- State University of Santa Cruz, Rodovia Jorge Amado, Km 16, Salobrinho, Ilhéus, Bahia, 45662-900, Brazil
| | - Herbert Pina Silva Freire
- State University of Santa Cruz, Rodovia Jorge Amado, Km 16, Salobrinho, Ilhéus, Bahia, 45662-900, Brazil
| | - Carla Cristina Romano
- State University of Santa Cruz, Rodovia Jorge Amado, Km 16, Salobrinho, Ilhéus, Bahia, 45662-900, Brazil
| | - Rachel Passos Rezende
- State University of Santa Cruz, Rodovia Jorge Amado, Km 16, Salobrinho, Ilhéus, Bahia, 45662-900, Brazil
| | - Alberto Gonçalves Evangelista
- Pontifical Catholic University of Paraná, School of Life Sciences, Rua Imaculada Conceição, 1155, Prado Velho, Curitiba, Paraná, 80215-901, Brazil
| | - Camila Meneghetti
- State University of Santa Cruz, Rodovia Jorge Amado, Km 16, Salobrinho, Ilhéus, Bahia, 45662-900, Brazil
| | - Leandro Batista Costa
- State University of Santa Cruz, Rodovia Jorge Amado, Km 16, Salobrinho, Ilhéus, Bahia, 45662-900, Brazil.,Pontifical Catholic University of Paraná, School of Life Sciences, Rua Imaculada Conceição, 1155, Prado Velho, Curitiba, Paraná, 80215-901, Brazil
| |
Collapse
|
19
|
Cremonesi P, Biscarini F, Castiglioni B, Sgoifo CA, Compiani R, Moroni P. Gut microbiome modifications over time when removing in-feed antibiotics from the prophylaxis of post-weaning diarrhea in piglets. PLoS One 2022; 17:e0262199. [PMID: 35255081 PMCID: PMC8901073 DOI: 10.1371/journal.pone.0262199] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
Post-weaning diarrhea (PWD) in pigs has mainly an infectious basis and control strategies are centred on antibiotics added to the diet. Given concerns on the spread of multi-resistant bacteria, it is necessary to develop alternative prophylactic approaches to control PWD in piglets. The most promising alternative strategies are based on substances that act indirectly on the bacteria by stimulating the immune system or by improving gut health. The aim of this study was to evaluate the effect on the gut microbiota of feed supplemented with a mixture of essential oils (garlic and oregano) in weaning piglets, compared to traditional PWD management (in-feed antibiotics) and to a control group without any diet supplementation. The study involved 197 piglets from 18 litters in a single farm. The piglets were followed from birth to day 58 of age and were weaned at day 26. During the experimental period, the animals were monitored for weight and growth, average daily gain, morbidity and mortality. For the metataxonomics analysis, rectal samples were collected from 17 piglets from the three experimental groups at 4 different time-points (days 1, 12, 26 and 58). Results revealed that the gut microbiota in pre- and post-weaning piglets was dominated by the phyla Firmicutes (51%), Bacteroidetes (25%) and Proteobacteria (16%), which together make up for over 90% of the entire piglet core gut microbiota. The core microbiota comprised 10 taxa before weaning and 43 taxa after weaning, with 7 taxa overlapping between timepoints: two of them (Prevotella 9, p-value = 0.00095; Solobacterium p-value = 0.00821) were significantly more abundant after weaning. All alpha diversity indexes were significantly different between pre- and post-weaning, while only Shannon and Simpson diversity and equitability were significantly different between treatments. Based on the matrix of Bray-Curtis dissimilarities, samples showed clear clustering per timepoint (before and after weaning, p-value < 0.001) and between treatments by timepoint (p-value = 0.0086). The oil-diet group showed a consistently higher F:B ratio at all timepoints. These results show that the pig gut microbiota changes significantly with weaning, and suggest that the use of essential oils as feed supplementation to control PWD does not seem to alter sgnificantly the microbiota nor the growth parameters of piglets, however modifications of specific taxa may occur.
Collapse
Affiliation(s)
- Paola Cremonesi
- National Research Council, Institute of Biology and Biotechnology in Agriculture (CNR-IBBA), Milan, Italy
| | - Filippo Biscarini
- National Research Council, Institute of Biology and Biotechnology in Agriculture (CNR-IBBA), Milan, Italy
| | - Bianca Castiglioni
- National Research Council, Institute of Biology and Biotechnology in Agriculture (CNR-IBBA), Milan, Italy
| | - Carlo Angelo Sgoifo
- Department of Veterinary Science for Health, Animal Production and Food Safety (Unimi-Vespa), University of Milan, Milan-Lodi, Italy
| | - Riccardo Compiani
- Department of Veterinary Science for Health, Animal Production and Food Safety (Unimi-Vespa), University of Milan, Milan-Lodi, Italy
| | - Paolo Moroni
- Department of Veterinary Medicine (Unimi-Medvet), University of Milan, Milan-Lodi, Italy
| |
Collapse
|
20
|
Bangar SP, Suri S, Trif M, Ozogul F. Organic acids production from lactic acid bacteria: A preservation approach. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101615] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Investigation of Early Supplementation of Nucleotides on the Intestinal Maturation of Weaned Piglets. Animals (Basel) 2021; 11:ani11061489. [PMID: 34064055 PMCID: PMC8223990 DOI: 10.3390/ani11061489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Nucleotides represent a group of bioactive compounds essential for the development of the gastrointestinal tract and immune function. This study aimed to evaluate the short-term effect of oral administration of nucleotides before and after weaning on growth performance, health, development of the intestinal immunity and microbiome of piglet. A nucleotide-based product (NU) was orally given four times before weaning and once after to one group of piglets, while a second group was used as a control (CO). The NU pigs did not grow more than the control until 12 days post-weaning but had increased hemoglobin and hematocrit values. At weaning, feces of NU piglets had a microbial profile more typical of growing pigs, while those of CO were more representative of suckling pigs. The upregulation of genes in the blood of control pigs at weaning was indicative of more activation towards an inflammatory response, while genes of erythropoiesis were more active in NU pigs post-weaning. NU supplementation stimulated genes for proliferative activity in the intestinal immune system, a sign of possible anticipated maturation. NU supplementation did not influence the growth performance of piglets but may have expressed a positive effect on pig microbiota anticipating its maturation at weaning, with possible immunostimulant activity on the intestinal immune system. Abstract Nucleotides are essential for the development of the gastrointestinal tract and immune function, but their intake with milk by piglets could be insufficient. The effect of nucleotides on growth and health was tested on 98 piglets divided into two groups: NU, orally administrated with 4 mL of a nucleotide-based product (SwineMOD®) at 10, 15, 18, 21, 27 days, or not (CO). Blood and feces were sampled at weaning (26 d, T1), and at 38 d (T2). Per each group and time-point, eight piglets were slaughtered and jejunal Peyer’s patches (JPPs) were collected. NU increased hemoglobin content and hematocrit, but not growth. At weaning, the NU fecal microbiota was characterized by the abundance of Campylobacteraceae, more typical of the growing phase, compared to CO, with a greater abundance of Streptococcaceae. For the blood transcriptome, an initial greater inflammatory activation was seen in CO, while at T2, NU enriched gene sets related to erythropoiesis. The activation of gene groups ranging from epigenetic response to transcriptional regulation evidenced an intense proliferative activity in NU JPPs. NU supplementation did not influence the growth performance of piglets but could have expressed a positive effect on pig microbiota anticipating its maturation at weaning. This immunostimulant activity in the JPPs could moderate the inflammation in the immediate pre-weaning.
Collapse
|
22
|
Laird TJ, Abraham S, Jordan D, Pluske JR, Hampson DJ, Trott DJ, O'Dea M. Porcine enterotoxigenic Escherichia coli: Antimicrobial resistance and development of microbial-based alternative control strategies. Vet Microbiol 2021; 258:109117. [PMID: 34049073 DOI: 10.1016/j.vetmic.2021.109117] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022]
Abstract
Strains of enterotoxigenic Escherichia coli (ETEC) causing post-weaning diarrhoea (PWD) in piglets have a widespread and detrimental impact on animal health and the economics of pork production. Traditional approaches to control and prevention have placed a strong emphasis on antimicrobial use (AMU) to the extent that current prevalent porcine ETEC strains have developed moderate to severe resistance. This complicates treatment of ETEC infection by limiting therapeutic options, increasing diagnostic costs and increasing mortality rates. Management factors, the use of supra-physiological levels of zinc oxide and selected feed additives have all been documented to lower the incidence of ETEC infection in pigs; however, each intervention has its own limitations and cannot solely be relied upon as an alternative to AMU. Consequently, treatment options for porcine ETEC are moving towards the use of newer antimicrobials of higher public health significance. This review focuses on microorganisms and microbial-derived products that could provide a naturally evolved solution to ETEC infection and disease. This category holds a plethora of yet to be explored possibilities, however studies based around bacteriophage therapy, probiotics and the use of probiotic fermentation products as postbiotics have demonstrated promise. Ultimately, pig producers and veterinarians need these solutions to reduce the reliance on critically important antimicrobials (CIAs), to improve economic and animal welfare outcomes, and to lessen the One Health threat potentiated by the dissemination of AMR through the food chain.
Collapse
Affiliation(s)
- Tanya J Laird
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia.
| | - Sam Abraham
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia.
| | - David Jordan
- NSW Department of Primary Industries, Wollongbar, New South Wales, Australia
| | - John R Pluske
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - David J Hampson
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Darren J Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Mark O'Dea
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
23
|
Käser T. Swine as biomedical animal model for T-cell research-Success and potential for transmittable and non-transmittable human diseases. Mol Immunol 2021; 135:95-115. [PMID: 33873098 DOI: 10.1016/j.molimm.2021.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Swine is biologically one of the most relevant large animal models for biomedical research. With its use as food animal that can be exploited as a free cell and tissue source for research and its high susceptibility to human diseases, swine additionally represent an excellent option for both the 3R principle and One Health research. One of the previously most limiting factors of the pig model was its arguably limited immunological toolbox. Yet, in the last decade, this toolbox has vastly improved including the ability to study porcine T-cells. This review summarizes the swine model for biomedical research with focus on T cells. It first contrasts the swine model to the more commonly used mouse and non-human primate model before describing the current capabilities to characterize and extend our knowledge on porcine T cells. Thereafter, it not only reflects on previous biomedical T-cell research but also extends into areas in which more in-depth T-cell analyses could strongly benefit biomedical research. While the former should inform on the successes of biomedical T-cell research in swine, the latter shall inspire swine T-cell researchers to find collaborations with researchers working in other areas - such as nutrition, allergy, cancer, transplantation, infectious diseases, or vaccine development.
Collapse
Affiliation(s)
- Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, 27607 Raleigh, NC, USA.
| |
Collapse
|
24
|
Jabif MF, Gumina E, Hall JW, Hernandez-Velasco X, Layton S. Evaluation of a Novel Mucosal Administered Subunit Vaccine on Colostrum IgA and Serum IgG in Sows and Control of Enterotoxigenic Escherichia coli in Neonatal and Weanling Piglets: Proof of Concept. Front Vet Sci 2021; 8:640228. [PMID: 33644156 PMCID: PMC7905019 DOI: 10.3389/fvets.2021.640228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/20/2021] [Indexed: 11/21/2022] Open
Abstract
The purpose of the present study was to evaluate the ability of a novel experimental subunit vaccine (ESV), induce colostrum IgA and serum IgG in sows, and to control enterotoxigenic Escherichia coli (ETEC) disease in neonatal and weanling piglets. The vaccine was tested in three experiments. Experiment 1 consisted of two independent trials. In each trial, 20 pregnant sows/groups were vaccinated intramuscularly (IM) with a commercial E. coli vaccine or intranasally with ESV at weeks 11 and 13 of pregnancy. Blood and serum samples were obtained within 12 h post-partum. In Experiment 1, intranasal vaccination with ESV significantly increased the sample-to-positive (S/P) ratio of secretory IgA in the colostrum of sows (P < 0.01, trial 1; P < 0.05, trial 2) compared to the IM vaccine. In Experiment 2, twenty-five 3-day old piglets were randomly allocated into two groups, control (n = 13) or ESV (n = 12) and were oral gavaged with the respective treatments on days 3 and 14 of life. On days 17–19, all piglets were challenged using a mixed ETEC culture via oral gavage. Within 72 h, all control group animals developed disease consistent with colibacillosis. Conversely, the ESV treated group remained disease free over the 7-day observation period and had significant increases in body weight gain compared to the control group piglets. In Experiment 3, thirty 28-day old piglets were randomly allocated, control (n = 15) or ESV (n = 15), and on days 33 and 43 of life, piglets were either given by oral gavage 2.0 mL saline (control group) or 2.0 mL ESV. At days 46 and 47 of life, all pigs were challenged with a mixed culture of ETEC and observed for clinical signs of disease. Results of Experiment 3 were similar to those observed in Experiment 2. This study indicates the ESV can induce better levels of colostrum secretory IgA in pregnant sows than IM vaccination, which may be protective to neonatal piglets. Further, the vaccine can protect piglets as early as 3 days of age from an ETEC infection. Importantly, the data suggest a single vaccine could be used across the farrowing, suckling, and weaning program to protect against pathogenic E. coli.
Collapse
Affiliation(s)
| | | | | | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Sherry Layton
- Vetanco S.A., Buenos Aires, Argentina.,Vetanco USA, Inc., Saint Paul, MN, United States
| |
Collapse
|
25
|
Immunogenicity and protective efficacy of enterotoxigenic Escherichia coli (ETEC) total RNA against ETEC challenge in a mouse model. Sci Rep 2020; 10:20530. [PMID: 33239756 PMCID: PMC7689534 DOI: 10.1038/s41598-020-77551-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 11/09/2020] [Indexed: 11/15/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC), an essential cause of post-weaning diarrhea (PWD) in piglets, leads to significant economic losses to the pig industry. The present study aims to identify the role of ETEC total RNA in eliciting immune responses to protect animals against ETEC infection. The results showed that the total RNA isolated from pig-derived ETEC K88ac strain effectively stimulated the IL-1β secretion of porcine intestinal epithelial cells (IPEC-J2). The mouse model immunized with ETEC total RNA via intramuscular injection (IM) or oral route (OR) was used to evaluate the protective efficiency of the ETEC total RNA. The results suggested that 70 μg ETEC total RNA administered by either route significantly promoted the production of the serum IL-1β and K88ac specific immunoglobulins (IgG, IgM, and IgA). Besides, the ETEC RNA administration augmented strong mucosal immunity by elevating K88ac specific IgA level in the intestinal fluid. Intramuscularly administered RNA induced a Th1/Th2 shift toward a Th2 response, while the orally administered RNA did not. The ETEC total RNA efficiently protected the animals against the ETEC challenge either by itself or as an adjuvant. The histology characterization of the small intestines also suggested the ETEC RNA administration protected the small intestinal structure against the ETEC infection. Particularly of note was that the immunity level and protective efficacy caused by ETEC RNA were dose-dependent. These findings will help understand the role of bacterial RNA in eliciting immune responses, and benefit the development of RNA-based vaccines or adjuvants.
Collapse
|
26
|
Coimmunization with Two Enterotoxigenic Escherichia coli (ETEC) Fimbrial Multiepitope Fusion Antigens Induces the Production of Neutralizing Antibodies against Five ETEC Fimbriae (F4, F5, F6, F18, and F41). Appl Environ Microbiol 2020; 86:AEM.00217-20. [PMID: 32169934 DOI: 10.1128/aem.00217-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/04/2020] [Indexed: 02/03/2023] Open
Abstract
Fimbriae mediate the initial adherence of enterotoxigenic Escherichia coli (ETEC) to the piglet small intestine and play an important role in development of ETEC-driven postweaning diarrhea (PWD). PWD inflicts huge economic losses on the swine industry each year, making development of alternative treatment and prevention measures for PWD essential. Vaccine candidates that induce antifimbria antibodies that block the initial attachment and colonization of ETEC pathogens with fimbriae are one approach that could help prevent PWD. In this study, we constructed two multiepitope fusion antigens (MEFAs) that carried, expressed, and displayed representative epitopes of F4, F5, F6, F18, and F41 ETEC fimbriae. These MEFAs used either the F4 major subunit FaeG or the F18 adhesive subunit FedF as a backbone. To assess the potential of these MEFAs as antifimbria vaccine candidates that could help prevent PWD, we generated computational models of the MEFAs, constructed them, and then tested their immunogenicity by using them to immunize mice. Computational modeling showed that all relevant epitopes were exposed on the MEFA surface. We found that coadministration of our MEFAs in mice successfully induced five fimbria-specific antibodies in accordance with the epitopes included in the MEFA constructs. Furthermore, the induced antibodies can significantly inhibit the ability of ETEC strains that express F4, F5, F6, F18, and F41 fimbriae to adhere to piglet small intestinal IPEC-1 and IPEC-J2 cells. Our findings indicate that the antifimbria antibodies induced by our FaeG-Fim41a-FanC-FasA and FedF-FasA-Fim41a-FanC fimbria MEFAs blocked adherence of five ETEC fimbriae, suggesting these multivalent fimbria MEFAs may be useful for developing broadly protective antifimbria vaccines against PWD caused by ETEC infections.IMPORTANCE Enterotoxigenic Escherichia coli (ETEC)-associated postweaning diarrhea (PWD) is still a leading disease in recently weaned piglets. Vaccination is considered to be the most ideal and efficacious strategy for preventing PWD. Recently, a commercialized live monovalent F4 oral vaccine and a bivalent F4/F18 oral vaccine have been demonstrated to effectively protect piglets in the F4-positive (F4+) and F18+ ETEC challenge models. However, they will not provide cross-protection against F5+, F6+, or F41+ ETEC-associated PWD cases, as they lack all five fimbria antigens. Thus, a multivalent vaccine containing all five ETEC fimbriae would be more effective in preventing ETEC-driven PWD. In this study, we designed two fimbria-targeted MEFAs using the MEFA technology, and further study demonstrated that these coadministered MEFAs in mice can induce protective antibodies against the five fimbriae expressed by ETEC. These MEFAs could be used as an efficient PWD vaccine candidate; furthermore, MEFA-based structural technology provides an alternative and promising strategy for the development of vaccines against pathogens with heterogeneous virulence factors.
Collapse
|
27
|
Luise D, Spinelli E, Correa F, Salvarani C, Bosi P, Trevisi P. Effects of E. coli bivalent vaccine and of host genetic susceptibility to E. coli on the growth performance and faecal microbial profile of weaned pigs. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Duan Q, Pang S, Wu W, Jiang B, Zhang W, Liu S, Wang X, Pan Z, Zhu G. A multivalent vaccine candidate targeting enterotoxigenic Escherichia coli fimbriae for broadly protecting against porcine post-weaning diarrhea. Vet Res 2020; 51:93. [PMID: 32703260 PMCID: PMC7376317 DOI: 10.1186/s13567-020-00818-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/11/2020] [Indexed: 11/10/2022] Open
Abstract
Fimbriae-mediated initial adherence is the initial and critical step required for enterotoxigenic Escherichia coli (ETEC) infection. Therefore, vaccine candidates have been developed that target these fimbriae and induce specific anti-fimbriae antibodies to block initial ETEC attachment. While this vaccine effectively protects against ETEC-associated post-weaning diarrhea (PWD), developing a broadly effective vaccine against initial ETEC attachment remains a challenging problem, owing to the immunological heterogeneity among these antigens. Here, we applied multi-epitope fusion antigen (MEFA) technology to construct a FaeG-FedF-FanC-FasA-Fim41a MEFA using the adhesive subunits of predominant fimbriae K88 and F18 as the backbone, which also integrated epitopes from adhesive subunits of the rare fimbriae K99, 987P, and F41; we then generated a MEFA computational model and tested the immunogenicity of this MEFA protein in immunized mice. We next evaluated the potential of the fimbriae-targeted MEFA as a vaccine candidate to effectively prevent PWD using in vitro assessment of its anti-fimbriae, antibody-directed inhibition of bacterial adherence. Computational modeling showed that all relevant epitopes were exposed on the MEFA surface and mice subcutaneously immunized with the MEFA protein developed IgG antibodies to all five fimbriae. Moreover, anti-fimbriae antibodies induced by the MEFA protein significantly inhibited the adhesion of K88+, F18+, K99+, 987P+, and F41+ ETEC strains to piglet small intestinal IPEC-1 and IPEC-J2 cell lines. Taken together, these results indicate that FaeG-FedF-FanC-FasA-Fim41a MEFA protein induced specific anti-fimbriae neutralizing antibodies against the five targeted fimbriae. Critically, these results show the potential of fimbriae-targeted MEFA and indicate their promise as a broad, effective vaccine against PWD.
Collapse
Affiliation(s)
- Qiangde Duan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, China
| | - Shengmei Pang
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, China
| | - Wenwen Wu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, China
| | - Boyu Jiang
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, China
| | - Weiping Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Siguo Liu
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaojun Wang
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhiming Pan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, China.
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, China.
| |
Collapse
|
29
|
Luise D, Lauridsen C, Bosi P, Trevisi P. Methodology and application of Escherichia coli F4 and F18 encoding infection models in post-weaning pigs. J Anim Sci Biotechnol 2019; 10:53. [PMID: 31210932 PMCID: PMC6567477 DOI: 10.1186/s40104-019-0352-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/04/2019] [Indexed: 02/06/2023] Open
Abstract
The enterotoxigenic Escherichia coli (ETEC) expressing F4 and F18 fimbriae are the two main pathogens associated with post-weaning diarrhea (PWD) in piglets. The growing global concern regarding antimicrobial resistance (AMR) has encouraged research into the development of nutritional and feeding strategies as well as vaccination protocols in order to counteract the PWD due to ETEC. A valid approach to researching effective strategies is to implement piglet in vivo challenge models with ETEC infection. Thus, the proper application and standardization of ETEC F4 and F18 challenge models represent an urgent priority. The current review provides an overview regarding the current piglet ETEC F4 and F18 challenge models; it highlights the key points for setting the challenge protocols and the most important indicators which should be included in research studies to verify the effectiveness of the ETEC challenge. Based on the current review, it is recommended that the setting of the model correctly assesses the choice and preconditioning of pigs, and the timing and dosage of the ETEC inoculation. Furthermore, the evaluation of the ETEC challenge response should include both clinical parameters (such as the occurrence of diarrhea, rectal temperature and bacterial fecal shedding) and biomarkers for the specific expression of ETEC F4/F18 (such as antibody production, specific F4/F18 immunoglobulins (Igs), ETEC F4/F18 fecal enumeration and analysis of the F4/F18 receptors expression in the intestinal brush borders). On the basis of the review, the piglets’ response upon F4 or F18 inoculation differed in terms of the timing and intensity of the diarrhea development, on ETEC fecal shedding and in the piglets’ immunological antibody response. This information was considered to be relevant to correctly define the experimental protocol, the data recording and the sample collections. Appropriate challenge settings and evaluation of the response parameters will allow future research studies to comply with the replacement, reduction and refinement (3R) approach, and to be able to evaluate the efficiency of a given feeding, nutritional or vaccination intervention in order to combat ETEC infection.
Collapse
Affiliation(s)
- Diana Luise
- 1Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Charlotte Lauridsen
- 2Faculty of Science and Technology, Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Paolo Bosi
- 1Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- 1Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
30
|
Shi H, Huang X, Yan Z, Yang Q, Wang P, Li S, Sun W, Gun S. Effect of Clostridium perfringens type C on TLR4/MyD88/NF-κB signaling pathway in piglet small intestines. Microb Pathog 2019; 135:103567. [PMID: 31163250 DOI: 10.1016/j.micpath.2019.103567] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
Abstract
Clostridium perfringens (C. perfringens), a Gram-positive bacterium, is one of the main causing piglet diarrhea, which leads serious economic loss in the world swine industries. Generally, the innate immune response plays a critical role in host defense against pathogen invasion. TLR4, a member of the TLR (Toll-like receptor) family, has been considered to implicate in the host immune responses and induce secretion of inflammatory cytokines during bacterial infection. However, little is clear about the effects of TLR4 and key signaling genes in the process of piglet inflammatory and immune responses after C. perfringens infection. This study aims to explore the effect of C. perfringens type C infection on the key mRNAs of TLR4/MyD88/NF-κB signaling pathways during the process of piglet diarrhea. In this study, the expressions of TLR4 and other key mRNAs in the TLR4/MyD88/NF-κB signaling pathways were quantified in piglet ileum and jejunum tissues among IR (intestinal resistance), IS (intestinal susceptibility) and IC (intestinal control) groups by qPCR and Western blot methods, the concentrations of pro-inflammatory cytokines in intestinal tissues and serum immunoglobulins were also tested by ELISA kits. Results showed that compared to IC group, expressions of ileum TLR4 and TNF-α was significantly increased in the IS and IR groups, specially TBK1 gene; the expressions of ileum TLR2, TRAF6, MyD88 and IL-8 mRNAs was significantly up-regulated in the IS group, the expressions of TLR9, NF-κB, IL-6, IFN-γ and MAPK1 genes were not significant differences among the IR, IS and IC groups. Meanwhile, the protein levels of TLR4, HMGB1 and NF-κB were higher in the IS and IR groups. The levels of jejunum IFN-γ and IL-6, ileum IL-6 and IL-12 were risen in the IR group. Serum immunoglobulin IgA and IgG in the IR and IS groups reached a peak on the 72 h and 48 h post infection, respectively. These findings suggest that C. perfringens type C infection induces host immune responses involving in the TLR4/MyD88/NF-κB signaling pathways in ileum than in jejunum, which may provide valuable information for innate immune mechanisms involved in regulation of piglet diarrhea caused by C. perfringens type C infection.
Collapse
Affiliation(s)
- Hairen Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, PR China; Tibet Autonomous Region Academy of Agriculture and Animal Husbandry, Tibet, PR China.
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, PR China; Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, PR China.
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, PR China.
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, PR China; Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, PR China.
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, PR China.
| | - Shenggui Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, PR China.
| | - Wenyang Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, PR China.
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, PR China; Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, PR China.
| |
Collapse
|
31
|
Ran X, Chen X, Wang S, Chang C, Wen X, Zhai J, Ni H. Preparation of porcine enterotoxigenic Escherichia coli (ETEC) ghosts and immunogenic analysis in a mouse model. Microb Pathog 2018; 126:224-230. [PMID: 30428380 DOI: 10.1016/j.micpath.2018.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 01/23/2023]
Abstract
Enterotoxignenic Escherichia coli (ETEC)-associated colibacillosis causes high levels of morbidity and mortality in neonatal piglets. Vaccination is among effective strategy to fight against ETEC-related diseases. Bacterial ghosts (BGs) are empty bacterial envelopes, which substain subtle antigenic comformation in bacterial outer membrane. In this study, a BG vaccine was generated using porcine ETEC isolated strain DQ061 and evaluated its safety and immunogenicity in a mouse model. The recombinant bacteria were constructed by transformation of lysis plasmid pHH43 and generation of BGs was conducted in a lysis rate of 99.93% by incubation of the recombinant bacteria at 42 °C for 2 h. Mice were immunized subcutaneously twice in 2-week intervals with BGs, BGs emulsified with ISA 206 adjuvant, or formalin-inactivated ETEC vaccine after safety test. Mice with either of two BG vaccines developed higher titer of antibodies, secreted higher titer of interleukin 4, gamma interferon and alpha tumor necrosis factor after 2 doses than those with formalin-inactivated ETEC vaccine or those with adjuvant placebo (P < 0.01). The quantity of CD4+ and CD8+ T lymphocyte in spleen was higher in both BG groups than that in the inactivated vaccine group or adjuvant group 2 weeks post boost immunization (P < 0.05). The vaccinated mice were challenged intraperitoneally with 10 × LD50 dose of DQ061. Mice with the BGs plus adjuvant were completely protected against challenge, compared to 60% protection of mice with the inactivated vaccine. Mice exhibited decreased tissue lesion and reduced bacterial loads in the BGs groups by comparison with those with the inactivated vaccine or adjuvant only. Our results validated that the ETEC BGs bear high safety and immunogenicity in a mouse model, suggesting a potential of further evaluation in a pig model.
Collapse
Affiliation(s)
- Xuhua Ran
- College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Xiaohong Chen
- College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Shixia Wang
- College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Chunlong Chang
- College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Xiaobo Wen
- College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Junjun Zhai
- College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Hongbo Ni
- College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China.
| |
Collapse
|
32
|
Zhang H, Xu Y, Zhang Z, You J, Yang Y, Li X. Protective immunity of a Multivalent Vaccine Candidate against piglet diarrhea caused by enterotoxigenic Escherichia coli (ETEC) in a pig model. Vaccine 2018; 36:723-728. [DOI: 10.1016/j.vaccine.2017.12.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/27/2017] [Accepted: 12/11/2017] [Indexed: 01/05/2023]
|
33
|
Matías J, Berzosa M, Pastor Y, Irache JM, Gamazo C. Maternal Vaccination. Immunization of Sows during Pregnancy against ETEC Infections. Vaccines (Basel) 2017; 5:vaccines5040048. [PMID: 29211052 PMCID: PMC5748614 DOI: 10.3390/vaccines5040048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/20/2017] [Accepted: 12/03/2017] [Indexed: 12/18/2022] Open
Abstract
The immunology of pregnancy is an evolving consequence of multiple reciprocal interactions between the maternal and the fetal-placental systems. The immune response must warrant the pregnancy outcome (including tolerance to paternal antigens), but at the same time, efficiently respond to pathogenic challenges. Enterotoxigenic Escherichia coli (ETEC) strains are a major cause of illness and death in neonatal and recently weaned pigs. This review aims to give an overview of the current rationale on the maternal vaccination strategies for the protection of the newborn pig against ETEC. Newborn piglets are immunodeficient and naturally dependent on the maternal immunity transferred by colostrum for protection—a maternal immunity that can be obtained by vaccinating the sow during pregnancy. Our current knowledge of the interactions between the pathogen strategies, virulence factors, and the host immune system is aiding the better design of vaccination strategies in this particular and challenging host status. Challenges include the need for better induction of immunity at the mucosal level with the appropriate use of adjuvants, able to induce the most appropriate and long-lasting protective immune response. These include nanoparticle-based adjuvants for oral immunization. Experiences can be extrapolated to other species, including humans.
Collapse
Affiliation(s)
- Jose Matías
- Department of Microbiology, University of Navarra, Instituto de Investigación Sanitaria de Navarra (IDISNA), C/Irunlarrea, 1, 31080 Pamplona, Spain.
| | - Melibea Berzosa
- Department of Microbiology, University of Navarra, Instituto de Investigación Sanitaria de Navarra (IDISNA), C/Irunlarrea, 1, 31080 Pamplona, Spain.
| | - Yadira Pastor
- Department of Microbiology, University of Navarra, Instituto de Investigación Sanitaria de Navarra (IDISNA), C/Irunlarrea, 1, 31080 Pamplona, Spain.
| | - Juan M Irache
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, Instituto de Investigación Sanitaria de Navarra (IDISNA), C/Irunlarrea, 1, 31080 Pamplona, Spain.
| | - Carlos Gamazo
- Department of Microbiology, University of Navarra, Instituto de Investigación Sanitaria de Navarra (IDISNA), C/Irunlarrea, 1, 31080 Pamplona, Spain.
| |
Collapse
|
34
|
Sun Y, Kim SW. Intestinal challenge with enterotoxigenic Escherichia coli in pigs, and nutritional intervention to prevent postweaning diarrhea. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2017; 3:322-330. [PMID: 29767133 PMCID: PMC5941267 DOI: 10.1016/j.aninu.2017.10.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/05/2017] [Accepted: 10/04/2017] [Indexed: 11/26/2022]
Abstract
Gut health of nursery pigs immediately after weaning is tightly associated with their growth performance and economic values. Postweaning diarrhea (PWD) is one of the major concerns related to gut health of nursery pigs which often is caused by infections of enterotoxigenic Escherichia coli (ETEC), mainly including F4 (K88)+ and F18+E. coli. The main virulence factors of ETEC are adhesins (fimbriae or pili) and enterotoxins. The common types of fimbriae on ETEC from PWD pigs are F18+ and F4+. Typically, PWD in pigs is associated with both F18+ and F4+ ETEC infections whereas pre-weaning diarrhea in pigs is associated with F4+ ETEC infection. Enterotoxins including heat-labile enterotoxins (LT) and heat-stable peptide toxins (ST) are associated with causing diarrhea in pigs. At least 109 to 1010 ETEC are required to induce diarrhea in nursery pigs typically lasting 1 to 5 days after ETEC infection. Antibiotics used to be the most effective way to prevent PWD, however, with the increased bacterial resistance to antibiotics, alternatives to the use of antibiotics are urgently needed to prevent PWD. Immunopropylaxis and nutritional intervention of antimicrobial minerals (such as zinc oxide and copper sulfate), organic acids, functional feedstuffs (such as blood plasma and egg yolk antibodies), direct fed microbials, phytobiotics, and bacteriophage can potentially prevent PWD associated with ETEC. Some other feed additives such as nucleotides, feed enzymes, prebiotic oligosaccharides, and clay minerals can enhance intestinal health and thus indirectly help with preventing PWD. Numerous papers show that nutritional intervention using selected feed additives can effectively prevent PWD.
Collapse
Affiliation(s)
- Yawang Sun
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
35
|
Nadeau É, Fairbrother J, Zentek J, Bélanger L, Tremblay D, Tremblay CL, Röhe I, Vahjen W, Brunelle M, Hellmann K, Cvejić D, Brunner B, Schneider C, Bauer K, Wolf R, Hidalgo Á. Efficacy of a single oral dose of a live bivalent E. coli vaccine against post-weaning diarrhea due to F4 and F18-positive enterotoxigenic E. coli. Vet J 2017; 226:32-39. [DOI: 10.1016/j.tvjl.2017.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 10/19/2022]
|
36
|
Gresse R, Chaucheyras-Durand F, Fleury MA, Van de Wiele T, Forano E, Blanquet-Diot S. Gut Microbiota Dysbiosis in Postweaning Piglets: Understanding the Keys to Health. Trends Microbiol 2017; 25:851-873. [PMID: 28602521 DOI: 10.1016/j.tim.2017.05.004] [Citation(s) in RCA: 521] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/02/2017] [Accepted: 05/05/2017] [Indexed: 12/13/2022]
Abstract
Weaning is a critical event in the pig's life cycle, frequently associated with severe enteric infections and overuse of antibiotics; this raises serious economic and public health concerns. In this review, we explain why gut microbiota dysbiosis, induced by abrupt changes in the diet and environment of piglets, emerges as a leading cause of post-weaning diarrhea, even if the exact underlying mechanisms remain unclear. Then, we focus on nonantimicrobial alternatives, such as zinc oxide, essential oils, and prebiotics or probiotics, which are currently evaluated to restore intestinal balance and allow a better management of the crucial weaning transition. Finally, we discuss how in vitro models of the piglet gut could be advantageously used as a complement to ex vivo and in vivo studies for the development and testing of new feed additives.
Collapse
Affiliation(s)
- Raphaële Gresse
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRA, F-63000 Clermont-Ferrand, France; Lallemand Animal Nutrition, F-31702 Blagnac Cedex, France
| | | | | | - Tom Van de Wiele
- Ghent University, Center for Microbial Ecology and Technology, B-9000, Gent, Belgium
| | - Evelyne Forano
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRA, F-63000 Clermont-Ferrand, France
| | | |
Collapse
|