1
|
Xu D, Powell AE, Utz A, Sanyal M, Do J, Patten JJ, Moliva JI, Sullivan NJ, Davey RA, Kim PS. Design of universal Ebola virus vaccine candidates via immunofocusing. Proc Natl Acad Sci U S A 2024; 121:e2316960121. [PMID: 38319964 PMCID: PMC10873634 DOI: 10.1073/pnas.2316960121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/19/2023] [Indexed: 02/08/2024] Open
Abstract
The Ebola virus causes hemorrhagic fever in humans and poses a significant threat to global public health. Although two viral vector vaccines have been approved to prevent Ebola virus disease, they are distributed in the limited ring vaccination setting and only indicated for prevention of infection from orthoebolavirus zairense (EBOV)-one of three orthoebolavirus species that have caused previous outbreaks. Ebola virus glycoprotein GP mediates viral infection and serves as the primary target of neutralizing antibodies. Here, we describe a universal Ebola virus vaccine approach using a structure-guided design of candidates with hyperglycosylation that aims to direct antibody responses away from variable regions and toward conserved epitopes of GP. We first determined the hyperglycosylation landscape on Ebola virus GP and used that to generate hyperglycosylated GP variants with two to four additional glycosylation sites to mask the highly variable glycan cap region. We then created vaccine candidates by displaying wild-type or hyperglycosylated GP variants on ferritin nanoparticles (Fer). Immunization with these antigens elicited potent neutralizing antisera against EBOV in mice. Importantly, we observed consistent cross-neutralizing activity against Bundibugyo virus and Sudan virus from hyperglycosylated GP-Fer with two or three additional glycans. In comparison, elicitation of cross-neutralizing antisera was rare in mice immunized with wild-type GP-Fer. These results demonstrate a potential strategy to develop universal Ebola virus vaccines that confer cross-protective immunity against existing and emerging filovirus species.
Collapse
Affiliation(s)
- Duo Xu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
| | - Abigail E. Powell
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
| | - Ashley Utz
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA94305
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford, CA94305
| | - Mrinmoy Sanyal
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
| | - Jonathan Do
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
| | - J. J. Patten
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA02118
- Department of Virology, Immunology, and Microbiology, Boston University School of Medicine, Boston, MA02118
| | - Juan I. Moliva
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA02118
- Department of Virology, Immunology, and Microbiology, Boston University School of Medicine, Boston, MA02118
| | - Nancy J. Sullivan
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA02118
- Department of Virology, Immunology, and Microbiology, Boston University School of Medicine, Boston, MA02118
- Department of Biology, Boston University, Boston, MA02118
| | - Robert A. Davey
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA02118
- Department of Virology, Immunology, and Microbiology, Boston University School of Medicine, Boston, MA02118
| | - Peter S. Kim
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
- Chan Zuckerberg Biohub, San Francisco, CA94158
| |
Collapse
|
2
|
To A, Wong TAS, Ball AH, Lieberman MM, Yalley-Ogunro J, Cabus M, Nezami S, Paz F, Elyard HA, Borisevich V, Agans KN, Deer DJ, Woolsey C, Cross RW, Geisbert TW, Donini O, Lehrer AT. Thermostable bivalent filovirus vaccine protects against severe and lethal Sudan ebolavirus and marburgvirus infection. Vaccine 2024; 42:598-607. [PMID: 38158300 PMCID: PMC10872277 DOI: 10.1016/j.vaccine.2023.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Although two vaccines for Zaire ebolavirus (EBOV) have been licensed and deployed successfully to combat recurring outbreaks of Ebolavirus Disease in West Africa, there are no vaccines for two other highly pathogenic members of the Filoviridae, Sudan ebolavirus (SUDV) and Marburg marburgvirus (MARV). The results described herein document the immunogenicity and protective efficacy in cynomolgus macaques of a single-vial, thermostabilized (lyophilized) monovalent (SUDV) and bivalent (SUDV & MARV) protein vaccines consisting of recombinant glycoproteins (GP) formulated with a clinical-grade oil-in-water nanoemulsion adjuvant (CoVaccine HT™). Lyophilized formulations of the vaccines were reconstituted with Water for Injection and used to immunize groups of cynomolgus macaques before challenge with a lethal dose of a human SUDV or MARV isolate. Sera collected after each of the three immunizations showed near maximal GP-binding IgG concentrations starting as early as the second dose. Most importantly, the vaccine candidates (monovalent or bivalent) provided 100% protection against severe and lethal filovirus disease after either SUDV or MARV infection. Although mild, subclinical infection was observed in a few macaques, all vaccinated animals remained healthy and survived the filovirus challenge. These results demonstrate the value that thermostabilized protein vaccines could provide for addressing an important gap in preparedness for future filovirus outbreaks.
Collapse
Affiliation(s)
- Albert To
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI 96813, USA
| | - Teri Ann S Wong
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI 96813, USA
| | - Aquena H Ball
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI 96813, USA
| | - Michael M Lieberman
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI 96813, USA
| | | | | | | | | | | | - Viktoriya Borisevich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Krystle N Agans
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Daniel J Deer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Courtney Woolsey
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Robert W Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | | | - Axel T Lehrer
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI 96813, USA.
| |
Collapse
|
3
|
Williams CA, Wong TAS, Lieberman MM, Yalley-Ogunro J, Cabus M, Nezami S, Paz F, Andersen H, Geisbert TW, Lehrer AT. High-Avidity Anti-Filovirus IgG Elicited Using Protein Subunit Vaccines Does Not Correlate with Protection. IMMUNO 2023; 3:358-374. [PMID: 40242024 PMCID: PMC12001830 DOI: 10.3390/immuno3040022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Zaire ebolavirus (EBOV) poses a significant threat to public health due to its high case fatality rate and epidemic potential. This is further complicated by the lack of precise immune correlates of protection and difficulties in conducting in vivo animal studies due to species specificity of Ebola virus disease (EVD) and classification as a biosafety level 4 pathogen. Related ebolaviruses have also contributed to the public health threat; Uganda recently experienced an outbreak of Sudan ebolavirus, which also had a high case fatality rate. Vaccination targeting EBOV has demonstrated significant efficacy; however, the protective cellular and humoral responses at play are still poorly understood. Vaccination for vulnerable populations such as pregnant women, young children, and immunocompromised individuals is still limited. Understanding vaccine correlates of protection (vCOP) is key to developing alternative vaccination strategies for these groups. Components of immunity such as neutralizing antibody and cell-mediated immunity are likely responsible for protective responses; however, existing research fails to fully define their roles in protection. Here we investigated vaccine-elicited antibody avidity as a potential correlate of protection and to further characterize the contribution of antibody avidity in protective and nonprotective vaccine responses.
Collapse
Affiliation(s)
- Caitlin A. Williams
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Teri Ann S. Wong
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Michael M. Lieberman
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | | | | | | | | | | | - Thomas W. Geisbert
- Galveston National Laboratory, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Axel T. Lehrer
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| |
Collapse
|
4
|
Xu D, Powell AE, Utz A, Sanyal M, Do J, Patten J, Moliva JI, Sullivan NJ, Davey RA, Kim PS. Design of universal Ebola virus vaccine candidates via immunofocusing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.14.562364. [PMID: 37904982 PMCID: PMC10614775 DOI: 10.1101/2023.10.14.562364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Ebola virus causes hemorrhagic fever in humans and poses a significant threat to global public health. Although two viral vector vaccines have been approved to prevent Ebola virus disease, they are distributed in the limited ring vaccination setting and only indicated for prevention of infection from orthoebolavirus zairense (EBOV) - one of three orthoebolavirus species that have caused previous outbreaks. Ebola virus glycoprotein GP mediates viral infection and serves as the primary target of neutralizing antibodies. Here we describe a universal Ebola virus vaccine approach using structure-guided design of candidates with hyperglycosylation that aims to direct antibody responses away from variable regions and toward conserved epitopes of GP. We first determined the hyperglycosylation landscape on Ebola virus GP and used that to generate hyperglycosylated GP variants with two to four additional glycosylation sites to mask the highly variable glycan cap region. We then created vaccine candidates by displaying wild-type or hyperglycosylated GP variants on ferritin nanoparticles (Fer). Immunization with these antigens elicited potent neutralizing antisera against EBOV in mice. Importantly, we observed consistent cross-neutralizing activity against Bundibugyo virus and Sudan virus from hyperglycosylated GP-Fer with two or three additional glycans. In comparison, elicitation of cross-neutralizing antisera was rare in mice immunized with wild-type GP-Fer. These results demonstrate a potential strategy to develop universal Ebola virus vaccines that confer cross-protective immunity against existing and emerging filovirus species.
Collapse
Affiliation(s)
- Duo Xu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Abigail E. Powell
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Ashley Utz
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mrinmoy Sanyal
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Jonathan Do
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - J.J. Patten
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
- Department of Virology, Immunology, and Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Juan I. Moliva
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
- Department of Virology, Immunology, and Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Nancy J. Sullivan
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
- Department of Virology, Immunology, and Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Biology, Boston University, Boston, MA 02118, USA
| | - Robert A. Davey
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
- Department of Virology, Immunology, and Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Peter S. Kim
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
5
|
Zhang HQ, Zhang QY, Yuan ZM, Zhang B. The potential epidemic threat of Ebola virus and the development of a preventive vaccine. JOURNAL OF BIOSAFETY AND BIOSECURITY 2023; 5:67-78. [DOI: 10.1016/j.jobb.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
6
|
Xu S, Li W, Jiao C, Cao Z, Wu F, Yan F, Wang H, Feng N, Zhao Y, Yang S, Wang J, Xia X. A Bivalent Bacterium-like Particles-Based Vaccine Induced Potent Immune Responses against the Sudan Virus and Ebola Virus in Mice. Transbound Emerg Dis 2023; 2023:9248581. [PMID: 40303775 PMCID: PMC12017122 DOI: 10.1155/2023/9248581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 05/02/2025]
Abstract
Ebola virus disease (EVD) is an acute viral hemorrhagic fever disease causing thousands of deaths. The large Ebola outbreak in 2014-2016 posed significant threats to global public health, requiring the development of multiple medical measures for disease control. Sudan virus (SUDV) and Zaire virus (EBOV) are responsible for severe disease and occasional deadly outbreaks in West Africa and Middle Africa. This study shows that bivalent bacterium-like particles (BLPs)-based vaccine, SUDV-EBOV BLPs (S/ZBLP + 2 + P), generated by mixing SUDV-BLPs and EBOV-BLPs at a 1 : 1 ratio, is immunogenic in mice. The SUDV-EBOV BLPs induced potent immune responses against SUDV and EBOV and elicited both T-helper 1 (Th1) and T-helper 2 (Th2) immune responses. The results indicated that SUDV-EBOV BLPs-based vaccine has the potential to be a promising candidate against SUDV and EBOV infections and provide a strategy to develop universal vaccines for EVD.
Collapse
Affiliation(s)
- Shengnan Xu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Shandong Agricultural University, Taian, China
| | - Wujian Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Cuicui Jiao
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zengguo Cao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Fangfang Wu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Feihu Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Hualei Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Na Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yongkun Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Songtao Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Xianzhu Xia
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Collaborative Innovation Center for Healthy Sheep Breeding and Zoonoses Prevention and Control, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
7
|
Williams CA, Wong TAS, Ball AH, Lieberman MM, Lehrer AT. Maternal Immunization Using a Protein Subunit Vaccine Mediates Passive Immunity against Zaire ebolavirus in a Murine Model. Viruses 2022; 14:2784. [PMID: 36560788 PMCID: PMC9785068 DOI: 10.3390/v14122784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/10/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
The Ebola virus has caused outbreaks in Central and West Africa, with high rates of morbidity and mortality. Clinical trials of recombinant virally vectored vaccines did not explicitly include pregnant or nursing women, resulting in a gap in knowledge of vaccine-elicited maternal antibody and its potential transfer. The role of maternal antibody in Ebola virus disease and vaccination remains understudied. Here, we demonstrate that a protein subunit vaccine can elicit robust humoral responses in pregnant mice, which are transferred to pups in breastmilk. These findings indicate that an intramuscular protein subunit vaccine may elicit Ebola-specific IgG capable of being transferred across the placenta as well as into the breastmilk. We have previously shown protective efficacy with these vaccines in non-human primates, offering a potential safe and practical alternative to recombinant virally vectored vaccines for pregnant and nursing women in Ebola endemic regions.
Collapse
Affiliation(s)
| | | | | | | | - Axel T. Lehrer
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| |
Collapse
|
8
|
Preston KB, Wong TAS, Lieberman MM, To A, Lai CY, Granados A, Thomasson H, Misamore J, Yalley-Ogunro J, Cabus M, Andersen H, Donini O, Lehrer AT, Randolph TW. Lyophilized Filovirus Glycoprotein Vaccines: Peroxides in a Vaccine Formulation with Polysorbate 80-Containing Adjuvant are Associated with Reduced Neutralizing Antibody Titers in Both Mice and Non-Human Primates. J Pharm Sci 2022; 111:3424-3434. [PMID: 35609629 DOI: 10.1016/j.xphs.2022.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 01/05/2023]
Abstract
Zaire ebolavirus, Sudan ebolavirus, and Marburg marburgvirus are the filoviruses most commonly associated with human disease. Previously, we administered a three-dose regimen of trivalent vaccines comprising glycoprotein antigens from each virus in mice and non-human primates (NHPs). The vaccines, which contained a polysorbate 80-stabilized squalane-in-water emulsion adjuvant and were lyophilized from a solution containing trehalose, produced high antibody levels against all three filovirus antigens. Subsequently, single-vial formulations containing a higher concentration of adjuvant were generated for testing in NHPs, but these vaccines elicited lower neutralizing antibody titers in NHPs than previously tested formulations. In order to explain these results, in the current work we measured the size of adjuvant emulsion droplets and the peroxide levels present in the vaccines after lyophilization and reconstitution and tested the effects of these variables on the immune response in mice. Increases in squalane droplet sizes were observed when the ratio of adjuvant to trehalose was increased beyond a critical value, but antibody and neutralizing antibody titers in mice were independent of the droplet size. Higher levels of peroxides in the vaccines correlated with higher concentrations of adjuvant in the formulations, and higher peroxide levels were associated with increased levels of oxidative damage to glycoprotein antigens. Neutralizing titers in mice were inversely correlated with peroxide levels in the vaccines, but peroxide levels could be reduced by adding free methionine, resulting in retention of high neutralizing antibody titers. Overall, the results suggest that oxidation of glycoprotein antigens by peroxides in the polysorbate 80-stabilized squalane-in-water emulsion adjuvant, but not lyophilization-induced increases in adjuvant emulsion droplet size may have been responsible for the decreased neutralizing titers seen in formulations containing higher amounts of adjuvant.
Collapse
Affiliation(s)
- Kendall B Preston
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States
| | - Teri Ann S Wong
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI 96813, United States
| | - Michael M Lieberman
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI 96813, United States
| | - Albert To
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI 96813, United States
| | - Chih-Yun Lai
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI 96813, United States
| | | | | | | | | | - Mehtap Cabus
- BIOQUAL, Inc., Rockville, MD 20850, United States
| | | | | | - Axel T Lehrer
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI 96813, United States
| | - Theodore W Randolph
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States.
| |
Collapse
|
9
|
Nwagwu CS, Ugwu CN, Ogbonna JDN, Onugwu AL, Agbo CP, Echezona AC, Ezeibe EN, Uzondu S, Kenechukwu FC, Akpa PA, Momoh MA, Nnamani PO, Tarirai C, Ofokansi KC, Attama AA. Recent and advanced nano-technological strategies for COVID-19 vaccine development. METHODS IN MICROBIOLOGY 2022; 50:151-188. [PMID: 38620863 PMCID: PMC9015106 DOI: 10.1016/bs.mim.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The outbreak of the COVID-19 pandemic in 2019 has been one of the greatest challenges modern medicine and science has ever faced. It has affected millions of people around the world and altered human life and activities as we once knew. The high prevalence as well as an extended period of incubations which usually does not present with symptoms have played a formidable role in the transmission and infection of millions. A lot of research has been carried out on developing suitable treatment and effective preventive measures for the control of the pandemic. Preventive strategies which include social distancing, use of masks, washing of hands, and contact tracing have been effective in slowing the spread of the virus; however, the infectious nature of the SARS-COV-2 has made these strategies unable to eradicate its spread. In addition, the continuous increase in the number of cases and death, as well as the appearance of several variants of the virus, has necessitated the development of effective and safe vaccines in a bid to ensure that human activities can return to normalcy. Nanotechnology has been of great benefit in the design of vaccines as nano-sized materials have been known to aid the safe and effective delivery of antigens as well as serve as suitable adjuvants to potentiate responses to vaccines. There are only four vaccine candidates currently approved for use in humans while many other candidates are at various levels of development. This review seeks to provide updated information on the current nano-technological strategies employed in the development of COVID-19 vaccines.
Collapse
Affiliation(s)
- Chinekwu Sherridan Nwagwu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinenye Nnenna Ugwu
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka, Enugu state, Nigeria
| | - John Dike Nwabueze Ogbonna
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Adaeze Linda Onugwu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinazom Precious Agbo
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Adaeze Chidiebere Echezona
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Ezinwanne Nneoma Ezeibe
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka, Enugu state, Nigeria
| | - Samuel Uzondu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Frankline Chimaobi Kenechukwu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Paul Achile Akpa
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Mumuni Audu Momoh
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Petra Obioma Nnamani
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Clemence Tarirai
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Kenneth Chibuzor Ofokansi
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Anthony Amaechi Attama
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
10
|
To A, Lai CY, Wong TAS, Namekar M, Lieberman MM, Lehrer AT. Adjuvants Differentially Modulate the Immunogenicity of Lassa Virus Glycoprotein Subunits in Mice. FRONTIERS IN TROPICAL DISEASES 2022; 3. [PMID: 37034031 PMCID: PMC10081732 DOI: 10.3389/fitd.2022.847598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lassa Fever (LF) is an acute viral hemorrhagic fever caused by Lassa virus (LASV) that is primarily transmitted through contact with wild rodents in West Africa. Although several advanced vaccine candidates are progressing through clinical trials, some effective vaccines are virally vectored and thus require a stringent cold-chain, making distribution to rural and resource-poor areas difficult. Recombinant subunit vaccines are advantageous in this aspect as they can be thermostabilized and deployed with minimal storage and transportation requirements. However, antigen dose and adjuvant formulation must be carefully selected to ensure both the appropriate humoral and cell-mediated immune responses are elicited. In this study, we examine the immunogenicity of a two-step immunoaffinity-purified recombinant LASV glycoprotein (GP) with five clinical- and preclinical-grade adjuvants. Swiss Webster mice immunized intramuscularly with 2 or 3 doses of each vaccine formulation showed complete seroconversion and maximal GP-specific antibody response after two immunizations. Formulations with GPI-0100, LiteVax, Montanide™ ISA 51, and Montanide™ ISA 720 induced both IgG1 and IgG2 antibodies suggesting a balanced Th1/Th2 response, whereas formulation of LASV GP with Alhydrogel elicited a IgG1-dominant response. Splenocytes secreting both Th1 and Th2 cytokines i.e., IFN-γ, TNF-α, IL-2, IL-4 and IL-5, were observed from mice receiving both antigen doses formulated with ISA 720, LiteVax and GPI-0100. However, robust, multifunctional T-cells were only detected in mice receiving a higher dose of LASV GP formulated with GPI-0100. Our results emphasize the importance of careful adjuvant selection and lay the immunological basis for a recombinant subunit protein LF vaccine formulation.
Collapse
Affiliation(s)
- Albert To
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, The University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Chih-Yun Lai
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, The University of Hawai’i at Mānoa, Honolulu, HI, United States
- Pacific Center for Emerging Infectious Disease Research, John A. Burns School of Medicine, The University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Teri Ann S. Wong
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, The University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Madhuri Namekar
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, The University of Hawai’i at Mānoa, Honolulu, HI, United States
- Pacific Center for Emerging Infectious Disease Research, John A. Burns School of Medicine, The University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Michael M. Lieberman
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, The University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Axel T. Lehrer
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, The University of Hawai’i at Mānoa, Honolulu, HI, United States
- Pacific Center for Emerging Infectious Disease Research, John A. Burns School of Medicine, The University of Hawai’i at Mānoa, Honolulu, HI, United States
- Correspondence: Axel T. Lehrer,
| |
Collapse
|
11
|
Lai CY, To A, Wong TAS, Lieberman MM, Clements DE, Senda JT, Ball AH, Pessaint L, Andersen H, Furuyama W, Marzi A, Donini O, Lehrer AT. Recombinant protein subunit SARS-CoV-2 vaccines formulated with CoVaccine HT adjuvant induce broad, Th1 biased, humoral and cellular immune responses in mice. Vaccine X 2021; 9:100126. [PMID: 34778744 PMCID: PMC8570651 DOI: 10.1016/j.jvacx.2021.100126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022] Open
Abstract
The speed at which several COVID-19 vaccines went from conception to receiving FDA and EMA approval for emergency use is an achievement unrivaled in the history of vaccine development. Mass vaccination efforts using the highly effective vaccines are currently underway to generate sufficient herd immunity and reduce transmission of the SARS-CoV-2 virus. Despite the most advanced vaccine technology, global recipient coverage, especially in resource-poor areas remains a challenge as genetic drift in naïve population pockets threatens overall vaccine efficacy. In this study, we described the production of insect-cell expressed SARS-CoV-2 spike protein ectodomain constructs and examined their immunogenicity in mice. We demonstrated that, when formulated with CoVaccine HTTM adjuvant, an oil-in-water nanoemulsion compatible with lyophilization, our vaccine candidates elicit a broad-spectrum IgG response, high neutralizing antibody (NtAb) titers against SARS-CoV-2 prototype and variants of concern, specifically B.1.351 (Beta) and P.1. (Gamma), and an antigen-specific IFN-γ secreting response in outbred mice. Of note, different ectodomain constructs yielded variations in NtAb titers against the prototype strain and some VOC. Dose response experiments indicated that NtAb titers increased with antigen dose, but not adjuvant dose, and may be higher with a lower adjuvant dose. Our findings lay the immunological foundation for the development of a dry-thermostabilized vaccine that is deployable without refrigeration.
Collapse
Affiliation(s)
- Chih-Yun Lai
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology,
John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI,
USA
- Pacific Center for Emerging Infectious Disease Research, John A. Burns
School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Albert To
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology,
John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI,
USA
| | - Teri Ann S. Wong
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology,
John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI,
USA
| | - Michael M. Lieberman
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology,
John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI,
USA
| | | | | | - Aquena H. Ball
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology,
John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI,
USA
| | | | | | - Wakako Furuyama
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH,
Hamilton, Montana, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH,
Hamilton, Montana, MT, USA
| | | | - Axel T. Lehrer
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology,
John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI,
USA
- Pacific Center for Emerging Infectious Disease Research, John A. Burns
School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
12
|
Preston KB, Wong TAS, To A, Tashiro TE, Lieberman MM, Granados A, Feliciano K, Harrison J, Yalley-Ogunro J, Elyard HA, Donini O, Lehrer AT, Randolph TW. Single-vial filovirus glycoprotein vaccines: Biophysical characteristics and immunogenicity after co-lyophilization with adjuvant. Vaccine 2021; 39:5650-5657. [PMID: 34400019 DOI: 10.1016/j.vaccine.2021.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Zaire ebolavirus (EBOV), Sudan ebolavirus (SUDV), and Marburg marburgvirus (MARV) are the most prevalent and pathogenic species of filovirus. Previously, we showed that glycoprotein antigens from each virus could be lyophilized to create thermostable monovalent subunit vaccines. However, cross-protection is not expected from the monovalent vaccines and therefore developing a trivalent filovirus vaccine would be desirable. Subunit protein vaccines often require the addition of an adjuvant to sufficiently boost the immunogenicity. Typically, liquid suspensions or emulsions of adjuvants and lyophilized antigens are stored in separate vials to avoid destabilizing interactions and are only mixed immediately before administration. Herein, we describe the development and characterization of monovalent and trivalent filovirus vaccines that are co-lyophilized with a squalane-in-water emulsion adjuvant. We found that the single-vial presentation retained adjuvant particle diameter and zeta potential after lyophilization and reconstitution. Furthermore, the trivalent vaccines elicited high antibody levels against all three antigens in mice and non-human primates. These results advance the prospect of developing a single-vial trivalent filovirus vaccine, which would enable easier distribution and administration of the vaccine to resource-poor areas.
Collapse
Affiliation(s)
- Kendall B Preston
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States
| | - Teri Ann S Wong
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI 96813, United States
| | - Albert To
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI 96813, United States
| | - Taylor E Tashiro
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI 96813, United States
| | - Michael M Lieberman
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI 96813, United States
| | | | | | | | | | | | | | - Axel T Lehrer
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI 96813, United States
| | - Theodore W Randolph
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States.
| |
Collapse
|
13
|
Lehrer AT, Chuang E, Namekar M, Williams CA, Wong TAS, Lieberman MM, Granados A, Misamore J, Yalley-Ogunro J, Andersen H, Geisbert JB, Agans KN, Cross RW, Geisbert TW. Recombinant Protein Filovirus Vaccines Protect Cynomolgus Macaques From Ebola, Sudan, and Marburg Viruses. Front Immunol 2021; 12:703986. [PMID: 34484200 PMCID: PMC8416446 DOI: 10.3389/fimmu.2021.703986] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/29/2021] [Indexed: 11/23/2022] Open
Abstract
Ebola (EBOV), Marburg (MARV) and Sudan (SUDV) viruses are the three filoviruses which have caused the most fatalities in humans. Transmission from animals into the human population typically causes outbreaks of limited scale in endemic regions. In contrast, the 2013-16 outbreak in several West African countries claimed more than 11,000 lives revealing the true epidemic potential of filoviruses. This is further emphasized by the difficulty seen with controlling the 2018-2020 outbreak of EBOV in the Democratic Republic of Congo (DRC), despite the availability of two emergency use-approved vaccines and several experimental therapeutics targeting EBOV. Moreover, there are currently no vaccine options to protect against the other epidemic filoviruses. Protection of a monovalent EBOV vaccine against other filoviruses has never been demonstrated in primate challenge studies substantiating a significant void in capability should a MARV or SUDV outbreak of similar magnitude occur. Herein we show progress on developing vaccines based on recombinant filovirus glycoproteins (GP) from EBOV, MARV and SUDV produced using the Drosophila S2 platform. The highly purified recombinant subunit vaccines formulated with CoVaccine HT™ adjuvant have not caused any safety concerns (no adverse reactions or clinical chemistry abnormalities) in preclinical testing. Candidate formulations elicit potent immune responses in mice, guinea pigs and non-human primates (NHPs) and consistently produce high antigen-specific IgG titers. Three doses of an EBOV candidate vaccine elicit full protection against lethal EBOV infection in the cynomolgus challenge model while one of four animals infected after only two doses showed delayed onset of Ebola Virus Disease (EVD) and eventually succumbed to infection while the other three animals survived challenge. The monovalent MARV or SUDV vaccine candidates completely protected cynomolgus macaques from infection with lethal doses of MARV or SUDV. It was further demonstrated that combinations of MARV or SUDV with the EBOV vaccine can be formulated yielding bivalent vaccines retaining full efficacy. The recombinant subunit vaccine platform should therefore allow the development of a safe and efficacious multivalent vaccine candidate for protection against Ebola, Marburg and Sudan Virus Disease.
Collapse
Affiliation(s)
- Axel T. Lehrer
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Eleanore Chuang
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Madhuri Namekar
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Caitlin A. Williams
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Teri Ann S. Wong
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Michael M. Lieberman
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | | | | | | | | | - Joan B. Geisbert
- Galveston National Laboratory, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Krystle N. Agans
- Galveston National Laboratory, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Robert W. Cross
- Galveston National Laboratory, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Thomas W. Geisbert
- Galveston National Laboratory, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
14
|
Lai CY, To A, Wong TAS, Lieberman MM, Clements DE, Senda JT, Ball AH, Pessaint L, Andersen H, Donini O, Lehrer AT. Recombinant protein subunit SARS-CoV-2 vaccines formulated with CoVaccine HT adjuvant induce broad, Th1 biased, humoral and cellular immune responses in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33688645 DOI: 10.1101/2021.03.02.433614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The speed at which several COVID-19 vaccines went from conception to receiving FDA and EMA approval for emergency use is an achievement unrivaled in the history of vaccine development. Mass vaccination efforts using the highly effective vaccines are currently underway to generate sufficient herd immunity and reduce transmission of the SARS-CoV-2 virus. Despite the most advanced vaccine technology, global recipient coverage, especially in resource-poor areas remains a challenge as genetic drift in naïve population pockets threatens overall vaccine efficacy. In this study, we described the production of insect-cell expressed SARS-CoV-2 spike protein ectodomain and examined its immunogenicity in mice. We demonstrated that, when formulated with CoVaccine HT™adjuvant, an oil-in-water nanoemulsion compatible with lyophilization, our vaccine candidates elicit a broad-spectrum IgG response, high neutralizing antibody titers, and a robust, antigen-specific IFN-γ secreting response from immune splenocytes in outbred mice. Our findings lay the foundation for the development of a dry-thermostabilized vaccine that is deployable without refrigeration.
Collapse
|
15
|
Bonam SR, Kotla NG, Bohara RA, Rochev Y, Webster TJ, Bayry J. Potential immuno-nanomedicine strategies to fight COVID-19 like pulmonary infections. NANO TODAY 2021; 36:101051. [PMID: 33519949 PMCID: PMC7834523 DOI: 10.1016/j.nantod.2020.101051] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/15/2020] [Accepted: 11/30/2020] [Indexed: 05/08/2023]
Abstract
COVID-19, coronavirus disease 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic. At the time of writing this (October 14, 2020), more than 38.4 million people have become affected, and 1.0 million people have died across the world. The death rate is undoubtedly correlated with the cytokine storm and other pathological pulmonary characteristics, as a result of which the lungs cannot provide sufficient oxygen to the body's vital organs. While diversified drugs have been tested as a first line therapy, the complexity of fatal cases has not been reduced so far, and the world is looking for a treatment to combat the virus. However, to date, and despite such promise, we have received very limited information about the potential of nanomedicine to fight against COVID-19 or as an adjunct therapy in the treatment regimen. Over the past two decades, various therapeutic strategies, including direct-acting antiviral drugs, immunomodulators, a few non-specific drugs (simple to complex), have been explored to treat Acute Respiratory Distress Syndrome (ARDS), Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS), influenza, and sometimes the common flu, thus, correlating and developing specific drugs centric to COVID-19 is possible. This review article focuses on the pulmonary pathology caused by SARS-CoV-2 and other viral pathogens, highlighting possible nanomedicine therapeutic strategies that should be further tested immediately.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris F-75006, France
| | - Niranjan G Kotla
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland
| | - Raghvendra A Bohara
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland
- Centre for Interdisciplinary Research, D. Y. Patil Education Society (Institution Deemed to be University), Kolhapur (MS), India
| | - Yury Rochev
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow 119992, Russia
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris F-75006, France
- Indian Institute of Technology Palakkad, Kozhippara, Palakkad 678557, India
| |
Collapse
|
16
|
Agnolon V, Kiseljak D, Wurm MJ, Wurm FM, Foissard C, Gallais F, Wehrle S, Muñoz-Fontela C, Bellanger L, Correia BE, Corradin G, Spertini F. Designs and Characterization of Subunit Ebola GP Vaccine Candidates: Implications for Immunogenicity. Front Immunol 2020; 11:586595. [PMID: 33250896 PMCID: PMC7672190 DOI: 10.3389/fimmu.2020.586595] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/13/2020] [Indexed: 11/13/2022] Open
Abstract
The humoral responses of Ebola virus (EBOV) survivors mainly target the surface glycoprotein GP, and anti-GP neutralizing antibodies have been associated with protection against EBOV infection. In order to elicit protective neutralizing antibodies through vaccination a native-like conformation of the antigen is required. We therefore engineered and expressed in CHO cells several GP variants from EBOV (species Zaire ebolavirus, Mayinga variant), including a soluble GP ΔTM, a mucin-like domain-deleted GP ΔTM-ΔMUC, as well as two GP ΔTM-ΔMUC variants with C-terminal trimerization motifs in order to favor their native trimeric conformation. Inclusion of the trimerization motifs resulted in proteins mimicking GP metastable trimer and showing increased stability. The mucin-like domain appeared not to be critical for the retention of the native conformation of the GP protein, and its removal unmasked several neutralizing epitopes, especially in the trimers. The soluble GP variants inhibited mAbs neutralizing activity in a pseudotype transduction assay, further confirming the proteins' structural integrity. Interestingly, the trimeric GPs, a native-like GP complex, showed stronger affinity for antibodies raised by natural infection in EBOV disease survivors rather than for antibodies raised in volunteers that received the ChAd3-EBOZ vaccine. These results support our hypothesis that neutralizing antibodies are preferentially induced when using a native-like conformation of the GP antigen. The soluble trimeric recombinant GP proteins we developed represent a novel and promising strategy to develop prophylactic vaccines against EBOV and other filoviruses.
Collapse
Affiliation(s)
- Valentina Agnolon
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | | | | | - Florian M Wurm
- ExcellGene SA, Monthey, Switzerland.,Faculty of Life Sciences, École Polytechnique Fédérale De Lausanne (EPFL), Lausanne, Switzerland
| | - Charlotte Foissard
- Université Paris Saclay, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | - Fabrice Gallais
- Université Paris Saclay, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | - Sarah Wehrle
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale De Lausanne (EPFL), Lausanne, Switzerland
| | - César Muñoz-Fontela
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner site Hamburg, Hamburg, Germany
| | - Laurent Bellanger
- Université Paris Saclay, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | - Bruno Emanuel Correia
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale De Lausanne (EPFL), Lausanne, Switzerland
| | - Giampietro Corradin
- Department of Biochemistry, Université de Lausanne (UNIL), Epalinges, Switzerland
| | - François Spertini
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
17
|
Haun BK, Lai CY, Williams CA, Wong TAS, Lieberman MM, Pessaint L, Andersen H, Lehrer AT. CoVaccine HT™ Adjuvant Potentiates Robust Immune Responses to Recombinant SARS-CoV-2 Spike S1 Immunization. Front Immunol 2020; 11:599587. [PMID: 33193454 PMCID: PMC7661386 DOI: 10.3389/fimmu.2020.599587] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
Abstract
The current COVID-19 pandemic has claimed hundreds of thousands of lives and its causative agent, SARS-CoV-2, has infected millions, globally. The highly contagious nature of this respiratory virus has spurred massive global efforts to develop vaccines at record speeds. In addition to enhanced immunogen delivery, adjuvants may greatly impact protective efficacy of a SARS-CoV-2 vaccine. To investigate adjuvant suitability, we formulated protein subunit vaccines consisting of the recombinant S1 domain of SARS-CoV-2 Spike protein alone or in combination with either CoVaccine HT™ or Alhydrogel. CoVaccine HT™ induced high titres of antigen-binding IgG after a single dose, facilitated affinity maturation and class switching to a greater extent than Alhydrogel and elicited potent cell-mediated immunity as well as virus neutralizing antibody titres. Data presented here suggests that adjuvantation with CoVaccine HT™ can rapidly induce a comprehensive and protective immune response to SARS-CoV-2.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Aluminum Hydroxide/administration & dosage
- Aluminum Hydroxide/immunology
- Animals
- Antibodies, Viral/immunology
- COVID-19/immunology
- COVID-19/prevention & control
- COVID-19/virology
- COVID-19 Vaccines/administration & dosage
- COVID-19 Vaccines/genetics
- COVID-19 Vaccines/immunology
- Female
- Humans
- Immunity, Cellular
- Immunity, Humoral
- Immunization
- Immunoglobulin G/immunology
- Male
- Mice
- Mice, Inbred BALB C
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/administration & dosage
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Brien K. Haun
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
- Cell and Molecular Biology Graduate Program, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Chih-Yun Lai
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Caitlin A. Williams
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Teri Ann S. Wong
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Michael M. Lieberman
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | | | | | - Axel T. Lehrer
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
- Cell and Molecular Biology Graduate Program, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| |
Collapse
|
18
|
Preston KB, Monticello CR, Wong TAS, To A, Donini O, Lehrer AT, Randolph TW. Preservation of Quaternary Structure in Thermostable, Lyophilized Filovirus Glycoprotein Vaccines: A Search for Stability-Indicating Assays. J Pharm Sci 2020; 109:3716-3727. [PMID: 32931778 DOI: 10.1016/j.xphs.2020.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/13/2020] [Accepted: 09/08/2020] [Indexed: 01/08/2023]
Abstract
The filoviruses Zaire ebolavirus (EBOV), Marburg marburgvirus (MARV), and Sudan ebolavirus (SUDV) are some of the most lethal infectious agents known. To date, the Zaire ebolavirus vaccine (ERVEBO®) is the only United States Food and Drug Administration (FDA) approved vaccine available for any species of filovirus. However, the ERVEBO® vaccine requires cold-chain storage not to exceed -60 °C. Such cold-chain requirements are difficult to maintain in low- and middle-income countries where filovirus outbreaks originate. To improve the thermostability of filovirus vaccines in order to potentially relax or eliminate these cold-chain requirements, monovalent subunit vaccines consisting of glycoproteins from EBOV, MARV, and SUDV were stabilized within amorphous disaccharide glasses through lyophilization. Lyophilized formulations and liquid controls were incubated for up to 12 weeks at 50 °C to accelerate degradation. To identify a stability-indicating assay appropriate for monitoring protein degradation and immunogenicity loss during these accelerated stability studies, filovirus glycoprotein secondary, tertiary, and quaternary structures and vaccine immunogenicity were measured. Size-exclusion chromatography was the most sensitive indicator of glycoprotein stability in the various formulations for all three filovirus immunogens. Degradation of the test vaccines during accelerated stability studies was reflected in changes in quaternary structure, which were discernible with size-exclusion chromatography. Filovirus glycoproteins in glassy lyophilized formulations retained secondary, tertiary, and quaternary protein structure over the incubation period, whereas the proteins within liquid controls both aggregated to form higher molecular weight species and dissociated from their native quaternary structure to form a variety of structurally-perturbed lower molecular weight species.
Collapse
Affiliation(s)
- Kendall B Preston
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Connor R Monticello
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Teri Ann S Wong
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI 96813, USA
| | - Albert To
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI 96813, USA
| | | | - Axel T Lehrer
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI 96813, USA
| | - Theodore W Randolph
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
19
|
Haun BK, Lai CY, Williams CA, Wong TA, Lieberman MM, Pessaint L, Andersen-Elyard H, Lehrer AT. CoVaccine HT™ adjuvant potentiates robust immune responses to recombinant SARS-CoV-2 Spike S1 immunisation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32743582 DOI: 10.1101/2020.07.24.220715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The current COVID-19 pandemic has claimed hundreds of thousands of lives and its causative agent, SARS-CoV-2, has infected millions, globally. The highly contagious nature of this respiratory virus has spurred massive global efforts to develop vaccines at record speeds. In addition to enhanced immunogen delivery, adjuvants may greatly impact protective efficacy of a SARS-CoV-2 vaccine. To investigate adjuvant suitability, we formulated protein subunit vaccines consisting of the recombinant S1 domain of SARS-CoV-2 Spike protein alone or in combination with either CoVaccine HT™ or Alhydrogel. CoVaccine HT™ induced high titres of antigen-binding IgG after a single dose, facilitated affinity maturation and class switching to a greater extent than Alhydrogel and elicited potent cell-mediated immunity as well as virus neutralising antibody titres. Data presented here suggests that adjuvantation with CoVaccine HT™ can rapidly induce a comprehensive and protective immune response to SARS-CoV-2.
Collapse
|
20
|
Xu S, Jiao C, Jin H, Li W, Li E, Cao Z, Shi Z, Yan F, Zhang S, He H, Chi H, Feng N, Zhao Y, Gao Y, Yang S, Wang J, Wang H, Xia X. A Novel Bacterium-Like Particle-Based Vaccine Displaying the SUDV Glycoprotein Induces Potent Humoral and Cellular Immune Responses in Mice. Viruses 2019; 11:v11121149. [PMID: 31835785 PMCID: PMC6950126 DOI: 10.3390/v11121149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/01/2019] [Accepted: 12/07/2019] [Indexed: 01/24/2023] Open
Abstract
Sudan virus (SUDV) causes severe lethal hemorrhagic fever in humans and nonhuman primates. The most effective and economical way to protect against Sudan ebolavirus disease is prophylactic vaccination. However, there are no licensed vaccines to prevent SUDV infections. In this study, a bacterium-like particle (BLP)-based vaccine displaying the extracellular domain of the SUDV glycoprotein (eGP) was developed based on a gram-positive enhancer matrix-protein anchor (GEM-PA) surface display system. Expression of the recombinant GEM-displayed eGP (eGP-PA-GEM) was verified by Western blotting and immunofluorescence assays. The SUDV BLPs (SBLPs), which were mixed with Montanide ISA 201VG plus Poly (I:C) combined adjuvant, could induce high SUDV GP-specific IgG titers of up to 1:40,960 and robust virus-neutralizing antibody titers reached 1:460. The SBLP also elicited T-helper 1 (Th1) and T-helper 2 (Th2) cell-mediated immunity. These data indicate that the SBLP subunit vaccine has the potential to be developed into a promising candidate vaccine against SUDV infections.
Collapse
Affiliation(s)
- Shengnan Xu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (S.X.); (Z.S.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
| | - Cuicui Jiao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
| | - Hongli Jin
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Entao Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zengguo Cao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zhikang Shi
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (S.X.); (Z.S.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
| | - Shengnan Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Hongbin He
- Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China;
| | - Hang Chi
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225000, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225000, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225000, China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225000, China
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225000, China
| | - Jianzhong Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (S.X.); (Z.S.)
- Correspondence: (J.W.); (X.X.)
| | - Hualei Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225000, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, China; (C.J.); (H.J.); (W.L.); (E.L.); (Z.C.); (F.Y.); (S.Z.); (H.C.); (N.F.); (Y.Z.); (Y.G.); (S.Y.); (H.W.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225000, China
- Correspondence: (J.W.); (X.X.)
| |
Collapse
|
21
|
Fan Y, Stronsky SM, Xu Y, Steffens JT, van Tongeren SA, Erwin A, Cooper CL, Moon JJ. Multilamellar Vaccine Particle Elicits Potent Immune Activation with Protein Antigens and Protects Mice against Ebola Virus Infection. ACS NANO 2019; 13:11087-11096. [PMID: 31497947 PMCID: PMC6834342 DOI: 10.1021/acsnano.9b03660] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Recent outbreaks of emerging infectious diseases, such as Ebola virus disease (EVD), highlight the urgent need to develop effective countermeasures, including prophylactic vaccines. Subunit proteins derived from pathogens provide a safe source of antigens for vaccination, but they are often limited by their low immunogenicity. We have developed a multilamellar vaccine particle (MVP) system composed of lipid-hyaluronic acid multi-cross-linked hybrid nanoparticles for vaccination with protein antigens and demonstrate their efficacy against Ebola virus (EBOV) exposure. MVPs efficiently accumulated in dendritic cells and promote antigen processing. Mice immunized with MVPs elicited robust and long-lasting antigen-specific CD8+ and CD4+ T cell immune responses as well as humoral immunity. A single-dose vaccination with MVPs delivering EBOV glycoprotein achieved an 80% protection rate against lethal EBOV infection. These results suggest that MVPs offer a promising platform for improving recombinant protein-based vaccine approaches.
Collapse
Affiliation(s)
- Yuchen Fan
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sabrina M. Stronsky
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland 21702, United States
- Joint Program Executive Office - Chemical, Biological, Radiological, and Nuclear Defense (JPEO–CBRND), Fort Detrick, Maryland 21702, United States
| | - Yao Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jesse T. Steffens
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland 21702, United States
| | - Sean A. van Tongeren
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland 21702, United States
| | - Amanda Erwin
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Christopher L. Cooper
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland 21702, United States
- Corresponding Authors:.,
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Corresponding Authors:.,
| |
Collapse
|
22
|
Suschak JJ, Schmaljohn CS. Vaccines against Ebola virus and Marburg virus: recent advances and promising candidates. Hum Vaccin Immunother 2019; 15:2359-2377. [PMID: 31589088 DOI: 10.1080/21645515.2019.1651140] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The filoviruses Ebola virus and Marburg virus are among the most dangerous pathogens in the world. Both viruses cause viral hemorrhagic fever, with case fatality rates of up to 90%. Historically, filovirus outbreaks had been relatively small, with only a few hundred cases reported. However, the recent West African Ebola virus outbreak underscored the threat that filoviruses pose. The three year-long outbreak resulted in 28,646 Ebola virus infections and 11,323 deaths. The lack of Food and Drug Administration (FDA) licensed vaccines and antiviral drugs hindered early efforts to contain the outbreak. In response, the global scientific community has spurred the advanced development of many filovirus vaccine candidates. Novel vaccine platforms, such as viral vectors and DNA vaccines, have emerged, leading to the investigation of candidate vaccines that have demonstrated protective efficacy in small animal and nonhuman primate studies. Here, we will discuss several of these vaccine platforms with a particular focus on approaches that have advanced into clinical development.
Collapse
Affiliation(s)
- John J Suschak
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| | - Connie S Schmaljohn
- Headquarters Division, U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| |
Collapse
|
23
|
Liu Y, Ye L, Lin F, Gomaa Y, Flyer D, Carrion R, Patterson JL, Prausnitz MR, Smith G, Glenn G, Wu H, Compans RW, Yang C. Intradermal Vaccination With Adjuvanted Ebola Virus Soluble Glycoprotein Subunit Vaccine by Microneedle Patches Protects Mice Against Lethal Ebola Virus Challenge. J Infect Dis 2019; 218:S545-S552. [PMID: 29893888 DOI: 10.1093/infdis/jiy267] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In this study, we investigated immune responses induced by purified Ebola virus (EBOV) soluble glycoprotein (sGP) subunit vaccines via intradermal immunization with microneedle (MN) patches in comparison with intramuscular (IM) injection in mice. Our results showed that MN delivery of EBOV sGP was superior to IM injection in eliciting higher levels and longer lasting antibody responses against EBOV sGP and GP antigens. Moreover, sGP-specific immune responses induced by MN or IM immunizations were effectively augmented by formulating sGP with a saponin-based adjuvant, and they were shown to confer complete protection of mice against lethal mouse-adapted EBOV (MA-EBOV) challenge. In comparison, mice that received sGP without adjuvant by MN or IM immunizations succumbed to lethal MA-EBOV challenge. These results show that immunization with EBOV sGP subunit vaccines with adjuvant by MN patches, which have been shown to provide improved safety and thermal stability, is a promising approach to protect against EBOV infection.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences (CAAS), Changchun, Jilin, China.,Emory University School of Medicine, Atlanta, Georgia
| | - Ling Ye
- Emory University School of Medicine, Atlanta, Georgia
| | - Fang Lin
- Emory University School of Medicine, Atlanta, Georgia.,Central Laboratory, Tangdu Hospital at the Fourth Military Medical University, Xi'An, China
| | - Yasmine Gomaa
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta
| | | | | | | | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta
| | | | | | - Hua Wu
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences (CAAS), Changchun, Jilin, China
| | | | - Chinglai Yang
- Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
24
|
Haun BK, Kamara V, Dweh AS, Garalde-Machida K, Forkay SSE, Takaaze M, Namekar M, Wong TAS, Bell-Gam Woto AER, Humphreys P, Weeks OI, Fallah MP, Berestecky JM, Nerurkar VR, Lehrer AT. Serological evidence of Ebola virus exposure in dogs from affected communities in Liberia: A preliminary report. PLoS Negl Trop Dis 2019; 13:e0007614. [PMID: 31329600 PMCID: PMC6684096 DOI: 10.1371/journal.pntd.0007614] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 08/06/2019] [Accepted: 07/08/2019] [Indexed: 12/19/2022] Open
Abstract
Filoviruses such as Ebola virus (EBOV) cause outbreaks of viral hemorrhagic fevers for which no FDA-approved vaccines or drugs are available. The 2014-2016 EBOV outbreak in West Africa infected approximately 30,000 people, killing more than 11,000 and affecting thousands more in areas still suffering from the effects of civil wars. Sierra Leone and Liberia reported EBOV cases in every county demonstrating the efficient spread of this highly contagious virus in the well-connected societies of West Africa. In communities, canines are often in contact with people while scavenging for food, which may include sickly bush animals or, as reported from the outbreak, EBOV infected human bodies and excrement. Therefore, dogs may serve as sentinel animals for seroprevalence studies of emerging infectious viruses. Further, due to their proximity to humans, they may have important One Health implications while offering specimens, which may be easier to obtain than human serum samples. Previous reports on detecting EBOV exposure in canines have been limited. Herein we describe a pilot project to detect IgG-responses directed against multiple filovirus and Lassa virus (LASV) antigens in dogs from EBOV affected communities in Liberia. We used a multiplex Luminex-based microsphere immunoassay (MIA) to detect dog IgG binding to recombinant filovirus antigens or LASV glycoprotein (GP) in serum from dogs that were old enough to be present during the EBOV outbreak. We identified 47 (73%) of 64 dog serum samples as potentially exposed to filoviruses and up to 100% of the dogs from some communities were found to have elevated levels of EBOV antigen-binding IgG titers. The multiplex MIA described in this study provides evidence for EBOV IgG antibodies present in dogs potentially exposed to the virus during the 2014-16 outbreak in Liberia. These data support the feasibility of canines as EBOV sentinels and provides evidence that seroprevalence studies in dogs can be conducted using suitable assays even under challenging field conditions. Further studies are warranted to collect data and to define the role canines may play in transmission or detection of emerging infectious diseases.
Collapse
Affiliation(s)
- Brien K. Haun
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Varney Kamara
- Department of Biological Sciences, Medical Science, TJR Faulkner College of Science and Technology, University of Liberia, Fendall, Liberia
- Leon Quist Ledlum Central Veterinary Diagnostic Laboratory, Ministry of Agriculture, Republic of Liberia, Fendall, Liberia
| | - Abigail S. Dweh
- Department of Biological Sciences, Medical Science, TJR Faulkner College of Science and Technology, University of Liberia, Fendall, Liberia
| | - Kianalei Garalde-Machida
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Saymajunkon S. E. Forkay
- Department of Biological Sciences, Medical Science, TJR Faulkner College of Science and Technology, University of Liberia, Fendall, Liberia
| | - Melissa Takaaze
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
- Kapiolani Community College, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Madhuri Namekar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Teri Ann S. Wong
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Ayesha E. R. Bell-Gam Woto
- Department of Biological Sciences, Medical Science, TJR Faulkner College of Science and Technology, University of Liberia, Fendall, Liberia
- National Public Health Institute of Liberia, Monrovia, Republic of Liberia
| | - Peter Humphreys
- Department of Biological Sciences, Medical Science, TJR Faulkner College of Science and Technology, University of Liberia, Fendall, Liberia
| | - Ophelia I. Weeks
- Department of Biological Sciences, Medical Science, TJR Faulkner College of Science and Technology, University of Liberia, Fendall, Liberia
| | - Mosoka P. Fallah
- National Public Health Institute of Liberia, Monrovia, Republic of Liberia
| | - John M. Berestecky
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
- Kapiolani Community College, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Vivek R. Nerurkar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Axel T. Lehrer
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|
25
|
Lehrer AT, Wong TAS, Lieberman MM, Johns L, Medina L, Feldmann F, Feldmann H, Marzi A. Recombinant subunit vaccines protect guinea pigs from lethal Ebola virus challenge. Vaccine 2019; 37:6942-6950. [PMID: 31324500 DOI: 10.1016/j.vaccine.2019.06.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/09/2019] [Accepted: 06/14/2019] [Indexed: 01/09/2023]
Abstract
Ebola virus (EBOV) is among the deadliest pathogens known to man causing infrequent outbreaks of hemorrhagic disease. In humans, the case fatality rates in the outbreaks can reach 90%. During the West African epidemic almost 30,000 people were infected and of these over 11,000 fatalities were reported. Currently, we are facing an uncontained larger outbreak in the Democratic Republic of the Congo. Even though EBOV was discovered in 1976, extensive efforts to develop countermeasures, particularly therapeutics and vaccines, started late and there is still no FDA-approved product available. Nevertheless, one candidate vaccine, the rVSV-ZEBOV, is being used in clinical trials during the current outbreak with the hope of ending the human transmission chains. However, adverse reactions to administration of some EBOV vaccines have been reported; therefore, we have developed a safe and efficacious formulation of insect-cell derived adjuvanted protein vaccines. Vaccine candidates containing the EBOV glycoprotein with or without matrix proteins VP24 and VP40 formulated with one of three different adjuvants were tested in guinea pigs for immunogenicity and efficacy against lethal EBOV challenge. The results demonstrated that these vaccine candidates engendered high titers of antigen-specific antibodies in immunized animals and two of these vaccine candidates afforded complete or nearly complete protection against lethal challenge. Interestingly, we found a sex bias in partially protected immunized groups with male guinea pigs succumbing to disease and females surviving. In summary, we developed a safe and immunogenic adjuvanted subunit vaccine uniformly protective against EBOV disease in guinea pigs.
Collapse
Affiliation(s)
- Axel T Lehrer
- PanThera Biopharma, LLC, Aiea, HI 96701, United States; University of Hawaii at Manoa, John A. Burns School of Medicine, Honolulu, HI 96813, United States.
| | - Teri-Ann S Wong
- PanThera Biopharma, LLC, Aiea, HI 96701, United States; University of Hawaii at Manoa, John A. Burns School of Medicine, Honolulu, HI 96813, United States
| | - Michael M Lieberman
- University of Hawaii at Manoa, John A. Burns School of Medicine, Honolulu, HI 96813, United States
| | - Lisa Johns
- PanThera Biopharma, LLC, Aiea, HI 96701, United States; University of Hawaii at Manoa, John A. Burns School of Medicine, Honolulu, HI 96813, United States
| | - Liana Medina
- University of Hawaii at Manoa, John A. Burns School of Medicine, Honolulu, HI 96813, United States
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States.
| |
Collapse
|
26
|
Chisholm CF, Kang TJ, Dong M, Lewis K, Namekar M, Lehrer AT, Randolph TW. Thermostable Ebola virus vaccine formulations lyophilized in the presence of aluminum hydroxide. Eur J Pharm Biopharm 2019; 136:213-220. [PMID: 30703544 DOI: 10.1016/j.ejpb.2019.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 10/27/2022]
Abstract
No United States Food and Drug Administration-licensed vaccines protective against Ebola virus (EBOV) infections are currently available. EBOV vaccine candidates currently in development, as well as most currently licensed vaccines in general, require transport and storage under a continuous cold chain in order to prevent potential decreases in product efficacy. Cold chain requirements are particularly difficult to maintain in developing countries. To improve thermostability and reduce costly cold chain requirements, a subunit protein vaccine against EBOV was formulated as a glassy solid using lyophilization. Formulations of the key antigen, Ebola glycoprotein (EBOV-GP), adjuvanted with microparticulate aluminum hydroxide were prepared in liquid and lyophilized forms, and the vaccines were incubated at 40 °C for 12 weeks. Aggregation and degradation of EBOV-GP were observed in liquid formulations during the 12-week incubation period, whereas changes were minimal in lyophilized formulations. Antibody responses against EBOV-GP following three intramuscular immunizations in BALB/c mice were used to determine vaccine immunogenicity. EBOV-GP formulations were equally immunogenic in liquid and lyophilized forms. After lyophilization and reconstitution, adjuvanted vaccine formulations produced anti-EBOV-GP IgG antibody responses in mice similar to those generated against corresponding adjuvanted liquid vaccine formulations. More importantly, antibody responses in mice injected with reconstituted lyophilized vaccine formulations that had been incubated at 40 °C for 12 weeks prior to injection indicated that vaccine immunogenicity was fully retained after high-temperature storage, showing promise for future vaccine development efforts.
Collapse
Affiliation(s)
- Carly Fleagle Chisholm
- Department of Chemical and Biological Engineering, Center for Pharmaceutical Biotechnology, University of Colorado, Boulder, CO 80309, United States
| | - Taek Jin Kang
- Department of Chemical and Biological Engineering, Center for Pharmaceutical Biotechnology, University of Colorado, Boulder, CO 80309, United States; Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Miao Dong
- Department of Chemical and Biological Engineering, Center for Pharmaceutical Biotechnology, University of Colorado, Boulder, CO 80309, United States
| | - Kasey Lewis
- Department of Chemical and Biological Engineering, Center for Pharmaceutical Biotechnology, University of Colorado, Boulder, CO 80309, United States
| | - Madhuri Namekar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States
| | - Axel T Lehrer
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States
| | - Theodore W Randolph
- Department of Chemical and Biological Engineering, Center for Pharmaceutical Biotechnology, University of Colorado, Boulder, CO 80309, United States.
| |
Collapse
|
27
|
Bazzill JD, Stronsky SM, Kalinyak LC, Ochyl LJ, Steffens JT, van Tongeren SA, Cooper CL, Moon JJ. Vaccine nanoparticles displaying recombinant Ebola virus glycoprotein for induction of potent antibody and polyfunctional T cell responses. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 18:414-425. [PMID: 30471480 DOI: 10.1016/j.nano.2018.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/12/2018] [Accepted: 11/12/2018] [Indexed: 01/31/2023]
Abstract
The recent outbreaks of Ebolavirus (EBOV) in West Africa underscore the urgent need to develop an effective EBOV vaccine. Here, we report the development of synthetic nanoparticles as a safe and highly immunogenic platform for vaccination against EBOV. We show that a large recombinant EBOV antigen (rGP) can be incorporated in a configurational manner into lipid-based nanoparticles, termed interbilayer-crosslinked multilamellar vesicles (ICMVs). The epitopes and quaternary structure of rGP were properly maintained on the surfaces of ICMVs formed either with or without nickel nitrilotriacetic acid (NTA)-functionalized lipids. When administered in mice, rGP-ICMVs without NTA-lipids efficiently generated germinal center B cells and polyfunctional T cells while eliciting robust neutralizing antibody responses. This study suggests the potential of vaccine nanoparticles as a delivery platform for configurational, multivalent display of large subunit antigens and induction of neutralizing antibody and T cell responses.
Collapse
Affiliation(s)
- Joseph D Bazzill
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Sabrina M Stronsky
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA
| | - Laura C Kalinyak
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA
| | - Lukasz J Ochyl
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jesse T Steffens
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA
| | - Sean A van Tongeren
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA
| | - Christopher L Cooper
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA.
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
28
|
Medina LO, To A, Lieberman MM, Wong TAS, Namekar M, Nakano E, Andersen H, Yalley-Ogunro J, Greenhouse J, Higgs S, Huang YJS, Vanlandingham DL, Horton JS, Clements DE, Lehrer AT. A Recombinant Subunit Based Zika Virus Vaccine Is Efficacious in Non-human Primates. Front Immunol 2018; 9:2464. [PMID: 30467501 PMCID: PMC6236113 DOI: 10.3389/fimmu.2018.02464] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/04/2018] [Indexed: 01/07/2023] Open
Abstract
Zika Virus (ZIKV), a virus with no severe clinical symptoms or sequelae previously associated with human infection, became a public health threat following an epidemic in French Polynesia 2013-2014 that resulted in neurological complications associated with infection. Although no treatment currently exists, several vaccines using different platforms are in clinical development. These include nucleic acid vaccines based on the prM-E protein from the virus and purified formalin-inactivated ZIKV vaccines (ZPIV) which are in Phase 1/2 clinical trials. Using a recombinant subunit platform consisting of antigens produced in Drosophila melanogaster S2 cells, we have previously shown seroconversion and protection against viremia in an immunocompetent mouse model. Here we demonstrate the efficacy of our recombinant subunits in a non-human primate (NHP) viremia model. High neutralizing antibody titers were seen in all protected macaques and passive transfer demonstrated that plasma from these NHPs was sufficient to protect against viremia in mice subsequently infected with ZIKV. Taken together our data demonstrate the immunogenicity and protective efficacy of the recombinant subunit vaccine candidate in NHPs as well as highlight the importance of neutralizing antibodies in protection against ZIKV infection and their potential implication as a correlate of protection.
Collapse
Affiliation(s)
- Liana O. Medina
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI, United States
| | - Albert To
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI, United States
| | - Michael M. Lieberman
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI, United States
| | - Teri Ann S. Wong
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI, United States
| | - Madhuri Namekar
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI, United States
| | - Eileen Nakano
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI, United States
| | | | | | | | - Stephen Higgs
- Department of Diagnostic Medicine/Pathobiology, Biosecurity Research Institute, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Yan-Jang S. Huang
- Department of Diagnostic Medicine/Pathobiology, Biosecurity Research Institute, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Dana L. Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, Biosecurity Research Institute, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | | | | | - Axel T. Lehrer
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
29
|
Filovirus – Auslöser von hämorrhagischem Fieber. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2018; 61:894-907. [DOI: 10.1007/s00103-018-2757-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Palomares LA, Mukhopadhyay TK, Genzel Y, Lua LH, Cox MM. Vaccine Technology VI: Innovative and integrated approaches in vaccine development. Vaccine 2018; 36:3061-3063. [DOI: 10.1016/j.vaccine.2018.03.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Ren S, Wei Q, Cai L, Yang X, Xing C, Tan F, Leavenworth JW, Liang S, Liu W. Alphavirus Replicon DNA Vectors Expressing Ebola GP and VP40 Antigens Induce Humoral and Cellular Immune Responses in Mice. Front Microbiol 2018; 8:2662. [PMID: 29375526 PMCID: PMC5767729 DOI: 10.3389/fmicb.2017.02662] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/20/2017] [Indexed: 11/13/2022] Open
Abstract
Ebola virus (EBOV) causes severe hemorrhagic fevers in humans, and no approved therapeutics or vaccine is currently available. Glycoprotein (GP) is the major protective antigen of EBOV, and can generate virus-like particles (VLPs) by co-expression with matrix protein (VP40). In this study, we constructed a recombinant Alphavirus Semliki Forest virus (SFV) replicon vector DREP to express EBOV GP and matrix viral protein (VP40). EBOV VLPs were successfully generated and achieved budding from 293 cells after co-transfection with DREP-based GP and VP40 vectors (DREP-GP+DREP-VP40). Vaccination of BALB/c mice with DREP-GP, DREP-VP40, or DREP-GP+DREP-VP40 vectors, followed by immediate electroporation resulted in a mixed IgG subclass production, which recognized EBOV GP and/or VP40 proteins. This vaccination regimen also led to the generation of both Th1 and Th2 cellular immune responses in mice. Notably, vaccination with DREP-GP and DREP-VP40, which produces both GP and VP40 antigens, induced a significantly higher level of anti-GP IgG2a antibody and increased IFN-γ secreting CD8+ T-cell responses relative to vaccination with DREP-GP or DREP-VP40 vector alone. Our study indicates that co-expression of GP and VP40 antigens based on the SFV replicon vector generates EBOV VLPs in vitro, and vaccination with recombinant DREP vectors containing GP and VP40 antigens induces Ebola antigen-specific humoral and cellular immune responses in mice. This novel approach provides a simple and efficient vaccine platform for Ebola disease prevention.
Collapse
Affiliation(s)
- Shoufeng Ren
- Department of Human Parasitology, Wenzhou Medical University, Wenzhou, China
| | - Qimei Wei
- Department of Human Parasitology, Wenzhou Medical University, Wenzhou, China.,Institute of Pathogen and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Liya Cai
- Department of Human Parasitology, Wenzhou Medical University, Wenzhou, China.,Institute of Pathogen and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Xuejing Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Cuicui Xing
- Department of Human Parasitology, Wenzhou Medical University, Wenzhou, China
| | - Feng Tan
- Department of Human Parasitology, Wenzhou Medical University, Wenzhou, China.,Institute of Pathogen and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Jianmei W Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shaohui Liang
- Department of Human Parasitology, Wenzhou Medical University, Wenzhou, China.,Institute of Pathogen and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Wenquan Liu
- Department of Human Parasitology, Wenzhou Medical University, Wenzhou, China.,Institute of Pathogen and Immunology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
32
|
Recombinant Zika Virus Subunits Are Immunogenic and Efficacious in Mice. mSphere 2018; 3:mSphere00576-17. [PMID: 29359186 PMCID: PMC5760751 DOI: 10.1128/msphere.00576-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 12/14/2017] [Indexed: 12/01/2022] Open
Abstract
The recent outbreaks of Zika virus (ZIKV) infection in French Polynesia, the Caribbean, and the Americas have highlighted the severe neuropathological sequelae that such an infection may cause. The development of a safe, effective ZIKV vaccine is critical for several reasons: (i) the difficulty in diagnosing an active infection due to common nonspecific symptoms, (ii) the lack of a specific antiviral therapy, and (iii) the potentially devastating pathological effects of in utero infection. Moreover, a vaccine with an excellent safety profile, such as a nonreplicating, noninfectious vaccine, would be ideal for high-risk people (e.g., pregnant women, immunocompromised patients, and elderly individuals). This report describes the development of a recombinant subunit protein vaccine candidate derived from stably transformed insect cells expressing the ZIKV envelope protein in vitro, the primary antigen to which effective virus-neutralizing antibodies are engendered by immunized animals for several other flaviviruses; the vaccine candidate elicits effective virus-neutralizing antibodies against ZIKV and provides protection against ZIKV infection in mice. Following the 2015 Zika virus (ZIKV) outbreaks in the South Pacific, Caribbean, and Americas, ZIKV has emerged as a serious threat due to its association with infantile microcephaly and other neurologic disorders. Despite an international effort to develop a safe and effective vaccine to combat congenital Zika syndrome and ZIKV infection, only DNA and mRNA vaccines encoding the precursor membrane (prM) and envelope (E) proteins, an inactivated-ZIKV vaccine, and a measles virus-based ZIKV vaccine are currently in phase I or II (prM/E DNA) clinical trials. A ZIKV vaccine based on a nonreplicating, recombinant subunit platform offers a higher safety profile than other ZIKV vaccine candidates but is still highly immunogenic, inducing high virus-neutralizing antibody titers. Here, we describe the production and purification of Drosophila melanogaster S2 insect cell-derived, soluble ZIKV E protein and evaluate its immunogenicity and efficacy in three different mouse strains. As expected, significant virus-specific antibody titers were observed when using formulations containing clinically relevant adjuvants. Immunized mice challenged with live virus demonstrate inhibition of virus replication. Importantly, plaque reduction neutralization tests (PRNTs) indicate the high-titer production of neutralizing antibodies, a correlate of protection in the defense against ZIKV infection. ZIKV challenge of immunocompetent mice led to full protection against viremia with two doses of adjuvanted vaccine candidates. These data demonstrate a proof of concept and establish recombinant subunit immunogens as an effective vaccine candidate against ZIKV infection. IMPORTANCE The recent outbreaks of Zika virus (ZIKV) infection in French Polynesia, the Caribbean, and the Americas have highlighted the severe neuropathological sequelae that such an infection may cause. The development of a safe, effective ZIKV vaccine is critical for several reasons: (i) the difficulty in diagnosing an active infection due to common nonspecific symptoms, (ii) the lack of a specific antiviral therapy, and (iii) the potentially devastating pathological effects of in utero infection. Moreover, a vaccine with an excellent safety profile, such as a nonreplicating, noninfectious vaccine, would be ideal for high-risk people (e.g., pregnant women, immunocompromised patients, and elderly individuals). This report describes the development of a recombinant subunit protein vaccine candidate derived from stably transformed insect cells expressing the ZIKV envelope protein in vitro, the primary antigen to which effective virus-neutralizing antibodies are engendered by immunized animals for several other flaviviruses; the vaccine candidate elicits effective virus-neutralizing antibodies against ZIKV and provides protection against ZIKV infection in mice.
Collapse
|
33
|
Lai CY, Strange DP, Wong TAS, Lehrer AT, Verma S. Ebola Virus Glycoprotein Induces an Innate Immune Response In vivo via TLR4. Front Microbiol 2017; 8:1571. [PMID: 28861075 PMCID: PMC5562721 DOI: 10.3389/fmicb.2017.01571] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/03/2017] [Indexed: 01/16/2023] Open
Abstract
Ebola virus (EBOV), a member of the Filoviridae family, causes the most severe form of viral hemorrhagic fever. Although no FDA licensed vaccine or treatment against Ebola virus disease (EVD) is currently available, Ebola virus glycoprotein (GP) is the major antigen used in all candidate Ebola vaccines. Recent reports of protection as quickly as within 6 days of administration of the rVSV-based vaccine expressing EBOV GP before robust humoral responses were generated suggests that the innate immune responses elicited early after vaccination may contribute to the protection. However, the innate immune responses induced by EBOV GP in the absence of viral vectors or adjuvants have not been fully characterized in vivo. Our recent studies demonstrated that immunization with highly purified recombinant GP in the absence of adjuvants induced a robust IgG response and partial protection against EBOV infection suggesting that GP alone can induce protective immunity. In this study we investigated the early immune response to purified EBOV GP alone in vitro and in vivo. We show that GP was efficiently internalized by antigen presenting cells and subsequently induced production of key inflammatory cytokines. In vivo, immunization of mice with EBOV GP triggered the production of key Th1 and Th2 innate immune cytokines and chemokines, which directly governed the recruitment of CD11b+ macrophages and CD11c+ dendritic cells to the draining lymph nodes (DLNs). Pre-treatment of mice with a TLR4 antagonist inhibited GP-induced cytokine production and recruitment of immune cells to the DLN. EBOV GP also upregulated the expression of costimulatory molecules in bone marrow derived macrophages suggesting its ability to enhance APC stimulatory capacity, which is critical for the induction of effective antigen-specific adaptive immunity. Collectively, these results provide the first in vivo evidence that early innate immune responses to EBOV GP are mediated via the TLR4 pathway and are able to modulate the innate-adaptive interface. These mechanistic insights into the adjuvant-like property of EBOV GP may help to develop a better understanding of how optimal prophylactic efficacy of EBOV vaccines can be achieved as well as further explore the potential post-exposure use of vaccines to prevent filoviral disease.
Collapse
Affiliation(s)
- Chih-Yun Lai
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at ManoaHonolulu, HI, United States
| | - Daniel P Strange
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at ManoaHonolulu, HI, United States
| | - Teri Ann S Wong
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at ManoaHonolulu, HI, United States
| | - Axel T Lehrer
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at ManoaHonolulu, HI, United States
| | - Saguna Verma
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at ManoaHonolulu, HI, United States
| |
Collapse
|