1
|
Gent V, Dhar N, Izu A, Jones S, Dangor Z, Briner C, Hosken N, Kwatra G, Madhi SA. Association of serum anti-gbs2106 protein immunoglobulin G (IgG) in newborns and risk reduction of invasive group B streptococcus disease during early infancy. Vaccine 2025; 54:127016. [PMID: 40088514 DOI: 10.1016/j.vaccine.2025.127016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/25/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Human immunoglobulin G (IgG) directed against Group B streptococcus (GBS) epitopes is transferred transplacentally from the mother to the fetus. A GBS putative protein, gbs2106, has been previously identified as a potential GBS protein antigen vaccine candidate. However, its genetic prevalence and surface expression in GBS-isolates has not been evaluated. In this study, we evaluated the prevalence, surface expression and association of maternal-acquired serum anti-gbs2106 IgG in newborns and risk reduction of infant invasive GBS disease through to 90 days of age in a South African-based cohort. METHODS We conducted a nested case-control study within a previously established birth cohort that was designed to investigate serological markers associated with risk reduction of invasive GBS disease. In the parent study, additional cases were identified through a hospital surveillance system which included infants diagnosed with culture-confirmed invasive GBS disease outside the original cohort study. In this current study, surface expression of gbs2106 was analyzed on recto-vaginal colonizing isolates from mothers whose infants remained healthy, and on isolates from infants who developed invasive GBS disease. Flow cytometry was used to determine surface expression levels. The anti-gbs2106 IgG in maternal and infant or cord blood was measured using a bead-based assay on the Luminex platform. RESULTS The gbs2106 gene was present on all colonizing GBS-isolates from women in the control group and infant invasive GBS-isolates. The gbs2106 protein was expressed on 81.6 % (71/87) and 82.2 % (48/58) of maternal colonizing isolates and invasive GBS-isolates, respectively. There was a strong positive correlation (r = 0.855, p < 0.0001) of maternal and cord serum anti-gbs2106 IgG levels, with the combined cord to maternal anti-gbs2106 IgG geometric mean concentration ratio being 0.9 (IQR 0.7-1.1). Serum anti-gbs2106 IgG geometric mean concentrations in the infants were lower among the invasive disease cases (158.7 arbitrary units [AU]/ml; 95 %CI: 102.3-246.2) compared with controls (304.8 AU/ml; 95 %CI: 226.8-409.8; p = 0.012). CONCLUSION Our study demonstrates an inverse association between infant serum anti-gbs2106 IgG and risk of invasive GBS disease, indicating gbs2106 protein as a potential vaccine candidate.
Collapse
Affiliation(s)
- Vicky Gent
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nisha Dhar
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Alane Izu
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stephanie Jones
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Wits Infectious Diseases and Oncology Research Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ziyaad Dangor
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Wits Infectious Diseases and Oncology Research Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Carmen Briner
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Wits Infectious Diseases and Oncology Research Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nancy Hosken
- Center for Vaccine Innovation and Access, PATH, Seattle, Washington, USA
| | - Gaurav Kwatra
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Department of Clinical Microbiology, Christian Medical College, Vellore, India; Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Shabir A Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Wits Infectious Diseases and Oncology Research Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
2
|
Khandaker S, Sharma S, Hall T, Lim S, Lehtonen J, Leung S, Ahmed ZB, Gorringe A, Saha SK, Marchant A, Le Doare K, Kadioglu A, French N. Diversity in Naturally Acquired Immunity to Group B Streptococcus: A Comparative Study of Women From Bangladesh, Malawi, and the United Kingdom. J Infect Dis 2025; 231:e456-e467. [PMID: 39692506 PMCID: PMC11841642 DOI: 10.1093/infdis/jiae607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/21/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Significant disparities in group B Streptococcus (GBS) colonization and neonatal disease rates have been documented across different geographic regions. For example, Bangladesh reports notably lower rates as compared with the United Kingdom and Malawi. This study investigates whether this epidemiologic variability correlates with the immune response to GBS in these regions. METHODS Qualitative and quantitative analyses of naturally acquired immunoglobulin G (IgG) antibodies against GBS capsular polysaccharide and the Alp protein family were conducted in serum samples from women of childbearing age in the United Kingdom, Bangladesh, and Malawi. The efficacy of these antibodies in clearing vaginal colonization or protecting newborns from GBS infection was assessed with humanized mouse models. RESULTS Bangladeshi women displayed the highest diversity in serotype distribution, with elevated IgG levels in the serum against GBS capsular polysaccharides Ia, Ib, II, III, IV, and V, as well as Alp family proteins. In contrast, Malawian sera demonstrated the weakest antibody response. Bangladeshi sera also showed heightened IgG-mediated complement deposition, opsonophagocytic killing, and neonatal Fc receptor binding while tested against capsular polysaccharide Ib. In a humanized neonatal Fc receptor mouse model, Bangladeshi sera led to faster clearance of GBS virulent serotype Ib vaginal colonization. Additionally, offspring from dams passively immunized with Bangladeshi sera demonstrated notably increased survival rates. CONCLUSIONS This study demonstrates significant variability in the immune response to GBS across different geographic regions. These findings underscore the importance of understanding GBS-induced immune response in diverse populations, which may significantly affect vaccine efficacy in these regions.
Collapse
Affiliation(s)
- Shadia Khandaker
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Shilpee Sharma
- European Plotkin Institute for Vaccinology, ULB Centre for Research in Immunology, Université libre de Bruxelles, Brussels, Belgium
| | - Tom Hall
- Centre for Neonatal and Paediatric Infection, Institute of Infection and Immunity, St George's, University of London, London, United Kingdom
| | - Suzanna Lim
- Centre for Neonatal and Paediatric Infection, Institute of Infection and Immunity, St George's, University of London, London, United Kingdom
| | | | - Stephanie Leung
- United Kingdom Health Security Agency, Salisbury, United Kingdom
| | | | - Andrew Gorringe
- United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - Samir K Saha
- Child Health Research Foundation, Dhaka, Bangladesh
| | - Arnaud Marchant
- European Plotkin Institute for Vaccinology, ULB Centre for Research in Immunology, Université libre de Bruxelles, Brussels, Belgium
| | - Kirsty Le Doare
- Centre for Neonatal and Paediatric Infection, Institute of Infection and Immunity, St George's, University of London, London, United Kingdom
- United Kingdom Health Security Agency, Salisbury, United Kingdom
- Makerere University–Johns Hopkins University, Kampala, Uganda
- World Health Organization, Geneva, Switzerland
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Neil French
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
- Malawi Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
| |
Collapse
|
3
|
Snoek L, Karampatsas K, Bijlsma MW, Henneke P, Jauneikaite E, Khan UB, Zadoks RN, Le Doare K. Meeting report: Towards better risk stratification, prevention and therapy of invasive GBS disease, ESPID research meeting May 2022. Vaccine 2023; 41:6137-6142. [PMID: 37699783 DOI: 10.1016/j.vaccine.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/14/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
The European Society of Pediatric Infectious Diseases (ESPID) hosted the third Group B Streptococcus (GBS) Research Session in Athens on 11th May 2022, providing researchers and clinicians from around the world an opportunity to share and discuss recent advances in GBS pathophysiology, molecular and genetic epidemiology and how these new insights can help in improving prevention and control of early- and late-onset GBS disease. The meeting provided a state-of-the-art overview of the existing GBS prevention strategies and their limitations, and an opportunity to share the latest research findings. The first presentation provided an overview of current GBS prevention and treatment strategies. In the second presentation, the genomic and antimicrobial resistance profiles of invasive and colonizing GBS strains were presented. The third presentation explained the association of intrapartum antibiotic prophylaxis (IAP) with the development of late-onset disease (LOD) and the interplay of host innate immunity and GBS. The fourth presentation evaluated the role of genomics in understanding horizontal GBS transmission. The fifth presentation focused on the zoonotic links for certain GBS lineages and the last presentation described the protective role of breastmilk. Talks were followed with interactive discussions and concluded with recommendations on what is needed to further GBS clinical research; these included: (i) the development of better risk stratification methods by combining GBS virulence factors, serological biomarkers and clinical risk factors; (ii) further studies on the interplay of perinatal antimicrobials, disturbances in the development of host immunity and late-onset GBS disease; (iii) routine submission of GBS isolates to reference laboratories to help in detecting potential clusters by using genomic sequencing; (iv) collaboration in animal and human GBS studies to detect and prevent the emergence of new pathogenic sequence types; and (v) harnessing the plethora of immune factors in the breastmilk to develop adjunct therapies.
Collapse
Affiliation(s)
- Linde Snoek
- Department of Neurology, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands; Amsterdam Neuroscience, Neuroinfection and Inflammation, Amsterdam, Netherlands.
| | - Konstantinos Karampatsas
- Paediatric Infectious Diseases Research Group, Institute of Infection and Immunity, St. George's, University of London, London, United Kingdom
| | - Merijn W Bijlsma
- Amsterdam Neuroscience, Neuroinfection and Inflammation, Amsterdam, Netherlands; Department of Paediatrics, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Philipp Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center and Faculty of Medicine, Freiburg, Germany; Institute for Infection Prevention and Control, University Medical Center and Faculty of Medicine, Freiburg, Germany
| | - Elita Jauneikaite
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom; NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Uzma B Khan
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom; Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Ruth N Zadoks
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, Australia
| | - Kirsty Le Doare
- Paediatric Infectious Diseases Research Group, Institute of Infection and Immunity, St. George's, University of London, London, United Kingdom
| |
Collapse
|
4
|
Collins MK, McCutcheon CR, Petroff MG. Impact of Estrogen and Progesterone on Immune Cells and Host–Pathogen Interactions in the Lower Female Reproductive Tract. THE JOURNAL OF IMMUNOLOGY 2022; 209:1437-1449. [DOI: 10.4049/jimmunol.2200454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/05/2022] [Indexed: 11/05/2022]
|
5
|
Han G, Zhang B, Luo Z, Lu B, Luo Z, Zhang J, Wang Y, Luo Y, Yang Z, Shen L, Yu S, Cao S, Yao X. Molecular typing and prevalence of antibiotic resistance and virulence genes in Streptococcus agalactiae isolated from Chinese dairy cows with clinical mastitis. PLoS One 2022; 17:e0268262. [PMID: 35522690 PMCID: PMC9075616 DOI: 10.1371/journal.pone.0268262] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/25/2022] [Indexed: 11/19/2022] Open
Abstract
Bovine mastitis is a common disease occurring in dairy farms and can be caused by more than 150 species of pathogenic bacteria. One of the most common causative organisms is Streptococcus agalactiae, which is also potentially harmful to humans and aquatic animals. At present, research on S. agalactiae in China is mostly concentrated in the northern region, with limited research in the southeastern and southwestern regions. In this study, a total of 313 clinical mastitis samples from large-scale dairy farms in five regions of Sichuan were collected for isolation of S. agalactiae. The epidemiological distribution of S. agalactiae was inferred by serotyping isolates with multiplex polymerase chain reaction. Susceptibility testing and drug resistance genes were detected to guide the clinical use of antibiotics. Virulence genes were also detected to deduce the pathogenicity of S. agalactiae in Sichuan Province. One hundred and five strains of S. agalactiae (33.6%) were isolated according to phenotypic features, biochemical characteristics, and 16S rRNA sequencing. Serotype multiplex polymerase chain reaction analysis showed that all isolates were of type Ia. The isolates were up to 100% sensitive to aminoglycosides (kanamycin, gentamicin, neomycin, and tobramycin), and the resistance rate to β-lactams (penicillin, amoxicillin, ceftazidime, and piperacillin) was up to 98.1%. The TEM gene (β-lactam-resistant) was detected in all isolates, which was in accordance with a drug-resistant phenotype. Analysis of virulence genes showed that all isolates harbored the cfb, cylE, fbsA, fbsB, hylB, and α-enolase genes and none harbored bac or lmb. These data could aid in the prevention and control of mastitis and improve our understanding of epidemiological trends in dairy cows infected with S. agalactiae in Sichuan Province.
Collapse
Affiliation(s)
- Guangli Han
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Baohai Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Zidan Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Biao Lu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Zhengzhong Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Jieru Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Yin Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Yan Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Zexiao Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Liuhong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Shumin Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Suizhong Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- * E-mail: (SC); (XY)
| | - Xueping Yao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- * E-mail: (SC); (XY)
| |
Collapse
|
6
|
Generation of a Universal Human Complement Source by Large-Scale Depletion of IgG and IgM from Pooled Human Plasma. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2414:341-362. [PMID: 34784045 DOI: 10.1007/978-1-0716-1900-1_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Complement is a key component of functional immunological assays used to evaluate vaccine-mediated immunity to a range of bacterial and viral pathogens. However, standardization of these assays is complicated due to the availability of a human complement source that lacks existing antibodies acquired either through vaccination or natural circulation of the pathogen of interest. We have developed a method for depleting both IgG and IgM in 200 mL batches from pooled hirudin-derived human plasma by sequential affinity chromatography using a Protein G Sepharose column followed by POROS™ CaptureSelect™ IgM Affinity resin. The production of large IgG- and IgM-depleted batches of human plasma that retains total hemolytic and alternative pathway activities allows for improved assay standardization and comparison of immune responses in large clinical trials.
Collapse
|
7
|
Yuan XY, Liu HZ, Liu JF, Sun Y, Song Y. Pathogenic mechanism, detection methods and clinical significance of group B Streptococcus. Future Microbiol 2021; 16:671-685. [PMID: 34098731 DOI: 10.2217/fmb-2020-0189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Group B Streptococcus (GBS) is the main pathogen of perinatal infection. It can lead to adverse pregnancy, maternal infection, premature delivery, abortion, stillbirth and a series of adverse maternal and infant outcomes such as neonatal sepsis, meningitis or pneumonia during delivery. In order to reduce the infection of perinatal pregnant and the adverse pregnancy outcome, more attention should be paid in the clinical practice, screening efforts, universal detection of GBS infection for pregnant women and preventive treatment for the possible mother infant infection. In this study, the biological characteristics, immunophenotype, major pathogenic mechanism, laboratory test methods and clinical significance of GBS are summarized.
Collapse
Affiliation(s)
- Xiao-Yan Yuan
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China
| | - Hai-Zhu Liu
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China
| | - Jia-Fei Liu
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China.,Department of Medical Laboratory Sciences, Weifang Medical University, Weifang, Shandong, 261000, PR China
| | - Yong Sun
- Department of Clinical Lab, Yantai Laiyang Central Hospital, Yantai, Shandong, 264200, PR China
| | - Yu Song
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China
| |
Collapse
|
8
|
Vaz MJ, Purrier SA, Bonakdar M, Chamby AB, Ratner AJ, Randis TM. The Impact of Circulating Antibody on Group B Streptococcus Intestinal Colonization and Invasive Disease. Infect Immun 2020; 89:e00348-20. [PMID: 33077619 PMCID: PMC7927928 DOI: 10.1128/iai.00348-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022] Open
Abstract
Gastrointestinal (GI) colonization with group B Streptococcus (GBS) is an important precursor to late-onset (LO) disease in infants. The host-pathogen interactions that mediate progression to invasive disease remain unknown due, in part, to a paucity of robust model systems. Passively acquired maternal GBS-specific antibodies protect newborns from early-onset disease, yet their impact on GI colonization and LO disease is unexplored. Using murine models of both perinatal and postnatal GBS acquisition, we assessed the kinetics of GBS GI colonization, progression to invasive disease, and the role of GBS-specific IgG production in exposed offspring and juvenile mice at age 12 and 14 days, respectively. We defined LO disease as >7 days of life in the perinatal model. We studied the impact of maternal immunization using a whole-cell GBS vaccine on the duration of intestinal colonization and progression to invasive disease after postnatal GBS exposure in offspring. Animals exhibit sustained GI colonization following both perinatal and postnatal exposure to GBS, with 21% and 27%, respectively, developing invasive disease. Intestinal colonization with GBS induces an endogenous IgG response within 20 days of exposure. Maternal vaccination with whole-cell GBS induces production of GBS-specific IgG in dams that is vertically transmitted to their offspring but does not decrease the duration of GBS intestinal colonization or reduce LO mortality following postnatal GBS exposure. Both perinatal and postnatal murine models of GBS acquisition closely recapitulate the human disease state, in which GBS colonizes the intestine and causes LO disease. We demonstrate both endogenous production of anti-GBS IgG in juvenile mice and vertical transfer of antibodies to offspring following maternal vaccination. These models serve as a platform to study critical host-pathogen interactions that mediate LO GBS disease.
Collapse
Affiliation(s)
- Michelle J Vaz
- Department of Pediatrics, NYU School of Medicine, New York, New York, USA
| | - Sheryl A Purrier
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Maryam Bonakdar
- Pathobiology Graduate Program, Brown University, Providence, Rhode Island, USA
| | - Anna B Chamby
- The University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Adam J Ratner
- Department of Pediatrics, NYU School of Medicine, New York, New York, USA
- Department of Microbiology, NYU School of Medicine, New York, New York, USA
| | - Tara M Randis
- Department of Pediatrics, University of South Florida, Tampa, Florida, USA
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
9
|
Streptococcus agalactiae in childbearing age immigrant women in Comunitat Valenciana (Spain). Sci Rep 2020; 10:9904. [PMID: 32555315 PMCID: PMC7303196 DOI: 10.1038/s41598-020-66811-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 05/13/2020] [Indexed: 11/08/2022] Open
Abstract
Streptococcus agalactiae (GBS) remains the leading cause of meningitis and neonatal sepsis in the world, and causes disease in pregnant and puerperal women. This is a retrospective study of GBS infections on women of childbearing age living in Comunitat Valenciana, Spain (years 2009-2014) and GBS colonization rate on pregnant women attending Hospital La Fe (years 2013-2015) according to their origin. An aggregated total of 6,641,960 women exposed during the study period had an average GBS isolation rate of 5.19‰ (5.14-5.25‰), geographical group rates being: Western Europe (2.2‰), North America (2.1‰), Australia (3.7‰), Spain (4.6‰), Latin America II (4.5‰), Eastern Europe (5.3‰), Asia (6.7‰), Latin America I (7.7‰), Middle East (7.9‰), Indian Subcontinent (17.2‰), North Africa (17.8‰), Sub-Saharan Africa (22.7‰). The 4532 pregnant women studied had an average GBS colonization rate of 12.47% (11.51-13.43) and geographical group rates varied similar to geographical isolation rates. Low GDP and high temperatures of the birth country were associated with higher colonization rates. Thus, differences in GBS colonization depend on the country of origin; Africa and the Indian subcontinent presented the highest, while Western Europe and North America had the lowest. This variability portrays a geographical pattern influenced by temperature and GDP.
Collapse
|
10
|
Pollard AJ, Sauerwein R, Baay M, Neels P. Third human challenge trial conference, Oxford, United Kingdom, February 6-7, 2020, a meeting report. Biologicals 2020; 66:41-52. [PMID: 32505512 DOI: 10.1016/j.biologicals.2020.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
The third Human Challenge Trial Meeting brought together a broad range of international stakeholders, including academia, regulators, funders and industry, with a considerable delegation from Low- and Middle-Income Countries. Controlled human infection models (CHIMs) can be helpful to study pathogenesis and for the development of vaccines. As challenge agents are used to infect healthy volunteers, ethical considerations include that the challenge studies need to be safe and results should be meaningful. The meeting provided a state-of-the-art overview on a wide range of CHIMs, including viral, bacterial and parasitic challenge agents. Recommendations included globally aligned guidance documents for CHIM studies; further definition of a CHIM, based on the challenge agent used; standardization of methodology and study endpoints; capacity building in Low- and Middle-Income Countries, in performance as well as regulation of CHIM studies; guidance on compensation for participation in CHIM studies; and preparation of CHIM studies, with strong engagement with stakeholders.
Collapse
Affiliation(s)
- Andrew J Pollard
- Department of Paediatrics, University of Oxford, United Kingdom.
| | | | - Marc Baay
- P95 Epidemiology & Pharmacovigilance, Leuven, Belgium.
| | - Pieter Neels
- International Alliance for Biological Standardization, Belgium.
| | | |
Collapse
|
11
|
Carreras-Abad C, Ramkhelawon L, Heath PT, Le Doare K. A Vaccine Against Group B Streptococcus: Recent Advances. Infect Drug Resist 2020; 13:1263-1272. [PMID: 32425562 PMCID: PMC7196769 DOI: 10.2147/idr.s203454] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/10/2020] [Indexed: 01/12/2023] Open
Abstract
Group B streptococcus (GBS) causes a high burden of neonatal and infant disease globally. Implementing a vaccine for pregnant women is a promising strategy to prevent neonatal and infant GBS disease and has been identified as a priority by the World Health Organisation (WHO). GBS serotype-specific polysaccharide – protein conjugate vaccines are at advanced stages of development, but a large number of participants would be required to undertake Phase III clinical efficacy trials. Efforts are therefore currently focused on establishing serocorrelates of protection in natural immunity studies as an alternative pathway for licensure of a GBS vaccine, followed by Phase IV studies to evaluate safety and effectiveness. Protein vaccines are in earlier stages of development but are highly promising as they might confer protection irrespective of serotype. Further epidemiological, immunological and health economic studies are required to enable the vaccine to reach its target population as soon as possible.
Collapse
Affiliation(s)
- Clara Carreras-Abad
- Paediatric Infectious Diseases Research Group and Vaccine Institute, Institute for Infection and Immunity, St George's, University of London, London, UK.,Department of Paediatrics, Obstetrics and Gynecology and Preventive Medicine and Public Health, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laxmee Ramkhelawon
- Paediatric Infectious Diseases Research Group and Vaccine Institute, Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Paul T Heath
- Paediatric Infectious Diseases Research Group and Vaccine Institute, Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Kirsty Le Doare
- Paediatric Infectious Diseases Research Group and Vaccine Institute, Institute for Infection and Immunity, St George's, University of London, London, UK.,Pathogen Immunity Group, Public Health England, Porton Down,UK.,Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| |
Collapse
|
12
|
Choi MJ, Noh JY, Jang AY, Cheong HJ, Kim WJ, Song DJ, Cho GJ, Oh MJ, Zhi Y, Seo HS, Song JY. Age-stratified analysis of serotype-specific baseline immunity against group B streptococcus. Hum Vaccin Immunother 2019; 16:1338-1344. [PMID: 31687869 DOI: 10.1080/21645515.2019.1688036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Group B streptococcus (GBS) vaccines are currently under development. Data on the natural immunity in diverse age groups will aid establishing the GBS immunization policy. In this study, thirty serum samples were collected from three age groups (neonates/infants, pregnant women, and the elderly) between August 2016 and July 2017. Serotype-specific opsonophagocytic activity (OPA) was assessed using a GBS multiplex opsonophagocytic killing assay (MOPA) against serotypes Ia, III, and V. The mean OPA titers for serotype Ia of the three age groups were not significantly different (p = .156), but tended to be lower in neonates/infants (mean ± standard deviation, 137 ± 278). For serotype III and V, the mean OPA titer of neonates/infants (338 ± 623 and 161 ± 445, respectively) was significantly lower than that of pregnant women (1377 ± 1167 and 9414 ± 6394) and the elderly (1350 ± 1741 and 3669 ± 5597) (p = .002). In conclusion, the lower levels of OPA titers against all tested serotypes in neonates/infants, despite high maternal titers, indicates that intrapartum GBS vaccinations may be required for efficient placental transfer of serotype-specific GBS antibodies with high avidity.
Collapse
Affiliation(s)
- Min Joo Choi
- Department of Internal Medicine, International St. Mary's Hospital, Catholic Kwandong University College of Medicine , Incheon, Korea
| | - Ji Yun Noh
- Department of Internal Medicine, Korea University College of Medicine , Seoul, Republic of Korea
| | - A-Yeung Jang
- Department of Internal Medicine, Korea University College of Medicine , Seoul, Republic of Korea
| | - Hee Jin Cheong
- Department of Internal Medicine, Korea University College of Medicine , Seoul, Republic of Korea
| | - Woo Joo Kim
- Department of Internal Medicine, Korea University College of Medicine , Seoul, Republic of Korea
| | - Dae Jin Song
- Department of Pediatrics, Korea University College of Medicine , Seoul, Republic of Korea
| | - Geum Joon Cho
- Department of Obstetrics and Gynecology, Korea University College of Medicine , Seoul, Republic of Korea
| | - Min Jeong Oh
- Department of Obstetrics and Gynecology, Korea University College of Medicine , Seoul, Republic of Korea
| | - Yong Zhi
- Biotechnology Division, Korea Atomic Energy Research Institute , Jeongeup, Republic of Korea.,Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology , Daejeon, Republic of Korea
| | - Ho Seong Seo
- Biotechnology Division, Korea Atomic Energy Research Institute , Jeongeup, Republic of Korea.,Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology , Daejeon, Republic of Korea
| | - Joon Young Song
- Department of Internal Medicine, Korea University College of Medicine , Seoul, Republic of Korea
| |
Collapse
|
13
|
do Nascimento CS, Dos Santos NFB, Ferreira RCC, Taddei CR. Streptococcus agalactiae in pregnant women in Brazil: prevalence, serotypes, and antibiotic resistance. Braz J Microbiol 2019; 50:943-952. [PMID: 31432465 PMCID: PMC6863207 DOI: 10.1007/s42770-019-00129-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 07/26/2019] [Indexed: 10/26/2022] Open
Abstract
Brazilian data for maternal GBS colonization shows different prevalence rates. This conflicting data may be related to the absence of an official recommendation from the Federal Brazilian Health Authorities describing guidelines and protocols to perform GBS screening in pregnant women, in both public and private clinics. In the present review, we evaluated published reports addressing the prevalence of GBS in different regions of the country, methods used, and, when available, information regarding antibiotic resistance and serological typing of clinical isolates. According to this review, GBS prevalence in pregnant women in Brazil ranged from 4.2 to 28.4%, in the last 10 years. Serotype Ia was the most prevalent. The highest antibiotic resistance rates were found for tetarcycline, although its use to treat GBS infections is not common. Our results also show high resistance rates to clindamycin and erythromycin, which are commonly used as an alternative to penicillin in GBS infecctions. The increased antibiotic resistance, variations in serotype distribution, and high GBS prevalences need to be further investigated. Based on the present situation, recommendations regarding GBS surveillance in the country were raised and may improve our strategies for preventing neonatal infections.
Collapse
Affiliation(s)
- Cilicia S do Nascimento
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Nayara F B Dos Santos
- Department of Microbiology, Biomedical Science Institute, University of São Paulo (USP), São Paulo, Brazil
| | - Rita C C Ferreira
- Department of Microbiology, Biomedical Science Institute, University of São Paulo (USP), São Paulo, Brazil
| | - Carla R Taddei
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil.
- School of Arts, Sciences and Humanities, University of São Paulo (USP), São Paulo, Brazil.
| |
Collapse
|
14
|
Patras KA, Derieux J, Al-Bassam MM, Adiletta N, Vrbanac A, Lapek JD, Zengler K, Gonzalez DJ, Nizet V. Group B Streptococcus Biofilm Regulatory Protein A Contributes to Bacterial Physiology and Innate Immune Resistance. J Infect Dis 2019; 218:1641-1652. [PMID: 29868829 DOI: 10.1093/infdis/jiy341] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/02/2018] [Indexed: 12/18/2022] Open
Abstract
Background Streptococcus agalactiae (group B Streptococcus [GBS]) asymptomatically colonizes approximately 20% of adults; however, GBS causes severe disease in susceptible populations, including newborns, pregnant women, and elderly individuals. In shifting between commensal and pathogenic states, GBS reveals multiple mechanisms of virulence factor control. Here we describe a GBS protein that we named "biofilm regulatory protein A" (BrpA) on the basis of its homology with BrpA from Streptococcus mutans. Methods We coupled phenotypic assays, RNA sequencing, human neutrophil and whole-blood killing assays, and murine infection models to investigate the contribution of BrpA to GBS physiology and virulence. Results Sequence analysis identified BrpA as a LytR-CpsA-Psr enzyme. Targeted mutagenesis yielded a GBS mutant (ΔbrpA) with normal ultrastructural morphology but a 6-fold increase in chain length, a biofilm defect, and decreased acid tolerance. GBS ΔbrpA stimulated increased neutrophil reactive oxygen species and proved more susceptible to human and murine blood and neutrophil killing. Notably, the wild-type parent outcompeted ΔbrpA GBS in murine sepsis and vaginal colonization models. RNA sequencing of ΔbrpA uncovered multiple differences from the wild-type parent, including pathways of cell wall synthesis and cellular metabolism. Conclusions We propose that BrpA is an important virulence regulator and potential target for design of novel antibacterial therapeutics against GBS.
Collapse
Affiliation(s)
- Kathryn A Patras
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California-San Diego, La Jolla
| | - Jaclyn Derieux
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California-San Diego, La Jolla
| | - Mahmoud M Al-Bassam
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California-San Diego, La Jolla
| | - Nichole Adiletta
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California-San Diego, La Jolla
| | - Alison Vrbanac
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California-San Diego, La Jolla
| | - John D Lapek
- Department of Pharmacology, School of Medicine, University of California-San Diego, La Jolla.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, La Jolla
| | - Karsten Zengler
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California-San Diego, La Jolla
| | - David J Gonzalez
- Department of Pharmacology, School of Medicine, University of California-San Diego, La Jolla.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, La Jolla
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California-San Diego, La Jolla.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, La Jolla
| |
Collapse
|
15
|
Serocorrelates of protection against infant group B streptococcus disease. THE LANCET. INFECTIOUS DISEASES 2019; 19:e162-e171. [PMID: 30683467 DOI: 10.1016/s1473-3099(18)30659-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/20/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Abstract
Group B streptococcus (GBS) is a leading cause of young infant mortality and morbidity globally, with vaccines being developed for over four decades but none licensed to date. A serocorrelate of protection against invasive disease in young infants is being considered to facilitate vaccine early licensure, followed by demonstration of efficacy assessed postlicensure. In this Review, we synthesise the available scientific evidence to define an immune correlate associated with GBS disease risk reduction on the basis of studies of natural infection. We summarise studies that have investigated GBS serum anticapsular or anti-protein antibodies, and studies measuring the association between antibody function and disease risk reduction. We highlight how knowledge on the development of correlates of protection from existing vaccines could be harnessed to facilitate GBS vaccine development. These lessons include aggregation of serocorrelates of protection for individual serotypes, understanding the relationship between immunity derived from natural exposure of adults and vaccine-induced immunity, or using extrapolation of protection from in-vitro immunoassay results. We also highlight key considerations for the assessment of the role of antibodies to derive a serocorrelate of risk reduction in future seroepidemiological studies of GBS disease.
Collapse
|
16
|
Bidmos FA, Siris S, Gladstone CA, Langford PR. Bacterial Vaccine Antigen Discovery in the Reverse Vaccinology 2.0 Era: Progress and Challenges. Front Immunol 2018; 9:2315. [PMID: 30349542 PMCID: PMC6187972 DOI: 10.3389/fimmu.2018.02315] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/17/2018] [Indexed: 11/13/2022] Open
Abstract
The ongoing, and very serious, threat from antimicrobial resistance necessitates the development and use of preventative measures, predominantly vaccination. Polysaccharide-based vaccines have provided a degree of success in limiting morbidity from disseminated bacterial infections, including those caused by the major human obligate pathogens, Neisseria meningitidis, and Streptococcus pneumoniae. Limitations of these polysaccharide vaccines, such as partial coverage and induced escape leading to persistence of disease, provide a compelling argument for the development of protein vaccines. In this review, we briefly chronicle approaches that have yielded licensed vaccines before highlighting reverse vaccinology 2.0 and its potential application in the discovery of novel bacterial protein vaccine candidates. Technical challenges and research gaps are also discussed.
Collapse
Affiliation(s)
- Fadil A Bidmos
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Sara Siris
- Department of Medicine, Imperial College London, London, United Kingdom
| | | | - Paul R Langford
- Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
17
|
Patras KA, Nizet V. Group B Streptococcal Maternal Colonization and Neonatal Disease: Molecular Mechanisms and Preventative Approaches. Front Pediatr 2018; 6:27. [PMID: 29520354 PMCID: PMC5827363 DOI: 10.3389/fped.2018.00027] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Group B Streptococcus (GBS) colonizes the gastrointestinal and vaginal epithelium of a significant percentage of healthy women, with potential for ascending intrauterine infection or transmission during parturition, creating a risk of serious disease in the vulnerable newborn. This review highlights new insights on the bacterial virulence determinants, host immune responses, and microbiome interactions that underpin GBS vaginal colonization, the proximal step in newborn infectious disease pathogenesis. From the pathogen perspective, the function GBS adhesins and biofilms, β-hemolysin/cytolysin toxin, immune resistance factors, sialic acid mimicry, and two-component transcriptional regulatory systems are reviewed. From the host standpoint, pathogen recognition, cytokine responses, and the vaginal mucosal and placental immunity to the pathogen are detailed. Finally, the rationale, efficacy, and potential unintended consequences of current universal recommended intrapartum antibiotic prophylaxis are considered, with updates on new developments toward a GBS vaccine or alternative approaches to reducing vaginal colonization.
Collapse
Affiliation(s)
- Kathryn A Patras
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
18
|
Kolter J, Henneke P. Codevelopment of Microbiota and Innate Immunity and the Risk for Group B Streptococcal Disease. Front Immunol 2017; 8:1497. [PMID: 29209311 PMCID: PMC5701622 DOI: 10.3389/fimmu.2017.01497] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of neonatal late-onset sepsis (LOD), which manifests between the third day and the third month of life, remains poorly understood. Group B Streptococcus (GBS) is the most important cause of LOD in infants without underlying diseases or prematurity and the third most frequent cause of meningitis in the Western world. On the other hand, GBS is a common intestinal colonizer in infants. Accordingly, despite its adaption to the human lower gastrointestinal tract, GBS has retained its potential virulence and its transition from a commensal to a dangerous pathogen is unpredictable in the individual. Several cellular innate immune mechanisms, in particular Toll-like receptors, the inflammasome and the cGAS pathway, are engaged by GBS effectors like nucleic acids. These are likely to impact on the GBS-specific host resistance. Given the long evolution of streptococci as a normal constituent of the human microbiota, the emergence of GBS as the dominant neonatal sepsis cause just about 50 years ago is remarkable. It appears that intensive usage of tetracycline starting in the 1940s has been a selection advantage for the currently dominant GBS clones with superior adhesive and invasive properties. The historical replacement of Group A by Group B streptococci as a leading neonatal pathogen and the higher frequency of other β-hemolytic streptococci in areas with low GBS prevalence suggests the existence of a confined streptococcal niche, where locally competing streptococcal species are subject to environmental and immunological selection pressure. Thus, it seems pivotal to resolve neonatal innate immunity at mucous surfaces and its impact on microbiome composition and quality, i.e., genetic heterogeneity and metabolism, at the microanatomical level. Then, designer pro- and prebiotics, such as attenuated strains of GBS, and oligonucleotide priming of mucosal immunity may unfold their potential and facilitate adaptation of potentially hazardous streptococci as part of a beneficial local microbiome, which is stabilized by mucocutaneous innate immunity.
Collapse
Affiliation(s)
- Julia Kolter
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Philipp Henneke
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Le Doare K, Bellis K, Faal A, Birt J, Munblit D, Humphries H, Taylor S, Warburton F, Heath PT, Kampmann B, Gorringe A. SIgA, TGF-β1, IL-10, and TNFα in Colostrum Are Associated with Infant Group B Streptococcus Colonization. Front Immunol 2017; 8:1269. [PMID: 29109718 PMCID: PMC5660603 DOI: 10.3389/fimmu.2017.01269] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022] Open
Abstract
Background Group B Streptococcus (GBS) is a major cause of mortality and morbidity in infants and is associated with transmission from a colonized mother at birth and via infected breastmilk. Although maternal/infant colonization with GBS is common, the majority of infants exposed to GBS remain unaffected. The association between breastmilk immune factors and infant colonization and disease prevention has not been elucidated. Objectives We have investigated the association between SIgA and cytokines in breastmilk and infant GBS colonization and clearance. Methods Mother/infant GBS colonization was determined in a prospective cohort of 750 Gambian mother/infant pairs followed to day 89 of life. Anti-GBS secretory IgA bound to the surface of whole bacteria was assessed by flow cytometry and a panel of 12 cytokines quantified by mesoscale discovery in colostrum, breastmilk and serum. Results Compared with infants receiving low anti-GBS SIgA in colostrum, infants receiving high anti-GBS SIgA were at decreased risk of GBS colonization for serotypes III and V. Infants colonized at day 6 were twice as likely to receive colostrum with high TGF-β1, TNFα, IL10, and IL-6 compared to uncolonized infants. Infants receiving high colostral TGF-β1, TNFα, and IL-6 had two-fold enhanced GBS clearance between birth and day 89. Conclusion Our results suggest that the infant GBS colonization risk diminishes with increasing anti-GBS SIgA antibody in breastmilk and that key maternally derived cytokines might contribute to protection against infant colonization. These findings might be leveraged to develop interventions including maternal vaccination that may reduce infant GBS colonization.
Collapse
Affiliation(s)
- Kirsty Le Doare
- Imperial College London, London, United Kingdom.,Public Health England, Porton Down, United Kingdom.,MRC Unit, Fajara, Gambia.,Imperial College London, London, United Kingdom
| | - Katie Bellis
- Public Health England, Porton Down, United Kingdom
| | | | | | - Daniel Munblit
- Imperial College London, London, United Kingdom.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,The In-FLAME Global Network, an Affiliate of the World Universities Network (WUN), West New York, United States
| | | | | | | | - Paul T Heath
- St George's University of London, London, United Kingdom
| | - Beate Kampmann
- Imperial College London, London, United Kingdom.,MRC Unit, Fajara, Gambia
| | | |
Collapse
|