1
|
Miller RJ, Durie IA, Gingerich AD, Elbehairy MA, Branch AG, Davis RG, Abbadi N, Brindley MA, Mousa JJ. The structural basis of protective and nonprotective human monoclonal antibodies targeting the parainfluenza virus type 3 hemagglutinin-neuraminidase. Nat Commun 2024; 15:10825. [PMID: 39738006 PMCID: PMC11686389 DOI: 10.1038/s41467-024-55101-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Parainfluenza virus 3 (PIV3) infection poses a substantial risk to vulnerable groups including infants, the elderly, and immunocompromised individuals, and lacks effective treatments or vaccines. This study focuses on targeting the hemagglutinin-neuraminidase (HN) protein, a structural glycoprotein of PIV3 critical for viral infection and egress. With the objective of targeting these activities of HN, we identified eight neutralizing human monoclonal antibodies (mAbs) with potent effects on viral neutralization, cell-cell fusion inhibition, and complement deposition. Three epitopes on PIV3 HN were delineated and one epitope, Site 2, elicits a mAb with cross-neutralizing ability against PIV1 and PIV3. Cryo-EM revealed the cross-neutralizing mAb utilizes a long CDR3 loop to bind inside the pocket of the sialic acid binding site. Additionally, we resolved the structure of a non-protective mAb binding to Site 1 near the HN:F-interaction site. The potent Site 2-directed mAb demonstrated clinical efficacy in hamsters, reducing viral replication prophylactically and therapeutically. These findings advance our understanding of PIV3 immunity and underscore the significance of targeting HN for clinical therapeutic development against PIV3.
Collapse
Affiliation(s)
- Rose J Miller
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Ian A Durie
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Aaron D Gingerich
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Mohamed A Elbehairy
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Abigail G Branch
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Riley G Davis
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Nada Abbadi
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Melinda A Brindley
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jarrod J Mousa
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
2
|
Andrianov AK, Langer R. Polyphosphazene immunoadjuvants: Historical perspective and recent advances. J Control Release 2021; 329:299-315. [PMID: 33285104 PMCID: PMC7904599 DOI: 10.1016/j.jconrel.2020.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022]
Abstract
The development of successful vaccines has been increasingly reliant on the use of immunoadjuvants - additives, which can enhance and modulate immune responses to vaccine antigens. Immunoadjuvants of the polyphosphazene family encompass synthetic biodegradable macromolecules, which attain in vivo activity via antigen delivery and immunostimulation mechanisms. Over the last decades, the technology has witnessed evolvement of next generation members, expansion to include various antigens and routes of administration, and progression to clinical phase. This was accompanied by gaining important insights into the mechanism of action and the development of a novel class of virus-mimicking nano-assemblies for antigen delivery. The present review evaluates in vitro and in vivo data generated to date in the context of latest advances in understanding the primary function and biophysical behavior of these macromolecules. It also provides an overview of relevant synthetic and characterization methods, macromolecular biodegradation pathways, and polyphosphazene-based multi-component, nanoparticulate, and microfabricated formulations.
Collapse
Affiliation(s)
- Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA.
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Loomis RJ, Stewart-Jones GBE, Tsybovsky Y, Caringal RT, Morabito KM, McLellan JS, Chamberlain AL, Nugent ST, Hutchinson GB, Kueltzo LA, Mascola JR, Graham BS. Structure-Based Design of Nipah Virus Vaccines: A Generalizable Approach to Paramyxovirus Immunogen Development. Front Immunol 2020; 11:842. [PMID: 32595632 PMCID: PMC7300195 DOI: 10.3389/fimmu.2020.00842] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
Licensed vaccines or therapeutics are rarely available for pathogens with epidemic or pandemic potential. Developing interventions for specific pathogens and defining generalizable approaches for related pathogens is a global priority and inherent to the UN Sustainable Development Goals. Nipah virus (NiV) poses a significant epidemic threat, and zoonotic transmission from bats-to-humans with high fatality rates occurs almost annually. Human-to-human transmission of NiV has been documented in recent outbreaks leading public health officials and government agencies to declare an urgent need for effective vaccines and therapeutics. Here, we evaluate NiV vaccine antigen design options including the fusion glycoprotein (F) and the major attachment glycoprotein (G). A stabilized prefusion F (pre-F), multimeric G constructs, and chimeric proteins containing both pre-F and G were developed as protein subunit candidate vaccines. The proteins were evaluated for antigenicity and structural integrity using kinetic binding assays, electron microscopy, and other biophysical properties. Immunogenicity of the vaccine antigens was evaluated in mice. The stabilized pre-F trimer and hexameric G immunogens both induced serum neutralizing activity in mice, while the post-F trimer immunogen did not elicit neutralizing activity. The pre-F trimer covalently linked to three G monomers (pre-F/G) induced potent neutralizing antibody activity, elicited responses to the greatest diversity of antigenic sites, and is the lead candidate for clinical development. The specific stabilizing mutations and immunogen designs utilized for NiV were successfully applied to other henipaviruses, supporting the concept of identifying generalizable solutions for prototype pathogens as an approach to pandemic preparedness.
Collapse
Affiliation(s)
- Rebecca J. Loomis
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Guillaume B. E. Stewart-Jones
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Ria T. Caringal
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kaitlyn M. Morabito
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Amy L. Chamberlain
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Sean T. Nugent
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Geoffrey B. Hutchinson
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lisa A. Kueltzo
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - John R. Mascola
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Barney S. Graham
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Salgado CL, Dias EL, Stringari LL, Covre LP, Dietze R, Lima Pereira FE, de Matos Guedes HL, Rossi-Bergmann B, Gomes DCO. Pam3CSK4 adjuvant given intranasally boosts anti-Leishmania immunogenicity but not protective immune responses conferred by LaAg vaccine against visceral leishmaniasis. Microbes Infect 2019; 21:328-335. [PMID: 30817996 DOI: 10.1016/j.micinf.2019.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/17/2019] [Accepted: 02/19/2019] [Indexed: 12/29/2022]
Abstract
The use of adjuvants in vaccine formulations is a well-established practice to improve immunogenicity and protective immunity against diseases. Previously, we have demonstrated the feasibility of intranasal vaccination with the antigen of killed Leishmania amazonensis promastigotes (LaAg) against experimental leishmaniasis. In this work, we sought to optimize the immunogenic effect and protective immunity against murine visceral leishmaniasis conferred by intranasal delivery of LaAg in combination with a synthetic TLR1/TLR2 agonist (Pam3CSK4). Intranasal vaccination with LaAg/PAM did not show toxicity or adverse effects, induced the increase of delayed-type hypersensitivity response and the production of inflammatory cytokines after parasite antigen recall. However, mice vaccinated with LaAg/PAM and challenged with Leishmania infantum presented significant reduction of parasite burden in both liver and spleen, similar to those vaccinated with LaAg. Although LaAg/PAM intranasal vaccination had induced higher frequencies of specific CD4+ and CD8+ T cells and increased levels of IgG2a antibody isotype in serum, both LaAg and LaAg/PAM groups presented similar levels of IL-4 and IFN-y and decreased production of IL-10 when compared to controls. Our results provide the first evidence of the feasibility of intranasal immunization with antigens of killed Leishmania in association with a TLR agonist, which may be explored for developing an effective and alternative strategy for vaccination against visceral leishmaniasis.
Collapse
Affiliation(s)
- Caio Loureiro Salgado
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo - UFES, Vitória, Brazil
| | - Emmanoel Loss Dias
- Núcleo de Núcleo de Biotecnologia, Universidade Federal do Espírito Santo - UFES, Vitória, Brazil
| | | | - Luciana Polaco Covre
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo - UFES, Vitória, Brazil
| | - Reynaldo Dietze
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo - UFES, Vitória, Brazil; Global Health and Tropical Medicine, Instituto de Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | | | - Herbet Leonel de Matos Guedes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Núcleo Multidisciplinar de Pesquisa UFRJ, Xerém em Biologia (NUMPEX-BIO), Polo Avançado de Xerém, Universidade Federal do Rio de Janeiro, Duque de Caxias, Rio de Janeiro, Brazil; Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Brazil
| | - Bartira Rossi-Bergmann
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Claudio Oliveira Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo - UFES, Vitória, Brazil; Núcleo de Núcleo de Biotecnologia, Universidade Federal do Espírito Santo - UFES, Vitória, Brazil.
| |
Collapse
|
5
|
Garg R, Latimer L, Gomis S, Gerdts V, Potter A, van Drunen Littel-van den Hurk S. Maternal vaccination with a novel chimeric glycoprotein formulated with a polymer-based adjuvant provides protection from human parainfluenza virus type 3 in newborn lambs. Antiviral Res 2018; 162:54-60. [PMID: 30550799 DOI: 10.1016/j.antiviral.2018.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/11/2018] [Accepted: 12/11/2018] [Indexed: 01/14/2023]
Abstract
Human parainfluenza virus 3 (PIV3) and respiratory syncytial virus (RSV) are major causative agents of serious respiratory tract illness in newborns and infants. Maternal vaccination could be a promising approach to provide immediate protection against severe PIV3 and RSV infection in young infants. Previously, we demonstrated that maternal immunization with a subunit vaccine consisting of the RSV fusion (F) protein formulated with TriAdj, an adjuvant consisting of poly(I:C), immune defense regulatory peptide and polyphosphazene, protects newborn lambs from RSV. In the present study we evaluated the protective efficacy of a novel bivalent RSV-PIV3 vaccine candidate, FRipScHN/TriAdj, as a maternal vaccine against PIV3 infection in a neonatal lamb model. This vaccine consists of the pre-fusion form of the RSV F protein linked to the haemagglutinin-neuraminidase (HN) of PIV3, formulated with TriAdj. First, we successfully established PIV3 infection in neonatal lambs. Lambs infected with human PIV3 showed gross pathology, bronchointerstitial pneumonia and viral replication in the lungs. Subsequently, ewes were immunized with FRipScHN/TriAdj. RSV FRipSc- and PIV3 HN-specific antibodies with virus-neutralizing activity were detected in both the serum and the colostrum of the vaccinated ewes. The newborn lambs had RSV- and PIV3- neutralizing antibodies in their serum, which demonstrates that maternal antibodies were transferred to the neonates. At three days of age, the newborn lambs received an intrapulmonary challenge with PIV3. The lung pathology and virus production were significantly reduced in lambs that had received PIV3-specific maternal antibodies compared to lambs born to non-vaccinated ewes. These results suggest that maternal vaccination with a bivalent FRipScHN/TriAdj vaccine might be an effective method to provide protection against both PIV3 and RSV in neonates.
Collapse
Affiliation(s)
- R Garg
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
| | - L Latimer
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
| | - S Gomis
- Veterinary Pathology, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - V Gerdts
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada; Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, S7N 5B4E, Canada
| | - A Potter
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada; Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, S7N 5B4E, Canada
| | - S van Drunen Littel-van den Hurk
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada; Microbiology & Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
6
|
Tong J, Fu Y, Meng F, Krüger N, Valentin-Weigand P, Herrler G. The Sialic Acid Binding Activity of Human Parainfluenza Virus 3 and Mumps Virus Glycoproteins Enhances the Adherence of Group B Streptococci to HEp-2 Cells. Front Cell Infect Microbiol 2018; 8:280. [PMID: 30175075 PMCID: PMC6107845 DOI: 10.3389/fcimb.2018.00280] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/25/2018] [Indexed: 01/02/2023] Open
Abstract
In the complex microenvironment of the human respiratory tract, different kinds of microorganisms may synergistically interact with each other resulting in viral-bacterial co-infections that are often associated with more severe diseases than the respective mono-infections. Human respiratory paramyxoviruses, for example parainfluenza virus type 3 (HPIV3), are common causes of respiratory diseases both in infants and a subset of adults. HPIV3 recognizes sialic acid (SA)-containing receptors on host cells. In contrast to human influenza viruses which have a preference for α2,6-linked sialic acid, HPIV3 preferentially recognize α2,3-linked sialic acids. Group B streptococci (GBS) are colonizers in the human respiratory tract. They contain a capsular polysaccharide with terminal sialic acid residues in an α2,3-linkage. In the present study, we report that HPIV3 can recognize the α2,3-linked sialic acids present on GBS. The interaction was evident not only by the binding of virions to GBS in a co-sedimentation assay, but also in the GBS binding to HPIV3-infected cells. While co-infection by GBS and HPIV3 had a delaying effect on the virus replication, it enhanced GBS adherence to virus-infected cells. To show that other human paramyxoviruses are also able to recognize the capsular sialic acid of GBS we demonstrate that GBS attaches in a sialic acid-dependent way to transfected BHK cells expressing the HN protein of mumps virus (MuV) on their surface. Overall, our results reveal a new type of synergism in the co-infection by respiratory pathogens, which is based on the recognition of α2,3-linked sialic acids. This interaction between human paramyxoviruses and GBS enhances the bacterial adherence to airway cells and thus may result in more severe disease.
Collapse
Affiliation(s)
- Jie Tong
- Institute of Virology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Yuguang Fu
- Institute of Virology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Fandan Meng
- Institute of Virology, University of Veterinary Medicine Hannover, Hanover, Germany
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Nadine Krüger
- Institute of Virology, University of Veterinary Medicine Hannover, Hanover, Germany
| | | | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
7
|
Garg R, Brownlie R, Latimer L, Gerdts V, Potter A, van Drunen Littel-van den Hurk S. A chimeric glycoprotein formulated with a combination adjuvant induces protective immunity against both human respiratory syncytial virus and parainfluenza virus type 3. Antiviral Res 2018; 158:78-87. [PMID: 30071204 DOI: 10.1016/j.antiviral.2018.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/22/2018] [Accepted: 07/26/2018] [Indexed: 10/28/2022]
Abstract
Human respiratory syncytial virus (RSV) and parainfluenza virus type 3 (PIV3) are major causes of serious lower respiratory tract disease in infants. Currently there is no licensed vaccine against RSV or PIV3. To make an effective bivalent subunit vaccine, a chimeric truncated FRHN protein containing the N-terminal ectodomain of the RSV fusion (F) protein linked to the C-terminal ectodomain of the PIV3 haemagglutinin-neuraminidase (HN) protein was produced in HEK293T cells. Mice, cotton rats and hamsters were immunized intramuscularly (IM) with both RSV F and PIV3 HN (FR+HN) or FRHN, formulated with TriAdj, which consists of poly(I:C), innate defense regulator peptide and poly[di(sodium carboxylatoethylphenoxy)]-phosphazene. Both formulations were immunogenic and elicited full protection from RSV; however, animals vaccinated with FRHN/TriAdj were significantly better protected from PIV3 than animals vaccinated with FR+HN/TriAdj. To develop a potentially more effective subunit vaccine, a chimeric glycoprotein (FRipScHN), encoding the RSV F ectodomain stabilized in the pre-fusion form linked to PIV3 HN was generated. Intramuscular vaccination with FRipScHN/TriAdj induced virus neutralizing antibodies followed by complete protection from RSV and PIV3 replication in the lungs of challenged cotton rats. Furthermore, intranasal vaccination with FRipScHN/TriAdj significantly reduced both RSV and PIV3 replication in cotton rats. Mucosal immunization with FRipScHN/TriAdj also elicited strong antigen-specific mucosal and systemic immune responses in a lamb model. In conclusion, the chimeric FRipScHN protein combined with TriAdj has potential for development of a safe, effective, bivalent vaccine against both RSV and PIV3.
Collapse
Affiliation(s)
- R Garg
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
| | - R Brownlie
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
| | - L Latimer
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
| | - V Gerdts
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada; Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - A Potter
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada; Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - S van Drunen Littel-van den Hurk
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada; Microbiology & Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|