1
|
Wang H, Li L, Wu J, Yuan X, Hong L, Pu L, Qin S, Li L, Yang H, Zhang J. Multi-omics analyses reveal differences in intestinal flora composition and serum metabolites in Cherry Valley broiler ducks of different body weights. Poult Sci 2025; 104:105275. [PMID: 40367572 DOI: 10.1016/j.psj.2025.105275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/06/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025] Open
Abstract
Fledgling broiler ducks vary in body weight and growth rate. The aim of this study was to investigate the relationship between serum metabolites and the intestinal microbiota in Cherry Valley broiler ducks with different finishing weights and to reveal differences in their metabolic regulation and microbial composition. Serum and cecum content samples were collected from Cherry Valley broiler ducks of different finishing weights. Metabolites were identified and compared using untargeted metabolomics, 16S rRNA gene sequencing, multivariate statistics and bioinformatics. Six key findings emerged. First, serum biochemical parameters showed that AST and ALT levels were significantly lower in the high weight group (Group H) than in the low weight group (Group L), and serum immunoglobulin IgG levels were significantly higher in group H. Second, the chorionic height to crypt depth ratio of the duodenum was significantly higher in group H than in group L. Third, the gut microbial community diversity or abundance was lower in broiler ducks in group L. Fourth, LEfSe analysis showed that the biomarker for group L was Streptococcus, whereas for group H it was Faecalibacterium. Fifth, a total of 127 differential metabolites were identified (49 up-regulated and 78 down-regulated). Finally, Spearman's correlation analysis showed that Spearman's correlation analyses showed that the Lipid-related serum metabolites were higher in low-body recombinant broiler ducks, mainly Lathosterol, Cholesterol, Cynaratriol and Leukotriene B4. In addition to lipid-associated serum metabolites in high-body recombination, The water-soluble vitamin-like metabolite Pantothenate and the antibiotic-like metabolite Tylosin were high. The cecum microbiota is strongly associated with metabolites, especially Faecalibacterium, unclassified Tannerellaceae, Subdoligranulum, Alistipes, and [Ruminococcus] torques_group, with which it exhibits strong Correlation. Broiler ducks with higher body weights have a better intestinal villous structure, enhanced digestion and absorption, higher levels of immunoglobulin secretion and superior growth performance. Broiler ducks with different body weights differed in plasma metabolites and cecum flora. Spearman's correlation analyses showed that the Correlation between differential metabolites and differential gut microbial genera.
Collapse
Affiliation(s)
- Hongjiao Wang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Long Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Jinhai Wu
- College of Food Science, Shanxi Normal University, Shanxi 030606, China
| | - Xuefeng Yuan
- Tianjin Key Laboratory of Green Ecological Feed, Tianjin, Bao Di, China
| | - Liang Hong
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Lei Pu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Shunyi Qin
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Liuan Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Hua Yang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Jianbin Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China.
| |
Collapse
|
2
|
Weston K, Fulton JE, Owen J. Antigen specificity affects analysis of natural antibodies. Front Immunol 2024; 15:1448320. [PMID: 39170611 PMCID: PMC11335478 DOI: 10.3389/fimmu.2024.1448320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Natural antibodies are used to compare immune systems across taxa, to study wildlife disease ecology, and as selection markers in livestock breeding. These immunoglobulins are present prior to immune stimulation. They are described as having low antigen specificity or polyreactive binding and are measured by binding to self-antigens or novel exogenous proteins. Most studies use only one or two antigens to measure natural antibodies and ignore potential effects of antigen specificity in analyses. It remains unclear how different antigen-specific natural antibodies are related or how diversity among natural antibodies may affect analyses of these immunoglobulins. Using genetically distinct lines of chickens as a model system, we tested the hypotheses that (1) antigen-specific natural antibodies are independent of each other and (2) antigen specificity affects the comparison of natural antibodies among animals. We used blood cell agglutination and enzyme-linked immunosorbent assays to measure levels of natural antibodies binding to four antigens: (i) rabbit erythrocytes, (ii) keyhole limpet hemocyanin, (iii) phytohemagglutinin, or (iv) ovalbumin. We observed that levels of antigen specific natural antibodies were not correlated. There were significant differences in levels of natural antibodies among lines of chickens, indicating genetic variation for natural antibody production. However, line distinctions were not consistent among antigen specific natural antibodies. These data show that natural antibodies are a pool of relatively distinct immunoglobulins, and that antigen specificity may affect interpretation of natural antibody function and comparative immunology.
Collapse
Affiliation(s)
- Kendra Weston
- Department of Entomology, Washington State University, Pullman, WA, United States
| | | | - Jeb Owen
- Department of Entomology, Washington State University, Pullman, WA, United States
| |
Collapse
|
3
|
Arango J, Wolc A, Owen J, Weston K, Fulton JE. Genetic Variation in Natural and Induced Antibody Responses in Layer Chickens. Animals (Basel) 2024; 14:1623. [PMID: 38891669 PMCID: PMC11171384 DOI: 10.3390/ani14111623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Selection of livestock for disease resistance is challenging due to the difficulty in obtaining reliable phenotypes. Antibodies are immunological molecules that provide direct and indirect defenses against infection and link the activities of both the innate and adaptive compartments of the immune system. As a result, antibodies have been used as a trait in selection for immune defense. The goal of this study was to identify genomic regions associated with natural and induced antibodies in chickens using low-pass sequencing. Enzyme-linked immunosorbent assays were used to quantify innate (natural) antibodies binding KLH, OVA, and PHA and induced (adaptive) antibodies binding IBD, IBV, NDV, and REO. We collected plasma from four White Leghorn (WL), two White Plymouth Rock (WPR), and two Rhode Island Red (RIR) lines. Samples numbers ranged between 198 and 785 per breed. GWAS was performed within breed on data pre-adjusted for Line-Hatch-Sex effects using GCTA. A threshold of p = 10-6 was used to select genes for downstream annotation and enrichment analysis with SNPEff and Panther. Significant enrichment was found for the defense/immunity protein, immunoglobulin receptor superfamily, and the antimicrobial response protein in RIR; and the immunoglobulin receptor superfamily, defense/immunity protein, and protein modifying enzyme in WL. However, none were present in WPR, but some of the selected SNP were annotated in immune pathways. This study provides new insights regarding the genetics of the antibody response in layer chickens.
Collapse
Affiliation(s)
- Jesus Arango
- Hy-Line International, Dallas Center, IA 50063, USA; (J.A.); (J.E.F.)
- Cobb Genetics, Siloam Springs, AR 72761, USA
| | - Anna Wolc
- Hy-Line International, Dallas Center, IA 50063, USA; (J.A.); (J.E.F.)
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jeb Owen
- Department of Entomology, Washington State University, Pullman, WA 99164, USA; (J.O.); (K.W.)
| | - Kendra Weston
- Department of Entomology, Washington State University, Pullman, WA 99164, USA; (J.O.); (K.W.)
| | - Janet E. Fulton
- Hy-Line International, Dallas Center, IA 50063, USA; (J.A.); (J.E.F.)
| |
Collapse
|
4
|
Lecoeur A, Blanc F, Gourichon D, Bruneau N, Burlot T, Pinard-van der Laan MH, Calenge F. Host genetics drives differences in cecal microbiota composition and immune traits of laying hens raised in the same environment. Poult Sci 2024; 103:103609. [PMID: 38547541 PMCID: PMC11000118 DOI: 10.1016/j.psj.2024.103609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 04/11/2024] Open
Abstract
Vaccination is one of the most effective strategies for preventing infectious diseases but individual vaccine responses are highly heterogeneous. Host genetics and gut microbiota composition are 2 likely drivers of this heterogeneity. We studied 94 animals belonging to 4 lines of laying hens: a White Leghorn experimental line genetically selected for a high antibody response against the Newcastle Disease Virus (NDV) vaccine (ND3) and its unselected control line (CTR), and 2 commercial lines (White Leghorn [LEG] and Rhode Island Red [RIR]). Animals were reared in the same conditions from hatching to 42 d of age, and animals from different genetic lines were mixed. Animals were vaccinated at 22 d of age and their humoral vaccine response against NDV was assessed by hemagglutination inhibition assay and ELISA from blood samples collected at 15, 19, and 21 d after vaccination. The immune parameters studied were the 3 immunoglobulins subtypes A, M, and Y and the blood cell composition was assessed by flow cytometry. The composition of the cecal microbiota was assessed at the end of the experiment by analyzing amplified 16S rRNA gene sequences to obtain amplicon sequence variants (ASV). The 4 lines showed significantly different levels of NDV vaccine response at the 3 measured points, with, logically, a higher response of the genetically selected ND3 line, and intermediate and low responses for the unselected CTR control line and for the 2 commercial lines, respectively. The ND3 line displayed also a higher proportion of immunoglobulins (IgA, IgM, and IgY). The RIR line showed the most different blood cell composition. The 4 lines showed significantly different microbiota characteristics: composition, abundances at all taxonomic levels, and correlations between genera and vaccine response. The tested genetic lines differ for immune parameters and gut microbiota composition and functions. These phenotypic differences can be attributed to genetic differences between lines. Causal relationships between both types of parameters are discussed and will be investigated in further studies.
Collapse
Affiliation(s)
- Alexandre Lecoeur
- Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas 78350, France.
| | - Fany Blanc
- Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas 78350, France
| | | | - Nicolas Bruneau
- Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas 78350, France
| | | | | | - Fanny Calenge
- Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas 78350, France
| |
Collapse
|
5
|
Berghof TVL, Bedere N, Peeters K, Poppe M, Visscher J, Mulder HA. The genetics of resilience and its relationships with egg production traits and antibody traits in chickens. Genet Sel Evol 2024; 56:20. [PMID: 38504219 PMCID: PMC10953135 DOI: 10.1186/s12711-024-00888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Resilience is the capacity of an animal to be minimally affected by disturbances or to rapidly return to its initial state before exposure to a disturbance. Resilient livestock are desired because of their improved health and increased economic profit. Genetic improvement of resilience may also lead to trade-offs with production traits. Recently, resilience indicators based on longitudinal data have been suggested, but they need further evaluation to determine whether they are indeed predictive of improved resilience, such as disease resilience. This study investigated different resilience indicators based on deviations between expected and observed egg production (EP) by exploring their genetic parameters, their possible trade-offs with production traits, and their relationships with antibody traits in chickens. METHODS Egg production in a nucleus breeding herd environment based on 1-week-, 2-week-, or 3-week-intervals of two purebred chicken lines, a white egg-laying (33,825 chickens) and a brown egg-laying line (34,397 chickens), were used to determine deviations between observed EP and expected average batch EP, and between observed EP and expected individual EP. These deviations were used to calculate three types of resilience indicators for two life periods of each individual: natural logarithm-transformed variance (ln(variance)), skewness, and lag-one autocorrelation (autocorrelation) of deviations from 25 to 83 weeks of age and from 83 weeks of age to end of life. Then, we estimated their genetic correlations with EP traits and with two antibody traits. RESULTS The most promising resilience indicators were those based on 1-week-intervals, as they had the highest heritability estimates (0.02-0.12) and high genetic correlations (above 0.60) with the same resilience indicators based on longer intervals. The three types of resilience indicators differed genetically from each other, which indicates that they possibly capture different aspects of resilience. Genetic correlations of the resilience indicator traits based on 1-week-intervals with EP traits were favorable or zero, which means that trade-off effects were marginal. The resilience indicator traits based on 1-week-intervals also showed no genetic correlations with the antibody traits, which suggests that they are not informative for improved immunity or vice versa in the nucleus environment. CONCLUSIONS This paper gives direction towards the evaluation and implementation of resilience indicators, i.e. to further investigate resilience indicator traits based on 1-week-intervals, in breeding programs for selecting genetically more resilient layer chickens.
Collapse
Affiliation(s)
- Tom V L Berghof
- Wageningen University & Research Animal Breeding and Genomics, PO Box 338, 6700 AH, Wageningen, The Netherlands.
- Reproductive Biotechnology, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Strasse 1, 85354, Freising, Germany.
| | - Nicolas Bedere
- PEGASE, INRAE, Institut Agro, 35590, Saint Gilles, France
| | - Katrijn Peeters
- Hendrix Genetics B.V., P.O. Box 114, 5830 AC, Boxmeer, The Netherlands
| | - Marieke Poppe
- Wageningen University & Research Animal Breeding and Genomics, PO Box 338, 6700 AH, Wageningen, The Netherlands
- CRV B.V., Wassenaarweg 20, Arnhem, The Netherlands
| | - Jeroen Visscher
- Hendrix Genetics B.V., P.O. Box 114, 5830 AC, Boxmeer, The Netherlands
| | - Han A Mulder
- Wageningen University & Research Animal Breeding and Genomics, PO Box 338, 6700 AH, Wageningen, The Netherlands.
| |
Collapse
|
6
|
Liu Y, Zhang X, Yao Y, Huang X, Li C, Deng P, Jiang G, Dai Q. The effect of epigallocatechin gallate on laying performance, egg quality, immune status, antioxidant capacity, and hepatic metabolome of laying ducks reared in high temperature condition. Vet Q 2023; 43:1-11. [PMID: 37921498 PMCID: PMC11003483 DOI: 10.1080/01652176.2023.2280041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/01/2023] [Indexed: 11/04/2023] Open
Abstract
Epigallocatechin gallate (EGCG) is a main component in green tea extract, which possesses multiple bioactivities. The present research studied the effects of EGCG on the laying performance, egg quality, immune status, antioxidant capacity, and hepatic metabolome of Linwu laying ducks reared under high temperature. A total of 180 42-w-old healthy Linwu laying ducks were allocated into control or EGCG-treated groups. Each treatment had 6 replicates with 15 ducks in each replicate. Diets for the two groups were basal diets supplemented with 0 or 300 mg/kg EGCG, respectively. All ducks were raised in the high temperature condition (35 ± 2 °C for 6 h from 10:00 to 16:00, and 28 ± 2 °C for the other 18 h from 16:00 to 10:00 the next day) for 21 days. Results showed that EGCG increased the egg production rate (p = 0.014) and enhanced the immunocompetence by improving serum levels of immunoglobulin A (p = 0.008) and immunoglobulin G (p = 0.006). EGCG also fortified the antioxidant capacity by activating superoxide dismutase (p = 0.012), catalase (p = 0.009), and glutathione peroxidase (p = 0.021), and increasing the level of heat-shock protein 70 (p = 0.003) in laying ducks' liver. At the same time, hepatic metabolomics result suggested that EGCG increased the concentration of several key metabolites, such as spermidine (p = 0.031), tetramethylenediamine (p = 0.009), hyoscyamine (p = 0.026), β-nicotinamide adenine dinucleotide phosphate (p = 0.038), and pantothenic acid (p = 0.010), which were involved in the metabolic pathways of glutathione metabolism, arginine and proline metabolism, β-alanine metabolism, and tropane, piperidine, and pyridine alkaloid biosynthesis. In conclusion, 300 mg/kg dietary EGCG showed protection effects on the laying ducks reared in high temperature by improving the immune and antioxidant capacities, which contributed to the increase of laying performance of ducks. The potential mechanism could be that EGCG modulate the synthesis of key metabolites and associated metabolic pathways.
Collapse
Affiliation(s)
- Yang Liu
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, China
| | - Xu Zhang
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, China
| | - Yaling Yao
- Huaihua Animal Husbandry and Aquatic Transaction Center, Huaihua, China
| | - Xuan Huang
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, China
| | - Chuang Li
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, China
| | - Ping Deng
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, China
| | - Guitao Jiang
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, China
| | - Qiuzhong Dai
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, China
| |
Collapse
|
7
|
Pacheco BLB, Nogueira CP, Venancio EJ. IgY Antibodies from Birds: A Review on Affinity and Avidity. Animals (Basel) 2023; 13:3130. [PMID: 37835736 PMCID: PMC10571861 DOI: 10.3390/ani13193130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
IgY antibodies are found in the blood and yolk of eggs. Several studies show the feasibility of utilising IgY for immunotherapy and immunodiagnosis. These antibodies have been studied because they fulfil the current needs for reducing, replacing, and improving the use of animals. Affinity and avidity represent the strength of the antigen-antibody interaction and directly influence antibody action. The aim of this review was to examine the factors that influence the affinity and avidity of IgY antibodies and the methodologies used to determine these variables. In birds, there are few studies on the maturation of antibody affinity and avidity, and these studies suggest that the use of an adjuvant-type of antigen, the animal lineage, the number of immunisations, and the time interfered with the affinity and avidity of IgY antibodies. Regarding the methodologies, most studies use chaotropic agents to determine the avidity index. Studies involving the solution phase and equilibrium titration reactions are also described. These results demonstrate the need for the standardisation of methodologies for the determination of affinity and avidity so that further studies can be performed to optimise the production of high avidity IgY antibodies.
Collapse
Affiliation(s)
| | - Camila Parada Nogueira
- Scientific Initiation Programme, Animal Science Course, State University of Londrina, Londrina 86038-350, Brazil;
| | - Emerson José Venancio
- Department of Pathological Sciences, State University of Londrina, Londrina 86038-350, Brazil
| |
Collapse
|
8
|
Lou J, Guo Q, Jiang Y, Chen G, Chang G, Bai H. Effects of the Number of Crested Cushions in Runzhou White-Crested Ducks on Serum Biochemical Parameters. Animals (Basel) 2023; 13:ani13030466. [PMID: 36766355 PMCID: PMC9913149 DOI: 10.3390/ani13030466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
We investigated the effects of crest cushions in Runzhou white-crested (RWC) ducks. A total of 322 duck eggs were collected for incubation; 286 eggs were fertilized, and 235 RCW ducks were hatched. All the RWC ducks were weighed after 100 days and counted, and the volume of the crest cushion was measured. The number of crest cushions was positively correlated with the body weight, volume of the crest cushion, and distance from the mouth (p < 0.05). The serum Ca, Mg, Fe, Cu, Zn, and Se contents in the multiple-crest-cushion group were significantly higher (p < 0.05), as were the levels of triglycerides, immunoglobulin A, immunoglobulin G, immunoglobulin M, and immunoglobulin D (p < 0.01). The opposite results were seen for glycosylated low-density lipoprotein (p < 0.01). Propionic acid and acetic acid contents differed significantly between the two groups (p < 0.05), as did butyric acid content (p < 0.01), being higher in the multiple-crest-cushion group. Thus, an increase in the number of crest cushions coincided with a change in various serum biochemical indicators. The number of crest cushions might be involved in regulating various mechanisms of RWC ducks and might have an immunoregulatory effect.
Collapse
Affiliation(s)
- Jiying Lou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Qixin Guo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Yong Jiang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guobin Chang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Correspondence: (H.B.); (G.C.); Tel.: +86-18796608824 (H.B.); +86-13665241883 (G.C.)
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Correspondence: (H.B.); (G.C.); Tel.: +86-18796608824 (H.B.); +86-13665241883 (G.C.)
| |
Collapse
|
9
|
Yao Y, Liu Y, Li C, Huang X, Zhang X, Deng P, Jiang G, Dai Q. Effects of rosemary extract supplementation in feed on growth performance, meat quality, serum biochemistry, antioxidant capacity, and immune function of meat ducks. Poult Sci 2022; 102:102357. [PMID: 36502565 PMCID: PMC9763849 DOI: 10.1016/j.psj.2022.102357] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022] Open
Abstract
This study aimed to investigate the effects of diets supplemented with different levels of rosemary extract (RE) on the growth performance, meat quality, serum biochemistry, antioxidative capacity, and immunological capacity of Cherry Valley meat ducks. A total of 525 healthy Cherry Valley female meat ducks at 1 d of age were selected for this study. Ducks were randomly divided into 5 treatments with 7 replicates per treatment, and each replicate had 15 ducks. All replicates were randomly assigned to treatments. The study was designed as a dose response experiment. Treatment 1 (CON) was fed with the basal diet, and Treatment 2 to 5 (RE250, RE500, RE750, RE1000) were fed with the basal diet supplemented with 250, 500, 750, and 1,000 g/t RE, respectively. The whole experiment lasted 42 days with early stage (1-21 d) and late stage (22-42 d). Results showed that during 22 to 42 d, ducks that were fed over 500 g/t RE had significantly lower feed gain ratio than the ones in CON (P = 0.006). In addition, ducks in RE750 had significantly lower L* and a* in leg muscle compared with the ones in CON (P < 0.05). Besides, ducks that were fed between 250 and 750 g/t RE had significantly lower total protein level in serum compared with the ones in CON (P = 0.005). Ducks in RE250 and RE750 had significantly lower albumin, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol levels in serum compared with the ones in CON and RE1000 (P < 0.05), and significant quadratic relationships were noticed between albumin, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol and dietary RE level (P < 0.05). Moreover, ducks that were fed between 500 and 750 g/t RE had significantly higher levels of interleukin-2 in serum compared to the ones in CON and RE1000 (P = 0.003). Ducks in RE250 and RE750 had significantly higher levels of immunoglobulin G in serum compared to the ones in CON and RE1000 (P < 0.001). Ducks that were fed over 500 g/t RE had significantly higher levels of immunoglobulin A in serum compared to the ones in CON (P = 0.001). Finally, ducks that were fed between 500 and 750 g/t RE had significantly higher serum levels of glutathione peroxidase, superoxide dismutase, catalase, and total antioxidant capacity (P < 0.05) compared to the ones in CON. Ducks that were fed over 250 g/t RE had significantly lower serum level of malondialdehyde compared to the ones in CON (P = 0.020). Collectively, dietary supplementation of RE improved the growth performance and meat qualities of meat ducks during 22 to 42 d, which were possibly associated with the antioxidative and anti-inflammatory effects of RE. Based on the serum antioxidative and immunological parameters, we suggested that 500 to 750 g/t was the optimal supplementation rate for RE in diets for meat ducks aged 22 to 42 d.
Collapse
Affiliation(s)
- Yuezhou Yao
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, 410131, China,Hunan Agricultural University, Changsha, 410125, China
| | - Yang Liu
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, 410131, China
| | - Chuang Li
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, 410131, China
| | - Xuan Huang
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, 410131, China
| | - Xu Zhang
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, 410131, China
| | - Ping Deng
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, 410131, China
| | - Guitao Jiang
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, 410131, China
| | - Qiuzhong Dai
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, 410131, China,Corresponding author.
| |
Collapse
|
10
|
Liu Y, Li C, Huang X, Zhang X, Deng P, Jiang G, Dai Q. Dietary rosemary extract modulated gut microbiota and influenced the growth, meat quality, serum biochemistry, antioxidant, and immune capacities of broilers. Front Microbiol 2022; 13:1024682. [PMID: 36338103 PMCID: PMC9626529 DOI: 10.3389/fmicb.2022.1024682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
After the legislative ban on the utilization of antibiotics in animal feed, phytochemical substances gained increasing attention as alternatives to antibiotics because of their bioactivities and safety for animals. The present study aimed to investigate the influence of dietary rosemary extract (RE) on growth performance, meat quality, serum biochemistry, antioxidant and immune capacities, and gut microbiota composition of broilers. By exploring connections among RE, physiological characteristics of broilers, and key microbiota, we sought to provide evidence for the utilization of RE in poultry feed. A total of 280 1-d-old female AA broilers were randomly separated into five groups, and were fed a basal diet supplemented with 0, 250, 500, 750, and 1,000 mg/kg of RE, respectively. Results showed that with regard to growth performance, both 500 and 750 mg/kg RE reduced the broiler feed-to-gain ratio from 1 to 21 d (P = 0.018). Regarding meat quality, all compositions of dietary RE reduced cooking loss of breast muscle (P < 0.01), and 500 and 1,000 mg/kg RE reduced the cooking loss of thigh muscle (P = 0.045). Regarding serum biochemical indexes, 500 mg/kg RE reduced ALB, TCHO, HDL-C, and LDL-C, and 750 mg/kg RE reduced GLU, TP, ALB, UA, TG, TCHO, HDL-C, and LDL-C (P < 0.01). Regarding antioxidant and immune capacities, 250, 500, 750, and 1,000 mg/kg RE increased T-AOC, GSH-Px, SOD, CAT, IL-2, IgA, IgG, and IgM levels (P < 0.01), and decreased serum MDA level (P < 0.01). RE at 750 mg/kg showed similar effects on growth performance, meat quality, and antioxidative and immune capacities, but a better influence on serum biochemical indexes of broilers compared with 500 mg/kg. Further analysis was conducted to investigate the effect of 750 mg/kg dietary RE on the gut microbial composition of broilers, and the results showed that 750 mg/kg RE reduced the relative abundance of g_Lachnoclostridium, g_Escherichia_Shigella, and g_Marvinbryantia (P <0.05, LDA score >2), which were negatively correlated to antioxidative and immune-associated parameters (P < 0.05). In conclusion, 750 mg/kg dietary RE was shown to have certain beneficial effects on growth performance and meat quality, and hypolipidemic and hypoglycemic effects on broilers. Furthermore, dietary RE improved antioxidant and immune capacities, which was partially attributed to the reduced abundance of certain pathogenic bacteria in broilers.
Collapse
|
11
|
Bovenhuis H, Berghof TVL, Visker MHPW, Arts JAJ, Visscher J, van der Poel JJ, Parmentier HK. Divergent selection for natural antibodies in poultry in the presence of a major gene. Genet Sel Evol 2022; 54:24. [PMID: 35313798 PMCID: PMC8939063 DOI: 10.1186/s12711-022-00715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
Background Natural antibodies (NAb) are antibodies that are present in a healthy individual without requiring previous exposure to an exogenous antigen. Selection for high NAb levels might contribute to improved general disease resistance. Our aim was to analyse the genetic background of NAb based on a divergent selection experiment in poultry, and in particular the effect of a polymorphism in the TLR1A gene. Methods The study population consisted of a base population from a commercial pure-bred elite white leghorn layer line and seven generations of birds from a High and Low selection line. Birds were selected for total KLH-binding NAb titer (IgTotal). An enzyme-linked immunosorbent assay was performed to determine NAb titers in blood plasma for IgTotal and the antibody isotypes IgM and IgG. NAb titers were available for 10,878 birds. Genotypes for a polymorphism in TLR1A were determined for chickens in generations 5, 6 and 7. The data were analysed using mixed linear animal models. Results The heritability estimate for IgM was 0.30 and higher than that for IgG and IgTotal (0.12). Maternal environmental effects explained 2 to 3% of the phenotypic variation in NAb. Selection for IgTotal resulted in a genetic difference between the High and Low line of 2.4 titer points (5.1 genetic standard deviation) in generation 7. For IgM, the selection response was asymmetrical and higher in the Low than the High line. The frequency of the TLR1A C allele was 0.45 in the base population and 0.66 and 0.04 in generation 7 of the High and Low line, respectively. The TLR1A polymorphism had large and significant effects on IgTotal and IgM. Estimated genotypic effects suggest full dominance of the TLR1A C allele. Significant TLR1A by generation interactions were detected for IgM and IgTotal. Conclusions The effect of a polymorphism in the TLR1A gene on IgTotal and IgM NAb was confirmed. Furthermore, we provide experimental verification of changes in allele frequencies at a major gene with dominant gene action on a quantitative trait that is subjected to mass selection. TLR1A by generation interactions indicate sensitivity to environmental factors. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-022-00715-9.
Collapse
Affiliation(s)
- Henk Bovenhuis
- Animal Breeding and Genomics Centre, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands.
| | - Tom V L Berghof
- Animal Breeding and Genomics Centre, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands.,Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands.,Reproductive Biotechnology, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Strasse 1, 85354, Freising, Germany
| | - Marleen H P W Visker
- Animal Breeding and Genomics Centre, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Joop A J Arts
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Jeroen Visscher
- Hendrix Genetics Research Technology & Service B.V, P.O. Box 114, 5830 AC, Boxmeer, The Netherlands
| | - Jan J van der Poel
- Animal Breeding and Genomics Centre, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Henk K Parmentier
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
12
|
Zerna G, Cameron TC, Toet H, Spithill TW, Beddoe T. Bovine Natural Antibody Relationships to Specific Antibodies and Fasciola hepatica Burdens after Experimental Infection and Vaccination with Glutathione S-Transferase. Vet Sci 2022; 9:vetsci9020058. [PMID: 35202313 PMCID: PMC8876122 DOI: 10.3390/vetsci9020058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Fasciola hepatica is the causative agent of fasciolosis, a significant parasitic disease occurring worldwide. Despite ongoing efforts, there is still no vaccine to control liver fluke infections in livestock. Recently, it has been suggested that natural antibodies (NAbs) can amplify specific antibodies (SpAb) and have a direct killing effect, but it is unknown if this phenomenon occurs during parasitic helminth infection or targeted vaccination. NAbs are antibodies produced by the innate immune system, capable of binding antigens without prior exposure. This study explores the role of bovine NAbs, using the exogenous glycoprotein keyhole limpet hemocyanin (KLH), in response to F. hepatica infection and SpAb production after infection and vaccination. The cattle’s NAbs were differently influenced by parasite infection and vaccination, with an increase in KLH-binding IgG and IgM levels after infection and reduced KLH-binding IgM levels following vaccination. Underlying NAbs reacting to KLH showed no correlations to the final fluke burdens after experimental infection or vaccination. However, NAbs reacting to whole-worm extract (WWE) prior to infection were positively correlated to increased fluke burdens within the infected bovine host. Furthermore, after infection, the specific IgG reacting to WWE was positively reflected by the underlying NAb IgG response. Following subcutaneous vaccination with F. hepatica native glutathione S-transferase (GST), there was a non-significant 33% reduction in fluke burden. Vaccinated animals with higher underlying NAbs had a higher induction of vaccine-induced SpAbs, with trends observed between KLH-binding IgM and anti-GST IgG and IgM. Our findings provide a platform to allow further investigation to determine if NAb levels could mirror fluke-SpAb production for exploitation in a combined selective breeding and vaccination program. Additionally, this work suggests that liver fluke could possibly evade the host’s immune system by utilising surface-bound IgM NAbs.
Collapse
|
13
|
Liu Y, Lin Q, Huang X, Jiang G, Li C, Zhang X, Liu S, He L, Liu Y, Dai Q, Huang X. Effects of Dietary Ferulic Acid on the Intestinal Microbiota and the Associated Changes on the Growth Performance, Serum Cytokine Profile, and Intestinal Morphology in Ducks. Front Microbiol 2021; 12:698213. [PMID: 34326826 PMCID: PMC8313987 DOI: 10.3389/fmicb.2021.698213] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/09/2021] [Indexed: 01/11/2023] Open
Abstract
The present study investigated the effects of ferulic acid (FA) on the growth performance, serum cytokine profile, intestinal morphology, and intestinal microbiota in ducks at the growing stage. 300 female Linwu ducks at 28 days of age with similar body weights were randomly divided into five groups. Each group contained six replicates of 10 birds. The dietary treatments were corn-soybean-based diet supplemented with FA at the concentrations of 0 (control), 100, 200, 400, and 800 mg/kg diet. The results demonstrated that dietary FA at the levels of 200, 400, and 800 mg/kg increased the average daily gain (P = 0.01), 400 and 800 mg/kg FA increased the final body weight (P = 0.02), 100, 200, and 800 mg/kg FA increased the serum glutathione (P = 0.01), and 100, 400, and 800 mg/kg FA increased the glutathione peroxidase activities in birds (P < 0.01). Additionally, 200, 400, and 800 mg/kg dietary FA lowered the serum levels of interleukin-2 (P = 0.02) and interleukin-6 (P = 0.04). Moreover, the morphometric study of the intestines indicated that 400 mg/kg FA decreased the crypt depth in jejunum (P = 0.01) and caecum (P = 0.04), and increased the ratio of villus height to crypt depth in jejunum (P = 0.02). Significant linear and/or quadratic relationships were found between FA concentration and the measured parameters. 16S rRNA sequencing revealed that dietary FA increased the populations of genera Faecalibacterium, Paludicola, RF39, and Faecalicoccus in the cecum (P < 0.05), whereas decreased the populations of Anaerofilum and UCG-002 (P < 0.05). The Spearman correlation analysis indicated that phylum Proteobacteria were negatively, but order Oscillospirales, and family Ruminococcaceae were positively related to the parameters of the growth performance. Phylum Bacteroidetes, class Negativicutes and family Rikenellaceae were negatively associated with the parameters of the antioxidative capability. And phylum Cyanobacteria, Elusimicrobia, and Bacteroidetes, class Bacilli, family Rikenellaceae, and genus Prevotella were positively associated with the parameters of the immunological capability. Thus, it was concluded that the supplementations of 400 mg/kg FA in diet was able to improve the growth performance, antioxidative and immunological capabilities, intestinal morphology, and modulated the gut microbial construction of Linwu ducks at the growing stage.
Collapse
Affiliation(s)
- Yang Liu
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China.,Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Qian Lin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Xuan Huang
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Guitao Jiang
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Chuang Li
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Xu Zhang
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Shengli Liu
- Shandong Lonct Enzymes Co., Ltd., Linyi, China
| | - Lingyun He
- Animal Husbandry and Fisheries Affairs Center, Huaihua, China
| | - Yali Liu
- Hunan Perfly Biotech Co., Ltd., Changsha, China
| | - Qiuzhong Dai
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Xingguo Huang
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China
| |
Collapse
|
14
|
Hofmann T, Schmucker SS, Bessei W, Grashorn M, Stefanski V. Impact of Housing Environment on the Immune System in Chickens: A Review. Animals (Basel) 2020; 10:E1138. [PMID: 32635616 PMCID: PMC7401558 DOI: 10.3390/ani10071138] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
During their lifespan, chickens are confronted with a wide range of acute and chronic stressors in their housing environment that may threaten their welfare and health by modulating the immune system. Especially chronic stressful conditions can exceed the individual's allostatic load, with negative consequences for immunity. A fully functional immune system is mandatory for health and welfare and, consequently, also for high productivity and safe animal products. This review provides a comprehensive overview of the impact of housing form, light regime as well as aerial ammonia and hydrogen sulfide concentrations on the immune system in chickens. Certain housing conditions are clearly associated with immunological alterations which potentially impair the success of vaccinations or affect disease susceptibility. Such poor conditions counteract sustainable poultry production. This review also outlines current knowledge gaps and provides recommendations for future research.
Collapse
Affiliation(s)
- Tanja Hofmann
- Department of Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Garbenstr, 17, 70599 Stuttgart, Germany;
| | - Sonja S. Schmucker
- Department of Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Garbenstr, 17, 70599 Stuttgart, Germany;
| | - Werner Bessei
- Department of Livestock Population Genomics, Institute of Animal Science, University of Hohenheim, Garbenstr, 17, 70599 Stuttgart, Germany; (W.B.); (M.G.)
| | - Michael Grashorn
- Department of Livestock Population Genomics, Institute of Animal Science, University of Hohenheim, Garbenstr, 17, 70599 Stuttgart, Germany; (W.B.); (M.G.)
| | - Volker Stefanski
- Department of Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Garbenstr, 17, 70599 Stuttgart, Germany;
| |
Collapse
|
15
|
Berghof TVL, Bovenhuis H, Mulder HA. Body Weight Deviations as Indicator for Resilience in Layer Chickens. Front Genet 2019; 10:1216. [PMID: 31921285 PMCID: PMC6923720 DOI: 10.3389/fgene.2019.01216] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/04/2019] [Indexed: 02/04/2023] Open
Abstract
Resilience is the capacity of an animal to be minimally affected by disturbances or to rapidly return to the state pertained before exposure to a disturbance. Less resilient animals are expected to be more susceptible to environmental perturbations, such as diseases, and will consequently show more and/or greater fluctuations in production than more resilient animals. Natural antibodies (NAb) are antibodies recognizing antigens without previous exposure to these, and are hypothesized to be an indication of general disease resistance. The objective of this research was to investigate genetic parameters of resilience indicators based on standardized body weight (BW) deviations and to investigate its relation with immunity (i.e. NAb) and disease resistance. Keyhole limpet hemocyanin-binding NAb were measured in layer chickens, which were selectively bred for high and low keyhole limpet hemocyanin-binding NAb levels during six generations. In addition, BW data of these layers were collected on a four-weekly interval from 4 weeks of age until 32 weeks of age. Standardized deviations of BW from an individual were compared to lines’ average BW (i.e. across individuals), and these were used to calculate resilience indicators: natural logarithm-transformed variance [ln(variance)], skewness, and lag-one autocorrelation of deviations (i.e. all within an individual). Heritabilities of resilience indicators were between 0.09 and 0.11. Genetic correlations between the three resilience indicators were between -0.20 and 0.40 (with high SE), which might suggest that the resilience indicators capture different aspects of resilience. Genetic correlations between resilience indicators and NAb were close to zero, which suggests that the resilience indicators and NAb capture different aspects of immunity. This might indicate that, in this dataset, environmental perturbations are only to a small extent affected by disease incidence, possibly due to a lack of disease occurrence. However, a lower estimated breeding value for ln(variance) was predictive for lower lesion scores after an avian pathogenic Escherichia coli inoculation and vice versa. In conclusion, this study shows that there is genetic variation in resilience indicators based on BW deviations in layer chickens, which opens up possibilities to improve resilience by means of selective breeding.
Collapse
Affiliation(s)
- Tom V L Berghof
- Wageningen University & Research Animal Breeding and Genomics, Wageningen, Netherlands
| | - Henk Bovenhuis
- Wageningen University & Research Animal Breeding and Genomics, Wageningen, Netherlands
| | - Han A Mulder
- Wageningen University & Research Animal Breeding and Genomics, Wageningen, Netherlands
| |
Collapse
|
16
|
Lelono A, Robledo-Ruiz DA, Berghof TVL, Parmentier HK, Riedstra B, Groothuis TG. Does paternal immunocompetence affect offspring vulnerability to maternal androgens? A study in domestic chickens. Biol Open 2019; 8:bio.045096. [PMID: 31748241 PMCID: PMC6899007 DOI: 10.1242/bio.045096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Exposure of yolk androgens can positively stimulate chick growth and competitive ability, but may negatively affect immunity. It has been hypothesized that only chicks from immunologically superior fathers can bear the cost of prenatal exposure to high androgen levels. To test this hypothesis, we paired roosters from two selection lines, one up- and one down-selected for natural antibodies (NAbs), with hens from a control line. We measured yolk testosterone and androstenedione levels, and we injected the treatment group of eggs of each female with testosterone suspended in sesame oil and the control group with sesame oil only. We then measured hatching success and growth, and characterized the humoral and cellular immune responses using three different challenges: a phyto-hemagglutinin, a lipopolysaccharide and a sheep red blood cell challenge. We found that the hatching success, body mass, initial levels of natural antibodies and the chicks’ immunological responses to the three different challenges and development were affected neither by paternal immunocompetence nor by treatment. These results do not support the hypothesis that chicks from low-NAb line fathers are more sensitive to testosterone exposure during embryonic development than chicks from high-NAb line fathers. Summary: Our study shows that there were no effects of paternal natural antibody line, increased embryonic testosterone exposure or the interaction of both on immunocompetence of chicks.
Collapse
Affiliation(s)
- Asmoro Lelono
- Behavioural Biology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands .,Department of Biology, Faculty of Mathematics and Natural Sciences, University of Jember, 68121 Jember, East Java, The Republic of Indonesia
| | - Diana A Robledo-Ruiz
- Behavioural Biology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Tom V L Berghof
- Department of Animal Sciences, Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | - Henk K Parmentier
- Department of Animal Sciences, Wageningen University & Research Adaptation Physiology, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | - Bernd Riedstra
- Behavioural Biology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Ton G Groothuis
- Behavioural Biology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
17
|
Ismiraj MR, Arts JAJ, Parmentier HK. Maternal Transfer of Natural (Auto-) Antibodies in Chickens. Poult Sci 2019; 98:2380-2391. [PMID: 30690626 PMCID: PMC6527509 DOI: 10.3382/ps/pez017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/15/2019] [Indexed: 12/16/2022] Open
Abstract
The presence and relative levels (titers) of IgM and IgG natural antibodies (NAb) binding keyhole limpet hemocyanin (KLH), and natural (auto-) antibodies (N(A)Ab) binding salmon double-stranded DNA (dsDNA), (oxidated-) phosphatidyl (phosphoryl) choline-conjugated bovine serum albumin (PC-BSA), PC-conjugated ovalbumin (PC-OVA), and OVA, respectively, were studied in adult hen plasma, egg yolk, egg albumen, plasma of their hatchlings, and in 8-day-old chick plasma. Birds and eggs were from 2 lines divergently selected for high or low NAb levels binding KLH. This study aimed to determine 1) correlated phenotypic responses of selection for NAb to KLH, 2) transfer of maternal NAb and N(A)Ab via egg compartments, 3) levels of likely maternal NAb and N(A)Ab in hatchlings and 8-day-old chicks, and 4) whether a composite trait: IgM anti-PC-BSA/IgG anti-dsDNA ratio in the compartments could be used as a parameter for health or immune status. NAb and N(A)Ab to all tested antigens were found in adult hens, but low or no levels were found for IgM in yolk and IgG in albumen. Depending on the antigen, NAb and N(A)Ab were found in hatchlings and day 8 birds. Divergent selection and breeding based on NAb binding KLH affected antibody titers of almost all antigens in almost all compartments, in a similar way. Maternal transfer of NAb and N(A)Ab from the adult hen to offspring was via specific routes for specific antigens and isotypes, especially for IgG as suggested by cluster analyses and significant correlations. There was little indication of production of new NAb and N(A)Ab to the studied antigens in either the egg compartments or the hatchlings. A composite trait of IgM PC-BSA/IgG dsDNA ratio was as yet not indicative for immune status, as no significant differences were found between the lines for all compartments. In conclusion, hens provide neonatal chickens with natural (self-) binding IgG antibodies that have been proposed to perform homeostatic functions during the period in which neonates do not produce these antibodies themselves.
Collapse
Affiliation(s)
- M Rifqi Ismiraj
- Section of Immunology, Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands
| | - Joop A J Arts
- Section of Immunology, Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands
| | - Henk K Parmentier
- Section of Immunology, Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands
| |
Collapse
|
18
|
Berghof TVL, Matthijs MGR, Arts JAJ, Bovenhuis H, Dwars RM, van der Poel JJ, Visker MHPW, Parmentier HK. Selective breeding for high natural antibody level increases resistance to avian pathogenic Escherichia coli (APEC) in chickens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 93:45-57. [PMID: 30579935 DOI: 10.1016/j.dci.2018.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
Keyhole limpet hemocyanin (KLH)-binding natural antibody (NAb) titers in chickens are heritable, and higher levels have previously been associated with a higher survival. This suggests that selective breeding for higher NAb levels might increase survival by means of improved general disease resistance. Chickens were divergently selected and bred for total NAb levels binding KLH at 16 weeks of age for six generations, resulting in a High NAb selection line and a Low NAb selection line. To for test differences in disease resistance, chickens were challenged with avian pathogenic Escherichia coli (APEC) in two separate experiments. Chickens at 8 days of age received one of four intratracheal inoculations of 0.2 mL phosphate buffered saline (PBS): 1) mock inoculate, 2) with 0.2 mL PBS containing 108.20 colony-forming units (CFU)/mL APEC, 3) with 0.2 mL PBS containing 106.64 CFU/mL APEC, and 4) with 0.2 mL PBS containing 107.55 CFU/mL APEC. Mortality was recorded during 7 days post inoculation. Overall, 50-60% reduced mortality was observed in the High line compared to the Low line for all APEC doses. In addition, morbidity was determined of the surviving chickens at 15 days of age. The High line had lower morbidity scores compared to the Low line. We conclude that selective breeding for high KLH-binding NAb levels at 16 weeks of age increase APEC resistance in early life. This study and previous studies support the hypothesis that KLH-binding NAb might be used as an indicator trait for to selective breed for general disease resistance in an antigen non-specific fashion.
Collapse
Affiliation(s)
- T V L Berghof
- Wageningen University & Research Adaptation Physiology, Wageningen, The Netherlands; Wageningen University & Research Animal Breeding and Genomics, Wageningen, The Netherlands.
| | - M G R Matthijs
- Faculty of Veterinary Medicine, Department of Farm Animal Health, Utrecht University, The Netherlands
| | - J A J Arts
- Wageningen University & Research Adaptation Physiology, Wageningen, The Netherlands
| | - H Bovenhuis
- Wageningen University & Research Animal Breeding and Genomics, Wageningen, The Netherlands
| | - R M Dwars
- Faculty of Veterinary Medicine, Department of Farm Animal Health, Utrecht University, The Netherlands
| | - J J van der Poel
- Wageningen University & Research Animal Breeding and Genomics, Wageningen, The Netherlands
| | - M H P W Visker
- Wageningen University & Research Animal Breeding and Genomics, Wageningen, The Netherlands
| | - H K Parmentier
- Wageningen University & Research Adaptation Physiology, Wageningen, The Netherlands
| |
Collapse
|
19
|
de Klerk B, Emam M, Thompson-Crispi KA, Sargolzaei M, van der Poel JJ, Mallard BA. A genome-wide association study for natural antibodies measured in blood of Canadian Holstein cows. BMC Genomics 2018; 19:694. [PMID: 30241501 PMCID: PMC6150957 DOI: 10.1186/s12864-018-5062-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/10/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Natural antibodies (NAb) are an important component of the innate immune system, and fight infections as a part of the first line defence. NAb are poly-reactive and can respond non-specifically to antigens. Therefore, NAb may be a key trait when evaluating an animal's potential natural disease resistance. Variation in NAb is caused by both genetic and environmental factors. In this study genetic parameters of NAb were estimated and a genome-wide association study (GWAS) was performed to gain further understanding on the genes that are responsible for the observed genetic variation of NAb in Canadian Holsteins. RESULTS In total, blood samples of 1327 cows from 64 farms were studied. NAb binding to keyhole limpet hemocyanin (KLH) were determined via indirect ELISA. Immunoglobulin (Ig) isotypes, IgG and IgM, were evaluated. From the sample population, 925 cows were genotyped for 45,187 markers and each individual marker was tested to detect genetic variation in NAb levels. The relationships among animals was accounted for with genomic relationship. Results show heritabilities of 0.27 ± 0.064 (IgG) and 0.31 ± 0.065 (IgM). In total, 23 SNPs were found to be associated with IgG, but no SNPs were associated with IgM (FDR p-value < 0.05). The significant SNPs were located on autosomal chromosomes 1, 20 and 21 of the cow genome. Functional annotation analysis of the positional candidate genes revealed two sets of genes with biologically relevant functions related to NAb. In one set, seven genes with crucial roles in the production of antibody in B cells were associated with the trafficking of vesicles inside the cells between organelles. In the second set, two genes among positional candidate genes were associated with isotype class-switching and somatic hypermutation of B cells. CONCLUSIONS This study demonstrated the possibility of increasing NAb through selective breeding. In addition, the effects of two candidate pathways are proposed for further investigation of NAb production in Holsteins.
Collapse
Affiliation(s)
- Britt de Klerk
- Animal Breeding and Genomics Centre, Wageningen University, P.O. Box 338, Wageningen, The Netherlands
| | - Mehdi Emam
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada.,Department of Pathobiology, Ontario Veterinary College, Genetic improvement of livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - Mehdi Sargolzaei
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada.,Semex Alliance, Guelph, ON, Canada
| | - Johan J van der Poel
- Animal Breeding and Genomics Centre, Wageningen University, P.O. Box 338, Wageningen, The Netherlands
| | - Bonnie A Mallard
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada. .,Department of Pathobiology, Ontario Veterinary College, Genetic improvement of livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|