1
|
Zhang K, Zuo D, Wang Z, Ding J, Xu J, Liu Y, Zhong Y, Jia W. Heterologous prime-boost with an mRNA vaccine and an oncolytic virus enhances tumor regression through overcoming intratumoral immune suppression. Cell Rep 2025; 44:115745. [PMID: 40411783 DOI: 10.1016/j.celrep.2025.115745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/10/2025] [Accepted: 05/06/2025] [Indexed: 05/26/2025] Open
Abstract
Therapeutic mRNA vaccines are limited in inducing tumor shrinkage in advanced cancers due to their inability to overcome immune-suppressive mechanisms within tumors. In this study, we developed an HPV-immunogen-expressing oncolytic virus (OV) using HSV-1 for HPV-related cancer treatment. A mouse syngeneic tumor model evaluates the effectiveness of intratumoral OV application for E6+E7+ tumors. Comparative analysis of OV and mRNA vaccines reveals distinct mechanisms in tumor treatment. Single-cell RNA sequencing and flow cytometry show that OV enhances cytotoxic T cell infiltration, polarizes neutrophils and macrophages toward anti-tumor phenotypes, and promotes immune activation within the tumor. In contrast, the mRNA vaccine more effectively activates peripheral antigen-specific T cell responses. A heterologous prime-boost strategy using the mRNA vaccine to prime systemic T cells, followed by OV therapy to direct these cells into the tumor, leads to significant tumor regression. This combination optimizes both systemic and intratumoral immune responses for advanced HPV-related cancers.
Collapse
Affiliation(s)
- Kuan Zhang
- Shanghai Virogin Biotech Co., Ltd., Shanghai 201802, China
| | - Dong Zuo
- Shanghai Virogin Biotech Co., Ltd., Shanghai 201802, China
| | - Zhenglong Wang
- Shanghai Virogin Biotech Co., Ltd., Shanghai 201802, China
| | - Jun Ding
- Shanghai Virogin Biotech Co., Ltd., Shanghai 201802, China; Virogin Biotech Co., Ltd, Richmond, BC V6V 3A4, Canada
| | - Jiang Xu
- Shanghai Virogin Biotech Co., Ltd., Shanghai 201802, China
| | - Yin Liu
- Shanghai Virogin Biotech Co., Ltd., Shanghai 201802, China
| | - Yu Zhong
- Shanghai Virogin Biotech Co., Ltd., Shanghai 201802, China
| | - William Jia
- Shanghai Virogin Biotech Co., Ltd., Shanghai 201802, China; Virogin Biotech Co., Ltd, Richmond, BC V6V 3A4, Canada.
| |
Collapse
|
2
|
Salauddin M, Saha S, Hossain MG, Okuda K, Shimada M. Clinical Application of Adenovirus (AdV): A Comprehensive Review. Viruses 2024; 16:1094. [PMID: 39066256 PMCID: PMC11281619 DOI: 10.3390/v16071094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Adenoviruses are non-enveloped DNA viruses that cause a wide range of symptoms, from mild infections to life-threatening diseases in a broad range of hosts. Due to the unique characteristics of these viruses, they have also become a vehicle for gene-transfer and cancer therapeutic instruments. Adenovirus vectors can be used in gene therapy by modifying wild-type viruses to render them replication-defective. This makes it possible to swap out particular viral genes for segments that carry therapeutic genes and to employ the resultant vector as a means of delivering genes to specified tissues. In this review, we outline the progressive development of adenovirus vectors, exploring their characteristics, genetic modifications, and range of uses in clinical and preclinical settings. A significant emphasis is placed on their crucial role in advancing gene therapy, cancer therapy, immunotherapy, and the latest breakthroughs in vaccine development for various diseases.
Collapse
Affiliation(s)
- Md. Salauddin
- Department of Microbiology and Public Health, Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna 9202, Bangladesh;
| | - Sukumar Saha
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (S.S.); (M.G.H.)
| | - Md. Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (S.S.); (M.G.H.)
| | - Kenji Okuda
- Department of Molecular Biodefense Research, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan;
| | - Masaru Shimada
- Department of Molecular Biodefense Research, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan;
| |
Collapse
|
3
|
Chattopadhyay S, Hazra R, Mallick A, Gayen S, Roy S. A review exploring the fusion of oncolytic viruses and cancer immunotherapy: An innovative strategy in the realm of cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189110. [PMID: 38754793 DOI: 10.1016/j.bbcan.2024.189110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Oncolytic viruses (OVs) are increasingly recognized as potent tools in cancer therapy, effectively targeting and eradicating oncogenic conditions while sparing healthy cells. They enhance antitumor immunity by triggering various immune responses throughout the cancer cycle. Genetically engineered OVs swiftly destroy cancerous tissues and activate the immune system by releasing soluble antigens like danger signals and interferons. Their ability to stimulate both innate and adaptive immunity makes them particularly attractive in cancer immunotherapy. Recent advancements involve combining OVs with other immune therapies, yielding promising results. Transgenic OVs, designed to enhance immunostimulation and specifically target cancer cells, further improve immune responses. This review highlights the intrinsic mechanisms of OVs and underscores their synergistic potential with other immunotherapies. It also proposes strategies for optimizing armed OVs to bolster immunity against tumors.
Collapse
Affiliation(s)
- Soumyadeep Chattopadhyay
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Rudradeep Hazra
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Arijit Mallick
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Sakuntala Gayen
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India.
| |
Collapse
|
4
|
Martinez-Perez AG, Garza-Morales R, Loera-Arias MDJ, Villa-Cedillo SA, Garcia-Garcia A, Rodriguez-Rocha H, Flores-Maldonado OE, Valdes J, Perez-Trujillo JJ, Saucedo-Cardenas O. Long-term antigen-specific immune response by an oncolytic adenovirus encoding SP-SA-E7-4-1BBL in HPV-16 cancer model. Mol Biol Rep 2024; 51:408. [PMID: 38460043 DOI: 10.1007/s11033-024-09303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/30/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND To describe an oncolytic adenovirus (OAd) encoding SP-SA-E7-4-1BBL that is capable of inducing tumor regression in therapeutic assays. Herein, we tested whether the antitumor effect is given by the induction of a tumor-specific immune response, as well as the minimum dose needed to elicit antitumor protection and monitor the OAd biodistribution over time. METHODS AND RESULTS C57BL/6 mice (n = 5) per group were immunized twice with OAds encoding SP-SA-E7-4-1BBL, SA-E7-4-1BBL, or SP-SA-4-1BBL and challenged with TC-1 cancer cells. The DNA construct SP-SA-E7-4-1BBL was employed as a control via biolistic or PBS injection. Groups without tumor development at 47 days were rechallenged with TC-1 cells, and follow-up lasted until day 90. The minimum dose of OAd to induce the antitumor effect was established by immunization using serial dilution doses. The cytometry bead assay and the ELISpot assay were used to evaluate cytokine release in response to ex vivo antigenic stimulation. The distribution profile of the OAd vaccine was evaluated in the different organs by histological, immunohistochemical and qPCR analyses. The OAd SP-SA-E7-4-1BBL-immunized mice did not develop tumors even in a rechallenge. A protective antitumor effect was observed from a dose that is one hundredth of most reports of adenoviral vaccines. Immunization with OAd increases Interferon-gamma-producing cells in response to antigen stimulation. OAd was detected in tumors over time, with significant morphological changes, contrary to nontumor tissues. CONCLUSIONS The OAd SP-SA-E7-4-1BBL vaccine confers a prophylactic, safe, long-lasting, and antigen-dependent antitumor effect mediated by a Th1 antitumor immune response.
Collapse
Affiliation(s)
- Alejandra G Martinez-Perez
- Department of Histology, School of Medicine, Universidad Autonoma de Nuevo Leon, 64460, Monterrey, NL, Mexico
| | | | - Maria de J Loera-Arias
- Department of Histology, School of Medicine, Universidad Autonoma de Nuevo Leon, 64460, Monterrey, NL, Mexico
| | - Sheila A Villa-Cedillo
- Department of Histology, School of Medicine, Universidad Autonoma de Nuevo Leon, 64460, Monterrey, NL, Mexico
| | - Aracely Garcia-Garcia
- Department of Histology, School of Medicine, Universidad Autonoma de Nuevo Leon, 64460, Monterrey, NL, Mexico
| | - Humberto Rodriguez-Rocha
- Department of Histology, School of Medicine, Universidad Autonoma de Nuevo Leon, 64460, Monterrey, NL, Mexico
| | - Orlando E Flores-Maldonado
- Department of Microbiology, School of Medicine, Universidad Autonoma de Nuevo Leon, 64460, Monterrey, NL, Mexico
| | - Jesus Valdes
- Department of Biochemistry, CINVESTAV-Mexico, San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Jose J Perez-Trujillo
- Department of Histology, School of Medicine, Universidad Autonoma de Nuevo Leon, 64460, Monterrey, NL, Mexico.
| | - Odila Saucedo-Cardenas
- Department of Histology, School of Medicine, Universidad Autonoma de Nuevo Leon, 64460, Monterrey, NL, Mexico.
| |
Collapse
|
5
|
A Renaissance for Oncolytic Adenoviruses? Viruses 2023; 15:v15020358. [PMID: 36851572 PMCID: PMC9964350 DOI: 10.3390/v15020358] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
In the 1990s, adenovirus became one of the first virus types to be genetically engineered to selectively destroy cancer cells. In the intervening years, the field of "oncolytic viruses" has slowly progressed and culminated in 2015 with the FDA approval of Talimogene laherparepvec, a genetically engineered herpesvirus, for the treatment of metastatic melanoma. Despite the slower progress in translating oncolytic adenovirus to the clinic, interest in the virus remains strong. Among all the clinical trials currently using viral oncolytic agents, the largest proportion of these are using recombinant adenovirus. Many trials are currently underway to use oncolytic virus in combination with immune checkpoint inhibitors (ICIs), and early results using oncolytic adenovirus in this manner are starting to show promise. Many of the existing strategies to engineer adenoviruses were designed to enhance selective tumor cell replication without much regard to interactions with the immune system. Adenovirus possesses a wide range of viral factors to attenuate both innate anti-viral pathways and immune cell killing. In this review, we summarize the strategies of oncolytic adenoviruses currently in clinical trials, and speculate how the mutational backgrounds of these viruses may impact upon the efficacy of these agents in oncolytic and immunotherapy. Despite decades of research on human adenoviruses, the interactions that these viruses have with the immune system remains one of the most understudied aspects of the virus and needs to be improved to rationally design the next generation of engineered viruses.
Collapse
|
6
|
Abstract
Cancer is one of the leading causes of death in the world, which is the second after heart diseases. Adenoviruses (Ads) have become the promise of new therapeutic strategy for cancer treatment. The objective of this review is to discuss current advances in the applications of adenoviral vectors in cancer therapy. Adenoviral vectors can be engineered in different ways so as to change the tumor microenvironment from cold tumor to hot tumor, including; 1. by modifying Ads to deliver transgenes that codes for tumor suppressor gene (p53) and other proteins whose expression result in cell cycle arrest 2. Ads can also be modified to express tumor specific antigens, cytokines, and other immune-modulatory molecules. The other strategy to use Ads in cancer therapy is to use oncolytic adenoviruses, which directly kills tumor cells. Gendicine and Advexin are replication-defective recombinant human p53 adenoviral vectors that have been shown to be effective against several types of cancer. Gendicine was approved for treatment of squamous cell carcinoma of the head and neck by the Chinese Food and Drug Administration (FDA) agency in 2003 as a first-ever gene therapy product. Oncorine and ONYX-015 are oncolytic adenoviral vectors that have been shown to be effective against some types of cancer. The Chiness FDA agency has also approved Oncorin for the treatment of head and neck cancer. Ads that were engineered to express immune-stimulatory cytokines and other immune-modulatory molecules such as TNF-α, IL-2, BiTE, CD40L, 4-1BBL, GM-CSF, and IFN have shown promising outcome in treatment of cancer. Ads can also improve therapeutic efficacy of immune checkpoint inhibitors and adoptive cell therapy (Chimeric Antigen Receptor T Cells). In addition, different replication-deficient adenoviral vectors (Ad5-CEA, Ad5-PSA, Ad-E6E7, ChAdOx1-MVA and Ad-transduced Dendritic cells) that were tested as anticancer vaccines have been demonstrated to induce strong antitumor immune response. However, the use of adenoviral vectors in gene therapy is limited by several factors such as pre-existing immunity to adenoviral vectors and high immunogenicity of the viruses. Thus, innovative strategies must be continually developed so as to overcome the obstacles of using adenoviral vectors in gene therapy.
Collapse
Affiliation(s)
- Sintayehu Tsegaye Tseha
- Lecturer of Biomedical Sciences, Department of Biology, College of Natural and Computational Sciences, Arba Minch University, Arba Minch, Ethiopia
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
7
|
de Bakker T, Journe F, Descamps G, Saussez S, Dragan T, Ghanem G, Krayem M, Van Gestel D. Restoring p53 Function in Head and Neck Squamous Cell Carcinoma to Improve Treatments. Front Oncol 2022; 11:799993. [PMID: 35071005 PMCID: PMC8770810 DOI: 10.3389/fonc.2021.799993] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/15/2021] [Indexed: 01/10/2023] Open
Abstract
TP53 mutation is one of the most frequent genetic alterations in head and neck squamous cell carcinoma (HNSCC) and results in an accumulation of p53 protein in tumor cells. This makes p53 an attractive target to improve HNSCC therapy by restoring the tumor suppressor activity of this protein. Therapeutic strategies targeting p53 in HNSCC can be divided into three categories related to three subtypes encompassing WT p53, mutated p53 and HPV-positive HNSCC. First, compounds targeting degradation or direct inhibition of WT p53, such as PM2, RITA, nutlin-3 and CH1iB, achieve p53 reactivation by affecting p53 inhibitors such as MDM2 and MDMX/4 or by preventing the breakdown of p53 by inhibiting the proteasomal complex. Second, compounds that directly affect mutated p53 by binding it and restoring the WT conformation and transcriptional activity (PRIMA-1, APR-246, COTI-2, CP-31398). Third, treatments that specifically affect HPV+ cancer cells by targeting the viral enzymes E6/E7 which are responsible for the breakdown of p53 such as Ad-E6/E7-As and bortezomib. In this review, we describe and discuss p53 regulation and its targeting in combination with existing therapies for HNSCC through a new classification of such cancers based on p53 mutation status and HPV infection.
Collapse
Affiliation(s)
- Tycho de Bakker
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabrice Journe
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| | - Géraldine Descamps
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| | - Sven Saussez
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| | - Tatiana Dragan
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Ghanem Ghanem
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Mohammad Krayem
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Dirk Van Gestel
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
8
|
Zeng J, Li X, Sander M, Zhang H, Yan G, Lin Y. Oncolytic Viro-Immunotherapy: An Emerging Option in the Treatment of Gliomas. Front Immunol 2021; 12:721830. [PMID: 34675919 PMCID: PMC8524046 DOI: 10.3389/fimmu.2021.721830] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/16/2021] [Indexed: 01/17/2023] Open
Abstract
The prognosis of malignant gliomas remains poor, with median survival fewer than 20 months and a 5-year survival rate merely 5%. Their primary location in the central nervous system (CNS) and its immunosuppressive environment with little T cell infiltration has rendered cancer therapies mostly ineffective, and breakthrough therapies such as immune checkpoint inhibitors (ICIs) have shown limited benefit. However, tumor immunotherapy is developing rapidly and can help overcome these obstacles. But for now, malignant gliomas remain fatal with short survival and limited therapeutic options. Oncolytic virotherapy (OVT) is a unique antitumor immunotherapy wherein viruses selectively or preferentially kill tumor cells, replicate and spread through tumors while inducing antitumor immune responses. OVTs can also recondition the tumor microenvironment and improve the efficacy of other immunotherapies by escalating the infiltration of immune cells into tumors. Some OVTs can penetrate the blood-brain barrier (BBB) and possess tropism for the CNS, enabling intravenous delivery. Despite the therapeutic potential displayed by oncolytic viruses (OVs), optimizing OVT has proved challenging in clinical development, and marketing approvals for OVTs have been rare. In June 2021 however, as a genetically engineered OV based on herpes simplex virus-1 (G47Δ), teserpaturev got conditional and time-limited approval for the treatment of malignant gliomas in Japan. In this review, we summarize the current state of OVT, the synergistic effect of OVT in combination with other immunotherapies as well as the hurdles to successful clinical use. We also provide some suggestions to overcome the challenges in treating of gliomas.
Collapse
Affiliation(s)
- Jiayi Zeng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiangxue Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Max Sander
- Department of International Cooperation, Guangzhou Virotech Pharmaceutical Co., Ltd., Guangzhou, China
| | - Haipeng Zhang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuan Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Humeau J, Le Naour J, Galluzzi L, Kroemer G, Pol JG. Trial watch: intratumoral immunotherapy. Oncoimmunology 2021; 10:1984677. [PMID: 34676147 PMCID: PMC8526014 DOI: 10.1080/2162402x.2021.1984677] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023] Open
Abstract
While chemotherapy and radiotherapy remain the first-line approaches for the management of most unresectable tumors, immunotherapy has emerged in the past two decades as a game-changing treatment, notably with the clinical success of immune checkpoint inhibitors. Immunotherapies aim at (re)activating anticancer immune responses which occur in two main steps: (1) the activation and expansion of tumor-specific T cells following cross-presentation of tumor antigens by specialized myeloid cells (priming phase); and (2) the immunological clearance of malignant cells by these antitumor T lymphocytes (effector phase). Therapeutic vaccines, adjuvants, monoclonal antibodies, cytokines, immunogenic cell death-inducing agents including oncolytic viruses, anthracycline-based chemotherapy and radiotherapy, as well as adoptive cell transfer, all act at different levels of this cascade to (re)instate cancer immunosurveillance. Intratumoral delivery of these immunotherapeutics is being tested in clinical trials to promote superior antitumor immune activity in the context of limited systemic toxicity.
Collapse
Affiliation(s)
- Juliette Humeau
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Julie Le Naour
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Institut Universitaire de France, Paris, France
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Jonathan G. Pol
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
| |
Collapse
|
10
|
AuYeung AWK, Mould RC, Stegelmeier AA, van Vloten JP, Karimi K, Woods JP, Petrik JJ, Wood GA, Bridle BW. Mechanisms that allow vaccination against an oncolytic vesicular stomatitis virus-encoded transgene to enhance safety without abrogating oncolysis. Sci Rep 2021; 11:15290. [PMID: 34315959 PMCID: PMC8316323 DOI: 10.1038/s41598-021-94483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/09/2021] [Indexed: 11/26/2022] Open
Abstract
Vaccination can prevent viral infections via virus-specific T cells, among other mechanisms. A goal of oncolytic virotherapy is replication of oncolytic viruses (OVs) in tumors, so pre-existing T cell immunity against an OV-encoded transgene would seem counterproductive. We developed a treatment for melanomas by pre-vaccinating against an oncolytic vesicular stomatitis virus (VSV)-encoded tumor antigen. Surprisingly, when the VSV-vectored booster vaccine was administered at the peak of the primary effector T cell response, oncolysis was not abrogated. We sought to determine how oncolysis was retained during a robust T cell response against the VSV-encoded transgene product. A murine melanoma model was used to identify two mechanisms that enable this phenomenon. First, tumor-infiltrating T cells had reduced cytopathic potential due to immunosuppression. Second, virus-induced lymphopenia acutely removed virus-specific T cells from tumors. These mechanisms provide a window of opportunity for replication of oncolytic VSV and rationale for a paradigm change in oncolytic virotherapy, whereby immune responses could be intentionally induced against a VSV-encoded melanoma-associated antigen to improve safety without abrogating oncolysis.
Collapse
Affiliation(s)
- Amanda W K AuYeung
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Robert C Mould
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Ashley A Stegelmeier
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - J Paul Woods
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - James J Petrik
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Geoffrey A Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada. .,Department of Pathobiology, Ontario Veterinary College, University of Guelph, Rm. 4834, Bldg. 89, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
11
|
Stephens AJ, Burgess-Brown NA, Jiang S. Beyond Just Peptide Antigens: The Complex World of Peptide-Based Cancer Vaccines. Front Immunol 2021; 12:696791. [PMID: 34276688 PMCID: PMC8279810 DOI: 10.3389/fimmu.2021.696791] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Peptide-based cancer vaccines rely upon the strong activation of the adaptive immune response to elicit its effector function. They have shown to be highly specific and safe, but have yet to prove themselves as an efficacious treatment for cancer in the clinic. This is for a variety of reasons, including tumour heterogeneity, self-tolerance, and immune suppression. Importance has been placed on the overall design of peptide-based cancer vaccines, which have evolved from simple peptide derivatives of a cancer antigen, to complex drugs; incorporating overlapping regions, conjugates, and delivery systems to target and stimulate different components of antigen presenting cells, and to bolster antigen cross-presentation. Peptide-based cancer vaccines are increasingly becoming more personalised to an individual's tumour antigen repertoire and are often combined with existing cancer treatments. This strategy ultimately aids in combating the shortcomings of a more generalised vaccine strategy and provides a comprehensive treatment, taking into consideration cancer cell variability and its ability to avoid immune interrogation.
Collapse
Affiliation(s)
- Alexander J Stephens
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom.,Centre for Medicines Discovery, Nuffield Department of Medicine, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Nicola A Burgess-Brown
- Centre for Medicines Discovery, Nuffield Department of Medicine, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Shisong Jiang
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
de Almeida NAA, Ribeiro CRDA, Raposo JV, de Paula VS. Immunotherapy and Gene Therapy for Oncoviruses Infections: A Review. Viruses 2021; 13:822. [PMID: 34063186 PMCID: PMC8147456 DOI: 10.3390/v13050822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy has been shown to be highly effective in some types of cancer caused by viruses. Gene therapy involves insertion or modification of a therapeutic gene, to correct for inappropriate gene products that cause/may cause diseases. Both these types of therapy have been used as alternative ways to avoid cancers caused by oncoviruses. In this review, we summarize recent studies on immunotherapy and gene therapy including the topics of oncolytic immunotherapy, immune checkpoint inhibitors, gene replacement, antisense oligonucleotides, RNA interference, clustered regularly interspaced short palindromic repeats Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based gene editing, transcription activator-like effector nucleases (TALENs) and custom treatment for Epstein-Barr virus, human T-lymphotropic virus 1, hepatitis B virus, human papillomavirus, hepatitis C virus, herpesvirus associated with Kaposi's sarcoma, Merkel cell polyomavirus, and cytomegalovirus.
Collapse
Affiliation(s)
| | | | | | - Vanessa Salete de Paula
- Laboratory of Molecular Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 21040-360 Rio de Janeiro, Brazil; (N.A.A.d.A.); (C.R.d.A.R.); (J.V.R.)
| |
Collapse
|
13
|
Bonilla WV, Kirchhammer N, Marx AF, Kallert SM, Krzyzaniak MA, Lu M, Darbre S, Schmidt S, Raguz J, Berka U, Vincenti I, Pauzuolis M, Kerber R, Hoepner S, Günther S, Magnus C, Merkler D, Orlinger KK, Zippelius A, Pinschewer DD. Heterologous arenavirus vector prime-boost overrules self-tolerance for efficient tumor-specific CD8 T cell attack. CELL REPORTS MEDICINE 2021; 2:100209. [PMID: 33763654 PMCID: PMC7974551 DOI: 10.1016/j.xcrm.2021.100209] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/16/2020] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
Therapeutic vaccination regimens inducing clinically effective tumor-specific CD8+ T lymphocyte (CTL) responses are an unmet medical need. We engineer two distantly related arenaviruses, Pichinde virus and lymphocytic choriomeningitis virus, for therapeutic cancer vaccination. In mice, life-replicating vector formats of these two viruses delivering a self-antigen in a heterologous prime-boost regimen induce tumor-specific CTL responses up to 50% of the circulating CD8 T cell pool. This CTL attack eliminates established solid tumors in a significant proportion of animals, accompanied by protection against tumor rechallenge. The magnitude of CTL responses is alarmin driven and requires combining two genealogically distantly related arenaviruses. Vector-neutralizing antibodies do not inhibit booster immunizations by the same vector or by closely related vectors. Rather, CTL immunodominance hierarchies favor vector backbone-targeted responses at the expense of self-reactive CTLs. These findings establish an arenavirus-based immunotherapy regimen that allows reshuffling of immunodominance hierarchies and breaking self-directed tolerance for efficient tumor control. Engineered arenaviruses induce potent tumor self-specific CD8 T cell (CTL) response Combinations of distantly but not closely related arenavirus vectors eliminate tumors Vector backbone-targeted CTL responses compete against tumor self-reactive CTLs Optimized vector combinations reshuffle immunodominance to break self-tolerance
Collapse
Affiliation(s)
- Weldy V Bonilla
- University of Basel, Department of Biomedicine, Basel, Switzerland
| | | | | | - Sandra M Kallert
- University of Basel, Department of Biomedicine, Basel, Switzerland
| | | | - Min Lu
- University of Basel, Department of Biomedicine, Basel, Switzerland
| | - Stéphanie Darbre
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | | | | | - Ilena Vincenti
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Mindaugas Pauzuolis
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Romy Kerber
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sabine Hoepner
- Tumor Immunology, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Carsten Magnus
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Division of Clinical Pathology, University Hospitals of Geneva, Geneva, Switzerland
| | | | - Alfred Zippelius
- University of Basel, Department of Biomedicine, Basel, Switzerland.,Medical Oncology, University Hospital Basel, Basel, Switzerland
| | | |
Collapse
|
14
|
Hwang JK, Hong J, Yun CO. Oncolytic Viruses and Immune Checkpoint Inhibitors: Preclinical Developments to Clinical Trials. Int J Mol Sci 2020; 21:E8627. [PMID: 33207653 PMCID: PMC7697902 DOI: 10.3390/ijms21228627] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Immuno-oncology (IO) has been an active area of oncology research. Following US FDA approval of the first immune checkpoint inhibitor (ICI), ipilimumab (human IgG1 k anti-CTLA-4 monoclonal antibody), in 2011, and of the first oncolytic virus, Imlygic (talimogene laherparepvec), in 2015, there has been renewed interest in IO. In the past decade, ICIs have changed the treatment paradigm for many cancers by enabling better therapeutic control, resuming immune surveillance, suppressing tumor immunosuppression, and restoring antitumor immune function. However, ICI therapies are effective only in a small subset of patients and show limited therapeutic potential due to their inability to demonstrate efficacy in 'cold' or unresponsive tumor microenvironments (TMEs). Relatedly, oncolytic viruses (OVs) have been shown to induce antitumor immune responses, augment the efficacy of existing cancer treatments, and reform unresponsive TME to turn 'cold' tumors 'hot,' increasing their susceptibility to checkpoint blockade immunotherapies. For this reason, OVs serve as ideal complements to ICIs, and multiple preclinical studies and clinical trials are demonstrating their combined therapeutic efficacy. This review will discuss the merits and limitations of OVs and ICIs as monotherapy then progress onto the preclinical rationale and the results of clinical trials of key combination therapies.
Collapse
Affiliation(s)
- June Kyu Hwang
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (J.K.H.); (J.H.)
| | - JinWoo Hong
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (J.K.H.); (J.H.)
- GeneMedicine Co., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (J.K.H.); (J.H.)
- GeneMedicine Co., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
- Institute of Nano Science and Technology, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| |
Collapse
|
15
|
Guo L, Hua K. Cervical Cancer: Emerging Immune Landscape and Treatment. Onco Targets Ther 2020; 13:8037-8047. [PMID: 32884290 PMCID: PMC7434518 DOI: 10.2147/ott.s264312] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022] Open
Abstract
Immune cells are essential for defending the body’s balance and have increasingly been implicated in controlling tumor growth. In cervical cancer (CC), the immune landscape is extensively connected with human papillomavirus (HPV) status. Recent insights from studies have revealed that as a result of infection with HPV, immune cell populations such as lymphocytes or monocytes change during carcinogenesis. Immune therapy, in particular checkpoint inhibitors, those targeting PD-1 or PD-L1, has shown promising efficacy. This article reviews the immune landscape and immunotherapy of CC.
Collapse
Affiliation(s)
- Luopei Guo
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China
| | - Keqin Hua
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, People's Republic of China
| |
Collapse
|
16
|
Sato-Dahlman M, LaRocca CJ, Yanagiba C, Yamamoto M. Adenovirus and Immunotherapy: Advancing Cancer Treatment by Combination. Cancers (Basel) 2020; 12:cancers12051295. [PMID: 32455560 PMCID: PMC7281656 DOI: 10.3390/cancers12051295] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 01/03/2023] Open
Abstract
Gene therapy with viral vectors has significantly advanced in the past few decades, with adenovirus being one of the most commonly employed vectors for cancer gene therapy. Adenovirus vectors can be divided into 2 groups: (1) replication-deficient viruses; and (2) replication-competent, oncolytic (OVs) viruses. Replication-deficient adenoviruses have been explored as vaccine carriers and gene therapy vectors. Oncolytic adenoviruses are designed to selectively target, replicate, and directly destroy cancer cells. Additionally, virus-mediated cell lysis releases tumor antigens and induces local inflammation (e.g., immunogenic cell death), which contributes significantly to the reversal of local immune suppression and development of antitumor immune responses ("cold" tumor into "hot" tumor). There is a growing body of evidence suggesting that the host immune response may provide a critical boost for the efficacy of oncolytic virotherapy. Additionally, genetic engineering of oncolytic viruses allows local expression of immune therapeutics, thereby reducing related toxicities. Therefore, the combination of oncolytic virus and immunotherapy is an attractive therapeutic strategy for cancer treatment. In this review, we focus on adenovirus-based vectors and discuss recent progress in combination therapy of adenoviruses with immunotherapy in preclinical and clinical studies.
Collapse
Affiliation(s)
- Mizuho Sato-Dahlman
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, MMC 195, 420 Delaware St SE, Minneapolis, MN 55455, USA; (M.S.-D.); (C.J.L.); (C.Y.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher J. LaRocca
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, MMC 195, 420 Delaware St SE, Minneapolis, MN 55455, USA; (M.S.-D.); (C.J.L.); (C.Y.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Surgical Oncology, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chikako Yanagiba
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, MMC 195, 420 Delaware St SE, Minneapolis, MN 55455, USA; (M.S.-D.); (C.J.L.); (C.Y.)
| | - Masato Yamamoto
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, MMC 195, 420 Delaware St SE, Minneapolis, MN 55455, USA; (M.S.-D.); (C.J.L.); (C.Y.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Surgical Oncology, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
- Institute of Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: ; Tel.: +1-612-624-9131
| |
Collapse
|
17
|
Shi T, Song X, Wang Y, Liu F, Wei J. Combining Oncolytic Viruses With Cancer Immunotherapy: Establishing a New Generation of Cancer Treatment. Front Immunol 2020; 11:683. [PMID: 32411132 PMCID: PMC7198760 DOI: 10.3389/fimmu.2020.00683] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
The recent successes of tumor immunotherapy approaches, such as immune checkpoint blockade (ICB) and chimeric antigen receptor T cell (CAR-T) therapy, have revolutionized cancer treatment, improving efficacy and extending treatment to a larger proportion of cancer patients. However, due to high heterogeneity of cancer, poor tumor cell targeting, and the immunosuppressive status of the tumor microenvironment (TME), combinatorial agents are required to obtain more effective and consistent therapeutic responses in a wide range of cancers. Oncolytic viruses (OVs) are able to selectively replicate in and destroy tumor cells and subsequently induce systematic anti-tumor immune responses. Thus, they are ideal for combining with cancer immunotherapy. In this review, we discuss the current understanding of OVs, as well as the latest preclinical and clinical progress of combining OVs with cancer immunotherapies, including ICB, CAR-T therapy, bispecific T cell engagers (BiTEs), and cancer vaccines. Moreover, we consider future directions for applying OVs to personalized cancer immunotherapies, which could potentially launch a new generation of cancer treatments.
Collapse
Affiliation(s)
- Tao Shi
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xueru Song
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Yue Wang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Fangcen Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Jia Wei
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| |
Collapse
|
18
|
Development of oncolytic virotherapy: from genetic modification to combination therapy. Front Med 2020; 14:160-184. [PMID: 32146606 PMCID: PMC7101593 DOI: 10.1007/s11684-020-0750-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/14/2020] [Indexed: 12/17/2022]
Abstract
Oncolytic virotherapy (OVT) is a novel form of immunotherapy using natural or genetically modified viruses to selectively replicate in and kill malignant cells. Many genetically modified oncolytic viruses (OVs) with enhanced tumor targeting, antitumor efficacy, and safety have been generated, and some of which have been assessed in clinical trials. Combining OVT with other immunotherapies can remarkably enhance the antitumor efficacy. In this work, we review the use of wild-type viruses in OVT and the strategies for OV genetic modification. We also review and discuss the combinations of OVT with other immunotherapies.
Collapse
|
19
|
Sunita, Sajid A, Singh Y, Shukla P. Computational tools for modern vaccine development. Hum Vaccin Immunother 2020; 16:723-735. [PMID: 31545127 PMCID: PMC7227725 DOI: 10.1080/21645515.2019.1670035] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/28/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
Vaccines play an essential role in controlling the rates of fatality and morbidity. Vaccines not only arrest the beginning of different diseases but also assign a gateway for its elimination and reduce toxicity. This review gives an overview of the possible uses of computational tools for vaccine design. Moreover, we have described the initiatives of utilizing the diverse computational resources by exploring the immunological databases for developing epitope-based vaccines, peptide-based drugs, and other resources of immunotherapeutics. Finally, the applications of multi-graft and multivalent scaffolding, codon optimization and antibodyomics tools in identifying and designing in silico vaccine candidates are described.
Collapse
Affiliation(s)
- Sunita
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi
| | - Andaleeb Sajid
- National Institutes of Health, National Cancer Institute, Bethesda, MD, USA
| | - Yogendra Singh
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
20
|
Pol JG, Bridle BW, Lichty BD. Detection of Tumor Antigen-Specific T-Cell Responses After Oncolytic Vaccination. Methods Mol Biol 2020; 2058:191-211. [PMID: 31486039 DOI: 10.1007/978-1-4939-9794-7_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oncolytic vaccines, which consist of recombinant oncolytic viruses (OV) encoding tumor-associated antigens (TAAs), have demonstrated potent antitumor efficacy in preclinical models and are currently evaluated in phase I/II clinical trials. On one hand, oncolysis of OV-infected malignant entities reinstates cancer immunosurveillance. On the other hand, overexpression of TAAs in infected cells further stimulates the adaptive arm of antitumor immunity. Particularly, the presence of tumor-specific CD8+ T lymphocytes within the tumor microenvironment, as well as in the periphery, has demonstrated prognostic value for cancer treatments. These effector CD8+ T cells can be detected through their production of the prototypical Tc1 cytokine: IFN-γ. The quantitative and qualitative assessment of this immune cell subset remains critical in the development process of efficient cancer vaccines, including oncolytic vaccines. The present chapter will describe a single-cell immunological assay, namely the intracellular cytokine staining (ICS), that allows the enumeration of IFN-γ-producing TAA-specific CD8+ T cells in various tissues (tumor, blood, lymphoid organs) following oncolytic vaccination.
Collapse
Affiliation(s)
- Jonathan G Pol
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France. .,INSERM, U1138, Paris, France. .,Equipe 11 Labellisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France. .,Université de Paris, Paris, France. .,Sorbonne Université, Paris, France.
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Brian D Lichty
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada. .,Turnstone Biologics, Ottawa, ON, Canada.
| |
Collapse
|
21
|
Di Bonito P, Accardi L, Galati L, Ferrantelli F, Federico M. Anti-Cancer Vaccine for HPV-Associated Neoplasms: Focus on a Therapeutic HPV Vaccine Based on a Novel Tumor Antigen Delivery Method Using Endogenously Engineered Exosomes. Cancers (Basel) 2019; 11:E138. [PMID: 30682811 PMCID: PMC6406600 DOI: 10.3390/cancers11020138] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 02/06/2023] Open
Abstract
Some human papillomavirus (HPV) genotypes are universally recognized as major etiological agents not only of ano-genital tumors but also of head and neck cancers, which show increasing incidence. The evaluation of current and future therapeutic approaches against HPV-induced tumors is a global health priority, despite an effective prophylactic vaccine against 7 of the 12 genotypes involved in the etiology of tumors being currently available. In this review, we present the main anti-HPV therapeutic approaches in clinical experimentation, with a focus on a novel tumor antigen delivery method using engineered exosomes, that we recently developed. Our system allows the induction of an efficient unrestricted cytotoxic T lymphocyte (CTL) immune response against the HPV16-E7 tumor-associated antigen, with the formation of endogenously engineered exosomes, i.e., nanovesicles spontaneously released by all cell types. Immunogenic exosomes are uploaded with HPV16-E7 due to the fusion with a unique exosome-anchoring protein referred to as Nefmut. Intramuscular injection of a DNA vector expressing the fusion protein generates exosomes sufficiently immunogenic to elicit a potent anti-16E7 CTL immune response. The approach is described here and the advantages over other existing methodologies are reported.
Collapse
Affiliation(s)
- Paola Di Bonito
- Department of Infectious Diseases, Viral Hepatitis, Oncoviruses and Retroviruses (EVOR) unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Luisa Accardi
- Department of Infectious Diseases, Viral Hepatitis, Oncoviruses and Retroviruses (EVOR) unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Luisa Galati
- Department of Infectious Diseases, Viral Hepatitis, Oncoviruses and Retroviruses (EVOR) unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Flavia Ferrantelli
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Maurizio Federico
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
22
|
Pol JG, Atherton MJ, Bridle BW, Stephenson KB, Le Boeuf F, Hummel JL, Martin CG, Pomoransky J, Breitbach CJ, Diallo JS, Stojdl DF, Bell JC, Wan Y, Lichty BD. Development and applications of oncolytic Maraba virus vaccines. Oncolytic Virother 2018; 7:117-128. [PMID: 30538968 PMCID: PMC6263248 DOI: 10.2147/ov.s154494] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oncolytic activity of the MG1 strain of the Maraba vesiculovirus has proven efficacy in numerous preclinical cancer models, and relied not only on a direct cytotoxicity but also on the induction of both innate and adaptive antitumor immunity. To further expand tumor-specific T-cell effector and long-lasting memory compartments, we introduced the MG1 virus in a prime-boost cancer vaccine strategy. To this aim, a replication-incompetent adenoviral [Ad] vector together with the oncolytic MG1 have each been armed with a transgene expressing a same tumor antigen. Immune priming with the Ad vaccine subsequently boosted with the MG1 vaccine mounted tumor-specific responses of remarkable magnitude, which significantly prolonged survival in various murine cancer models. Based on these promising results, we validated the safety profile of the Ad:MG1 oncolytic vaccination strategy in nonhuman primates and initiated clinical investigations in cancer patients. Two clinical trials are currently under way (NCT02285816; NCT02879760). The present review will recapitulate the discoveries that led to the development of MG1 oncolytic vaccines from bench to bedside.
Collapse
Affiliation(s)
- Jonathan G Pol
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM), U1138, Paris, France
- Team 11 labelled Ligue Nationale contre le Cancer, Cordeliers Research Center, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Sorbonne Universités/Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Matthew J Atherton
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada,
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Fabrice Le Boeuf
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jeff L Hummel
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada,
- Clinical Trial Division, CANSWERS, Georgetown, ON, Canada
| | | | | | | | - Jean-Simon Diallo
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - David F Stojdl
- Turnstone Biologics, Ottawa, ON, Canada,
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - John C Bell
- Turnstone Biologics, Ottawa, ON, Canada,
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Yonghong Wan
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada,
| | - Brian D Lichty
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada,
- Turnstone Biologics, Ottawa, ON, Canada,
| |
Collapse
|
23
|
Pol JG, Lévesque S, Workenhe ST, Gujar S, Le Boeuf F, Clements DR, Fahrner JE, Fend L, Bell JC, Mossman KL, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Oncolytic viro-immunotherapy of hematologic and solid tumors. Oncoimmunology 2018; 7:e1503032. [PMID: 30524901 PMCID: PMC6279343 DOI: 10.1080/2162402x.2018.1503032] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 07/15/2018] [Indexed: 02/08/2023] Open
Abstract
Oncolytic viruses selectively target and kill cancer cells in an immunogenic fashion, thus supporting the establishment of therapeutically relevant tumor-specific immune responses. In 2015, the US Food and Drug Administration (FDA) approved the oncolytic herpes simplex virus T-VEC for use in advanced melanoma patients. Since then, a plethora of trials has been initiated to assess the safety and efficacy of multiple oncolytic viruses in patients affected with various malignancies. Here, we summarize recent preclinical and clinical progress in the field of oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan G. Pol
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Sarah Lévesque
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Samuel T. Workenhe
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, NS, Canada
- Department of Biology, Dalhousie University, NS, Canada
- Centre for Innovative and Collaborative Health Sciences Research, Quality and System Performance, IWK Health Centre, Halifax, NS, Canada
| | - Fabrice Le Boeuf
- Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | | | - Jean-Eudes Fahrner
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Villejuif, France
- Transgene S.A., Illkirch-Graffenstaden, France
| | | | - John C. Bell
- Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Karen L. Mossman
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jitka Fucikova
- Sotio a.c., Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio a.c., Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Villejuif, France
| | - Guido Kroemer
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|