1
|
Rizzuto G. B Cell Responses to the Placenta and Fetus. ANNUAL REVIEW OF PATHOLOGY 2025; 20:33-58. [PMID: 39264989 PMCID: PMC11912550 DOI: 10.1146/annurev-pathmechdis-111523-023459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Pregnancy has fascinated immunologists ever since Peter Medawar's observation that reproduction runs contrary to the founding tenets of immunology. During healthy pregnancy, maternal B cells interact with antigens of the foreign conceptus (placenta and fetus) yet do not elicit rejection. Instead, robust and redundant fetomaternal tolerance pathways generally prevent maternal B cells and antibodies from harming the placenta and fetus. Fetomaternal tolerance is not absolute, and unfortunately there exist several pregnancy complications that arise from breaks therein. Here, important historic and recent developments in the field of fetomaternal tolerance pertaining to maternal B cells and antibodies are reviewed. General rules from which to conceptualize humoral tolerance to the placenta and fetus are proposed. Significant but underexplored ideas are highlighted and topics for future research are suggested, findings from which are predicted to provide insight into the fundamental nature of tolerance and bolster efforts to combat immune-mediated pregnancy complications.
Collapse
Affiliation(s)
- Gabrielle Rizzuto
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA
- Department of Anatomic Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA;
| |
Collapse
|
2
|
Deshmukh H, Whitsett J, Zacharias W, Way SS, Martinez FD, Mizgerd J, Pryhuber G, Ambalavanan N, Bacharier L, Natarajan A, Tamburro R, Lin S, Randolph A, Nino G, Mejias A, Ramilo O. Impact of Viral Lower Respiratory Tract Infection (LRTI) in Early Childhood (0-2 Years) on Lung Growth and Development and Lifelong Trajectories of Pulmonary Health: A National Institutes of Health (NIH) Workshop Summary. Pediatr Pulmonol 2025; 60:e27357. [PMID: 39565217 PMCID: PMC11740654 DOI: 10.1002/ppul.27357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/21/2024]
Abstract
Viral lower respiratory tract infections (LRTI) are ubiquitous in early life. They are disproportionately severe in infants and toddlers (0-2 years), leading to more than 100,000 hospitalizations in the United States per year. The recent relative resilience to severe Coronavirus disease (COVID-19) observed in young children is surprising. These observations, taken together, underscore current knowledge gaps in the pathogenesis of viral lower respiratory tract diseases in young children and respiratory developmental immunology. Further, early-life respiratory viral infections could have a lasting impact on lung development with potential life-long pulmonary sequelae. Modern molecular methods, including high-resolution spatial and single-cell technologies, in concert with longitudinal observational studies beginning in the prenatal period and continuing into early childhood, promise to elucidate developmental pulmonary and immunophenotypes following early-life viral infections and their impact on trajectories of future respiratory health. In November 2019, under the auspices of a multi-disciplinary Workshop convened by the National Heart Lung Blood Institute and the Eunice Kennedy Shriver National Institute of Child Health and Human Development, experts came together to highlight the challenges of respiratory viral infections, particularly in early childhood, and emphasize the knowledge gaps in immune, virological, developmental, and clinical factors that contribute to disease severity and long-term pulmonary morbidity from viral LRTI in children. We hope that the scientific community will view these challenges in clinical care on pulmonary health trajectories and disease burden not as a window of susceptibility but as a window of opportunity.
Collapse
Affiliation(s)
- Hitesh Deshmukh
- Divisions of NeonatologyUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Pulmonary Biology, and Infectious DiseasesUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Medical Scientist Training ProgramUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Jeffrey Whitsett
- Divisions of NeonatologyUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Pulmonary Biology, and Infectious DiseasesUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - William Zacharias
- Pulmonary Biology, and Infectious DiseasesUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Medical Scientist Training ProgramUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Sing Sing Way
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Cincinnati Children's Hospital Medical CenterUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Fernando D. Martinez
- Asthma and Airway Disease Research CenterThe University of ArizonaTucsonArizonaUSA
| | - Joseph Mizgerd
- Pulmonary CenterBoston University School of MedicineBostonMassachusettsUSA
| | - Gloria Pryhuber
- Division of Neonatology, Department of Pediatrics, Golisano Children's HospitalUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Namasivayam Ambalavanan
- Division of Neonatology, Department of PediatricsUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Leonard Bacharier
- Department of PediatricsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | | | - Robert Tamburro
- Eunice Kennedy Shriver National Institutes of Child Health and Human DevelopmentBethesdaMarylandUSA
| | - Sara Lin
- National Heart, Lung and Blood InstituteBethesdaMarylandUSA
| | - Adrienne Randolph
- Departments of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Departments of Anaesthesia and Harvard Medical SchoolCambridgeMassachusettsUSA
- Pediatrics, Harvard Medical SchoolCambridgeMassachusettsUSA
| | - Gustavo Nino
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National HospitalGeorge Washington UniversityWashingtonD.C.USA
| | - Asuncion Mejias
- Department of Infectious DiseasesSt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Octavio Ramilo
- Department of Infectious DiseasesSt. Jude Children's Research HospitalMemphisTennesseeUSA
| |
Collapse
Collaborators
N Ambalavanan, Leonard B Bacharier, Gustavo Nino, Bria M Coates, Hitesh Deshmukh, Melody Duvall, Matthew Frieman, James Gern, Sarah Gilpin, Thomas B Kepler, Michele Kong, Richard Locksley, Thomas Mariani, Fernando Martinez, Sharon McGrath-Marrow, Asuncion Mejias, Lisa Miller, Joseph Mizgerd, Wayne Morgan, Peter Mourani, Gloria Pryhuber, Octavio Ramilo, Adrienne Randolph, Fariba Rezaee, Jason Rock, Jeffrey Jeff Whitsett, Sing Sing Way, William Zacharias, Neil Aggarwal, Marishka Brown, Matthew Craig, James Kiley, Sonnie Kim, Marrah Lachowicz-Scroggins, Sara Lin, Valerie Maholmes, Aruna Natarajan, Robert Tamburro,
Collapse
|
3
|
Chaudhary N, Newby AN, Whitehead KA. Non-Viral RNA Delivery During Pregnancy: Opportunities and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306134. [PMID: 38145340 PMCID: PMC11196389 DOI: 10.1002/smll.202306134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/25/2023] [Indexed: 12/26/2023]
Abstract
During pregnancy, the risk of maternal and fetal adversities increases due to physiological changes, genetic predispositions, environmental factors, and infections. Unfortunately, treatment options are severely limited because many essential interventions are unsafe, inaccessible, or lacking in sufficient scientific data to support their use. One potential solution to this challenge may lie in emerging RNA therapeutics for gene therapy, protein replacement, maternal vaccination, fetal gene editing, and other prenatal treatment applications. In this review, the current landscape of RNA platforms and non-viral RNA delivery technologies that are under active development for administration during pregnancy is explored. Advancements of pregnancy-specific RNA drugs against SARS-CoV-2, Zika, influenza, preeclampsia, and for in-utero gene editing are discussed. Finally, this study highlights bottlenecks that are impeding translation efforts of RNA therapies, including the lack of accurate cell-based and animal models of human pregnancy and concerns related to toxicity and immunogenicity during pregnancy. Overcoming these challenges will facilitate the rapid development of this new class of pregnancy-safe drugs.
Collapse
Affiliation(s)
- Namit Chaudhary
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Alexandra N. Newby
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Kathryn A. Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
4
|
Rick AM, Beigi R. Maternal Immunizations: Past, Present, and Future. Clin Obstet Gynecol 2024; 67:605-619. [PMID: 38899806 DOI: 10.1097/grf.0000000000000882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Maternal vaccines during pregnancy offer crucial protection against infections for both the pregnant person and their newborn. Vaccines against influenza, pertussis, coronavirus disease 2019, and respiratory syncytial virus are routinely recommended by the Centers for Disease Control and Prevention to safeguard pregnant women and their infants from potentially severe complications. Administering these vaccines during pregnancy helps transfer protective antibodies from the mother to the baby, enhancing immunity during the vulnerable early months of life. Extensive research supports the safety and efficacy of maternal vaccines, with numerous studies demonstrating their protective benefits for both pregnant people and newborns.
Collapse
Affiliation(s)
- Anne-Marie Rick
- Department of Pediatrics, Division of General Academic Pediatrics, University of Pittsburgh School of Medicine
| | - Richard Beigi
- Department of Obstetrics, Gynecology and Reproductive Sciences University of Pittsburgh School of Medicine
- UPMC Magee-Womens Hospital, Pittsburgh, Pennsylvania
| |
Collapse
|
5
|
Giles ML, Way SS, Marchant A, Aghaepour N, James T, Schaltz-Buchholzer F, Zazara D, Arck P, Kollmann TR. Maternal Vaccination to Prevent Adverse Pregnancy Outcomes: An Underutilized Molecular Immunological Intervention? J Mol Biol 2023; 435:168097. [PMID: 37080422 PMCID: PMC11533213 DOI: 10.1016/j.jmb.2023.168097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023]
Abstract
Adverse pregnancy outcomes including maternal mortality, stillbirth, preterm birth, intrauterine growth restriction cause millions of deaths each year. More effective interventions are urgently needed. Maternal immunization could be one such intervention protecting the mother and newborn from infection through its pathogen-specific effects. However, many adverse pregnancy outcomes are not directly linked to the infectious pathogens targeted by existing maternal vaccines but rather are linked to pathological inflammation unfolding during pregnancy. The underlying pathogenesis driving such unfavourable outcomes have only partially been elucidated but appear to relate to altered immune regulation by innate as well as adaptive immune responses, ultimately leading to aberrant maternal immune activation. Maternal immunization, like all immunization, impacts the immune system beyond pathogen-specific immunity. This raises the possibility that maternal vaccination could potentially be utilised as a pathogen-agnostic immune modulatory intervention to redirect abnormal immune trajectories towards a more favourable phenotype providing pregnancy protection. In this review we describe the epidemiological evidence surrounding this hypothesis, along with the mechanistic plausibility and present a possible path forward to accelerate addressing the urgent need of adverse pregnancy outcomes.
Collapse
Affiliation(s)
| | - Sing Sing Way
- Center for Inflammation and Tolerance; Cincinnati Children's Hospital, Cincinnati, USA
| | | | - Nima Aghaepour
- Stanford University School of Medicine, Stanford, CA, USA
| | - Tomin James
- Stanford University School of Medicine, Stanford, CA, USA
| | | | - Dimitra Zazara
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg, Hamburg, Germany
| | - Petra Arck
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg, Hamburg, Germany
| | | |
Collapse
|
6
|
Rick AM, Lentscher A, Xu L, Wilkins MS, Nasser A, Tuttle DJ, Megli C, Marques ETA, McElroy AK, Williams JV, Martin JM. Impact of maternal SARS-CoV-2 booster vaccination on blood and breastmilk antibodies. PLoS One 2023; 18:e0287103. [PMID: 37310982 PMCID: PMC10263312 DOI: 10.1371/journal.pone.0287103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023] Open
Abstract
Maternal COVID-19 vaccination could protect infants who are ineligible for vaccine through antibody transfer during pregnancy and lactation. We measured the quantity and durability of SARS-CoV-2 antibodies in human milk and infant blood before and after maternal booster vaccination. Prospective cohort of lactating women immunized with primary and booster COVID-19 vaccines during pregnancy or lactation and their infants. Milk and blood samples from October 2021 to April 2022 were included. Anti-nucleoprotein (NP) and anti-receptor binding domain (RBD) IgG and IgA in maternal milk and maternal and infant blood were measured and compared longitudinally after maternal booster vaccine. Forty-five lactating women and their infants provided samples. 58% of women were anti-NP negative and 42% were positive on their first blood sample prior to booster vaccine. Anti-RBD IgG and IgA in milk remained significantly increased through 120-170 days after booster vaccine and did not differ by maternal NP status. Anti-RBD IgG and IgA did not increase in infant blood after maternal booster. Of infants born to women vaccinated in pregnancy, 74% still had positive serum anti-RBD IgG measured on average 5 months after delivery. Infant to maternal IgG ratio was highest for infants exposed to maternal primary vaccine during the second trimester compared to third trimester (0.85 versus 0.29; p<0.001). Maternal COVID-19 primary and booster vaccine resulted in robust and long-lasting transplacental and milk antibodies. These antibodies may provide important protection against SARS-CoV-2 during the first six months of life.
Collapse
Affiliation(s)
- Anne-Marie Rick
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Anthony Lentscher
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Lingqing Xu
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Maris S. Wilkins
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Amro Nasser
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Dylan J. Tuttle
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Christina Megli
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Magee Womens Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Ernesto T. A. Marques
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Anita K. McElroy
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - John V. Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Judith M. Martin
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
7
|
Adhikari EH, Lu P, Kang YJ, McDonald AR, Pruszynski JE, Bates TA, McBride SK, Trank-Greene M, Tafesse FG, Lu LL. Diverging maternal and infant cord antibody functions from SARS-CoV-2 infection and vaccination in pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538955. [PMID: 37205338 PMCID: PMC10187183 DOI: 10.1101/2023.05.01.538955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Immunization in pregnancy is a critical tool that can be leveraged to protect the infant with an immature immune system but how vaccine-induced antibodies transfer to the placenta and protect the maternal-fetal dyad remains unclear. Here, we compare matched maternal-infant cord blood from individuals who in pregnancy received mRNA COVID-19 vaccine, were infected by SARS-CoV-2, or had the combination of these two immune exposures. We find that some but not all antibody neutralizing activities and Fc effector functions are enriched with vaccination compared to infection. Preferential transport to the fetus of Fc functions and not neutralization is observed. Immunization compared to infection enriches IgG1-mediated antibody functions with changes in antibody post-translational sialylation and fucosylation that impact fetal more than maternal antibody functional potency. Thus, vaccine enhanced antibody functional magnitude, potency and breadth in the fetus are driven more by antibody glycosylation and Fc effector functions compared to maternal responses, highlighting prenatal opportunities to safeguard newborns as SARS-CoV-2 becomes endemic.
Collapse
Affiliation(s)
- Emily H. Adhikari
- Division of Maternal-Fetal Medicine and Department of Obstetrics and Gynecology, UTSW Medical Center, Dallas, TX
- Parkland Health, Dallas TX
| | - Pei Lu
- Division of Infectious Diseases and Geographic Medicine and Department of Internal Medicine, UTSW Medical Center, Dallas, TX
| | - Ye jin Kang
- Division of Infectious Diseases and Geographic Medicine and Department of Internal Medicine, UTSW Medical Center, Dallas, TX
| | - Ann R. McDonald
- Division of Infectious Diseases and Geographic Medicine and Department of Internal Medicine, UTSW Medical Center, Dallas, TX
| | - Jessica E. Pruszynski
- Division of Maternal-Fetal Medicine and Department of Obstetrics and Gynecology, UTSW Medical Center, Dallas, TX
| | - Timothy A. Bates
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, OR
| | - Savannah K. McBride
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, OR
| | - Mila Trank-Greene
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, OR
| | - Fikadu G. Tafesse
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, OR
| | - Lenette L. Lu
- Parkland Health, Dallas TX
- Division of Infectious Diseases and Geographic Medicine and Department of Internal Medicine, UTSW Medical Center, Dallas, TX
- Department of Immunology, UTSW Medical Center, Dallas, TX
| |
Collapse
|
8
|
Prabhu M, Yang YJ, Johnston CD, Murphy EA, Ketas TJ, Diaz-Tapia R, Jurkiewicz M, Racine-Brzostek S, Mohammed I, Sukhu AC, Singh S, Forlenza K, Iyer S, Yee J, Eng D, Marks K, Zhao Z, Klasse PJ, Permar S, Moore JP, Riley LE. Longitudinal antibody response kinetics following SARS-CoV-2 messenger RNA vaccination in pregnant and nonpregnant persons. Am J Obstet Gynecol MFM 2023; 5:100796. [PMID: 36334723 PMCID: PMC9626404 DOI: 10.1016/j.ajogmf.2022.100796] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/10/2022] [Accepted: 10/28/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND For some vaccine-preventable diseases, the immunologic response to vaccination is altered by a pregnant state. The effect of pregnancy on SARS-CoV-2 vaccine response remains unclear. OBJECTIVE We sought to characterize the peak and longitudinal anti-S immunoglobulin G, immunoglobulin M, and immunoglobulin A responses to messenger RNA-based SARS-CoV-2 vaccination in pregnant persons and compare them with those in nonpregnant, reproductive-aged persons. STUDY DESIGN We conducted 2 parallel prospective cohort studies among pregnant and nonpregnant persons who received SARS-CoV-2 messenger RNA vaccinations. Blood was collected at the time of first and second vaccine doses, 2 weeks post second dosage, and with serial longitudinal follow-up up to 41.7 weeks post vaccination initiation. Anti-S immunoglobulin M, immunoglobulin G, and immunoglobulin A were analyzed by enzyme-linked immunosorbent assay. We excluded those with previous evidence of SARS-CoV-2 infection by history or presence of antinucleocapsid antibodies. In addition, for this study, we did not include individuals who received a third or booster vaccine dosage during the study period. We also excluded pregnant persons who were not fully vaccinated (14 days post receipt of the second vaccine dosage) by time of delivery and nonpregnant persons who became pregnant through the course of the study. We studied the effect of gestational age at vaccination on the anti-S response using Spearman correlation. We compared the peak anti-S antibody responses between pregnant and nonpregnant persons using a Mann-Whitney U test. We visualized and studied the longitudinal anti-S antibody response using locally weighted scatterplot smoothing, Mann-Whitney U test, and mixed analysis of variance test. RESULTS Data from 53 pregnant and 21 nonpregnant persons were included in this analysis. The median (interquartile range) age of the pregnant and nonpregnant participants was 35.0 (33.3-37.8) years and 36.0 (33.0-41.0) years, respectively. Six (11.3%) participants initiated vaccination in the first trimester, 23 (43.3%) in the second trimester, and 24 (45.3%) in the third trimester, with a median gestational age at delivery of 39.6 (39.0-40.0) weeks. The median (interquartile range) follow-up time from vaccine initiation to the last blood sample collected was 25.9 (11.9) weeks and 28.9 (12.9) weeks in the pregnant and nonpregnant cohort, respectively. Among pregnant persons, anti-S immunoglobulin G, immunoglobulin A, and immunoglobulin M responses were not associated with gestational age at vaccine initiation (all P>.05). The anti-S immunoglobulin G response at 2 weeks post second dosage was not statistically different between pregnant and nonpregnant persons (P>.05). However, the anti-S immunoglobulin M and immunoglobulin A responses at 2 weeks post second dosage were significantly higher in nonpregnant persons (P<.001 for both). The anti-S immunoglobulin G and immunoglobulin M levels 6 to 8 months after vaccine initiation fell to comparable proportions of the peak 2 weeks post second dosage antibody levels between pregnant and nonpregnant persons (immunoglobulin G P=.77; immunoglobulin M P=.51). In contrast, immunoglobulin A levels 6 to 8 months after vaccine initiation fell to statistically significantly higher proportions of peak 2 weeks post second dosage antibody levels in pregnant compared with nonpregnant persons (P=.002). Maternal anti-S immunoglobulin G levels were strongly correlated with umbilical cord anti-S immunoglobulin G levels (R=0.8, P<.001). CONCLUSION The anti-S immunoglobulin A, immunoglobulin M, and immunoglobulin G response to SARS-CoV-2 vaccination in pregnancy is independent of gestational age of vaccine initiation. Maintenance of the immunoglobulin G response is comparable between pregnant and nonpregnant persons. The differential peak response of immunoglobulin M and immunoglobulin A and the differential decline of anti-S immunoglobulin A between pregnant and nonpregnant persons requires further investigation.
Collapse
Affiliation(s)
- Malavika Prabhu
- Department of Obstetrics & Gynecology, Weill Cornell Medicine, New York, NY (Dr Prabhu, Mr Mohammed, and Dr Riley)
| | - Yawei J Yang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY (Drs Yang, Murphy, Racine-Brzostek, and Zhao); Department of Pathology and Laboratory Medicine, New York Presbyterian/Weill Cornell Medical Center, New York, NY (Drs Yang and Racine-Brzostek, Ms Sukhu, Mr Yee, Ms Eng, and Dr Zhao).
| | - Carrie D Johnston
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY (Drs Johnston and Marks)
| | - Elisabeth A Murphy
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY (Drs Yang, Murphy, Racine-Brzostek, and Zhao)
| | - Thomas J Ketas
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY (Messrs Ketas and Diaz-Tapia and Drs Klasse and Moore)
| | - Randy Diaz-Tapia
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY (Messrs Ketas and Diaz-Tapia and Drs Klasse and Moore)
| | - Magdalena Jurkiewicz
- Department of Pathology and Cell Biology, Columbia University, New York, NY (Dr Jurkiewicz)
| | - Sabrina Racine-Brzostek
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY (Drs Yang, Murphy, Racine-Brzostek, and Zhao); Department of Pathology and Laboratory Medicine, New York Presbyterian/Weill Cornell Medical Center, New York, NY (Drs Yang and Racine-Brzostek, Ms Sukhu, Mr Yee, Ms Eng, and Dr Zhao)
| | - Iman Mohammed
- Department of Obstetrics & Gynecology, Weill Cornell Medicine, New York, NY (Dr Prabhu, Mr Mohammed, and Dr Riley)
| | - Ashley C Sukhu
- Department of Pathology and Laboratory Medicine, New York Presbyterian/Weill Cornell Medical Center, New York, NY (Drs Yang and Racine-Brzostek, Ms Sukhu, Mr Yee, Ms Eng, and Dr Zhao)
| | - Sunidhi Singh
- Weill Cornell Medicine, New York, NY (Ms Singh, Dr Forlenza, and Ms Iyer)
| | - Kimberly Forlenza
- Weill Cornell Medicine, New York, NY (Ms Singh, Dr Forlenza, and Ms Iyer)
| | - Sonali Iyer
- Weill Cornell Medicine, New York, NY (Ms Singh, Dr Forlenza, and Ms Iyer)
| | - Jim Yee
- Department of Pathology and Laboratory Medicine, New York Presbyterian/Weill Cornell Medical Center, New York, NY (Drs Yang and Racine-Brzostek, Ms Sukhu, Mr Yee, Ms Eng, and Dr Zhao)
| | - Dorothy Eng
- Department of Pathology and Laboratory Medicine, New York Presbyterian/Weill Cornell Medical Center, New York, NY (Drs Yang and Racine-Brzostek, Ms Sukhu, Mr Yee, Ms Eng, and Dr Zhao)
| | - Kristen Marks
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY (Drs Johnston and Marks)
| | - Zhen Zhao
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY (Drs Yang, Murphy, Racine-Brzostek, and Zhao); Department of Pathology and Laboratory Medicine, New York Presbyterian/Weill Cornell Medical Center, New York, NY (Drs Yang and Racine-Brzostek, Ms Sukhu, Mr Yee, Ms Eng, and Dr Zhao)
| | - Per Johan Klasse
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY (Messrs Ketas and Diaz-Tapia and Drs Klasse and Moore)
| | - Sallie Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY (Dr Permar)
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY (Messrs Ketas and Diaz-Tapia and Drs Klasse and Moore)
| | - Laura E Riley
- Department of Obstetrics & Gynecology, Weill Cornell Medicine, New York, NY (Dr Prabhu, Mr Mohammed, and Dr Riley)
| |
Collapse
|
9
|
MARSHALL NE, BLANTON MB, DORATT BM, MALHERBE DC, RINCON M, TRUE H, MCDONALD T, BEAUREGARD C, ADATORWOVOR R, MESSAOUDI I. SARS-CoV-2 Vaccine Booster Elicits Robust Prolonged Maternal Antibody Responses and Passive Transfer Via The Placenta And Breastmilk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.29.518385. [PMID: 36482972 PMCID: PMC9727762 DOI: 10.1101/2022.11.29.518385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Background Infection during pregnancy can result in adverse outcomes for both pregnant persons and offspring. Maternal vaccination is an effective mechanism to protect both mother and neonate into post-partum. However, our understanding of passive transfer of antibodies elicited by maternal SARS-CoV-2 mRNA vaccination during pregnancy remains incomplete. Objective We aimed to evaluate the antibody responses engendered by maternal SARS-CoV-2 vaccination following initial and booster doses in maternal circulation and breastmilk to better understand passive immunization of the newborn. Study Design We collected longitudinal blood samples from 121 pregnant women who received SARS-CoV-2 mRNA vaccines spanning from early gestation to delivery followed by collection of blood samples and breastmilk between delivery and 12 months post-partum. During the study, 70% of the participants also received a booster post-partum. Paired maternal plasma, breastmilk, umbilical cord plasma, and newborn plasma samples were tested via enzyme-linked immunosorbent assays (ELISA) to evaluate SARS-CoV-2 specific IgG antibody levels. Results Vaccine-elicited maternal antibodies were detected in both cord blood and newborn blood, albeit at lower levels than maternal circulation, demonstrating transplacental passive immunization. Booster vaccination significantly increased spike specific IgG antibody titers in maternal plasma and breastmilk. Finally, SARS-CoV-2 specific IgG antibodies in newborn blood correlated negatively with days post initial maternal vaccine dose. Conclusion Vaccine-induced maternal SARS-CoV-2 antibodies were passively transferred to the offspring in utero via the placenta and after birth via breastfeeding. Maternal booster vaccination, regardless of gestational age at maternal vaccination, significantly increased antibody levels in breastmilk and maternal plasma, indicating the importance of this additional dose to maximize passive protection against SARS-CoV-2 infection for neonates and infants until vaccination eligibility.
Collapse
Affiliation(s)
- Nicole E. MARSHALL
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR,Corresponding authors: Nicole Marshall and Ilhem Messaoudi, Addresses: Nicole Marshall, Department of Obstetrics and Gynecology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, , Ilhem Messaoudi, Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, 760 Press Ave, Lexington, KY 40536,
| | - Madison B. BLANTON
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY,Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY
| | - Brianna M. DORATT
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY
| | - Delphine C. MALHERBE
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY
| | - Monica RINCON
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR
| | - Heather TRUE
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY,Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY
| | - Taylor MCDONALD
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY
| | - Caroline BEAUREGARD
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY
| | | | - Ilhem MESSAOUDI
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY,Corresponding authors: Nicole Marshall and Ilhem Messaoudi, Addresses: Nicole Marshall, Department of Obstetrics and Gynecology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, , Ilhem Messaoudi, Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, 760 Press Ave, Lexington, KY 40536,
| |
Collapse
|
10
|
Langel SN, Blasi M, Permar SR. Maternal immune protection against infectious diseases. Cell Host Microbe 2022; 30:660-674. [PMID: 35550669 DOI: 10.1016/j.chom.2022.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The maternal immune system protects developing offspring against pathogens before birth via transplacental transfer and after birth through secreted milk. This transferred maternal immunity influences each generation's susceptibility to infections and responsiveness to immunization. Thus, boosting immunity in the maternal-neonatal dyad is a potentially valuable public health strategy. Additionally, at critical times during fetal and postnatal development, environmental factors and immune stimuli influence immune development. These "windows of opportunity" offer a chance to identify both risk and protective factors that promote long-term health and limit disease. Here, we review pre- and postpartum maternal immune factors that protect against infectious agents in offspring and how they may shape the infant's immune landscape over time. Additionally, we discuss the influence of maternal immunity on the responsiveness to immunization in early life. Lastly, when maternal factors are insufficient to prevent neonatal infectious diseases, we discuss pre- and postnatal therapeutic strategies for the maternal-neonatal dyad.
Collapse
Affiliation(s)
- Stephanie N Langel
- Department of Surgery, Duke Center for Human Systems Immunology, Durham, NC, USA
| | - Maria Blasi
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA; Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, Durham, NC, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Jennewein MF, Kosikova M, Noelette FJ, Radvak P, Boudreau CM, Campbell JD, Chen WH, Xie H, Alter G, Pasetti MF. Functional and structural modifications of influenza antibodies during pregnancy. iScience 2022; 25:104088. [PMID: 35402869 PMCID: PMC8991102 DOI: 10.1016/j.isci.2022.104088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/14/2021] [Accepted: 03/14/2022] [Indexed: 12/17/2022] Open
Abstract
Pregnancy represents a unique tolerogenic immune state which may alter susceptibility to infection and vaccine response. Here, we characterized humoral immunity to seasonal influenza vaccine strains in pregnant and non-pregnant women. Although serological responses to influenza remained largely intact during late pregnancy, distinct modifications were observed. Pregnant women had reduced hemagglutinin subtype-1 (H1)- IgG, IgG1, IgG2, and IgG3, hemagglutination inhibition, and group 1 and 2 stem IgG titers. Intriguingly, H1-specific avidity and FcγR1 binding increased, and influenza antibodies had distinct Fc and Fab glycans characterized by increased di-galactosylation and di-sialylation. H1-specific Fc-functionality (i.e. monocyte phagocytosis and complement deposition) was moderately reduced in pregnancy. Multivariate antibody analysis revealed two distinct populations (pregnant vs. non-pregnant) segregated by H1 FcγR1 binding, H1-IgG levels, and Fab and Fc glycosylation. Our results demonstrated a structural and functional modulation of influenza humoral immunity during pregnancy that was antigen-specific and consistent with reduced inflammation and efficient placental transport.
Collapse
Affiliation(s)
| | - Martina Kosikova
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | | | - Peter Radvak
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | | | - James D. Campbell
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wilbur H. Chen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hang Xie
- Laboratory of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Galit Alter
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Marcela F. Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
12
|
Fragkou PC, Moschopoulos CD, Reiter R, Berger T, Skevaki C. Host immune responses and possible therapeutic targets for viral respiratory tract infections in susceptible populations: a narrative review. Clin Microbiol Infect 2022; 28:1328-1334. [DOI: 10.1016/j.cmi.2022.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 12/11/2022]
|
13
|
Shook LL, Fallah PN, Silberman JN, Edlow AG. COVID-19 Vaccination in Pregnancy and Lactation: Current Research and Gaps in Understanding. Front Cell Infect Microbiol 2021; 11:735394. [PMID: 34604115 PMCID: PMC8481914 DOI: 10.3389/fcimb.2021.735394] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/31/2021] [Indexed: 01/21/2023] Open
Abstract
The COVID-19 pandemic has demonstrated the urgent need to develop vaccine strategies optimized for pregnant people and their newborns, as both populations are at risk of developing severe disease. Although not included in COVID-19 vaccine development trials, pregnant people have had access to these vaccines since their initial release in the US and abroad. The rapid development and distribution of novel COVID-19 vaccines to people at risk, including those who are pregnant and lactating, presents an unprecedented opportunity to further our understanding of vaccine-induced immunity in these populations. In this review, we aim to summarize the literature to date on COVID-19 vaccination in pregnancy and lactation and highlight opportunities for investigation that may inform future maternal vaccine development and implementation strategies.
Collapse
Affiliation(s)
- Lydia L. Shook
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, United States
| | - Parisa N. Fallah
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jason N. Silberman
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrea G. Edlow
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
14
|
Nakphook S, Patumanond J, Shrestha M, Prasert K, Chittaganpitch M, Mott JA, Praphasiri P. Antibody responses induced by trivalent inactivated influenza vaccine among pregnant and non-pregnant women in Thailand: A matched cohort study. PLoS One 2021; 16:e0253028. [PMID: 34106994 PMCID: PMC8189519 DOI: 10.1371/journal.pone.0253028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/21/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We compared influenza antibody titers among vaccinated and unvaccinated pregnant and non-pregnant women. METHODS During 1st June- 30th September 2018, four groups of cohort participants-vaccinated pregnant, unvaccinated pregnant, vaccinated non-pregnant, and unvaccinated non-pregnant women were selected by matching age, gestational age, and the week of vaccination. Serum antibody titers against each strain of 2018 Southern Hemisphere inactivated trivalent influenza vaccine (IIV3) were assessed by hemagglutination inhibition (HI) assay on Day 0 (pre-vaccination) and Day 28 (one month post-vaccination) serum samples. Geometric mean titer (GMT), GMT ratio (GMR), seroconversion (defined as ≥4 fold increase in HI titer), and seroprotection (i.e. HI titer ≥1:40) were compared across the study groups using multilevel regression analyses, controlling for previous year vaccination from medical records and baseline antibody levels. RESULTS A total of 132 participants were enrolled in the study (33 in each of the four study groups). The baseline GMTs for influenza A(H1N1), A(H3N2), and B vaccine strains were not significantly different among all four groups (all p-values >0.05). After one month, both vaccinated groups had significantly higher GMT, GMR, seroconversion, and seroprotection than their unvaccinated controls (all p-values <0.05). The seroconversion rate was over 60% for any strain among the vaccinated groups, with the highest (88.8%) observed against A(H1N1) in the vaccinated pregnant group. Similarly, at least 75% of the vaccinated participants developed seroprotective antibody levels against all three strains; the highest seroprotection was found against A(H3N2) at 92.6% among vaccinated non-pregnant participants. Antibody responses (post-vaccination GMT, GMR, seroconversion, and seroprotection) were not significantly different between pregnant and non-pregnant women for all three strains of IIV3 (all p>0.05). CONCLUSIONS The 2018 seasonal IIV3 was immunogenic against all three vaccine strains and pregnancy did not seem to alter the immune response to IIV3. These findings support the current influenza vaccination recommendations for pregnant women.
Collapse
Affiliation(s)
- Sutthichai Nakphook
- Department of Disease Control, Institute of Preventive Medicine, Ministry of Public Health, Nonthaburi, Thailand
- Faculty of Medicine, Thammasat University, Pathum Thani, Bangkok, Thailand
| | - Jayanton Patumanond
- Faculty of Medicine, Center for Clinical Epidemiology and Clinical Statistics, Chiang Mai University, Chiang Mai, Thailand
| | - Manash Shrestha
- Faculty of Social Sciences and Humanities, Department of Society and Health, Mahidol University, Nakhon Pathom, Thailand
- * E-mail:
| | - Kriengkrai Prasert
- Department of Primary Care Unit and Family Medicine, Nakhon Phanom Provincial Hospital, Nakhon Phanom, Thailand
| | | | - Joshua A. Mott
- Influenza Program, Thailand Ministry of Public Health - US Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
- Influenza Division, US Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Prabda Praphasiri
- Influenza Program, Thailand Ministry of Public Health - US Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
| |
Collapse
|
15
|
Maltezou HC, Rodolakis A. Vaccination of pregnant women against influenza: what is the optimal timing? Hum Vaccin Immunother 2021; 17:2723-2727. [PMID: 33599569 DOI: 10.1080/21645515.2021.1889934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Pregnant women and young infants are at increased risk for severe influenza and its complications. Influenza vaccination during pregnancy is increasingly implemented as a strategy aiming to protect the pregnant woman, the fetus and the young infant. In clinical practice, the achievement of satisfactory protection for the pregnant woman without compromising the protection of her infant during the first months of life remains a challenge. Determinants that are implicated in the optimal timing of influenza vaccination in pregnancy include influenza season, trimester of pregnancy, maternal host factors and infant factors. This article addresses influenza vaccination in pregnancy and presents recent published evidence on issues that affect the optimization of the timing of maternal vaccination.
Collapse
Affiliation(s)
- Helena C Maltezou
- Directorate of Research, Studies and Documentation, National Public Health Organization, Athens, Greece
| | - Alexandros Rodolakis
- First Department of Obstetrics and Gynecology, University of Athens, Alexandra General Hospital, Athens, Greece
| |
Collapse
|
16
|
Krubiner CB, Faden RR, Karron RA, Little MO, Lyerly AD, Abramson JS, Beigi RH, Cravioto AR, Durbin AP, Gellin BG, Gupta SB, Kaslow DC, Kochhar S, Luna F, Saenz C, Sheffield JS, Tindana PO. Pregnant women & vaccines against emerging epidemic threats: Ethics guidance for preparedness, research, and response. Vaccine 2021; 39:85-120. [PMID: 31060949 PMCID: PMC7735377 DOI: 10.1016/j.vaccine.2019.01.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/07/2019] [Indexed: 12/22/2022]
Abstract
Zika virus, influenza, and Ebola have called attention to the ways in which infectious disease outbreaks can severely - and at times uniquely - affect the health interests of pregnant women and their offspring. These examples also highlight the critical need to proactively consider pregnant women and their offspring in vaccine research and response efforts to combat emerging and re-emerging infectious diseases. Historically, pregnant women and their offspring have been largely excluded from research agendas and investment strategies for vaccines against epidemic threats, which in turn can lead to exclusion from future vaccine campaigns amidst outbreaks. This state of affairs is profoundly unjust to pregnant women and their offspring, and deeply problematic from the standpoint of public health. To ensure that the needs of pregnant women and their offspring are fairly addressed, new approaches to public health preparedness, vaccine research and development, and vaccine delivery are required. This Guidance offers 22 concrete recommendations that provide a roadmap for the ethically responsible, socially just, and respectful inclusion of the interests of pregnant women in the development and deployment of vaccines against emerging pathogens. The Guidance was developed by the Pregnancy Research Ethics for Vaccines, Epidemics, and New Technologies (PREVENT) Working Group - a multidisciplinary, international team of 17 experts specializing in bioethics, maternal immunization, maternal-fetal medicine, obstetrics, pediatrics, philosophy, public health, and vaccine research and policy - in consultation with a variety of external experts and stakeholders.
Collapse
Affiliation(s)
- Carleigh B Krubiner
- Johns Hopkins Berman Institute of Bioethics, 1809 Ashland Avenue, Baltimore, MD, USA.
| | - Ruth R Faden
- Johns Hopkins Berman Institute of Bioethics, 1809 Ashland Avenue, Baltimore, MD, USA; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ruth A Karron
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Margaret O Little
- Kennedy Institute of Ethics, Georgetown University, Washington, D.C., USA
| | - Anne D Lyerly
- University of North Carolina Center for Bioethics, Chapel Hill, NC, USA
| | - Jon S Abramson
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Richard H Beigi
- Magee-Womens Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Anna P Durbin
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | | | | | | | - Carla Saenz
- Pan American Health Organization, Washington, D.C., USA
| | | | | |
Collapse
|
17
|
Abu-Raya B, Maertens K. Protection of the Newborn Through Vaccination in Pregnancy. Neoreviews 2021; 22:e25-e39. [PMID: 33386312 DOI: 10.1542/neo.22-1-e25] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Newborns and infants are at risk for severe infections with some pathogens (eg, Bordetella pertussis, influenza, respiratory syncytial virus, group B Streptococcus) during early life. To decrease this window of high susceptibility to some infections during early life and protect young infants, vaccination in pregnancy against some vaccine-preventable diseases (eg, influenza, pertussis, tetanus) has been recommended in an increasing number of countries with notable success. In addition, recent advances have been made in developing vaccines for pregnant women with the aim of reducing the respiratory syncytial virus and group B Streptococcus burden in infancy. In this article, we review the vaccines currently recommended during pregnancy and their benefits to newborns and infants. We also discuss progress made in the development of other vaccines that are expected to be evaluated in pregnant women in the near future.
Collapse
Affiliation(s)
- Bahaa Abu-Raya
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.,Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kirsten Maertens
- Centre for the Evaluation of Vaccination, Vaccine & Infectious Diseases Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
18
|
Chudnovets A, Liu J, Narasimhan H, Liu Y, Burd I. Role of Inflammation in Virus Pathogenesis during Pregnancy. J Virol 2020; 95:e01381-19. [PMID: 33115865 PMCID: PMC7944452 DOI: 10.1128/jvi.01381-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Viral infections during pregnancy lead to a spectrum of maternal and fetal outcomes, ranging from asymptomatic disease to more critical conditions presenting with severe maternal morbidity, stillbirth, preterm birth, intrauterine growth restriction, and fetal congenital anomalies, either apparent at birth or later in life. In this article, we review the pathogenesis of several viral infections that are particularly relevant in the context of pregnancy and intrauterine inflammation. Understanding the diverse mechanisms employed by viral pathogens as well as the repertoire of immune responses induced in the mother may help to establish novel therapeutic options to attenuate changes in the maternal-fetal interface and prevent adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Anna Chudnovets
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jin Liu
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Harish Narasimhan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Yang Liu
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Omer SB, Clark DR, Madhi SA, Tapia MD, Nunes MC, Cutland CL, Simões EAF, Aqil AR, Katz J, Tielsch JM, Steinhoff MC, Wairagkar N. Efficacy, duration of protection, birth outcomes, and infant growth associated with influenza vaccination in pregnancy: a pooled analysis of three randomised controlled trials. THE LANCET RESPIRATORY MEDICINE 2020; 8:597-608. [PMID: 32526188 PMCID: PMC7284303 DOI: 10.1016/s2213-2600(19)30479-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 12/24/2022]
Abstract
Background Maternal influenza immunisation can reduce morbidity and mortality associated with influenza infection in pregnant women and young infants. We aimed to determine the vaccine efficacy of maternal influenza immunisation against maternal and infant PCR-confirmed influenza, duration of protection, and the effect of gestational age at vaccination on vaccine efficacy, birth outcomes, and infant growth up to 6 months of age. Methods We did a pooled analysis of three randomised controlled trials done in Nepal (2011–2014), Mali (2011–2014), and South Africa (2011–2013). Pregnant women, gestational age 17–34 weeks in Nepal, 28 weeks or more in Mali, and 20–36 weeks in South Africa, were enrolled. Women were randomly assigned 1:1 to a study group, in which they received trivalent inactivated influenza vaccine (IIV) in all three trials, or a control group, in which they received saline placebo in Nepal and South Africa or quadrivalent meningococcal conjugate vaccine in Mali. Enrolment at all sites was complete by April 24, 2013. Infants and women were assessed for respiratory illness, and samples from those that met the case definition were tested for influenza by PCR testing. Growth measurements, including length and weight, were obtained at birth at all sites, at 24 weeks in South Africa, and at 6 months in Nepal and Mali. The three trials are registered with ClinicalTrials.gov, numbers NCT01430689, NCT01034254, and NCT02465190. Findings 10 002 women and 9800 liveborn infants were included. Pooled efficacy of maternal vaccination to prevent infant PCR-confirmed influenza up to 6 months of age was 35% (95% CI 19 to 47). The pooled estimate was 56% (28 to 73) within the first 2 months of life, 39% (11 to 58) between 2 and 4 months, and 19% (–9 to 40) between 4 and 6 months. In women, from enrolment during pregnancy to the end of follow-up at 6 months postpartum, the vaccine was 50% (95% CI 32–63) efficacious against PCR-confirmed influenza. Efficacy was 42% (12 to 61) during pregnancy and 60% (36 to 75) postpartum. In women vaccinated before 29 weeks gestational age, the estimated efficacy was 30% (–2 to 52), and in women vaccinated at or after 29 weeks, efficacy was 71% (50 to 83). Efficacy was similar in infants born to mothers vaccinated before or after 29 weeks gestation (34% [95% CI 12 to 51] vs 35% [11 to 52]). There was no overall association between maternal vaccination and low birthweight, stillbirth, preterm birth, and small for gestational age. At 6 months of age, the intervention and control groups were similar in terms of underweight (weight-for-age), stunted (length-for-age), and wasted (weight-for-length). Median centile change from birth to 6 months of age was similar between the intervention and the control groups for both weight and length. Interpretation The assessment of efficacy for women vaccinated before 29 weeks gestational age might have been underpowered, because the point estimate suggests that there might be efficacy despite wide CIs. Estimates of efficacy against PCR-confirmed influenza and safety in terms of adverse birth outcomes should be incorporated into any further consideration of maternal influenza immunisation recommendations. Funding Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Saad B Omer
- Yale Institute for Global Health, New Haven, CT, USA; Department of Internal Medicine (Infectious Diseases), Yale School of Medicine, New Haven, CT, USA; Yale School of Nursing, New Haven, CT, USA; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| | - Dayna R Clark
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Shabir A Madhi
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Department of Science and Technology/National Research Foundation, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Milagritos D Tapia
- Centre pour le Développement des Vaccins, Bamako, Mali; Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marta C Nunes
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Department of Science and Technology/National Research Foundation, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clare L Cutland
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Department of Science and Technology/National Research Foundation, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Eric A F Simões
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Section of Infectious Diseases, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA; Department of Epidemiology, Center for Global Health Colorado School of Public Health, Aurora, CO, USA
| | - Anushka R Aqil
- Department of Health, Behavior, Society, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joanne Katz
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - James M Tielsch
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Mark C Steinhoff
- Cincinnati Children's Hospital Global Health Center, Cincinnati, OH, USA
| | - Niteen Wairagkar
- Bill & Melinda Gates Foundation, Seattle, WA, USA; Vaccines For All, Pune, India
| | | |
Collapse
|
20
|
Loubet P, Tsatsaris V, Launay O. Influenza immunisation in pregnancy is efficacious and safe, but questions remain. THE LANCET RESPIRATORY MEDICINE 2020; 8:533-534. [PMID: 32526185 DOI: 10.1016/s2213-2600(20)30034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Paul Loubet
- VBMI, INSERM U1047, Université de Montpellier, Service des Maladies Infectieuses et Tropicales, CHU Nîmes, Nîmes, France; Inserm, F-CRIN, Réseau Innovative Clinical Research in Vaccinology, Paris, France
| | - Vassilis Tsatsaris
- Maternité Port-Royal, Hôpital Cochin, Paris 75014, France; FHU PREMA, Hôpital Cochin, Paris 75014, France
| | - Odile Launay
- Inserm, F-CRIN, Réseau Innovative Clinical Research in Vaccinology, Paris, France; FHU PREMA, Hôpital Cochin, Paris 75014, France; Inserm, CIC Cochin Pasteur, Hôpital Cochin, Paris 75014, France; Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris 75014, France; Université de Paris, Paris, France.
| |
Collapse
|
21
|
Vazquez-Pagan A, Honce R, Schultz-Cherry S. Impact of influenza virus during pregnancy: from disease severity to vaccine efficacy. Future Virol 2020. [DOI: 10.2217/fvl-2020-0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pregnant women are among the individuals at the highest risk for severe influenza virus infection. Infection of the mother during pregnancy increases the probability of adverse fetal outcomes such as small for gestational age, preterm birth and fetal death. Animal models of syngeneic and allogeneic mating can recapitulate the increased disease severity observed in pregnant women and are used to define the mechanism(s) of that increased severity. This review focuses on influenza A virus pathogenesis, the unique immunological landscape during pregnancy, the impact of maternal influenza virus infection on the fetus and the immune responses at the maternal–fetal interface. Finally, we summarize the importance of immunization and antiviral treatment in this population and highlight issues that warrant further investigation.
Collapse
Affiliation(s)
- Ana Vazquez-Pagan
- Graduate School of Biomedical Sciences, St Jude Children’s Research Hospital, Memphis, TN, USA
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Rebekah Honce
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN, USA
- Integrated Program in Biomedical Sciences, Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
22
|
Abu-Raya B, Maertens K, Edwards KM, Omer SB, Englund JA, Flanagan KL, Snape MD, Amirthalingam G, Leuridan E, Damme PV, Papaevangelou V, Launay O, Dagan R, Campins M, Cavaliere AF, Frusca T, Guidi S, O'Ryan M, Heininger U, Tan T, Alsuwaidi AR, Safadi MA, Vilca LM, Wanlapakorn N, Madhi SA, Giles ML, Prymula R, Ladhani S, Martinón-Torres F, Tan L, Michelin L, Scambia G, Principi N, Esposito S. Global Perspectives on Immunization During Pregnancy and Priorities for Future Research and Development: An International Consensus Statement. Front Immunol 2020; 11:1282. [PMID: 32670282 PMCID: PMC7326941 DOI: 10.3389/fimmu.2020.01282] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/20/2020] [Indexed: 12/17/2022] Open
Abstract
Immunization during pregnancy has been recommended in an increasing number of countries. The aim of this strategy is to protect pregnant women and infants from severe infectious disease, morbidity and mortality and is currently limited to tetanus, inactivated influenza, and pertussis-containing vaccines. There have been recent advancements in the development of vaccines designed primarily for use in pregnant women (respiratory syncytial virus and group B Streptococcus vaccines). Although there is increasing evidence to support vaccination in pregnancy, important gaps in knowledge still exist and need to be addressed by future studies. This collaborative consensus paper provides a review of the current literature on immunization during pregnancy and highlights the gaps in knowledge and a consensus of priorities for future research initiatives, in order to optimize protection for both the mother and the infant.
Collapse
Affiliation(s)
- Bahaa Abu-Raya
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Kirsten Maertens
- Faculty of Medicine and Health Sciences, Centre for the Evaluation of Vaccination, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium
| | - Kathryn M. Edwards
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Saad B. Omer
- Department of Internal Medicine (Infectious Diseases), Department of Epidemiology of Microbial Diseases, Yale School of Medicine, Yale School of Public Health, New Haven, CT, United States
| | - Janet A. Englund
- Department of Pediatrics, Seattle Children's Research Institute, University of Washington, Seattle, WA, United States
| | - Katie L. Flanagan
- Faculty of Health Sciences, School of Medicine, University of Tasmania, Launceston, TAS, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Matthew D. Snape
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Gayatri Amirthalingam
- Immunisation and Countermeasures Division, National Infection Service, Public Health England, London, United Kingdom
| | - Elke Leuridan
- Faculty of Medicine and Health Sciences, Centre for the Evaluation of Vaccination, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium
| | - Pierre Van Damme
- Faculty of Medicine and Health Sciences, Centre for the Evaluation of Vaccination, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium
| | - Vana Papaevangelou
- Third Department of Pediatrics, University Hospital ATTIKON, National and Kapodistrian University of Athens, Athens, Greece
| | - Odile Launay
- Université de Paris, Inserm, CIC 1417, F-CRIN I REIVAC, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Ron Dagan
- The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Magda Campins
- Preventive Medicine and Epidemiology Department, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Anna Franca Cavaliere
- Dipartimento Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
| | - Tiziana Frusca
- Department of Medicine and Surgery, Obstetrics and Gynaecology Unit, University of Parma, Parma, Italy
| | - Sofia Guidi
- Dipartimento Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
| | - Miguel O'Ryan
- Microbiology and Mycology Program, Faculty of Medicine, Institute of Biomedical Sciences and Associate Researcher, Millennium Institute of Immunology and Immunotherapy, University of Chile, Santiago, Chile
| | - Ulrich Heininger
- Pediatric Infectious Diseases, University of Basel Children's Hospital, Basel, Switzerland
| | - Tina Tan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Ahmed R. Alsuwaidi
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Marco. A. Safadi
- Department of Pediatrics, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Luz M. Vilca
- Unit of Obstetrics and Gynecology, Buzzi Hospital - ASST Fatebenefratelli Sacco, University of Milan, Milan, Italy
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Shabir A. Madhi
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michelle L. Giles
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Roman Prymula
- School of Medicine Hradec Kralove, Institute of Social Medicine, Charles University Prague, Prague, Czechia
| | - Shamez Ladhani
- Immunisation and Countermeasures Division, National Infection Service, Public Health England, London, United Kingdom
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Pediatrics Department, Hospital Clínico Universitario de Santiago de Compostela, University of Santiago, Santiago de Compostela, Spain
| | - Litjen Tan
- Immunization Action Coalition, St. Paul, MN, United States
| | - Lessandra Michelin
- Infectious Diseases and Vaccinology Division, Health Sciences Post Graduation Program, University of Caxias Do Sul, Caxias Do Sul, Brazil
| | - Giovanni Scambia
- Dipartimento Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Susanna Esposito
- Department of Medicine and Surgery, Pediatric Clinic, Pietro Barilla Children's Hospital, University of Parma, Parma, Italy
| |
Collapse
|
23
|
Pasetti MF, Ackerman ME, Hoen AG, Alter G, Tsang JS, Marchant A. Maternal determinants of infant immunity: Implications for effective immunization and maternal-child health. Vaccine 2020; 38:4491-4494. [PMID: 32111530 PMCID: PMC9946685 DOI: 10.1016/j.vaccine.2020.01.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 12/09/2019] [Accepted: 01/16/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Marcela F. Pasetti
- Center for Vaccine Development and Global Health, University of Maryland, Baltimore, MD, USA
| | | | - Annie G. Hoen
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
| | | | - John S. Tsang
- Systems Genomics and Bioinformatics Unit, Laboratory of Immune System Biology and Center for Human Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, NIH, Bethesda, MD, USA
| | - Arnaud Marchant
- Institute for Medical Immunology, Université libre de Bruxelles, Charleroi, Belgium.
| |
Collapse
|
24
|
Apps R, Kotliarov Y, Cheung F, Han KL, Chen J, Biancotto A, Babyak A, Zhou H, Shi R, Barnhart L, Osgood SM, Belkaid Y, Holland SM, Tsang JS, Zerbe CS. Multimodal immune phenotyping of maternal peripheral blood in normal human pregnancy. JCI Insight 2020; 5:134838. [PMID: 32163376 DOI: 10.1172/jci.insight.134838] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/05/2020] [Indexed: 12/23/2022] Open
Abstract
Changes in maternal immunity during pregnancy can result in an altered immune state, and as a natural perturbation, this provides an opportunity to understand functional interactions of the immune system in vivo. We report characterization of maternal peripheral immune phenotypes for 33 longitudinally sampled normal pregnancies, using clinical measurements of complete blood counts and major immune cell populations, as well as high parameter flow cytometry for 30 leukocyte antigens characterizing 79 cell populations, and monitoring of 1305 serum proteins using the SomaLogic platform. Cellular analyses characterized transient changes in T cell polarization and more persistent alterations in T and B cell subset frequencies and activation. Serum proteomic analysis identified a potentially novel set of 7 proteins that are predictive of gestational age: DDR1, PLAU, MRC1, ACP5, ROBO2, IGF2R, and GNS. We further show that gestational age can be predicted from the parameters obtained by complete blood count tests and clinical flow cytometry characterizing 5 major immune cell populations. Inferring gestational age from this routine clinical phenotyping data could be useful in resource-limited settings that lack obstetric ultrasound. Overall, both the cellular and proteomic analyses validate previously reported phenotypic immunological changes of pregnancy and uncover potentially new alterations and predictive markers.
Collapse
Affiliation(s)
- Richard Apps
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, NIH, Bethesda, Maryland, USA
| | - Yuri Kotliarov
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, NIH, Bethesda, Maryland, USA
| | - Foo Cheung
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, NIH, Bethesda, Maryland, USA
| | - Kyu Lee Han
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, NIH, Bethesda, Maryland, USA
| | - Jinguo Chen
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, NIH, Bethesda, Maryland, USA
| | - Angélique Biancotto
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, NIH, Bethesda, Maryland, USA
| | - Ashley Babyak
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, NIH, Bethesda, Maryland, USA
| | - Huizhi Zhou
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, NIH, Bethesda, Maryland, USA
| | - Rongye Shi
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, NIH, Bethesda, Maryland, USA
| | | | | | - Yasmine Belkaid
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, NIH, Bethesda, Maryland, USA.,Metaorganism Immunology Section, Laboratory of Immune System Biology, and
| | | | - John S Tsang
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, NIH, Bethesda, Maryland, USA.,Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
25
|
Immunological memory and tolerance at the maternal-fetal interface: Implications for reproductive management of mares. Theriogenology 2020; 150:432-436. [PMID: 32164989 DOI: 10.1016/j.theriogenology.2020.02.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 11/24/2022]
Abstract
The development of placentation that coincided with the evolution of mammals presented new challenges to the transmission of life from one generation to the next, particularly with regard to the possibility of maternal immunological recognition and destruction of the developing conceptus. The balance between immunity and tolerance dominates the immunological relationship between mother and fetus during mammalian pregnancy, and the focal point of this relationship lies at the interface between the trophoblast cells that comprise the outermost layer of the placenta and the maternal endometrial tissues. Immune memory and tolerance are two of the cardinal characteristics of the immune system. Immune memory is essential in preventing or lessening the effect of infections to the mother or conceptus, but may also be a threat to the semi-allogeneic tissues of the fetus and placenta. The mother must develop functional immune tolerance to her fetus, but at the same time retain her ability to combat infections while pregnant. To address this imperative, mammals have developed overlapping and independent mechanisms for evading maternal anti-fetal immune responses that could result in pregnancy loss. Studies of the unusual component of equine invasive trophoblast in the epitheliochorial placenta have illuminated aspects of immune memory and tolerance that have relevance to fertility in the horse and other mammalian species.
Collapse
|
26
|
Maertens K, Orije MRP, Van Damme P, Leuridan E. Vaccination during pregnancy: current and possible future recommendations. Eur J Pediatr 2020; 179:235-242. [PMID: 31912233 PMCID: PMC7222942 DOI: 10.1007/s00431-019-03563-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/15/2019] [Accepted: 12/23/2019] [Indexed: 11/15/2022]
Abstract
Immunizing pregnant women to protect the mother, fetus and infant from infection has increasingly been used over the last decade. Protection against infectious diseases in neonates is mainly provided by maternal antibodies transferred from mother to infant during pregnancy through transplacental transport or after delivery via breastfeeding. Both the transplacental- and breast milk-derived maternal antibodies function as the primary source of protection against infectious diseases in neonates during the first vulnerable weeks of life. During recent infectious disease outbreaks (influenza, pertussis, Zika…) and for other infectious diseases (CMV, GBS…), pregnant women are increasingly identified as an important target for vaccination. For some of these diseases, vaccines are already on the market, and recommended during pregnancy. For others, vaccines are currently under development; furthermore, some are even specifically designed to be administered during pregnancy.Conclusion: This review article provides an overview on the rationale and main mechanism of the maternal vaccination strategy and gives a summary about the current and possible future recommendations for maternal vaccination.What is Known:• Maternal vaccination has a far-reaching potential in the protection of both women and offspring.• Currently, tetanus, pertussis and influenza vaccination during pregnancy is recommended in some countries. Several new vaccines specifically designed for use in pregnancy are currently under development.What is New:• Review providing a timely overview of the rationale and main mechanisms of the maternal vaccination strategy• Up-to-date summary of the current and possible future recommendations for maternal vaccination.
Collapse
Affiliation(s)
- Kirsten Maertens
- Centre for the Evaluation of Vaccination, Vaccine & Infectious Diseases Institute, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Marjolein Rozemarie Paulien Orije
- grid.5284.b0000 0001 0790 3681Centre for the Evaluation of Vaccination, Vaccine & Infectious Diseases Institute, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Pierre Van Damme
- grid.5284.b0000 0001 0790 3681Centre for the Evaluation of Vaccination, Vaccine & Infectious Diseases Institute, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Elke Leuridan
- grid.5284.b0000 0001 0790 3681Centre for the Evaluation of Vaccination, Vaccine & Infectious Diseases Institute, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
27
|
Immunobiological aspects of vaccines in pregnancy: Maternal perspective. MATERNAL IMMUNIZATION 2020. [PMCID: PMC7149477 DOI: 10.1016/b978-0-12-814582-1.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immunization during pregnancy is an efficient strategy to protect both the mother and the newborn infant against infectious pathogens. Pregnant women have an increased susceptibility to severe infections caused by some pathogens, but the mechanisms involved remain poorly understood. Pregnancy is associated with dynamic changes in maternal immune system that are critical for tolerance of the fetus. These changes could also play an important role in shaping maternal immune components that are transferred to the newborn infant following natural infection or vaccination to prevent infectious diseases in early life. As the momentum for maternal immunization is growing, there is a need to increase our understanding of the immunobiology of maternal immunization in order to better prevent infectious diseases in the pregnant women and the young infant.
Collapse
|
28
|
Finch CL, Zhang A, Kosikova M, Kawano T, Pasetti MF, Ye Z, Ascher JR, Xie H. Pregnancy level of estradiol attenuated virus-specific humoral immune response in H5N1-infected female mice despite inducing anti-inflammatory protection. Emerg Microbes Infect 2019; 8:1146-1156. [PMID: 31364945 PMCID: PMC6711175 DOI: 10.1080/22221751.2019.1648184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Estradiol, a major female steroid produced during pregnancy, has been reported to protect ovariectomized animals against H1N1 influenza infections via its anti-inflammatory effects. However, it remains unclear why pregnant women with high gestational estradiol levels are highly susceptible to influenza infections. This study was aimed to investigate the effects of pregnancy level of estradiol on female immunity against H5N1 infection in Balb/c mice. A sex-dependent susceptibility to H5N1 infection (higher morbidity and higher mortality) was observed in both pregnant and non-pregnant female mice as compared to male mice. Subcutaneous implantation of estradiol pellets increased serum estradiol concentrations of non-pregnant female mice to the pregnancy level. These mice were protected from H5N1 infection through downregulation of pulmonary pro-inflammatory cytokines. However, the production of virus-specific antibodies after infection was significantly delayed in estradiol-implanted mice when compared to placebos. Virus-specific IgG-secreting and IL-4-secreting cells were also reduced in estradiol-implanted mice. Similarly, lower antibody titers to seasonal vaccine antigens were found in pregnant women as compared to non-pregnant females without hormone usage. Our results indicate that estradiol levels equivalent to those found during pregnancy have divergent effects on female immunity against influenza, highlighting the importance of vaccination during pregnancy to prevent severe influenza infections.
Collapse
Affiliation(s)
- Courtney L Finch
- a Division of Viral Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration , Silver Spring , MD , USA
| | - Anding Zhang
- a Division of Viral Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration , Silver Spring , MD , USA
| | - Martina Kosikova
- a Division of Viral Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration , Silver Spring , MD , USA
| | - Toshiaki Kawano
- a Division of Viral Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration , Silver Spring , MD , USA
| | - Marcela F Pasetti
- b Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine , Baltimore , MD , USA
| | - Zhiping Ye
- a Division of Viral Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration , Silver Spring , MD , USA
| | - Jill R Ascher
- c Division of Veterinary Services, Center for Biologics Evaluation and Research, United States Food and Drug Administration , Silver Spring , MD , USA
| | - Hang Xie
- a Division of Viral Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration , Silver Spring , MD , USA
| |
Collapse
|
29
|
Marangu D, Zar HJ. Childhood pneumonia in low-and-middle-income countries: An update. Paediatr Respir Rev 2019; 32:3-9. [PMID: 31422032 PMCID: PMC6990397 DOI: 10.1016/j.prrv.2019.06.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To review epidemiology, aetiology and management of childhood pneumonia in low-and-middle-income countries. DESIGN Review of published English literature between 2013 and 2019. RESULTS Pneumonia remains a major cause of morbidity and mortality. Risk factors include young age, malnutrition, immunosuppression, tobacco smoke or air pollution exposure. Better methods for specimen collection and molecular diagnostics have improved microbiological diagnosis, indicating that pneumonia results from several organisms interacting. Induced sputum increases microbiologic yield for Bordetella pertussis or Mycobacterium tuberculosis, which has been associated with pneumonia in high TB prevalence areas. The proportion of cases due to Streptococcus pneumoniae and Haemophilus influenzae b has declined with new conjugate vaccines; Staphylococcus aureus and H. influenzae non-type b are the commonest bacterial pathogens; viruses are the most common pathogens. Effective interventions comprise antibiotics, oxygen and non-invasive ventilation. New vaccines have reduced severity and incidence of disease, but disparities exist in uptake. CONCLUSION Morbidity and mortality from childhood pneumonia has decreased but a considerable preventable burden remains. Widespread implementation of available, effective interventions and development of novel strategies are needed.
Collapse
MESH Headings
- Age Factors
- Air Pollution/statistics & numerical data
- Anti-Bacterial Agents/therapeutic use
- Child Nutrition Disorders/epidemiology
- Child, Preschool
- Developing Countries
- Haemophilus Infections/epidemiology
- Haemophilus Infections/microbiology
- Haemophilus Infections/prevention & control
- Haemophilus Infections/therapy
- Humans
- Infant
- Infant, Newborn
- Noninvasive Ventilation/methods
- Oxygen Inhalation Therapy/methods
- Pneumonia/epidemiology
- Pneumonia/microbiology
- Pneumonia/prevention & control
- Pneumonia/therapy
- Pneumonia, Pneumococcal/epidemiology
- Pneumonia, Pneumococcal/microbiology
- Pneumonia, Pneumococcal/prevention & control
- Pneumonia, Pneumococcal/therapy
- Pneumonia, Staphylococcal/epidemiology
- Pneumonia, Staphylococcal/microbiology
- Pneumonia, Staphylococcal/therapy
- Risk Factors
- Tobacco Smoke Pollution/statistics & numerical data
- Tuberculosis, Pulmonary/epidemiology
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/prevention & control
- Tuberculosis, Pulmonary/therapy
- Vaccines/therapeutic use
- Whooping Cough/epidemiology
- Whooping Cough/microbiology
- Whooping Cough/prevention & control
- Whooping Cough/therapy
Collapse
Affiliation(s)
- Diana Marangu
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya; Department of Paediatrics and Child Health and SA Medical Research Council Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Heather J Zar
- Department of Paediatrics and Child Health and SA Medical Research Council Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
30
|
Brillo E, Tosto V, Giardina I, Buonomo E. Maternal tetanus, diphtheria, and acellular pertussis (Tdap) and influenza immunization: an overview. J Matern Fetal Neonatal Med 2019; 34:3415-3444. [PMID: 31645152 DOI: 10.1080/14767058.2019.1680633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Maternal tetanus, diphtheria, and acellular pertussis (Tdap) and influenza immunization for women during pregnancy (the so-called "maternal immunization") has been introduced in several countries, and recently also in Italy, to protect mother and fetus during pregnancy, infant in his first months of life and mother during postpartum period. However, very low vaccination coverage rates have been reached due to several variables. METHODS A literature search was conducted on PubMed and Embase, including any experimental or observational studies, to assesses existing evidence on the effectiveness, efficacy, safety and optimal timing of administration of Tdap and influenza immunization in pregnancy for mothers and their infants. The search was finalized in August 2019. RESULTS Reviewing the literature, we identified only a few studies that, among several maternal and infant outcomes, found sporadic significant associations with maternal influenza immunization and even less with Tdap immunization. Moreover, most of the authors of these studies explained these findings as a result of residual confounding effect. The effectiveness of maternal influenza immunization is more complicated to prove than the effectiveness of Tdap immunization because of several reasons. Not all nations recommend and offer vaccines in the same weeks of pregnancy and this one manifests the complexity in defining the best timing for Tdap or influenza immunization. CONCLUSIONS The safety of maternal Tdap or influenza immunization is supported by the evidence so far, however, regular surveillance should be maintained, especially with regard to the influenza vaccine that changes in formulation each year. There is a need to optimize the timing of vaccination in pregnancy and to have a national system of detection of maternal immunization in each country.
Collapse
Affiliation(s)
- Eleonora Brillo
- Center for Research in Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy.,Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Valentina Tosto
- Department of Obstetrics and Gynecology, University Hospital of Perugia, Perugia, Italy
| | - Irene Giardina
- Center for Research in Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy.,Department of Obstetrics and Gynecology, University Hospital of Perugia, Perugia, Italy
| | - Ersilia Buonomo
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
31
|
Rosadas C, Tosswill JH, Tedder R, Taylor GP. Pregnancy does not adversely impact diagnostic tests for HTLV-1/2 infection. PLoS Negl Trop Dis 2019; 13:e0007736. [PMID: 31513603 PMCID: PMC6764679 DOI: 10.1371/journal.pntd.0007736] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/27/2019] [Accepted: 08/29/2019] [Indexed: 11/18/2022] Open
Abstract
Mother-to-child-transmission (MTCT) of human T-cell lymphotropic virus type-1(HTLV-1) contributes disproportionately to the burden of HTLV-1 associated diseases. All preventive measures to avoid MTCT rely on the identification of infected mothers. However, the impact of pregnancy on HTLV-1 diagnosis has not been clearly assessed. Paired samples from 21 HTLV-1 infected women taken during pregnancy and while not pregnant were analysed by CMIA and PCR. The signal-to-cut-off values (S/CO) were higher during pregnancy than in the paired non-pregnant samples. HTLV-1 proviral load did not alter significantly by pregnant state. S/CO positively correlated with HTLV proviral load. Pregnancy does not impair the diagnosis of HTLV-1/2, by either immunological (CMIA) or molecular (qPCR/nPCR) tests. Human T-cell lymphotropic virus (HTLV) can be transmitted from mother to child, mainly by breastfeeding. All preventive measures to avoid HTLV mother to child transmission depend on the identification of infected pregnant women. HTLV diagnosis is based on serological screening tests, confirmed by serology and/or molecular assays. The aim of the study was to verify whether pregnancy adversely impacts the identification of HTLV infection. Using paired samples from 21 women living with HTLV-1/2 obtained during pregnancy and while not pregnant we demonstrate that both serology and molecular assays perform equally well in both settings and can be use for the diagnosis of HTLV infection during pregnancy.
Collapse
Affiliation(s)
- Carolina Rosadas
- Department of Medicine, Imperial College London, London, United Kingdom
- * E-mail: (CR); (GPT)
| | | | - Richard Tedder
- Department of Medicine, Imperial College London, London, United Kingdom
- Virus Reference Department, Public Health England, London, United Kingdom
| | - Graham P. Taylor
- Department of Medicine, Imperial College London, London, United Kingdom
- * E-mail: (CR); (GPT)
| |
Collapse
|