1
|
Duarte LF, Carbone-Schellman J, Bueno SM, Kalergis AM, Riedel CA, González PA. Tackling cutaneous herpes simplex virus disease with topical immunomodulators-a call to action. Clin Microbiol Rev 2025; 38:e0014724. [PMID: 39982077 PMCID: PMC11917526 DOI: 10.1128/cmr.00147-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
SUMMARYAntivirals play important roles in restricting viral diseases. Nevertheless, they act on a relatively limited number of viruses and occasionally display partial effectiveness in some tissues or against escape variants. Although vaccination remains the most cost-effective approach for preventing microbial diseases, developing prophylactic or therapeutic solutions for pathogens, such as herpes simplex viruses (HSVs), that effectively reduce their clinical manifestations in the skin has proven exceptionally challenging despite extensive research. Alternatively, a less explored approach for tackling HSV skin infection involves using topical immunomodulatory molecules to potentiate the host's innate antiviral immune responses. When applied directly to herpetic skin lesions where viral antigen is present, this strategy has the potential to elicit virus-specific adaptive immunity. Based on currently available data, we foresee substantial potential for this approach in addressing HSV skin infections, along with additional prospects to advance understanding of skin biology and apply relevant new findings to other dermatological conditions. However, due to the limited number of case studies evaluating this method and its safety profile, particularly in immunocompromised individuals and pregnant women, further research is crucial, especially to assess the effects of immunomodulators in these vulnerable populations. Here, we revisit and discuss the use of immunomodulatory molecules for potentiating the host immune response against HSV skin infection and call for action for increased research and clinical trials regarding the possible benefits of this latter strategy for treating HSV cutaneous disease and recurrences. We also revisit and discuss antivirals and vaccine candidates against HSVs.
Collapse
Affiliation(s)
- Luisa F. Duarte
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana – Universidad del Desarrollo, Santiago, Chile
| | - Javier Carbone-Schellman
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Centro de Investigación para la Resilencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
Nabi R, Chouljenko VN, Musarrat F, Davis ME, Mohan H, Ghavimi R, Stanfield B, Dutta O, Kousoulas KG. The Novel Oncolytic Herpes Simplex Virus Type-1 (HSV-1) Vaccine Strain VC2 Constitutively Expressing GM-CSF Causes Increased Intratumoral T Cell Infiltration and Inhibition of Tumor Metastasis in the 4T1/Balb/c Mouse Model of Stage Four Breast Cancer. J Med Virol 2025; 97:e70220. [PMID: 39930884 DOI: 10.1002/jmv.70220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 05/08/2025]
Abstract
Oncolytic virotherapy (OVT) aims to disrupt the tumor microenvironment and provide a unique therapeutic approach against solid tumors. Herpes simplex virus type-1 (HSV-1) has shown strong promise for treating various solid tumors and has been approved to treat melanoma and glioma in human patients. Previously, we reported the generation of an engineered HSV-1 vaccine strain VC2, which has shown exceptional promise as an oncolytic and immunotherapeutic virus. In the present work, we engineered VC2 to constitutively express the murine granulocyte-macrophage colony-stimulating factor (GM-CSF) gene inserted in place of HSV-1 Glycoprotein C (gC). We tested the efficacy of VC2-GMCSF for its ability to generate antitumor response in the 4T1 stage four metastatic breast cancer mouse model. GM-CSF expression enhanced VC2 viral replication and infectious virus production. Tumors formed after 7 days of engraftment in the mammary fat pad of Balb/CJ mice were treated by injecting ~5 × 104 plaque forming units (PFU) of VC2/VC2-GMCSF once. Intratumor treatment did not appreciably reduce average primary tumor sizes. However, metastatic foci were significantly reduced in mice lungs treated with VC2-GMCSF compared to VC2 or mock treatment. VC2-GMCSF intratumoral treatment induced a stronger intratumor T cell infiltration but not an increased cytotoxic activity. A significant T cell infiltration was observed in the metastatic areas in VC2-GMCSF treated animals, which was associated with reduced pro-tumor marker PDL1 and VEGF gene expression. These results show that constitutive expression of GM-CSF enhanced the overall efficacy of VC2 for OVT. VC2-GMCSF holds promise as oncolytic and immunotherapeutic virotherapy for breast and other cancers.
Collapse
Affiliation(s)
- Rafiq Nabi
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Vladimir N Chouljenko
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Farhana Musarrat
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Megan E Davis
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Harikrishnan Mohan
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Reza Ghavimi
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Brent Stanfield
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Ojasvi Dutta
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Konstantin G Kousoulas
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| |
Collapse
|
3
|
Su D, Han L, Shi C, Li Y, Qian S, Feng Z, Yu L. An updated review of HSV-1 infection-associated diseases and treatment, vaccine development, and vector therapy application. Virulence 2024; 15:2425744. [PMID: 39508503 PMCID: PMC11562918 DOI: 10.1080/21505594.2024.2425744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/24/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a globally widespread virus that causes and associates with a wide range of diseases, including herpes simplex encephalitis, herpes simplex keratitis, and herpes labialis. The interaction between HSV-1 and the host involves complex immune response mechanisms, including recognition of viral invasion, maintenance of latent infection, and triggering of reactivation. Antiviral therapy is the core treatment for HSV-1 infections. Meanwhile, vaccine development employs different strategies and methods, and several promising vaccine types have emerged, such as live attenuated, protein subunit, and nucleic acid vaccines, offering new possibilities for the prevention of HSV-1 infection. Moreover, HSV-1 can be modified into a therapeutic vector for gene therapy and tumour immunotherapy. This review provides an in-depth summary of HSV-1 infection-associated innate and adaptive immune responses, disease pathogenesis, current therapeutic approaches, recent advances in vaccine development, and vector therapy applications for cancer treatment. Through a systematic review of multiple aspects of HSV-1, this study aims to provide a comprehensive and detailed reference for the public on the prevention, control, and treatment of HSV-1.
Collapse
Affiliation(s)
- Dan Su
- Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| | - Liping Han
- Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chengyu Shi
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| | - Yaoxin Li
- Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| | - Shaoju Qian
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| | - Lili Yu
- Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| |
Collapse
|
4
|
Rider PJF, Dulin H, Uche IK, McGee MC, Huang W, Kousoulas KG, Hai R. A Herpes Simplex Virus Type-1-Derived Influenza Vaccine Induces Balanced Adaptive Immune Responses and Protects Mice From Lethal Influenza Virus Challenge. J Med Virol 2024; 96:e70067. [PMID: 39568407 DOI: 10.1002/jmv.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024]
Abstract
Influenza virus is a major respiratory viral pathogen responsible for the deaths of hundreds of thousands worldwide each year. Current vaccines provide protection primarily by inducing strain-specific antibody responses with the requirement of a match between vaccine strains and circulating strains. It has been suggested that anti-influenza T-cell responses, in addition to antibody responses may provide the broadest protection against different flu strains. Therefore, to address this urgent need, it is desirable to develop a vaccine candidate with an ability to induce balanced adaptive immunity including cell mediated immune responses. Here, we explored the potential of VC2, a well-characterized Herpes Simplex Virus type 1 vaccine vector, as a live attenuated influenza vaccine candidate. We generated a recombinant VC2 virus expressing the influenza A hemagglutinin protein. We show that this virus is capable of generating potent and specific anti-influenza humoral and cell-mediated immune responses. We further show that a single vaccination with the VC2-derived influenza vaccine protects mice from lethal challenge with influenza virus. Our data support the continued development of VC2-derived influenza vaccines for protection of human populations from both seasonal and pandemic strains of influenza. Finally, our results support the potential of VC2-derived vaccines as a platform for the rapid development of vaccines against emerging and established pathogens, particularly respiratory pathogens.
Collapse
MESH Headings
- Animals
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Adaptive Immunity
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Mice
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/administration & dosage
- Mice, Inbred BALB C
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Immunity, Cellular
- Disease Models, Animal
- Humans
- Survival Analysis
- Genetic Vectors/immunology
Collapse
Affiliation(s)
- Paul J F Rider
- Division of Biotechnology and Molecular Medicine Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Harrison Dulin
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA
| | - Ifeanyi K Uche
- Division of Biotechnology and Molecular Medicine Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Michael C McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Konstantin G Kousoulas
- Division of Biotechnology and Molecular Medicine Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Rong Hai
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA
| |
Collapse
|
5
|
Chang JY, Balch C, Oh HS. Toward the Eradication of Herpes Simplex Virus: Vaccination and Beyond. Viruses 2024; 16:1476. [PMID: 39339952 PMCID: PMC11437400 DOI: 10.3390/v16091476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Herpes simplex virus (HSV) has coevolved with Homo sapiens for over 100,000 years, maintaining a tenacious presence by establishing lifelong, incurable infections in over half the human population. As of 2024, an effective prophylactic or therapeutic vaccine for HSV remains elusive. In this review, we independently screened PubMed, EMBASE, Medline, and Google Scholar for clinically relevant articles on HSV vaccines. We identified 12 vaccines from our literature review and found promising candidates across various classes, including subunit vaccines, live vaccines, DNA vaccines, and mRNA vaccines. Notably, several vaccines-SL-V20, HF10, VC2, and mRNA-1608-have shown promising preclinical results, suggesting that an effective HSV vaccine may be within reach. Additionally, several other vaccines such as GEN-003 (a subunit vaccine from Genocea), HerpV (a subunit vaccine from Agenus), 0ΔNLS/RVx201 (a live-attenuated replication-competent vaccine from Rational Vaccines), HSV 529 (a replication-defective vaccine from Sanofi Pasteur), and COR-1 (a DNA-based vaccine from Anteris Technologies) have demonstrated potential in clinical trials. However, GEN-003 and HerpV have not advanced further despite promising results. Continued progress with these candidates brings us closer to a significant breakthrough in preventing and treating HSV infections.
Collapse
Affiliation(s)
- Jane Y Chang
- Ascendant Biotech Inc., Foster City, CA 94404, USA
| | - Curt Balch
- Bioscience Advising, Cincinnati, OH 45208, USA
| | - Hyung Suk Oh
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Singer M, Husseiny MI. Immunological Considerations for the Development of an Effective Herpes Vaccine. Microorganisms 2024; 12:1846. [PMID: 39338520 PMCID: PMC11434158 DOI: 10.3390/microorganisms12091846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Research is underway to develop a vaccine to prevent and cure infection from herpes simplex virus (HSV). It emphasizes the critical need for immunization to address public health issues and the shortcomings of existing treatment options. Furthermore, studies on the HSV vaccine advance the field of immunology and vaccine creation, which may help in the battle against other viral illnesses. The current lack of such a vaccine is, in part, due to herpes viral latency in sensory ganglions. Current vaccines rely on tissue-resident memory CD8+ T cells, which are known to provide protection against subsequent HSV reinfection and reactivation without correlating with other immune subsets. For that reason, there is no effective vaccine that can provide protection against latent or recurrent herpes infection. This review focuses on conventional methods for evaluating the efficacy of a herpes vaccine using differential CD8+ T cells and important unaccounted immune aspects for designing an effective vaccine against herpes.
Collapse
Affiliation(s)
- Mahmoud Singer
- School of Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - Mohamed I. Husseiny
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
7
|
Akhoundi N, Noorbakhsh M, Siami A, Naseri Z, Hazara S, Hazara K. From a focal skin issue to a systemic disease: the multifaceted nature of cold sores, novel findings. Virusdisease 2024; 35:428-433. [PMID: 39464735 PMCID: PMC11502729 DOI: 10.1007/s13337-024-00877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/18/2024] [Indexed: 10/29/2024] Open
Abstract
Cold sores, a viral infection caused by the herpes simplex virus, are a prevalent affliction affecting millions of people across the globe. In this article, we explore the constitutional symptoms of cold sores in more detail to reveal what patients experience during an outbreak. A total of 400 participants with cold sores were enrolled in our cross-sectional study. Participants were interviewed using a structured questionnaire that collected information on demographic characteristics, clinical symptoms, and constitutional symptoms associated with cold sores such as fever, headache, muscle aches, swollen lymph nodes, malaise, and nervousness. Participants were asked to rate the severity of each symptom on a scale of 1-10. The commonly reported constitutional symptom was malaise (51.4%), and fever (48.8%), followed by headache (39.3%), muscle aches (33.8%), swollen lymph nodes (28.3%), and nervousness (32.2%). Nervousness was reported by 91 patients (22%) on the first day, which was followed by the appearance of a cold sore later. The median severity score for fever was 5.0 (IQR = 3.0), for headache was 5.0 (interquartile ranges = 4.0), for muscle aches was 4.0 (interquartile ranges = 3.0), and for swollen lymph nodes was 4.0 (interquartile ranges = 2.0). Our study provides important insights into the prevalence and impact of constitutional symptoms in individuals with cold sores. Our findings demonstrate that constitutional symptoms such as fever, headache, malaise, and nervousness are common in individuals with cold sores, with a prevalence of up to 51.4% in our study.
Collapse
Affiliation(s)
- Neda Akhoundi
- Department of Radiology, Hillcrest Hospital, University of California San Diego, San Diego, CA 92103 USA
| | - Mahta Noorbakhsh
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Siami
- Biostatistical Analyzer, Amirkabir University of Technology, Tehran, Iran
| | - Zahra Naseri
- Department of Radiology, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Sara Hazara
- Birjand University of Medical Sciences, Birjand, Iran
| | - Kobra Hazara
- Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
8
|
Bai L, Xu J, Zeng L, Zhang L, Zhou F. A review of HSV pathogenesis, vaccine development, and advanced applications. MOLECULAR BIOMEDICINE 2024; 5:35. [PMID: 39207577 PMCID: PMC11362470 DOI: 10.1186/s43556-024-00199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Herpes simplex virus (HSV), an epidemic human pathogen threatening global public health, gains notoriety for its complex pathogenesis that encompasses lytic infection of mucosal cells, latent infection within neurons, and periodic reactivation. This intricate interplay, coupled with HSV's sophisticated immune evasion strategies, gives rise to various diseases, including genital lesions, neonatal encephalitis, and cancer. Despite more than 70 years of relentless research, an effective preventive or therapeutic vaccine against HSV has yet to emerge, primarily due to the limited understanding of virus-host interactions, which in turn impedes the identification of effective vaccine targets. However, HSV's unique pathological features, including its substantial genetic load capacity, high replicability, transmissibility, and neurotropism, render it a promising candidate for various applications, spanning oncolytic virotherapy, gene and immune therapies, and even as an imaging tracer in neuroscience. In this review, we comprehensively update recent breakthroughs in HSV pathogenesis and immune evasion, critically summarize the progress made in vaccine candidate development, and discuss the multifaceted applications of HSV as a biological tool. Importantly, we highlight both success and challenges, emphasizing the critical need for intensified research into HSV, with the aim of providing deeper insights that can not only advance HSV treatment strategies but also broaden its application horizons.
Collapse
Affiliation(s)
- Lan Bai
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jiuzhi Xu
- Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Linghui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China.
| | - Long Zhang
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Fangfang Zhou
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China.
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
9
|
Hussain MT, Stanfield BA, Bernstein DI. Small Animal Models to Study Herpes Simplex Virus Infections. Viruses 2024; 16:1037. [PMID: 39066200 PMCID: PMC11281376 DOI: 10.3390/v16071037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Herpes simplex virus type 1 (HSV-1) and herpes simplex virus type 2 (HSV-2) are two of the most prevalent human viruses worldwide. They are known to cause a variety of diseases including genital herpes, meningitis, encephalitis, cold sores and herpes stromal keratitis. The seropositive rate for HSV-1 is around 90%, whereas for HSV-2 it remains around 20-25% for the general adult population. The infections caused by these viruses remain difficult to study because a large proportion of infected individuals are asymptomatic. Furthermore, given the neurotropic characteristics of the virus, studies aimed at understanding the complex pathogenesis in humans is difficult. As a result, animal models have been developed to understand several characteristics of HSV biology, pathogenesis, disease and host responses to infection. These models are also commonly used as the first evaluation of new drugs and vaccines. There are several well-established animal models to study infection with HSV, including mice, guinea pigs and rabbits. Variables within the animal models depend on the species of animal, route of infection, viral strain, dosage, etc. This review aims at summarizing the most commonly used animal models to study HSV pathogenesis and therapies.
Collapse
Affiliation(s)
- Mohammed Tanveer Hussain
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Brent A. Stanfield
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - David I. Bernstein
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
10
|
Mehrmal S, Mojica R, Guo AM, Missall TA. Diagnostic Methods and Management Strategies of Herpes Simplex and Herpes Zoster Infections. Clin Geriatr Med 2024; 40:147-175. [PMID: 38000858 DOI: 10.1016/j.cger.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Herpesviruses are medium-sized double-stranded DNA viruses. Of more than 80 herpesviruses identified, only 9 human herpesviruses have been found to cause infection in humans. These include herpes simplex viruses 1 and 2 (HSV-1 and HSV-2), varicella-zoster virus (VZV), human cyto-megalovirus (HCMV), Epstein-Barr virus (EBV), and human herpesvirus (HHV-6A, HHV-6B, HHV-7, HHV-8). HSV-1, HSV-2, and VZV can be problematic given their characteristic neurotropism which is the ability to invade via fusion of its plasma membrane and reside within neural tissue. HSV and VZV primarily infect mucocutaneous surfaces and remain latent in the dorsal root ganglia for a host's entire life. Reactivation causes either asymptomatic shedding of virus or clinical manifestation of vesicular lesions. The clinical presentation is influenced by the portal of entry, the immune status of the host, and whether the infection is primary or recurrent. Affecting 60% to 95% of adults, herpesvirus-associated infections include gingivostomatitis, orofacial and genital herpes,and primary varicella and herpes zoster. Symptomatology, treatment, and potential complications vary based on primary and recurrent infections as well as the patient's immune status.
Collapse
Affiliation(s)
- Sino Mehrmal
- Department of Dermatology, Saint Louis University School of Medicine, 1225 South Grand Boulevard, Saint Louis, MO 63104, USA
| | - Rafael Mojica
- Department of Dermatology, University of Florida College of Medicine, 4037 Northwest 86th Terrace, Gainesville, FL 32606, USA
| | - Aibing Mary Guo
- Department of Dermatology, Saint Louis University School of Medicine, 1225 South Grand Boulevard, Saint Louis, MO 63104, USA
| | - Tricia A Missall
- Department of Dermatology, University of Florida College of Medicine, 4037 Northwest 86th Terrace, Gainesville, FL 32606, USA.
| |
Collapse
|
11
|
Hussain MS, Gupta G, Samuel VP, Almalki WH, Kazmi I, Alzarea SI, Saleem S, Khan R, Altwaijry N, Patel S, Patel A, Singh SK, Dua K. Immunopathology of herpes simplex virus-associated neuroinflammation: Unveiling the mysteries. Rev Med Virol 2024; 34:e2491. [PMID: 37985599 DOI: 10.1002/rmv.2491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/21/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
The immunopathology of herpes simplex virus (HSV)-associated neuroinflammation is a captivating and intricate field of study within the scientific community. HSV, renowned for its latent infection capability, gives rise to a spectrum of neurological expressions, ranging from mild symptoms to severe encephalitis. The enigmatic interplay between the virus and the host's immune responses profoundly shapes the outcome of these infections. This review delves into the multifaceted immune reactions triggered by HSV within neural tissues, intricately encompassing the interplay between innate and adaptive immunity. Furthermore, this analysis delves into the delicate equilibrium between immune defence and the potential for immunopathology-induced neural damage. It meticulously dissects the roles of diverse immune cells, cytokines, and chemokines, unravelling the intricacies of neuroinflammation modulation and its subsequent effects. By exploring HSV's immune manipulation and exploitation mechanisms, this review endeavours to unveil the enigmas surrounding the immunopathology of HSV-associated neuroinflammation. This comprehensive understanding enhances our grasp of viral pathogenesis and holds promise for pioneering therapeutic strategies designed to mitigate the neurological ramifications of HSV infections.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Kuthambakkam, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
| | - Vijaya Paul Samuel
- Department of Anatomy, RAK College of Medicine, RAK Medical and Health Sciences, Ras Al Khaimah, United Arab Emirates
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Ruqaiyah Khan
- Department of Basic Health Sciences, Deanship of Preparatory Year for the Health Colleges, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Najla Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Samir Patel
- Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat, India
| | - Archita Patel
- Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Broadway, New South Wales, Australia
| |
Collapse
|
12
|
Kamel MS, Munds RA, Verma MS. The Quest for Immunity: Exploring Human Herpesviruses as Vaccine Vectors. Int J Mol Sci 2023; 24:16112. [PMID: 38003300 PMCID: PMC10671728 DOI: 10.3390/ijms242216112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Herpesviruses are large DNA viruses that have long been used as powerful gene therapy tools. In recent years, the ability of herpesviruses to stimulate both innate and adaptive immune responses has led to their transition to various applications as vaccine vectors. This vaccinology branch is growing at an unprecedented and accelerated rate. To date, human herpesvirus-based vectors have been used in vaccines to combat a variety of infectious agents, including the Ebola virus, foot and mouth disease virus, and human immunodeficiency viruses. Additionally, these vectors are being tested as potential vaccines for cancer-associated antigens. Thanks to advances in recombinant DNA technology, immunology, and genomics, numerous steps in vaccine development have been greatly improved. A better understanding of herpesvirus biology and the interactions between these viruses and the host cells will undoubtedly foster the use of herpesvirus-based vaccine vectors in clinical settings. To overcome the existing drawbacks of these vectors, ongoing research is needed to further advance our knowledge of herpesvirus biology and to develop safer and more effective vaccine vectors. Advanced molecular virology and cell biology techniques must be used to better understand the mechanisms by which herpesviruses manipulate host cells and how viral gene expression is regulated during infection. In this review, we cover the underlying molecular structure of herpesviruses and the strategies used to engineer their genomes to optimize capacity and efficacy as vaccine vectors. Also, we assess the available data on the successful application of herpesvirus-based vaccines for combating diseases such as viral infections and the potential drawbacks and alternative approaches to surmount them.
Collapse
Affiliation(s)
- Mohamed S. Kamel
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
| | - Rachel A. Munds
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Krishi Inc., West Lafayette, IN 47906, USA
| | - Mohit S. Verma
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Krishi Inc., West Lafayette, IN 47906, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
13
|
Korom M, Wang H, Bernier KM, Geiss BJ, Morrison LA. ICP8-vhs- HSV-2 Vaccine Expressing B7 Costimulation Molecules Optimizes Safety and Efficacy against HSV-2 Infection in Mice. Viruses 2023; 15:1570. [PMID: 37515256 PMCID: PMC10384616 DOI: 10.3390/v15071570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Herpes simplex virus 2 (HSV-2) causes most sexually transmitted genital ulcerative disease. No effective prophylactic vaccine is currently available. Replication-defective (ICP8-) HSV stimulates immune responses in animals without producing progeny virus, making it potentially useful as a safe form of a live vaccine against HSV. We previously demonstrated that mice generate a stronger response to ICP8- virus encoding B7-2 costimulation molecules than to the parental replication-defective virus. We have also demonstrated enhanced immunogenicity of an ICP8-, virion host shutoff (vhs)- virus which can no longer destabilize viral and host mRNAs. Here, we constructed a triple mutant, ICP8-vhs-B7-2+ strain, and compared it to both double mutant viruses. Immunization of mice with a single dose of ICP8-B7-2+ or ICP8-vhs-B7-2+ virus decreased challenge virus replication in the vaginal mucosa, genital disease, and mortality more effectively than immunization with the ICP8-vhs- virus. Immunization with ICP8-B7-2+ or ICP8-vhs-B7-2+ virus also effectively suppressed subsequent HSV-2 infection of the nervous system compared to immunization with the ICP8-vhs- virus. ICP8-B7-2+ and ICP8-vhs-B7-2+ strains induced more IFN gamma-producing CD8 T cells and memory CD8 T cells than did ICP8-vhs- virus, potentially explaining the enhanced protective effects. Thus, B7 costimulation molecules expressed from a replication-defective vaccine can enhance vaccine efficacy, even in an immunocompetent host.
Collapse
Affiliation(s)
| | | | | | | | - Lynda A. Morrison
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, MO 63104, USA; (M.K.); (H.W.); (K.M.B.); (B.J.G.)
| |
Collapse
|
14
|
Nabi R, Musarrat F, Menk P. Lima JC, Langohr IM, Chouljenko VN, Kousoulas KG. The Oncolytic herpes simplex virus type-1 (HSV-1) vaccine strain VC2 causes intratumor infiltration of functionally active T cells and inhibition of tumor metastasis and pro-tumor genes VEGF and PDL1 expression in the 4T1/Balb/c mouse model of stage four breast cancer. Front Mol Biosci 2023; 10:1199068. [PMID: 37388243 PMCID: PMC10303929 DOI: 10.3389/fmolb.2023.1199068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction: Oncolytic viruses (OVs) provide new modalities for cancer therapy either alone or in combination with synergistic immunotherapies and/or chemotherapeutics. Engineered Herpes Simplex Virus Type-1 (HSV-1) has shown strong promise for the treatment of various cancers in experimental animal models as well as in human patients, with some virus strains licensed to treat human melanoma and gliomas. In the present study we evaluated the efficacy of mutant HSV-1 (VC2) in a late stage, highly metastatic 4T1 murine syngeneic. Method: VC2 was constructed VC2 using double red recombination technology. For in-vivo efficacy we utilized a late stage 4T1 syngeneic and immunocompetent BALB/cJ mouse model breast cancer model which exhibits efficient metastasis to the lung and other organs. Results: VC2 replicated efficiently in 4T1 cells and in cell culture, achieving titers similar to those in African monkey kidney (Vero) cells. Intra-tumor treatment with VC2 did not appreciably reduce average primary tumor sizes but a significant reduction of lung metastasis was noted in mice treated intratumorally with VC2, but not with ultraviolet-inactivated VC2. This reduction of metastasis was associated with increased T cell infiltration comprised of CD4+ and CD4+CD8+ double-positive T cells. Characterization of purified tumor infiltrating T cells revealed a significant improvement in their proliferation ability compared to controls. In addition, significant T cell infiltration was observed in the metastatic nodules associated with reduction of pro-tumor PD-L1 and VEGF gene transcription. Conclusion: These results show that VC2 therapy can improve anti-tumor response associated with a better control of tumor metastasis. improve T cell responses and reduce pro-tumor biomarker gene transcription. VC2 holds promise for further development as an oncolytic and immunotherapeutic approach to treat breast and other cancers.
Collapse
Affiliation(s)
- Rafiq Nabi
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Farhana Musarrat
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Jose Cesar Menk P. Lima
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Ingeborg M. Langohr
- Global Discovery Pathology, Translational Models Research Platform, Sanofi, Cambridge, MA, United States
| | - Vladimir N. Chouljenko
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Konstantin G. Kousoulas
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Baton Rouge, LA, United States
| |
Collapse
|
15
|
Pachota M, Grzywa R, Iwanejko J, Synowiec A, Iwan D, Kamińska K, Skoreński M, Bielecka E, Szczubialka K, Nowakowska M, Mackereth CD, Wojaczyńska E, Sieńczyk M, Pyrć K. Novel inhibitors of HSV-1 protease effective in vitro and in vivo. Antiviral Res 2023; 213:105604. [PMID: 37054954 DOI: 10.1016/j.antiviral.2023.105604] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) is a widespread human pathogen known to cause infections of diverse severity, ranging from mild ulceration of mucosal and dermal tissues to life-threatening viral encephalitis. In most cases, standard treatment with acyclovir is sufficient to manage the disease progression. However, the emergence of ACV-resistant strains drives the need for new therapeutics and molecular targets. HSV-1 VP24 is a protease indispensable for the assembly of mature virions and, as such, constitutes an interesting target for the therapy. In this study, we present novel compounds, KI207M and EWDI/39/55BF, that block the activity of VP24 protease and consequently inhibit HSV-1 infection in vitro and in vivo. The inhibitors were shown to prevent the egress of viral capsids from the cell nucleus and suppress the cell-to-cell spread of the infection. They were also proven effective against ACV-resistant HSV-1 strains. Considering their low toxicity and high antiviral potency, the novel VP24 inhibitors could provide an alternative for treating ACV-resistant infections or a drug to be used in combined, highly effective therapy.
Collapse
Affiliation(s)
- Magdalena Pachota
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Kraków, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Renata Grzywa
- Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370, Wrocław, Poland
| | - Jakub Iwanejko
- Department of Physical and Quantum Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370, Wrocław, Poland
| | - Aleksandra Synowiec
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Kraków, Poland
| | - Dominika Iwan
- Department of Physical and Quantum Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370, Wrocław, Poland
| | - Karolina Kamińska
- Department of Physical and Quantum Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370, Wrocław, Poland
| | - Marcin Skoreński
- Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370, Wrocław, Poland
| | - Ewa Bielecka
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Kraków, Poland
| | - Krzysztof Szczubialka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Maria Nowakowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Cameron D Mackereth
- Univ. Bordeaux, Inserm U1212, CNRS UMR 5320, ARNA Laboratory, IECB, 33706, Pessac, France
| | - Elżbieta Wojaczyńska
- Department of Physical and Quantum Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370, Wrocław, Poland.
| | - Marcin Sieńczyk
- Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370, Wrocław, Poland.
| | - Krzysztof Pyrć
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Kraków, Poland.
| |
Collapse
|
16
|
Abeywickrema M, Kelly D, Kadambari S. Management of neonatal central nervous system viral infections: Knowledge gaps and research priorities. Rev Med Virol 2023; 33:e2421. [PMID: 36639694 DOI: 10.1002/rmv.2421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023]
Abstract
Congenital CMV, enteroviruses, human parechovirus and herpes simplex virus are all common causes of severe central nervous system (CNS) infection in neonates. The introduction of screening (i.e. newborn hearing screening programme), integration of molecular syndromic testing (i.e. multiplex polymerase chain reaction assays) and increase in sexually transmitted infections (i.e. anogenital herpes) have contributed to increases in each of these infections over the last decade. However, therapeutic options are highly limited in part due to the lack of epidemiological data informing trials. This review will describe our current understanding of the clinical burden and epidemiology of these severe neonatal CNS infections, outline the novel antiviral and vaccines in the pipeline and suggest future research studies which could help develop new therapeutics.
Collapse
Affiliation(s)
- Movin Abeywickrema
- Department of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Dominic Kelly
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Seilesh Kadambari
- Department of Paediatric Infectious Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,University College London, Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
17
|
Wan M, Yang X, Sun J, Ding X, Chen Z, Su W, Cai L, Hou A, Sun B, Gao F, Jiang C, Zhou Y. An Adenovirus-Based Recombinant Herpes Simplex Virus 2 (HSV-2) Therapeutic Vaccine Is Highly Protective against Acute and Recurrent HSV-2 Disease in a Guinea Pig Model. Viruses 2023; 15:219. [PMID: 36680259 PMCID: PMC9861952 DOI: 10.3390/v15010219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Genital herpes (GH) has become one of the most common sexually transmitted diseases worldwide, and it is spreading rapidly in developing countries. Approximately 90% of GH cases are caused by HSV-2. Therapeutic HSV-2 vaccines are intended for people already infected with HSV-2 with the goal of reducing clinical recurrences and recurrent virus shedding. In our previous work, we evaluated recombinant adenovirus-based vaccines, including rAd-gD2ΔUL25, rAd-ΔUL25, and rAd-gD2, for their potency as prophylactic vaccines. In this study, we evaluated these three vaccines as therapeutic vaccines against acute and recurrent diseases in intravaginal challenged guinea pigs. Compared with the control groups, the recombinant vaccine rAd-gD2ΔUL25 induced a higher titer of the binding antibody, and rAd-gD2 + rAd-ΔUL25 induced a higher titer of the neutralizing antibody. Both rAd-gD2ΔUL25 and rAd-gD2 + rAd-ΔUL25 vaccines significantly enhanced the survival rate by 50% compared to rAd-gD2 and reduced viral replication in the genital tract and recurrent genital skin disease. Our findings provide a new perspective for HSV-2 therapeutic vaccine research and provide a new technique to curtail the increasing spread of HSV-2.
Collapse
Affiliation(s)
- Mingming Wan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xiao Yang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jie Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xue Ding
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zhijun Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Weiheng Su
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Ali Hou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Bo Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yan Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
18
|
Stanfield BA, Bravo FJ, Dixon DA, Chouljenko VN, Kousoulas KG, Bernstein DI. Cross protective efficacy of the Non-Neurotropic live attenuated herpes simplex virus type 1 vaccine VC-2 is enhanced by intradermal vaccination and deletion of glycoprotein G. Vaccine 2022; 40:6093-6099. [PMID: 36114130 DOI: 10.1016/j.vaccine.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/05/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
Abstract
Herpes simplex virus type 1 and 2 (HSV-1 and HSV-2 respectively) cause life-long latent infections resulting in recurrent orofacial and genital blisters or sores. Ensued disease can be painful and may lead to significant mental anguish of infected individuals. Currently, there are no FDA-approved vaccines for either prophylactic or therapeutic use, and recent clinical trials of subunit vaccines failed to achieve endpoints goals. Development of a safe live-attenuated herpes simplex vaccine may provide the antigenic breadth to ultimately protect individuals from acquiring HSV disease. We have previously shown that prophylactic use of the non-neurotropic live attenuated HSV-1 vaccine, VC-2, provides potent and durable protection from genital HSV-2 disease in the guinea pig model. Here, we investigated the effects of intradermal administration as well as the deletion of the viral glycoprotein G (gG) on the efficacy of prophylactic vaccination. Vaccination with either VC-2, VC-2 gG null, or gD2 MPL/Alum offered robust protection from acute disease regardless of route of vaccination. However, both the VC-2 gG-null and the ID vaccination route were more effective compared to the parent VC2 administered by the IM route. Specifically, the VC-2 gG-null administered ID, reduced HSV-2 vaginal replication on day 2 and day 4 as well as mean recurrent lesion scores more effectively than VC2 administered IM. Most importantly, only VC-2 gG null IM and VC-2 ID significantly reduced the frequency of recurrent shedding, the most likely source for virus transmission. Similarly, while all vaccinated groups demonstrated a significant reduction in the number of animals testing PCR-positive for HSV-2 in their dorsal root ganglia following challenge only VC2 ID vaccinated animals demonstrated a significant reduction in DRG viral load. All vaccinations induced neutralizing antibodies to HSV-2 MS when compared to unvaccinated guinea pigs. Therefore, further investigation of VC-2 gG null delivered ID is warranted.
Collapse
Affiliation(s)
- Brent A Stanfield
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Fernando J Bravo
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - David A Dixon
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Vladimir N Chouljenko
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Konstantin G Kousoulas
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - David I Bernstein
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
19
|
Abstract
Herpesviruses—ubiquitous pathogens that cause persistent infections—have some of the most complex cell entry mechanisms. Entry of the prototypical herpes simplex virus 1 (HSV-1) requires coordinated efforts of 4 glycoproteins, gB, gD, gH, and gL. The current model posits that the glycoproteins do not interact before receptor engagement and that binding of gD to its receptor causes a “cascade” of sequential pairwise interactions, first activating the gH/gL complex and subsequently activating gB, the viral fusogen. But how these glycoproteins interact remains unresolved. Here, using a quantitative split-luciferase approach, we show that pairwise HSV-1 glycoprotein complexes form before fusion, interact at a steady level throughout fusion, and do not depend on the presence of the cellular receptor. Based on our findings, we propose a revised “conformational cascade” model of HSV-1 entry. We hypothesize that all 4 glycoproteins assemble into a complex before fusion, with gH/gL positioned between gD and gB. Once gD binds to a cognate receptor, the proximity of the glycoproteins within this complex allows for efficient transmission of the activating signal from the receptor-activated gD to gH/gL to gB through sequential conformational changes, ultimately triggering the fusogenic refolding of gB. Our results also highlight previously unappreciated contributions of the transmembrane and cytoplasmic domains to glycoprotein interactions and fusion. Similar principles could be at play in other multicomponent viral entry systems, and the split-luciferase approach used here is a powerful tool for investigating protein-protein interactions in these and a variety of other systems.
Collapse
|
20
|
Uche IK, Stanfield BA, Rudd JS, Kousoulas KG, Rider PJF. Utility of a Recombinant HSV-1 Vaccine Vector for Personalized Cancer Vaccines. Front Mol Biosci 2022; 9:832393. [PMID: 35155582 PMCID: PMC8826227 DOI: 10.3389/fmolb.2022.832393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
Current approaches to cancer immunotherapy include immune checkpoint inhibitors, cancer vaccines, and adoptive cellular therapy. These therapies have produced significant clinical success for specific cancers, but their efficacy has been limited. Oncolytic virotherapy (OVT) has emerged as a promising immunotherapy for a variety of cancers. Furthermore, the unique characteristics of OVs make them a good choice for delivering tumor peptides/antigens to induce enhanced tumor-specific immune responses. The first oncolytic virus (OV) approved for human use is the attenuated herpes simplex virus type 1 (HSV-1), Talimogene laherparepvec (T-VEC) which has been FDA approved for the treatment of melanoma in humans. In this study, we engineered the recombinant oncolytic HSV-1 (oHSV) VC2-OVA expressing a fragment of ovalbumin (OVA) as a fusion protein with VP26 virion capsid protein. We tested the ability of VC2-OVA to act as a vector capable of stimulating strong, specific antitumor immunity in a syngeneic murine melanoma model. Therapeutic vaccination with VC2-OVA led to a significant reduction in colonization of tumor cells in the lungs of mice intravenously challenged B16cOVA cells. In addition, VC2-OVA induced a potent prophylactic antitumor response and extended survival of mice that were intradermally engrafted with B16cOVA tumors compared with mice immunized with control virus.
Collapse
Affiliation(s)
- Ifeanyi Kingsley Uche
- Division of Biotechnology and Molecular Medicine Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, Untied States
| | - Brent A. Stanfield
- Division of Biotechnology and Molecular Medicine Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, Untied States
| | - Jared S. Rudd
- Division of Biotechnology and Molecular Medicine Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, Untied States
| | - Konstantin G. Kousoulas
- Division of Biotechnology and Molecular Medicine Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, Untied States
- *Correspondence: Konstantin G. Kousoulas, ; Paul J. F. Rider,
| | - Paul J. F. Rider
- Division of Biotechnology and Molecular Medicine Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, Untied States
- *Correspondence: Konstantin G. Kousoulas, ; Paul J. F. Rider,
| |
Collapse
|
21
|
Traidl S, Roesner L, Zeitvogel J, Werfel T. Eczema herpeticum in atopic dermatitis. Allergy 2021; 76:3017-3027. [PMID: 33844308 DOI: 10.1111/all.14853] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023]
Abstract
Atopic dermatitis (AD) is one of the most common chronic inflammatory skin diseases leading to pruritic skin lesions. A subset of AD patients exhibits a disseminated severe HSV infection called eczema herpeticum (EH) that can cause life-threatening complications. This review gives an overview of the clinical picture, and characteristics of the patients as well as the diagnosis and therapy of EH. A special focus lies on the pathophysiological hallmarks identified so far that predispose for EH. This aspect covers genetic aberrations, immunological changes, and environmental influences displaying a complex multifactorial situation, which is not completely understood. Type 2 skewing of virus-specific T cells in ADEH+ patients has been implicated in immune profile abnormalities, along with impaired functions of dendritic cells and natural killer cells. Furthermore, aberrations in interferon pathway-related genes such as IFNG and IFNGR1 have been identified to increase the risk of EH. IL-4, IL-25, and thymic stromal lymphopoietin (TSLP) are overexpressed in EH, whereas antimicrobial peptides like human β-defensins and LL-37 are reduced. Concerning the epidermal barrier, single nucleotide polymorphisms (SNPs) in skin barrier proteins such as filaggrin were identified in ADEH+ patients. A dysbalance of the skin microbiome also contributes to EH due to an increase of Staphylococcus aureus, which provides a supporting role to the viral infection via secreted toxins such as α-toxin. The risk of EH is reduced in AD patients treated with dupilumab. Further research is needed to identify and specifically target risk factors for EH in AD patients.
Collapse
Affiliation(s)
- Stephan Traidl
- Division of Immunodermatology and Allergy Research Department of Dermatology and Allergy Hannover Medical School Hannover Germany
- Cluster of Excellence RESIST (EXC 2155) Hannover Medical School Hannover Germany
| | - Lennart Roesner
- Division of Immunodermatology and Allergy Research Department of Dermatology and Allergy Hannover Medical School Hannover Germany
- Cluster of Excellence RESIST (EXC 2155) Hannover Medical School Hannover Germany
| | - Jana Zeitvogel
- Division of Immunodermatology and Allergy Research Department of Dermatology and Allergy Hannover Medical School Hannover Germany
- Cluster of Excellence RESIST (EXC 2155) Hannover Medical School Hannover Germany
| | - Thomas Werfel
- Division of Immunodermatology and Allergy Research Department of Dermatology and Allergy Hannover Medical School Hannover Germany
- Cluster of Excellence RESIST (EXC 2155) Hannover Medical School Hannover Germany
| |
Collapse
|
22
|
Two Sides to Every Story: Herpes Simplex Type-1 Viral Glycoproteins gB, gD, gH/gL, gK, and Cellular Receptors Function as Key Players in Membrane Fusion. Viruses 2021; 13:v13091849. [PMID: 34578430 PMCID: PMC8472851 DOI: 10.3390/v13091849] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus type-1 (HSV-1) and type-2 (HSV-2) are prototypical alphaherpesviruses that are characterized by their unique properties to infect trigeminal and dorsal root ganglionic neurons, respectively, and establish life-long latent infections. These viruses initially infect mucosal epithelial tissues and subsequently spread to neurons. They are associated with a significant disease spectrum, including orofacial and ocular infections for HSV-1 and genital and neonatal infections for HSV-2. Viral glycoproteins within the virion envelope bind to specific cellular receptors to mediate virus entry into cells. This is achieved by the fusion of the viral envelope with the plasma membrane. Similarly, viral glycoproteins expressed on cell surfaces mediate cell-to-cell fusion and facilitate virus spread. An interactive complex of viral glycoproteins gB, gD/gH/gL, and gK and other proteins mediate these membrane fusion phenomena with glycoprotein B (gB), the principal membrane fusogen. The requirement for the virion to enter neuronal axons suggests that the heterodimeric protein complex of gK and membrane protein UL20, found only in alphaherpesviruses, constitute a critical determinant for neuronal entry. This hypothesis was substantiated by the observation that a small deletion in the amino terminus of gK prevents entry into neuronal axons while allowing entry into other cells via endocytosis. Cellular receptors and receptor-mediated signaling synergize with the viral membrane fusion machinery to facilitate virus entry and intercellular spread. Unraveling the underlying interactions among viral glycoproteins, envelope proteins, and cellular receptors will provide new innovative approaches for antiviral therapy against herpesviruses and other neurotropic viruses.
Collapse
|
23
|
Stanfield BA, Kousoulas KG, Fernandez A, Gershburg E. Rational Design of Live-Attenuated Vaccines against Herpes Simplex Viruses. Viruses 2021; 13:1637. [PMID: 34452501 PMCID: PMC8402837 DOI: 10.3390/v13081637] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 12/19/2022] Open
Abstract
Diseases caused by human herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) affect millions of people worldwide and range from fatal encephalitis in neonates and herpes keratitis to orofacial and genital herpes, among other manifestations. The viruses can be shed efficiently by asymptomatic carriers, causing increased rates of infection. Viral transmission occurs through direct contact of mucosal surfaces followed by initial replication of the incoming virus in skin tissues. Subsequently, the viruses infect sensory neurons in the trigeminal and lumbosacral dorsal root ganglia, where they are primarily maintained in a transcriptionally repressed state termed "latency", which persists for the lifetime of the host. HSV DNA has also been detected in other sympathetic ganglia. Periodically, latent viruses can reactivate, causing ulcerative and often painful lesions primarily at the site of primary infection and proximal sites. In the United States, recurrent genital herpes alone accounts for more than a billion dollars in direct medical costs per year, while there are much higher costs associated with the socio-economic aspects of diseased patients, such as loss of productivity due to mental anguish. Currently, there are no effective FDA-approved vaccines for either prophylactic or therapeutic treatment of human herpes simplex infections, while several recent clinical trials have failed to achieve their endpoint goals. Historically, live-attenuated vaccines have successfully combated viral diseases, including polio, influenza, measles, and smallpox. Vaccines aimed to protect against the devastation of smallpox led to the most significant achievement in medical history: the eradication of human disease by vaccination. Recently, novel approaches toward developing safe and effective live-attenuated vaccines have demonstrated high efficacy in various preclinical models of herpetic disease. This next generation of live-attenuated vaccines has been tailored to minimize vaccine-associated side effects and promote effective and long-lasting immune responses. The ultimate goal is to prevent or reduce primary infections (prophylactic vaccines) or reduce the frequency and severity of disease associated with reactivation events (therapeutic vaccines). These vaccines' "rational" design is based on our current understanding of the immunopathogenesis of herpesviral infections that guide the development of vaccines that generate robust and protective immune responses. This review covers recent advances in the development of herpes simplex vaccines and the current state of ongoing clinical trials in pursuit of an effective vaccine against herpes simplex virus infections and associated diseases.
Collapse
Affiliation(s)
- Brent A. Stanfield
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Konstantin G. Kousoulas
- Division of Biotechnology and Molecular Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Rational Vaccines Inc., Woburn, MA 01801, USA;
| | | | | |
Collapse
|
24
|
Wijesinghe VN, Farouk IA, Zabidi NZ, Puniyamurti A, Choo WS, Lal SK. Current vaccine approaches and emerging strategies against herpes simplex virus (HSV). Expert Rev Vaccines 2021; 20:1077-1096. [PMID: 34296960 DOI: 10.1080/14760584.2021.1960162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Vaccine development for the disease caused by the herpes simplex virus (HSV) has been challenging over the years and is always in dire need of novel approaches for prevention and cure. To date, the HSV disease remains incurable and challenging to prevent. The disease is extremely widespread due to its high infection rate, resulting in millions of infection cases worldwide.Areas covered: This review first explains the diverse forms of HSV-related disease presentations and reports past vaccine history for the disease. Next, this review examines current and novel HSV vaccine approaches being studied and tested for efficacy and safety as well as vaccines in clinical trial phases I to III. Modern approaches to vaccine design using bioinformatics are described. Finally, we discuss measures to enhance new vaccine development pipelines for HSV.Expert opinion: Modernized approaches using in silico analysis and bioinformatics are emerging methods that exhibit potential for producing vaccines with enhanced targets and formulations. Although not yet fully established for HSV disease, we describe current studies using these approaches for HSV vaccine design to shed light on these methods. In addition, we provide up-to-date requirements of immunogenicity, adjuvant selection, and routes of administration.
Collapse
Affiliation(s)
| | - Isra Ahmad Farouk
- School of Science, Monash University, Bandar Sunway, Selangor, Malaysia
| | | | | | - Wee Sim Choo
- School of Science, Monash University, Bandar Sunway, Selangor, Malaysia
| | - Sunil Kumar Lal
- School of Science, Monash University, Bandar Sunway, Selangor, Malaysia.,Tropical Medicine & Biology Platform, Monash University, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
25
|
Novel Oncolytic Herpes Simplex Virus 1 VC2 Promotes Long-Lasting, Systemic Anti-melanoma Tumor Immune Responses and Increased Survival in an Immunocompetent B16F10-Derived Mouse Melanoma Model. J Virol 2021; 95:JVI.01359-20. [PMID: 33177208 PMCID: PMC7925097 DOI: 10.1128/jvi.01359-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/28/2020] [Indexed: 12/31/2022] Open
Abstract
Current oncolytic virotherapies possess limited response rates. However, when certain patient selection criteria are used, oncolytic virotherapy response rates have been shown to increase. Oncolytic virotherapy (OVT) is now understood to be an immunotherapy that uses viral infection to liberate tumor antigens in an immunogenic context to promote the development of antitumor immune responses. The only currently FDA-approved oncolytic virotherapy, T-Vec, is a modified type 1 herpes simplex virus (HSV-1). While T-Vec is associated with limited response rates, its modest efficacy supports the continued development of novel OVT viruses. Herein, we test the efficacy of a recombinant HSV-1, VC2, as an OVT in a syngeneic B16F10-derived mouse model of melanoma. VC2 possesses mutations that block its ability to enter neurons via axonal termini. This greatly enhances its safety profile by precluding the ability of the virus to establish latent infection. VC2 has been shown to be a safe, effective vaccine against both HSV-1 and HSV-2 infection in mice, guinea pigs, and nonhuman primates. We found that VC2 slows tumor growth rates and that VC2 treatment significantly enhances survival of tumor-engrafted, VC2-treated mice over control treatments. VC2-treated mice that survived initial tumor engraftment were resistant to a second engraftment as well as colonization of lungs by intravenous introduction of tumor cells. We found that VC2 treatment induced substantial increases in intratumoral T cells and a decrease in immunosuppressive regulatory T cells. This immunity was critically dependent on CD8+ T cells and less dependent on CD4+ T cells. Our data provide significant support for the continued development of VC2 as an OVT for the treatment of human and animal cancers. IMPORTANCE Current oncolytic virotherapies possess limited response rates. However, when certain patient selection criteria are used, oncolytic virotherapy response rates have been shown to increase. This, in addition to the increased response rates of oncolytic virotherapy in combination with other immunotherapies, suggests that oncolytic viruses possess significant therapeutic potential for the treatment of cancer. As such, it is important to continue to develop novel oncolytic viruses as well as support basic research into their mechanisms of efficacy. Our data demonstrate significant clinical potential for VC2, a novel type 1 oncolytic herpes simplex virus. Additionally, due to the high rates of survival and the dependence on CD8+ T cells for efficacy, our model will enable study of the immunological correlates of protection for VC2 oncolytic virotherapy and oncolytic virotherapy in general. Understanding the mechanisms of efficacious oncolytic virotherapy will inform the rational design of improved oncolytic virotherapies.
Collapse
|
26
|
Bernstein DI, Cardin RD, Smith GA, Pickard GE, Sollars PJ, Dixon DA, Pasula R, Bravo FJ. The R2 non-neuroinvasive HSV-1 vaccine affords protection from genital HSV-2 infections in a guinea pig model. NPJ Vaccines 2020; 5:104. [PMID: 33298966 PMCID: PMC7648054 DOI: 10.1038/s41541-020-00254-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 10/06/2020] [Indexed: 02/01/2023] Open
Abstract
Herpes simplex virus (HSV) infections are common and can cause severe illness but no vaccine is currently available. The recent failure of subunit HSV vaccines has highlighted the need for vaccines that present a diverse array of antigens, including the development of next-generation live-attenuated vaccines. However, most attenuated HSV strains propagate poorly, limiting their ability to elicit protective immune responses. A live-attenuated vaccine that replicates in non-neural tissue but is ablated for transmission into the nervous system may elicit protective immune responses without evoking neurologic complications or establishing life-long infections. Initial studies of R2, a live-attenuated vaccine that is engineered to be unable to invade the nervous system, used the guinea pig genital HSV model to evaluate the ability of R2 to replicate at the site of inoculation, cause disease and infect neural tissues. R2 was then evaluated as a vaccine using three routes of inoculation: intramuscular (IM), intradermal (ID) and intravaginal (IVag) and compared to IM administered gD2+MPL/Alum vaccine in the same model. R2 replicated in the genital tract but did not produce acute or recurrent disease and did not infect the neural tissue. The R2 vaccine-induced neutralizing antibody and decreased the severity of acute and recurrent HSV-2 disease as well as recurrent shedding. The ID route was the most effective. ID administered R2 was more effective than gD2+MPL/Alum at inducing neutralizing antibody, suppressing acute disease, and acute vaginal virus replication. R2 was especially more effective at reducing recurrent virus shedding, the most common source of HSV transmission. The live-attenuated prophylactic HSV vaccine, R2, was effective in the guinea pig model of genital HSV-2 especially when administered by the ID route. The use of live-attenuated HSV vaccines that robustly replicate in mucosal tissues but are ablated for neuroinvasion offers a promising approach for HSV vaccines.
Collapse
Affiliation(s)
- David I Bernstein
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA.
| | - Rhonda D Cardin
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Gregory A Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gary E Pickard
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, USA
| | - Patricia J Sollars
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, USA
| | - David A Dixon
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Rajamouli Pasula
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Fernando J Bravo
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
27
|
Bernstein DI. Use of the Guinea pig model of genital herpes to evaluate vaccines and antivirals: Review. Antiviral Res 2020; 180:104821. [PMID: 32544409 PMCID: PMC10713199 DOI: 10.1016/j.antiviral.2020.104821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/23/2022]
Abstract
Herpes simplex virus (HSV) infections type 1 (HSV-1) and type 2 (HSV-2) are common throughout the world. Infections are lifelong and may produce both acute and recurrent vesiculoulcerative disease as well as more severe diseases. Despite disappointing results from recent HSV vaccine trials new vaccines and more potent antiviral therapies continue to be developed. These newer approaches require initial evaluations in animal models. In this review I have briefly described some of the models available and then more thoroughly describe the guinea pig model of acute and recurrent genital herpes infections. As discussed, the guinea pig model most closely mimics human disease and provides several important endpoints for evaluating vaccines and antivirals.
Collapse
Affiliation(s)
- David I Bernstein
- University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
28
|
Xu X, Feng X, Wang L, Yi T, Zheng L, Jiang G, Fan S, Liao Y, Feng M, Zhang Y, Li D, Li Q. A HSV1 mutant leads to an attenuated phenotype and induces immunity with a protective effect. PLoS Pathog 2020; 16:e1008703. [PMID: 32776994 PMCID: PMC7440667 DOI: 10.1371/journal.ppat.1008703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/20/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022] Open
Abstract
Herpes simplex virus type 1 (HSV1) is a complicated structural agent with a sophisticated transcription process and a high infection rate. A vaccine against HSV1 is urgently needed. As multiple viral-encoded proteins, including structural and nonstructural proteins, contribute to immune response stimulation, an attenuated or deficient HSV1 vaccine may be relatively reliable. Advances in genomic modification technologies provide reliable means of constructing various HSV vaccine candidates. Based on our previous work, an M6 mutant with mutations in the UL7, UL41, LAT, Us3, Us11 and Us12 genes was established. The mutant exhibited low proliferation in cells and an attenuated phenotype in an animal model. Furthermore, in mice and rhesus monkeys, the mutant can induce remarkable serum neutralizing antibody titers and T cell activation and protect against HSV1 challenge by impeding viral replication, dissemination and pathogenesis.
Collapse
Affiliation(s)
- Xingli Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Xiao Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Lichun Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Ting Yi
- Weirui Biotechnology (Kunming) Co., Ltd, Kunming, China
| | - Lichun Zheng
- Weirui Biotechnology (Kunming) Co., Ltd, Kunming, China
| | - Guorun Jiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Shengtao Fan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Yun Liao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Min Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Ying Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Dandan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| |
Collapse
|
29
|
Kim HC, Lee HK. Vaccines against Genital Herpes: Where Are We? Vaccines (Basel) 2020; 8:vaccines8030420. [PMID: 32727077 PMCID: PMC7566015 DOI: 10.3390/vaccines8030420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 02/06/2023] Open
Abstract
Genital herpes is a venereal disease caused by herpes simplex virus (HSV). Although HSV symptoms can be reduced with antiviral drugs, there is no cure. Moreover, because HSV infected individuals are often unaware of their infection, it is highly likely that they will transmit HSV to their sexual partner. Once infected, an individual has to live with HSV for their entire life, and HSV infection can lead to meningitis, encephalitis, and neonatal herpes as a result of vertical transmission. In addition, HSV infection increases the rates of human immunodeficiency virus (HIV) infection and transmission. Because of the high burden of genital herpes, HSV vaccines have been developed, but none have been very successful. In this review, we discuss the current status of genital herpes vaccine development.
Collapse
Affiliation(s)
- Hyeon Cheol Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
- The Center for Epidemic Preparedness, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Correspondence: ; Tel.: +82-42-350-4241
| |
Collapse
|
30
|
Ayoub HH, Chemaitelly H, Abu-Raddad LJ. Epidemiological Impact of Novel Preventive and Therapeutic HSV-2 Vaccination in the United States: Mathematical Modeling Analyses. Vaccines (Basel) 2020; 8:E366. [PMID: 32650385 PMCID: PMC7564812 DOI: 10.3390/vaccines8030366] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/30/2022] Open
Abstract
This study aims to inform herpes simplex virus type 2 (HSV-2) vaccine development, licensure, and implementation by delineating the population-level impact of vaccination. Mathematical models were constructed to describe the transmission dynamics in presence of prophylactic or therapeutic vaccines assuming 50% efficacy, with application to the United States. Catch-up prophylactic vaccination will reduce, by 2050, annual number of new infections by 58%, incidence rate by 60%, seroprevalence by 21%, and avert yearly as much as 350,000 infections. Number of vaccinations needed to avert one infection was only 50 by 2050, 34 by prioritizing those aged 15-19 years, 4 by prioritizing the highest sexual risk group, 43 by prioritizing women, and 47 by prioritizing men. Therapeutic vaccination of infected adults with symptomatic disease will reduce, by 2050, annual number of new infections by 12%, incidence rate by 13%, seroprevalence by 4%, and avert yearly as much as 76,000 infections. Number of vaccinations needed to avert one infection was eight by 2050, two by prioritizing those aged 15-19 years, three by prioritizing the highest sexual risk group, seven by prioritizing men, and ten by prioritizing women. HSV-2 vaccination offers an impactful and cost-effective intervention to prevent genital herpes medical and psychosexual disease burden.
Collapse
Affiliation(s)
- Houssein H. Ayoub
- Department of Mathematics, Statistics, and Physics, Qatar University, Doha 2713, Qatar;
| | - Hiam Chemaitelly
- Infectious Diseases Epidemiology Group, Weill Cornell Medicine–Qatar, Cornell University, Qatar Foundation–Education City, Doha 24144, Qatar;
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine–Qatar, Cornell University, Qatar Foundation–Education City, Doha 24144, Qatar
| | - Laith J. Abu-Raddad
- Infectious Diseases Epidemiology Group, Weill Cornell Medicine–Qatar, Cornell University, Qatar Foundation–Education City, Doha 24144, Qatar;
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine–Qatar, Cornell University, Qatar Foundation–Education City, Doha 24144, Qatar
- Department of Healthcare Policy and Research, Weill Cornell Medicine, Cornell University, New York City, NY 10065, USA
| |
Collapse
|
31
|
Immune Response to Herpes Simplex Virus Infection and Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8020302. [PMID: 32545507 PMCID: PMC7350219 DOI: 10.3390/vaccines8020302] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Herpes simplex virus (HSV) infections are among the most common viral infections and usually last for a lifetime. The virus can potentially be controlled with vaccines since humans are the only known host. However, despite the development and trial of many vaccines, this has not yet been possible. This is normally attributed to the high latency potential of the virus. Numerous immune cells, particularly the natural killer cells and interferon gamma and pathways that are used by the body to fight HSV infections have been identified. On the other hand, the virus has developed different mechanisms, including using different microRNAs to inhibit apoptosis and autophagy to avoid clearance and aid latency induction. Both traditional and new methods of vaccine development, including the use of live attenuated vaccines, replication incompetent vaccines, subunit vaccines and recombinant DNA vaccines are now being employed to develop an effective vaccine against the virus. We conclude that this review has contributed to a better understanding of the interplay between the immune system and the virus, which is necessary for the development of an effective vaccine against HSV.
Collapse
|
32
|
Awasthi S, Hook LM, Pardi N, Wang F, Myles A, Cancro MP, Cohen GH, Weissman D, Friedman HM. Nucleoside-modified mRNA encoding HSV-2 glycoproteins C, D, and E prevents clinical and subclinical genital herpes. Sci Immunol 2020; 4:4/39/eaaw7083. [PMID: 31541030 DOI: 10.1126/sciimmunol.aaw7083] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/16/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022]
Abstract
The goals of a genital herpes vaccine are to prevent painful genital lesions and reduce or eliminate subclinical infection that risks transmission to partners and newborns. We evaluated a trivalent glycoprotein vaccine containing herpes simplex virus type 2 (HSV-2) entry molecule glycoprotein D (gD2) and two immune evasion molecules: glycoprotein C (gC2), which binds complement C3b, and glycoprotein E (gE2), which blocks immunoglobulin G (IgG) Fc activities. The trivalent vaccine was administered as baculovirus proteins with CpG and alum, or the identical amino acids were expressed using nucleoside-modified mRNA in lipid nanoparticles (LNPs). Both formulations completely prevented genital lesions in mice and guinea pigs. Differences emerged when evaluating subclinical infection. The trivalent protein vaccine prevented dorsal root ganglia infection, and day 2 and 4 vaginal cultures were negative in 23 of 30 (73%) mice compared with 63 of 64 (98%) in the mRNA group (P = 0.0012). In guinea pigs, 5 of 10 (50%) animals in the trivalent subunit protein group had vaginal shedding of HSV-2 DNA on 19 of 210 (9%) days compared with 2 of 10 (20%) animals in the mRNA group that shed HSV-2 DNA on 5 of 210 (2%) days (P = 0.0052). The trivalent mRNA vaccine was superior to trivalent proteins in stimulating ELISA IgG antibodies, neutralizing antibodies, antibodies that bind to crucial gD2 epitopes involved in entry and cell-to-cell spread, CD4+ T cell responses, and T follicular helper and germinal center B cell responses. The trivalent nucleoside-modified mRNA-LNP vaccine is a promising candidate for human trials.
Collapse
Affiliation(s)
- Sita Awasthi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren M Hook
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Norbert Pardi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fushan Wang
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arpita Myles
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gary H Cohen
- Microbiology Department, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Drew Weissman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Harvey M Friedman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Egan K, Hook LM, LaTourette P, Desmond A, Awasthi S, Friedman HM. Vaccines to prevent genital herpes. Transl Res 2020; 220:138-152. [PMID: 32272093 PMCID: PMC7293938 DOI: 10.1016/j.trsl.2020.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
Abstract
Genital herpes increases the risk of acquiring and transmitting Human Immunodeficiency Virus (HIV), is a source of anxiety for many about transmitting infection to intimate partners, and is life-threatening to newborns. A vaccine that prevents genital herpes infection is a high public health priority. An ideal vaccine will prevent both genital lesions and asymptomatic subclinical infection to reduce the risk of inadvertent transmission to partners, will be effective against genital herpes caused by herpes simplex virus types 1 and 2 (HSV-1, HSV-2), and will protect against neonatal herpes. Three phase 3 human trials were performed over the past 20 years that used HSV-2 glycoproteins essential for virus entry as immunogens. None achieved its primary endpoint, although each was partially successful in either delaying onset of infection or protecting a subset of female subjects that were HSV-1 and HSV-2 uninfected against HSV-1 genital infection. The success of future vaccine candidates may depend on improving the predictive value of animal models by requiring vaccines to achieve near-perfect protection in these models and by using the models to better define immune correlates of protection. Many vaccine candidates are under development, including DNA, modified mRNA, protein subunit, killed virus, and attenuated live virus vaccines. Lessons learned from prior vaccine studies and select candidate vaccines are discussed, including a trivalent nucleoside-modified mRNA vaccine that our laboratory is pursuing. We are optimistic that an effective vaccine for prevention of genital herpes will emerge in this decade.
Collapse
Affiliation(s)
- Kevin Egan
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, Philadelphia, PA
| | - Lauren M Hook
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, Philadelphia, PA
| | - Philip LaTourette
- University Laboratory Animal Resources, Philadelphia, PA; Department of Pathobiology, School of Veterinary Medicine, Philadelphia, PA
| | - Angela Desmond
- Infectious Disease Division, Department of Pediatrics, The Children's Hospital of Philadelphia; University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sita Awasthi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, Philadelphia, PA
| | - Harvey M Friedman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, Philadelphia, PA.
| |
Collapse
|
34
|
Srivastava R, Coulon PGA, Prakash S, Dhanushkodi NR, Roy S, Nguyen AM, Alomari NI, Mai UT, Amezquita C, Ye C, Maillère B, BenMohamed L. Human Epitopes Identified from Herpes Simplex Virus Tegument Protein VP11/12 (UL46) Recall Multifunctional Effector Memory CD4 + T EM Cells in Asymptomatic Individuals and Protect from Ocular Herpes Infection and Disease in "Humanized" HLA-DR Transgenic Mice. J Virol 2020; 94:e01991-19. [PMID: 31915285 PMCID: PMC7081904 DOI: 10.1128/jvi.01991-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/02/2020] [Indexed: 01/17/2023] Open
Abstract
While the role of CD8+ T cells in the control of herpes simplex virus 1 (HSV-1) infection and disease is gaining wider acceptance, a direct involvement of effector CD4+ T cells in this protection and the phenotype and function of HSV-specific human CD4+ T cell epitopes remain to be fully elucidated. In the present study, we report that several epitopes from the HSV-1 virion tegument protein (VP11/12) encoded by UL46 are targeted by CD4+ T cells from HSV-seropositive asymptomatic individuals (who, despite being infected, never develop any recurrent herpetic disease). Among these, we identified two immunodominant effector memory CD4+ TEM cell epitopes, amino acids (aa) 129 to 143 of VP11/12 (VP11/12129-143) and VP11/12483-497, using in silico, in vitro, and in vivo approaches based on the following: (i) a combination of the TEPITOPE algorithm and PepScan library scanning of the entire 718 aa of HSV-1 VP11/12 sequence; (ii) an in silico peptide-protein docking analysis and in vitro binding assay that identify epitopes with high affinity to soluble HLA-DRB1 molecules; and (iii) an ELISpot assay and intracellular detection of gamma interferon (IFN-γ), CD107a/b degranulation, and CD4+ T cell carboxyfluorescein succinimidyl ester (CFSE) proliferation assays. We demonstrated that native VP11/12129-143 and VP11/12483-497 epitopes presented by HSV-1-infected HLA-DR-positive target cells were recognized mainly by effector memory CD4+ TEM cells while being less targeted by FOXP3+ CD4+ CD25+ regulatory T cells. Furthermore, immunization of HLA-DR transgenic mice with a mixture of the two immunodominant human VP11/12 CD4+ TEM cell epitopes, but not with cryptic epitopes, induced HSV-specific polyfunctional IFN-γ-producing CD107ab+ CD4+ T cells associated with protective immunity against ocular herpes infection and disease.IMPORTANCE We report that naturally protected HSV-1-seropositive asymptomatic individuals develop a higher frequency of antiviral effector memory CD4+ TEM cells specific to two immunodominant epitopes derived from the HSV-1 tegument protein VP11/12. Immunization of HLA-DR transgenic mice with a mixture of these two immunodominant CD4+ T cell epitopes induced a robust antiviral CD4+ T cell response in the cornea that was associated with protective immunity against ocular herpes. The emerging concept of developing an asymptomatic herpes vaccine that would boost effector memory CD4+ and CD8+ TEM cell responses is discussed.
Collapse
Affiliation(s)
- Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Pierre-Gregoire A Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Nisha R Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Soumyabrata Roy
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Angela M Nguyen
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Nuha I Alomari
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Uyen T Mai
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Cassendra Amezquita
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Caitlin Ye
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Bernard Maillère
- Commissariat à l'Energie Atomique et aux Energies Alternatives-Saclay, Université Paris-Saclay, Service d'Ingénierie Moléculaire des Protéines, Gif-sur-Yvette, France
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
- Department of Molecular Biology and Biochemistry, University of California Irvine, School of Medicine, Irvine, California, USA
- Institute for Immunology, University of California Irvine, School of Medicine, Irvine, California, USA
| |
Collapse
|
35
|
Naidu SK, Nabi R, Cheemarla NR, Stanfield BA, Rider PJ, Jambunathan N, Chouljenko VN, Carter R, Del Piero F, Langohr I, Kousoulas KG. Intramuscular vaccination of mice with the human herpes simplex virus type-1(HSV-1) VC2 vaccine, but not its parental strain HSV-1(F) confers full protection against lethal ocular HSV-1 (McKrae) pathogenesis. PLoS One 2020; 15:e0228252. [PMID: 32027675 PMCID: PMC7004361 DOI: 10.1371/journal.pone.0228252] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/11/2020] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus type-1 (HSV-1) can cause severe ocular infection and blindness. We have previously shown that the HSV-1 VC2 vaccine strain is protective in mice and guinea pigs against genital herpes infection following vaginal challenge with HSV-1 or HSV-2. In this study, we evaluated the efficacy of VC2 intramuscular vaccination in mice against herpetic keratitis following ocular challenge with lethal human clinical strain HSV-1(McKrae). VC2 vaccination in mice produced superior protection and morbidity control in comparison to its parental strain HSV-1(F). Specifically, after HSV-1(McKrae) ocular challenge, all VC2 vaccinated- mice survived, while 30% of the HSV-1(F)- vaccinated and 100% of the mock-vaccinated mice died post challenge. VC2-vaccinated mice did not exhibit any symptoms of ocular infection and completely recovered from initial conjunctivitis. In contrast, HSV-1(F)-vaccinated mice developed time-dependent progressive keratitis characterized by corneal opacification, while mock-vaccinated animals exhibited more severe stromal keratitis characterized by immune cell infiltration and neovascularization in corneal stroma with corneal opacification. Cornea in VC2-immunized mice exhibited significantly increased infiltration of CD3+ T lymphocytes and decreased infiltration of Iba1+ macrophages in comparison to mock- or HSV-1(F)-vaccinated groups. VC2 immunization produced higher virus neutralization titers than HSV-1(F) post challenge. Furthermore, VC-vaccination significantly increased the CD4 T central memory (TCM) subsets and CD8 T effector memory (TEM) subsets in the draining lymph nodes following ocular HSV-1 (McKrae) challenge, then mock- or HSV-1(F)-vaccination. These results indicate that VC2 vaccination produces a protective immune response at the site of challenge to protect against HSV-1-induced ocular pathogenesis.
Collapse
Affiliation(s)
- Shan K. Naidu
- Division of Biotechnology and Molecular Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Rafiq Nabi
- Division of Biotechnology and Molecular Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Nagarjuna R. Cheemarla
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Brent A. Stanfield
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Paul J. Rider
- Division of Biotechnology and Molecular Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Nithya Jambunathan
- Division of Biotechnology and Molecular Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Vladimir N. Chouljenko
- Division of Biotechnology and Molecular Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Renee Carter
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Fabio Del Piero
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Ingeborg Langohr
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Konstantin G. Kousoulas
- Division of Biotechnology and Molecular Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
36
|
Rider PJF, Uche IK, Sweeny L, Kousoulas KG. Anti-viral immunity in the tumor microenvironment: implications for the rational design of herpes simplex virus type 1 oncolytic virotherapy. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019; 6:193-199. [PMID: 33344108 DOI: 10.1007/s40588-019-00134-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose of review The design of novel herpes simplex type I (HSV-1)-derived oncolytic virotherapies is a balancing act between safety, immunogenicity and replicative potential. We have undertaken this review to better understand how these considerations can be incorporated into rational approaches to the design of novel herpesvirus oncolytic virotherapies. Recent findings Several recent papers have demonstrated that enhancing the potential of HSV-1 oncolytic viruses to combat anti-viral mechanisms present in the tumor microenvironment leads to greater efficacy than their parental viruses. Summary It is not entirely clear how the immunosuppressive tumor microenvironment affects oncolytic viral replication and spread within tumors. Recent work has shown that the manipulation of specific cellular and molecular mechanisms of immunosuppression operating within the tumor microenvironment can enhance the efficacy of oncolytic virotherapy. We anticipate that future work will integrate greater knowledge of immunosuppression in tumor microenvironments with design of oncolytic virotherapies.
Collapse
Affiliation(s)
- Paul J F Rider
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Ifeanyi K Uche
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Larissa Sweeny
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA.,Louisiana State University Health Sciences Center, New Orleans, Louisiana USA
| | - Konstantin G Kousoulas
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
37
|
A vaccine containing highly purified virus particles in adjuvant provides high level protection against genital infection and disease in guinea pigs challenged intravaginally with homologous and heterologous strains of herpes simplex virus type 2. Vaccine 2019; 38:79-89. [PMID: 31611098 DOI: 10.1016/j.vaccine.2019.09.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 01/15/2023]
Abstract
Infection with Herpes Simplex Viruses (HSVs) represents a significant health burden worldwide with HSV-1 and HSV-2 causing genital disease and HSV-2 contributing to human immunodeficiency virus acquisition. Despite great need, there is currently no licensed vaccine against HSV. In this report, we evaluated the protective efficacy of a vaccine containing highly purified, inactivated HSV-2 particles (with and without additional recombinant glycoprotein D) formulated with a monophosphoryl lipid A/Alhydrogel adjuvant in a guinea pig HSV genital model. The key results from 3 independent studies were: (1) vaccination consistently provided significant 3-3.5 Log10 reductions in vaginal HSV-2 titers on day 2 postchallenge; (2) following homologous or heterologous challenge with two U.S. isolates, all vaccine groups showed complete protection against lesion formation, significant 3 Log10 reductions in day 2 virus shedding, enhanced virus clearance, significant reductions in HSV-2 DNA within ganglia, and no detectable shedding (<2 PFU) or latent viral DNA in some immunized animals; (3) following challenge with a third heterologous strain, vaccination provided complete protection against primary and recurrent lesions, significant reductions in primary virus shedding, a 50% reduction in recurrent shedding days, and undetectable latent virus in the ganglia and spinal cords of most animals; and (4) adding glycoprotein D provided no enhanced protection relative to that elicited by the inactivated HSV-2 particles alone. Together, these data provide strong support for further development of this exceedingly protective and highly feasible vaccine candidate for human trials.
Collapse
|
38
|
Intranasal nanoemulsion-adjuvanted HSV-2 subunit vaccine is effective as a prophylactic and therapeutic vaccine using the guinea pig model of genital herpes. Vaccine 2019; 37:6470-6477. [PMID: 31515143 DOI: 10.1016/j.vaccine.2019.08.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/16/2019] [Accepted: 08/29/2019] [Indexed: 11/20/2022]
Abstract
Genital herpes is a sexually transmitted disease representing a major global health concern. Currently, there is no approved vaccine and existing antiviral therapies exhibit limited efficacy. Herein, we describe an intranasal (IN) vaccine comprised of HSV-2 surface glycoproteins gD2 and gB2 formulated in a nanoemulsion adjuvant (NE01-gD2/gB2). Using the HSV-2 genital herpes guinea pig model, we demonstrate that IN NE01-gD2/gB2 induces higher levels of neutralizing antibody compared to a monovalent IN NE01-gD2 vaccine, but less than an intramuscular (IM) Alum/MPL-gD2 vaccine. Following intravaginal (IVag) challenge with HSV-2, the group immunized with IN NE01-gD2/gB2 exhibited significantly reduced acute and recurrent disease scores compared to placebo recipients. Significantly, latent virus was only detected in the dorsal root ganglia of 1 of 12 IN NE01-gD2/gB2-vaccinated animals compared to 11 of 12 placebo recipient. In the therapeutic model, IN NE01-gD2/gB2 immunized guinea pigs exhibited a significant reduction in the recurrent lesions scores (64%, p < 0.01), number of animal days with disease (64%, p < 0.01), number of animals with viral shedding (50%, p < 0.04) and reduction in virus positive vaginal swabs (56%, p < 0.04), These data suggests that the treatment may be effective in treating chronic disease and minimizing virus transmission. These results warrant advancing the development of IN NE01-gD2/gB2 as both a prophylactic and therapeutic vaccine against HSV-2.
Collapse
|
39
|
Srivastava R, Roy S, Coulon PG, Vahed H, Prakash S, Dhanushkodi N, Kim GJ, Fouladi MA, Campo J, Teng AA, Liang X, Schaefer H, BenMohamed L. Therapeutic Mucosal Vaccination of Herpes Simplex Virus 2-Infected Guinea Pigs with Ribonucleotide Reductase 2 (RR2) Protein Boosts Antiviral Neutralizing Antibodies and Local Tissue-Resident CD4 + and CD8 + T RM Cells Associated with Protection against Recurrent Genital Herpes. J Virol 2019; 93:e02309-18. [PMID: 30787156 PMCID: PMC6475797 DOI: 10.1128/jvi.02309-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/12/2019] [Indexed: 12/30/2022] Open
Abstract
Reactivation of herpes simplex virus 2 (HSV-2) from latency causes viral shedding that develops into recurrent genital lesions. The immune mechanisms of protection against recurrent genital herpes remain to be fully elucidated. In this preclinical study, we investigated the protective therapeutic efficacy, in the guinea pig model of recurrent genital herpes, of subunit vaccine candidates that were based on eight recombinantly expressed HSV-2 envelope and tegument proteins. These viral protein antigens (Ags) were rationally selected for their ability to recall strong CD4+ and CD8+ T-cell responses from naturally "protected" asymptomatic individuals, who, despite being infected, never develop any recurrent herpetic disease. Out of the eight HSV-2 proteins, the envelope glycoprotein D (gD), the tegument protein VP22 (encoded by the UL49 gene), and ribonucleotide reductase subunit 2 protein (RR2; encoded by the UL40 gene) produced significant protection against recurrent genital herpes. The RR2 protein, delivered either intramuscularly or intravaginally with CpG and alum adjuvants, (i) boosted the highest neutralizing antibodies, which appear to cross-react with both gB and gD, and (ii) enhanced the numbers of functional gamma interferon (IFN-γ)-producing CRTAM+ CFSE+ CD4+ and CRTAM+ CFSE+ CD8+ TRM cells, which express low levels of PD-1 and TIM-3 exhaustion markers and were localized to healed sites of the vaginal mucocutaneous (VM) tissues. The strong B- and T-cell immunogenicity of the RR2 protein was associated with a significant decrease in virus shedding and a reduction in both the severity and frequency of recurrent genital herpes lesions. In vivo depletion of either CD4+ or CD8+ T cells significantly abrogated the protection. Taken together, these preclinical results provide new insights into the immune mechanisms of protection against recurrent genital herpes and promote the tegument RR2 protein as a viable candidate Ag to be incorporated in future genital herpes therapeutic mucosal vaccines.IMPORTANCE Recurrent genital herpes is one of the most common sexually transmitted diseases, with a global prevalence of HSV-2 infection predicted to be over 536 million worldwide. Despite the availability of many intervention strategies, such as sexual behavior education, barrier methods, and the costly antiviral drug treatments, eliminating or at least reducing recurrent genital herpes remains a challenge. Currently, no FDA-approved therapeutic vaccines are available. In this preclinical study, we investigated the immunogenicity and protective efficacy, in the guinea pig model of recurrent genital herpes, of subunit vaccine candidates that were based on eight recombinantly expressed herpes envelope and tegument proteins. We discovered that similar to the dl5-29 vaccine, based on a replication-defective HSV-2 mutant virus, which has been recently tested in clinical trials, the RR2 protein-based subunit vaccine elicited a significant reduction in virus shedding and a decrease in both the severity and frequency of recurrent genital herpes sores. This protection correlated with an increase in numbers of functional tissue-resident IFN-γ+ CRTAM+ CFSE+ CD4+ and IFN-γ+ CRTAM+ CFSE+ CD8+ TRM cells that infiltrate healed sites of the vaginal tissues. Our study sheds new light on the role of TRM cells in protection against recurrent genital herpes and promotes the RR2-based subunit therapeutic vaccine to be tested in the clinic.
Collapse
Affiliation(s)
- Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Soumyabrata Roy
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Pierre-Gregoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Nisha Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Grace J Kim
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Mona A Fouladi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Joe Campo
- Antigen Discovery Inc., Irvine, California, USA
| | - Andy A Teng
- Antigen Discovery Inc., Irvine, California, USA
| | | | - Hubert Schaefer
- Intracellular Pathogens, Robert Koch-Institute, Berlin, Germany
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California, USA
- Institute for Immunology, University of California, Irvine, School of Medicine, Irvine, California, USA
| |
Collapse
|
40
|
Bernstein DI, Cardin RD, Pullum DA, Bravo FJ, Kousoulas KG, Dixon DA. Duration of protection from live attenuated vs. sub unit HSV-2 vaccines in the guinea pig model of genital herpes: Reassessing efficacy using endpoints from clinical trials. PLoS One 2019; 14:e0213401. [PMID: 30917165 PMCID: PMC6436793 DOI: 10.1371/journal.pone.0213401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/20/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Although herpes simplex viruses (HSV) are a major target for vaccine development no vaccine is currently licensed. METHODS A live attenuated HSV virus vaccine, VC2 was compared to a subunit HSV vaccine, glycoprotein D (gD2) administered with the adjuvant, MPL/Alum using the guinea pig model of genital herpes. Three doses of intramuscular (IM) vaccine were provided followed by intravaginal challenge with HSV-2 at either 3 weeks or six months after the last vaccination. RESULTS Both VC2 and gD2 vaccines reduced acute genital disease. VC2 was somewhat more effective in reducing acute vaginal replication, the amount of virus in neural tissue, subsequent recurrent disease and recurrent virus shedding following challenge at 3 weeks post vaccination. Both vaccines continued to provide protection at 6 months after vaccination but the differences between the vaccines became more pronounced in favor of the live attenuated vaccine, VC2. Significant differences in acute disease, acute vaginal virus replication, recurrent disease and recurrent virus shedding (P<0.05 for each) was observed comparing the vaccines. Re-examination of protection for this study using criteria similar to those used in recent clinical trials (inclusion of recurrent disease) showed that efficacy may not be as high in this model as previously thought prompting a need to assess the best predictive outcomes for protection in humans. CONCLUSION While both the live attenuated vaccine, VC2, and the gD2 subunit vaccine provided protection, the duration of protection appeared to be greater for VC2. Using the same evaluation criteria as used in human trials provided unique insights into the utility of the guinea pig model.
Collapse
Affiliation(s)
- David I. Bernstein
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Rhonda D. Cardin
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States of America
| | - Derek A. Pullum
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Fernando J. Bravo
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Konstantin G. Kousoulas
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States of America
| | - David A. Dixon
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| |
Collapse
|