1
|
Chen Y, Luo G, Song F, Wang X, Zhang S, Ge S, Li T, Zhang J, Xia N. Truncated rotavirus VP4 proteins induce stronger protective immunity compared to P2 - VP8 in animal models. Antiviral Res 2025; 238:106156. [PMID: 40194664 DOI: 10.1016/j.antiviral.2025.106156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/17/2025] [Accepted: 04/05/2025] [Indexed: 04/09/2025]
Abstract
Group A rotavirus (RVA) is the primary causative agent of acute gastroenteritis (AGE) in children under five years of age, resulting in over 120,000 deaths annually. In previous studies, we identified truncated VP4∗ as a potentially more promising vaccine candidate compared to VP8∗ and VP5∗. This study aimed to compare the immunogenicity and protective efficacy of VP4∗ and P2-VP8, the most advanced recombinant rotavirus vaccine undergoing phase 3 clinical trial in various animal models, including mice, guinea pigs, rabbits, and piglets. The results indicated that the binding antibodies and neutralizing antibodies induced by VP4∗ were significantly higher levels compared to P2-VP8. Immunization with VP4∗ provided 100 % protection for mice against challenges with EDIM and LLR strains. Additionally, we were intrigued to discover that the VP4∗ antibody not only inhibited virus adsorption but also prevented the virus from entering cells following pre-adsorption. In summary, VP4∗ demonstrates greater immunogenicity and protective efficacy compared to P2-VP8, making it a more promising candidate antigen for recombinant rotavirus vaccines.
Collapse
MESH Headings
- Animals
- Rotavirus Infections/prevention & control
- Rotavirus Infections/immunology
- Rotavirus Infections/virology
- Capsid Proteins/immunology
- Capsid Proteins/genetics
- Rotavirus Vaccines/immunology
- Rotavirus Vaccines/administration & dosage
- Rotavirus Vaccines/genetics
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Rotavirus/immunology
- Rotavirus/genetics
- Mice
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Disease Models, Animal
- Rabbits
- Guinea Pigs
- Swine
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Immunogenicity, Vaccine
- Mice, Inbred BALB C
- Antigens, Viral/immunology
- Antigens, Viral/genetics
- Female
Collapse
Affiliation(s)
- Yaling Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University. Xiamen, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Guoxing Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University. Xiamen, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China; Novel Product R&D Department, Xiamen Innovax Biotech Co., Ltd., Xiamen, 361022, Fujian, China
| | - Feibo Song
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xuechun Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University. Xiamen, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Shiyin Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University. Xiamen, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Shengxiang Ge
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University. Xiamen, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Tingdong Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University. Xiamen, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Jun Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University. Xiamen, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University. Xiamen, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
2
|
Schumer A, Bonney EA, Harby E, Majumdar D. Neonatal SARS-CoV-2 mRNA Vaccination Efficacy Is Influenced by Maternal Antibodies. Am J Reprod Immunol 2024; 92:e70001. [PMID: 39436146 DOI: 10.1111/aji.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024] Open
Abstract
PROBLEM Vaccination in pregnancy guards against infection. Maternal antibodies, however, can inhibit antibody production in neonates. We sought to determine the effects of maternal vaccination on neonatal immune response to a SARS-CoV-2 mRNA vaccine. METHOD OF STUDY We hypothesized that mRNA-lipid nanoparticles (LNP) vaccination allows for a de novo neonatal antibody response even in the presence of vertically transmitted maternal antibodies. Female mice were vaccinated with SARS-CoV-2 spike receptor binding domain (RBD) mRNA-LNPs. Mice were then bred, and 21-day-old pups were inoculated with the same mRNA-LNPs. Spike-specific IgG ELISAs were performed using mouse serum. A SARS-CoV-2 spike protein peptide library to perform peptide ELISAs characterized high affinity binding domains within the spike protein. Results were analyzed with one-way ANOVAs with Tukey's multiple comparisons tests. RESULTS Compared to pups of unvaccinated dams, there were high levels of spike-specific IgG detected in the pups of vaccinated dams at 3 weeks of life (p < 0.0001). After neonatal vaccination, pups of unvaccinated dams had higher spike-specific serum IgG than pups of vaccinated dams at 12 weeks of life (p < 0.001). Antibody specificity to peptide moieties within spike RBD were similar when comparing a vaccinated dam to her pup at Week 3 of life, with different binding affinities observed in the pups by Week 15 of life. CONCLUSIONS Pre-existing maternal antibodies may partially blunt the initial neonatal antibody response to mRNA-LNPs vaccination. This vaccine strategy, however, does not prohibit the subsequent development of a broad range of RBD antibody specificities that may be protective.
Collapse
Affiliation(s)
- Amy Schumer
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont Medical Center, Burlington, Vermont, USA
| | - Elizabeth A Bonney
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont Medical Center, Burlington, Vermont, USA
| | - Ethan Harby
- Biological Sciences, University of Vermont, Burlington, Vermont, USA
| | - Devdoot Majumdar
- Department of Surgery, University of Vermont Medical Center, Burlington, Vermont, USA
- Department of Electrical and Biomedical Engineering, University of Vermont Medical Center, Burlington, Vermont, USA
- UVM Cancer Center, University of Vermont Medical Center, Burlington, Vermont, USA
| |
Collapse
|
3
|
Dangi T, Sanchez S, Awakoaiye B, Lew MH, Irani N, Penaloza-MacMaster P. Breast Milk-Derived Antibodies Impair Vaccine Immunity in Suckling Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:612-618. [PMID: 39007643 PMCID: PMC11333162 DOI: 10.4049/jimmunol.2400277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Breast milk confers multiple benefits to the neonate, including passive immunity against multiple microorganisms via Abs. However, it remains unclear whether breast milk-derived Abs affect vaccine-induced immunity in the neonate. We evaluated in C57BL/6 and BALB/c mice whether breastfeeding from an mRNA-SARS-CoV-2-vaccinated dam affects vaccine-induced immunity in neonate mice. Using an experimental model that allows the distinction of maternal Abs and neonate Abs based on their allotype, we show that breastfeeding from an immune dam is associated with reduced vaccine immunity in the neonate. Importantly, mice that breastfed from an immune dam showed reduced numbers of plasma cells after vaccination, relative to mice that breastfed from a naive dam. Our subsequent studies using an mRNA-luciferase reporter system show that passive transfer of Abs through breastfeeding accelerates the clearance of vaccine Ag in suckling mice, resulting in reduced Ag availability. Altogether, maternal Abs transferred through breast milk can protect against infectious microorganisms, but they may also interfere with the neonate's response to vaccination by accelerating the clearance of vaccine Ag. These findings are important for understanding the effects of maternal Abs on the neonate's response to vaccines and may provide insights for improving neonatal vaccines.
Collapse
Affiliation(s)
- Tanushree Dangi
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sarah Sanchez
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Bakare Awakoaiye
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Min Han Lew
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nahid Irani
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Luo G, Zeng Y, Sheng R, Zhang Z, Li C, Yang H, Chen Y, Song F, Zhang S, Li T, Ge S, Zhang J, Xia N. Wa-VP4* as a candidate rotavirus vaccine induced homologous and heterologous virus neutralizing antibody responses in mice, pigs, and cynomolgus monkeys. Vaccine 2024; 42:3514-3521. [PMID: 38670845 DOI: 10.1016/j.vaccine.2024.04.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Group A rotavirus (RVA) is the primary etiological agent of acute gastroenteritis (AGE) in children under 5 years of age. Despite the global implementation of vaccines, rotavirus infections continue to cause over 120,000 deaths annually, with a majority occurring in developing nations. Among infants, the P[8] rotavirus strain is the most prevalent and can be categorized into four distinct lineages. In this investigation, we expressed five VP4(aa26-476) proteins from different P[8] lineages of human rotavirus in E. coli and assessed their immunogenicity in rabbits. Among the different P[8] strains, the Wa-VP4 protein, derived from the MT025868.1 strain of the P[8]-1 lineage, exhibited successful purification in a highly homogeneous form and significantly elicited higher levels of neutralizing antibodies (nAbs) against both homologous and heterologous rotaviruses compared to other VP4 proteins derived from different P[8] lineages in rabbits. Furthermore, we assessed the immunogenicity of the Wa-VP4 protein in mice, pigs, and cynomolgus monkeys, observing that it induced robust production of nAbs in all animals. Interestingly, there was no significant difference between in nAb titers against homologous and heterologous rotaviruses in pigs and mankeys. Collectively, these findings suggest that the Wa-VP4* protein may serve as a potential candidate for a rotavirus vaccine.
Collapse
Affiliation(s)
- Guoxing Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University. Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China; Novel Product R&D Department,Xiamen Innovax Biotech Co., Ltd., Xiamen 361022, Fujian, China
| | - Yuanjun Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University. Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Roufang Sheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University. Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Zhishan Zhang
- Department of clinical laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248 East Street, Quanzhou city, Fujian 362000, China
| | - Cao Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University. Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Han Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University. Xiamen 361102, China
| | - Yaling Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University. Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Feibo Song
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Shiyin Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University. Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Tingdong Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University. Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China.
| | - Shengxiang Ge
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University. Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China.
| | - Jun Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University. Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University. Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
5
|
Chen J, Grow S, Iturriza-Gómara M, Hausdorff WP, Fix A, Kirkwood CD. The Challenges and Opportunities of Next-Generation Rotavirus Vaccines: Summary of an Expert Meeting with Vaccine Developers. Viruses 2022; 14:v14112565. [PMID: 36423174 PMCID: PMC9699535 DOI: 10.3390/v14112565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022] Open
Abstract
The 2nd Next Generation Rotavirus Vaccine Developers Meeting, sponsored by PATH and the Bill and Melinda Gates Foundation, was held in London, UK (7-8 June 2022), and attended by vaccine developers and researchers to discuss advancements in the development of next-generation rotavirus vaccines and to consider issues surrounding vaccine acceptability, introduction, and uptake. Presentations included updates on rotavirus disease burden, the impact of currently licensed oral vaccines, various platforms and approaches for next generation rotavirus vaccines, strategies for combination pediatric vaccines, and the value proposition for novel parenteral rotavirus vaccines. This report summarizes the information shared at the convening and poses various topics worthy of further exploration.
Collapse
Affiliation(s)
- Jessie Chen
- Enteric & Diarrheal Diseases, Bill & Melinda Gates Foundation, Seattle, WA 98109, USA
- Correspondence:
| | - Stephanie Grow
- Enteric & Diarrheal Diseases, Bill & Melinda Gates Foundation, Seattle, WA 98109, USA
| | | | - William P. Hausdorff
- Faculty of Medicine, Université Libre de Bruxelles, 1050 Brussels, Belgium
- PATH, Washington, DC 20001, USA
| | | | - Carl D. Kirkwood
- Enteric & Diarrheal Diseases, Bill & Melinda Gates Foundation, Seattle, WA 98109, USA
| |
Collapse
|
6
|
Li C, Luo G, Zeng Y, Song F, Yang H, Zhang S, Wang Y, Li T, Ge S, Xia N. Establishment of Sandwich ELISA for Quality Control in Rotavirus Vaccine Production. Vaccines (Basel) 2022; 10:243. [PMID: 35214701 PMCID: PMC8876306 DOI: 10.3390/vaccines10020243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/04/2022] Open
Abstract
Non-replicating rotavirus vaccines are alternative strategies that may improve the protective efficacy of rotavirus vaccines in low- and middle-income countries. The truncated spike protein VP4 (aa26-476, VP4*)was a candidate antigen for the development of recombinant rotavirus vaccines, with higher immunogenicity and protective efficacy compared to VP8* and VP5* alone. This article describes the development of three genotype-specific sandwich ELISAs for P[4], P[6], and P[8]-VP4*, which are important for quality control in rotavirus vaccine production. Our results showed that the detection systems had good specificity for the different genotype VP4* and were not influenced by the E. coli host proteins. Moreover, the detection systems play an important role in determining whether the target protein was contaminated by VP4* proteins of other genotypes. They can also detect the adsorption rate of the adjuvant to the P[4], P[6], P[8]-VP4* protein during the process development. The three detection systems will play an important role in the quality control and process development of VP4* based rotavirus vaccines and facilitate the development of recombinant rotavirus vaccines.
Collapse
Affiliation(s)
- Cao Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (C.L.); (G.L.); (Y.Z.); (H.Y.); (S.Z.); (Y.W.); (N.X.)
| | - Guoxing Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (C.L.); (G.L.); (Y.Z.); (H.Y.); (S.Z.); (Y.W.); (N.X.)
| | - Yuanjun Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (C.L.); (G.L.); (Y.Z.); (H.Y.); (S.Z.); (Y.W.); (N.X.)
| | - Feibo Song
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361102, China;
| | - Han Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (C.L.); (G.L.); (Y.Z.); (H.Y.); (S.Z.); (Y.W.); (N.X.)
| | - Shiyin Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (C.L.); (G.L.); (Y.Z.); (H.Y.); (S.Z.); (Y.W.); (N.X.)
| | - Yingbin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (C.L.); (G.L.); (Y.Z.); (H.Y.); (S.Z.); (Y.W.); (N.X.)
| | - Tingdong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (C.L.); (G.L.); (Y.Z.); (H.Y.); (S.Z.); (Y.W.); (N.X.)
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (C.L.); (G.L.); (Y.Z.); (H.Y.); (S.Z.); (Y.W.); (N.X.)
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (C.L.); (G.L.); (Y.Z.); (H.Y.); (S.Z.); (Y.W.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361102, China;
| |
Collapse
|
7
|
Sun ZW, Fu Y, Lu HL, Yang RX, Goyal H, Jiang Y, Xu HG. Association of Rotavirus Vaccines With Reduction in Rotavirus Gastroenteritis in Children Younger Than 5 Years: A Systematic Review and Meta-analysis of Randomized Clinical Trials and Observational Studies. JAMA Pediatr 2021; 175:e210347. [PMID: 33970192 PMCID: PMC8111566 DOI: 10.1001/jamapediatrics.2021.0347] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IMPORTANCE Rotavirus vaccines have been introduced worldwide, and the clinical association of different rotavirus vaccines with reduction in rotavirus gastroenteritis (RVGE) after introduction are noteworthy. OBJECTIVE To evaluate the comparative benefit, risk, and immunogenicity of different rotavirus vaccines by synthesizing randomized clinical trials (RCTs) and observational studies. DATA SOURCES Relevant studies published in 4 databases: Embase, PubMed, the Cochrane Library, and Web of Science were searched until July 1, 2020, using search terms including "rotavirus" and "vaccin*." STUDY SELECTION Randomized clinical trials and cohort and case-control studies involving more than 100 children younger than 5 years that reported the effectiveness, safety, or immunogenicity of rotavirus vaccines were included. DATA EXTRACTION AND SYNTHESIS A random-effects model was used to calculate relative risks (RRs), odds ratios (ORs), risk differences, and 95% CIs. Adjusted indirect treatment comparison was performed to assess the differences in the protection of Rotarix and RotaTeq. MAIN OUTCOMES AND MEASURES The primary outcomes were RVGE, severe RVGE, and RVGE hospitalization. Safety-associated outcomes involved serious adverse events, intussusception, and mortality. RESULTS A meta-analysis of 20 RCTs and 38 case-control studies revealed that Rotarix (RV1) significantly reduced RVGE (RR, 0.316 [95% CI, 0.224-0.345]) and RVGE hospitalization risk (OR, 0.347 [95% CI, 0.279-0.432]) among children fully vaccinated; RotaTeq (RV5) had similar outcomes (RVGE: RR, 0.350 [95% CI, 0.275-0.445]; RVGE hospitalization risk: OR, 0.272 [95% CI, 0.197-0.376]). Rotavirus vaccines also demonstrated higher protection against severe RVGE. Additionally, no significant differences in the protection of RV1 and RV5 against rotavirus disease were noted in adjusted indirect comparisons. Moderate associations were found between reduced RVGE risk and Rotavac (RR, 0.664 [95% CI, 0.548-0.804]), Rotasiil (RR, 0.705 [95% CI, 0.605-0.821]), and Lanzhou lamb rotavirus vaccine (RR, 0.407 [95% CI, 0.332-0.499]). All rotavirus vaccines demonstrated no risk of serious adverse events. A positive correlation was also found between immunogenicity and vaccine protection (eg, association of RVGE with RV1: coefficient, -1.599; adjusted R2, 99.7%). CONCLUSIONS AND RELEVANCE The high protection and low risk of serious adverse events for rotavirus vaccines in children who were fully vaccinated emphasized the importance of worldwide introduction of rotavirus vaccination. Similar protection provided by Rotarix and RotaTeq relieves the pressure of vaccines selection for health care authorities.
Collapse
Affiliation(s)
- Zi-Wei Sun
- Department of Laboratory Medicine, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Fu
- Department of Pathology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hai-Ling Lu
- Department of Laboratory Medicine, Yancheng Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, China
| | - Rui-Xia Yang
- Department of Laboratory Medicine, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hemant Goyal
- The Wright Center of Graduate Medical Education, Scranton, Pennsylvania
| | - Ye Jiang
- Department of Laboratory Medicine, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hua-Guo Xu
- Department of Laboratory Medicine, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Kondakova OA, Ivanov PA, Baranov OA, Ryabchevskaya EM, Arkhipenko MV, Skurat EV, Evtushenko EA, Nikitin NA, Karpova OV. Novel antigen panel for modern broad-spectrum recombinant rotavirus A vaccine. Clin Exp Vaccine Res 2021; 10:123-131. [PMID: 34222124 PMCID: PMC8217573 DOI: 10.7774/cevr.2021.10.2.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose Recombinant rotavirus A vaccines are being developed as an alternative to existing live oral attenuated vaccines. One of the main problems in the production of such vaccines is the genetic diversity of the strains that are in circulation. The goal of this study was to create an antigen panel for modern broad-spectrum recombinant rotavirus A vaccine. Materials and Methods The antigens of rotavirus were cloned and expressed in Escherichia coli. Antigenic specificity was investigated by Western blot analysis, which was performed using commercial polyclonal antisera to several RVA strains. Phylogenetic analysis was based on the amino acid sequences of the VP8* protein fragment of human RVA isolates representing genotypes P[4], P[6], and P[8]. Results A universal panel of antigens was established, including consensus and conserved sequences of structural proteins VP8*, VP5*, and VP7, which are the main targets of neutralizing antibodies. For the first time, a consensus approach was used in the design of extended antigens based on VP8* (genotypes P[4], P[6], and P[8]) and VP5* (genotype P[8]) proteins' fragments. In addition, a gene coding the protein (ep-875) containing several copies of conserved short neutralizing epitopes of VP8*, VP7, and VP5* was created. Western blot analysis demonstrated that three synthetic VP8*-based antigens were not recognized by commercial antiserum against rotavirus strains isolated more than 35 years ago, but the specific activity of the VP5* and ep-875 antigens was confirmed. The problems of serological mismatch of vaccine strains and antigens with currently circulating strains are discussed. Conclusion Five antigens representing sequences of structural proteins belonging to different genotypes can be used in various combinations (from mono- to pentavalent mixtures) for the development of an effective broad-spectrum rotavirus vaccine.
Collapse
Affiliation(s)
- Olga A Kondakova
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Peter A Ivanov
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Oleg A Baranov
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Ekaterina M Ryabchevskaya
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Marina V Arkhipenko
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Eugene V Skurat
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Ekaterina A Evtushenko
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Nikolai A Nikitin
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Olga V Karpova
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
9
|
Atyeo C, Alter G. The multifaceted roles of breast milk antibodies. Cell 2021; 184:1486-1499. [PMID: 33740451 DOI: 10.1016/j.cell.2021.02.031] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/07/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
Neonates are born with an immature immune system and rely on the transfer of immunity from their mothers. Maternal antibodies are transferred via the placenta and breast milk. Although the role of placentally transferred immunoglobulin G (IgG) is established, less is known about the selection of antibodies transferred via breast milk and the mechanisms by which they provide protection against neonatal disease. Evidence suggests that breast milk antibodies play multifaceted roles, preventing infection and supporting the selection of commensals and tolerizing immunity during infancy. Here, we discuss emerging data related to the importance of breast milk antibodies in neonatal immunity and development.
Collapse
Affiliation(s)
- Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; PhD Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
10
|
Ginseng Stem-Leaf Saponins in Combination with Selenium Promote the Immune Response in Neonatal Mice with Maternal Antibody. Vaccines (Basel) 2020; 8:vaccines8040755. [PMID: 33322647 PMCID: PMC7768402 DOI: 10.3390/vaccines8040755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022] Open
Abstract
Neonates acquire from their mothers maternal antibody (MatAb) which results in poor immune response to vaccination. We previously demonstrated that ginseng stem-leaf saponins in combination with selenium (GSe) had adjuvant effect on the immune response to an attenuated pseudorabies virus (aPrV) vaccine. The present study was to evaluate GSe for its effect on the immune response to aPrV vaccine in neonatal mice with MatAb. Results showed that GSe had adjuvant effect on the immune response to aPrV vaccine in neonates. When GSe was co-administered with aPrV vaccine (aP-GSe), specific gB antibody, Th1 cytokines (IL-2, IL-12 and IFN-γ) and Th2 cytokines (IL-4, IL-6 and IL-10) responses were significantly increased in association with enhanced protection of vaccinated neonates against the lethal PrV challenge even though MatAb existed when compared to the neonates immunized with aPrV vaccine alone. GSe-enhanced immune response depended on its use in the primary immunization. The mechanisms underlying the adjuvant effect of GSe may be due to more innate immune related pathways activated by GSe. Transcriptome analysis of splenocytes from neonates immunized with aP-GSe, aPrV or saline solution showed that there were 3976 differentially expressed genes (DEGs) in aP-GSe group while 5959 DEGs in aPrV group when compared to the control. Gene ontology (GO) terms and Kyoto encyclopedia of genes and genomes (KEGG) pathways analysis showed that innate immune responses and cytokine productions related terms or pathways were predominantly enriched in aP-GSe group, such as “NOD-like receptor signaling pathway”, “Natural killer cell mediated cytotoxicity”, “NF-κB signaling pathway”, “cytokine-cytokine receptor interaction”, and “Th1 and Th2 cell differentiation”. Considering the potent adjuvant effect of GSe on aPrV vaccine in neonatal mice with MatAb, it deserves further investigation in piglets.
Collapse
|
11
|
Otero CE, Langel SN, Blasi M, Permar SR. Maternal antibody interference contributes to reduced rotavirus vaccine efficacy in developing countries. PLoS Pathog 2020; 16:e1009010. [PMID: 33211756 PMCID: PMC7676686 DOI: 10.1371/journal.ppat.1009010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rotavirus (RV) vaccine efficacy is significantly reduced in lower- and middle-income countries (LMICs) compared to high-income countries. This review summarizes current research into the mechanisms behind this phenomenon, with a particular focus on the evidence that maternal antibody (matAb) interference is a contributing factor to this disparity. All RV vaccines currently in use are orally administered, live-attenuated virus vaccines that replicate in the infant gut, which leaves their efficacy potentially impacted by both placentally transferred immunoglobulin G (IgG) and mucosal IgA Abs conferred via breast milk. Observational studies of cohorts in LMICs demonstrated an inverse correlation between matAb titers, both in serum and breast milk, and infant responses to RV vaccination. However, a causal link between maternal humoral immunity and reduced RV vaccine efficacy in infants has yet to be definitively established, partially due to limitations in current animal models of RV disease. The characteristics of Abs mediating interference and the mechanism(s) involved have yet to be determined, and these may differ from mechanisms of matAb interference for parenterally administered vaccines due to the contribution of mucosal immunity conferred via breast milk. Increased vaccine doses and later age of vaccine administration have been strategies applied to overcome matAb interference, but these approaches are difficult to safely implement in the setting of RV vaccination in LMICs. Ultimately, the development of relevant animal models of matAb interference is needed to determine what alternative approaches or vaccine designs can safely and effectively overcome matAb interference of infant RV vaccination.
Collapse
Affiliation(s)
- Claire E. Otero
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Stephanie N. Langel
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Maria Blasi
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|