1
|
Pekarek MJ, Weaver EA. Influenza B Virus Vaccine Innovation through Computational Design. Pathogens 2024; 13:755. [PMID: 39338946 PMCID: PMC11434669 DOI: 10.3390/pathogens13090755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
As respiratory pathogens, influenza B viruses (IBVs) cause a significant socioeconomic burden each year. Vaccine and antiviral development for influenza viruses has historically viewed IBVs as a secondary concern to influenza A viruses (IAVs) due to their lack of animal reservoirs compared to IAVs. However, prior to the global spread of SARS-CoV-2, the seasonal epidemics caused by IBVs were becoming less predictable and inducing more severe disease, especially in high-risk populations. Globally, researchers have begun to recognize the need for improved prevention strategies for IBVs as a primary concern. This review discusses what is known about IBV evolutionary patterns and the effect of the spread of SARS-CoV-2 on these patterns. We also analyze recent advancements in the development of novel vaccines tested against IBVs, highlighting the promise of computational vaccine design strategies when used to target both IBVs and IAVs and explain why these novel strategies can be employed to improve the effectiveness of IBV vaccines.
Collapse
Affiliation(s)
| | - Eric A. Weaver
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| |
Collapse
|
2
|
Jones CH, Hauguel T, Beitelshees M, Davitt M, Welch V, Lindert K, Allen P, True JM, Dolsten M. Deciphering immune responses: a comparative analysis of influenza vaccination platforms. Drug Discov Today 2024; 29:104125. [PMID: 39097221 DOI: 10.1016/j.drudis.2024.104125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/21/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Influenza still poses a significant challenge due to its high mutation rates and the low effectiveness of traditional vaccines. At present, antibodies that neutralize the highly variable hemagglutinin antigen are a major driver of the observed variable protection. To decipher how influenza vaccines can be improved, an analysis of licensed vaccine platforms was conducted, contrasting the strengths and limitations of their different mechanisms of protection. Through this review, it is evident that these vaccines do not elicit the robust cellular immune response critical for protecting high-risk groups. Emerging platforms, such as RNA vaccines, that induce robust cellular responses that may be additive to the recognized mechanism of protection through hemagglutinin inhibition may overcome these constraints to provide broader, protective immunity. By combining both humoral and cellular responses, such platforms could help guide the future influenza vaccine development.
Collapse
Affiliation(s)
| | | | | | | | - Verna Welch
- Pfizer, Hudson Boulevard, New York, NY 10018, USA
| | | | - Pirada Allen
- Pfizer, Hudson Boulevard, New York, NY 10018, USA
| | - Jane M True
- Pfizer, Hudson Boulevard, New York, NY 10018, USA.
| | | |
Collapse
|
3
|
Lim WW, Feng S, Wong SS, Sullivan SG, Cowling BJ. Hemagglutination Inhibition Antibody Titers as Mediators of Influenza Vaccine Efficacy Against Symptomatic Influenza A(H1N1), A(H3N2), and B/Victoria Virus Infections. J Infect Dis 2024; 230:152-160. [PMID: 39052734 PMCID: PMC11272062 DOI: 10.1093/infdis/jiae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/24/2024] [Accepted: 03/06/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The hemagglutination inhibition antibody (HAI) titer contributes only a part of vaccine-induced protection against influenza virus infections. Using causal mediation analysis, we quantified the proportion of vaccine efficacy mediated by postvaccination HAI titers. METHODS We conducted causal mediation analyses using data from a randomized, active-comparator controlled, phase III, trial of an inactivated, split-virion seasonal quadrivalent influenza vaccine in children conducted from October 2010 to December 2011 in 8 countries. Vaccine efficacy was estimated using a weighted Cox proportional hazards model. Estimates were decomposed into the direct and indirect effects mediated by postvaccination HAI titers. RESULTS The proportions of vaccine efficacy mediated by postvaccination HAI titers were estimated to be 22% (95% confidence interval, 18%--47%) for influenza A(H1N1), 20% (16%-39%) for influenza A(H3N2), and 37% (26%-85%) for influenza B/Victoria. CONCLUSIONS HAI titers partially mediate influenza vaccine efficacy against influenza A(H1N1), A(H3N2), and B/Victoria. Our estimates were lower than in previous studies, possibly reflecting expected heterogeneity in antigenic similarity between vaccine and circulating viruses across seasons.
Collapse
Affiliation(s)
- Wey Wen Lim
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong SAR, China
| | - Shuo Feng
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Sook-San Wong
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sheena G Sullivan
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, and Department of Infectious Diseases, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Epidemiology, University of California, California, Los Angeles, USA
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong SAR, China
| |
Collapse
|
4
|
Badruzzaman ATM, Cheng YC, Sung WC, Lee MS. Insect Cell-Based Quadrivalent Seasonal Influenza Virus-like Particles Vaccine Elicits Potent Immune Responses in Mice. Vaccines (Basel) 2024; 12:667. [PMID: 38932396 PMCID: PMC11209530 DOI: 10.3390/vaccines12060667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Influenza viruses can cause highly infectious respiratory diseases, posing noteworthy epidemic and pandemic threats. Vaccination is the most cost-effective intervention to prevent influenza and its complications. However, reliance on embryonic chicken eggs for commercial influenza vaccine production presents potential risks, including reductions in efficacy due to HA gene mutations and supply delays due to scalability challenges. Thus, alternative platforms are needed urgently to replace egg-based methods and efficiently meet the increasing demand for vaccines. In this study, we employed a baculovirus expression vector system to engineer HA, NA, and M1 genes from seasonal influenza strains A/H1N1, A/H3N2, B/Yamagata, and B/Victoria, generating virus-like particle (VLP) vaccine antigens, H1N1-VLP, H3N2-VLP, Yamagata-VLP, and Victoria-VLP. We then assessed their functional and antigenic characteristics, including hemagglutination assay, protein composition, morphology, stability, and immunogenicity. We found that recombinant VLPs displayed functional activity, resembling influenza virions in morphology and size while maintaining structural integrity. Comparative immunogenicity assessments in mice showed that our quadrivalent VLPs were consistent in inducing hemagglutination inhibition and neutralizing antibody titers against homologous viruses compared to both commercial recombinant HA and egg-based vaccines (Vaxigrip). The findings highlight insect cell-based VLP vaccines as promising candidates for quadrivalent seasonal influenza vaccines. Further studies are worth conducting.
Collapse
Affiliation(s)
- A. T. M. Badruzzaman
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan 350, Taiwan; (A.T.M.B.); (Y.-C.C.); (W.-C.S.)
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan 320, Taiwan
| | - Yu-Chieh Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan 350, Taiwan; (A.T.M.B.); (Y.-C.C.); (W.-C.S.)
| | - Wang-Chou Sung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan 350, Taiwan; (A.T.M.B.); (Y.-C.C.); (W.-C.S.)
| | - Min-Shi Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan 350, Taiwan; (A.T.M.B.); (Y.-C.C.); (W.-C.S.)
| |
Collapse
|
5
|
Haems M, Lanzilotto M, Mandelli A, Mota-Filipe H, Paulino E, Plewka B, Rozaire O, Zeiger J. European community pharmacists practice in tackling influenza. EXPLORATORY RESEARCH IN CLINICAL AND SOCIAL PHARMACY 2024; 14:100447. [PMID: 38707787 PMCID: PMC11068921 DOI: 10.1016/j.rcsop.2024.100447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 05/07/2024] Open
Abstract
Background In many European countries, flu vaccination coverage rates are below the 75% target. During the COVID-19 pandemic, many pharmacists around Europe were involved as vaccine administrators and demonstrated positive results in improving vaccine uptake. This paper explores the challenges, accomplishments, and best practices of various European pharmacists' associations in administering vaccines and positively contributing to public health. Methods Eight pharmacists representing various associations from different countries across Europe (Italy, Belgium, Poland, Portugal, France, and Germany) convened to discuss their role as vaccination providers, the advantages, and strategies for improvement, and to identify barriers and gaps in the vaccination administration process, especially focusing on the administration of seasonal flu vaccines. Results Currently, 15 European countries allow community pharmacists to dispense and administer flu vaccines. Among the ones that attended the meeting, Portugal initiated the flu immunization program at the pharmacy earliest, before the COVID era, but in other countries, the process started only in the last couple of years. Initial hesitancy and reluctance by other HCPs or institutions were overcome as the pilot projects showed positive and cost-effective public health results. Today, pharmacists are considered crucial professional figures to provide immunization services against COVID-19, the flu, and other vaccine-preventable diseases, and pursue important public health goals.Key takeaways to enhance the pharmacist's role in providing immunization services against vaccine-preventable diseases include improving interaction with policymakers and the public, generating real-world evidence highlighting public health benefits, and ensuring ongoing professional education and training for pharmacists. Conclusion Vaccinating pharmacists are gaining recognition of their role and the benefits derived from their broader involvement in the healthcare system, including immunization programs. Further efforts are needed in each country for an adequate recognition of the profession and a broader utilization of pharmacy services to exploit the benefit of immunization, especially against the flu.
Collapse
Affiliation(s)
- Marleen Haems
- Koninklijk Oost-Vlaams Apothekersgild (KOVAG, Royal Society of Pharmacists of East Flanders), Brouwerijstraat 1, 9031 Ghent, Belgium
| | - Mauro Lanzilotto
- Federazione Nazionale dei Titolari di Farmacia Italiani (Federfarma, National Federation of the Italian Pharmacy Owner), Via Emanuele Filiberto 190, 00185 Rome, Italy
| | - Andrea Mandelli
- Federazione degli Ordini dei Farmacisti Italiani (FOFI, Federation of the Orders of Italian Pharmacists), Via Palestro 75, 00185 Rome, Italy
| | - Hélder Mota-Filipe
- Faculty of Pharmacy of the Universidade de Lisboa (FFUL), Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ema Paulino
- Associação Nacional das Farmácias (ANF, National Association of Pharmacies), Rua Marechal Saldanha 1, 1249-069 Lisbon, Portugal
| | - Beata Plewka
- Pharmacy Practice Division, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznan, Poland
| | - Olivier Rozaire
- Union Régionale des Professionnels de Santé Pharmaciens Auvergne Rhône Alpes (URPS AuRA, Regional Union of the Healthcare Professionals, Pharmacists, Auvergne Rhône Alpes), rue Garibaldi 194B, 69003 Lyon, France
| | - Jens Zeiger
- Marketing Verein Deutscher Apotheker (MVDA, Marketing Association of German Pharmacists), Emil-Hoffmann-Straße 1a, 50996 Cologne, Germany
| |
Collapse
|
6
|
Zinnecker T, Badri N, Araujo D, Thiele K, Reichl U, Genzel Y. From single-cell cloning to high-yield influenza virus production - implementing advanced technologies in vaccine process development. Eng Life Sci 2024; 24:2300245. [PMID: 38584687 PMCID: PMC10991716 DOI: 10.1002/elsc.202300245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 04/09/2024] Open
Abstract
Innovations in viral vaccine manufacturing are crucial for pandemic preparedness and to meet ever-rising global demands. For influenza, however, production still mainly relies on technologies established decades ago. Although modern production shifts from egg-based towards cell culture technologies, the full potential has not yet been fully exploited. Here, we evaluate whether implementation of state-of-the-art technologies for cell culture-based recombinant protein production are capable to challenge outdated approaches in viral vaccine process development. For this, a fully automated single-cell cloning strategy was established to generate monoclonal suspension Madin-Darby canine kidney (MDCK) cells. Among selected cell clones, we could observe distinct metabolic and growth characteristics, with C59 reaching a maximum viable cell concentration of 17.3 × 106 cells/mL and low doubling times in batch mode. Screening for virus production using a panel of human vaccine-relevant influenza A and B viruses in an ambr15 system revealed high titers with yields competing or even outperforming available MDCK cell lines. With C113, we achieved cell-specific virus yields of up to 25,000 virions/cell, making this cell clone highly attractive for vaccine production. Finally, we confirmed process performance at a 50-fold higher working volume. In summary, we present a scalable and powerful approach for accelerated development of high-yield influenza virus production in chemically defined medium starting from a single cell.
Collapse
Affiliation(s)
- Tilia Zinnecker
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | | | - Diogo Araujo
- Sartorius Stedim Biotech S.A.Aubagne CedexFrance
| | | | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
- Bioprocess EngineeringOtto‐von‐Guericke UniversityMagdeburgGermany
| | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| |
Collapse
|
7
|
Youhanna J, Tran V, Hyer R, Domnich A. Immunogenicity of Enhanced Influenza Vaccines Against Mismatched Influenza Strains in Older Adults: A Review of Randomized Controlled Trials. Influenza Other Respir Viruses 2024; 18:e13286. [PMID: 38594827 PMCID: PMC11004266 DOI: 10.1111/irv.13286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
Antigenic drift is a major driver of viral evolution and a primary reason why influenza vaccines must be reformulated annually. Mismatch between vaccine and circulating viral strains negatively affects vaccine effectiveness and often contributes to higher rates of influenza-related hospitalizations and deaths, particularly in years dominated by A(H3N2). Several countries recommend enhanced influenza vaccines for older adults, who are at the highest risk of severe influenza complications and mortality. The immunogenicity of enhanced vaccines against heterologous A(H3N2) strains has been examined in nine studies to date. In six studies, an enhanced, licensed MF59-adjuvanted trivalent inactivated influenza vaccine (aIIV3) consistently increased heterologous antibody titers relative to standard influenza vaccine, with evidence of a broad heterologous immune response across multiple genetic clades. In one study, licensed high-dose trivalent inactivated influenza vaccine (HD-IIV3) also induced higher heterologous antibody titers than standard influenza vaccine. In a study comparing a higher dose licensed quadrivalent recombinant influenza vaccine (RIV4) with HD-IIV3 and aIIV3, no significant differences in antibody titers against a heterologous strain were observed, although seroconversion rates were higher with RIV4 versus comparators. With the unmet medical need for improved influenza vaccines, the paucity of studies especially with enhanced vaccines covering mismatched strains highlights a need for further investigation of cross-protection in older adults.
Collapse
Affiliation(s)
| | - Vy Tran
- CSL Seqirus LtdSummitNew JerseyUSA
| | - Randall Hyer
- Baruch S. Blumberg InstituteDoylestownPennsylvaniaUSA
| | | |
Collapse
|
8
|
Guo J, Chen X, Guo Y, Liu M, Li P, Tao Y, Liu Z, Yang Z, Zhan S, Sun F. Real-world effectiveness of seasonal influenza vaccination and age as effect modifier: A systematic review, meta-analysis and meta-regression of test-negative design studies. Vaccine 2024; 42:1883-1891. [PMID: 38423813 DOI: 10.1016/j.vaccine.2024.02.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Under the global risk of epidemic rebound of influenza after COVID-19 outbreak, the study aimed to provide a comprehensive evaluation of the seasonal influenza vaccine effectiveness (IVE) and to explore the potential effect modifiers. METHODS We searched for test-negative design studies with IVE estimates published between January 1, 2017 and December 31, 2022. We estimated pooled IVE using random-effects meta-analysis, and conducted meta-regression with study site, age, sex and comorbidity as explanatory variables. RESULTS We identified 2429 publications and included 191 in the meta-analysis. The pooled IVE was 41.4 % (95 % CI: 39.2-43.5 %) against any influenza. For specific strains, the IVE was 55.4 % (95 % CI: 52.7-58.1 %) against A/H1N1, 26.8 % (95 % CI: 23.5-29.9 %) against A/H3N2, 47.2 % (95 % CI: 38.1-54.9 %) against B/Yamagata, and 40.6 % (95 % CI: 23.7-53.7 %) against B/Victoria, and the effectiveness against A/H3N2 was significantly lower than A/H1N1 (p < 0.0001) and B/Yamagata (p < 0.0001). The pooled IVE was 39.2 % (95 % CI: 36.5-41.9 %) in preventing influenza-associated outpatient visit and 43.7 % (95 % CI: 39.7-47.4 %) in preventing influenza-related hospitalization. The IVE against any influenza was 48.6 % (95 % CI: 44.7-52.2 %) for children aged < 18 years, 36.7 % (95 % CI: 31.9-41.1 %) for adults aged 18-64 years, and 30.6 % (95 % CI: 26.2-34.8 %) for elderly aged ≥65 years. Meta-regression revealed that the IVE was associated with the average age of study participants, in which both young adults [relative odds ratio (ROR) = 1.225, 95 % confidence interval (CI): 1.099-1.365, p = 0.0002] and elderly (ROR = 1.245, 95 % CI: 1.083-1.431, p = 0.002) manifested a significantly decreased effectiveness compared with children. CONCLUSIONS Influenza vaccines provided moderate protection against laboratory-confirmed influenza and related outpatient visit and hospitalization. However, the effectiveness may vary substantially by virus type and age group, suggesting the necessity to tailor vaccination strategies especially for older individuals and against the A/H3N2 strain, and to promote annual immunization and annual analysis of vaccine effectiveness.
Collapse
Affiliation(s)
- Jinxin Guo
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education/Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Xin Chen
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education/Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yu Guo
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education/Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Mengze Liu
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education/Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Pei Li
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education/Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yiming Tao
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education/Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zhike Liu
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education/Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zhirong Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Siyan Zhan
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education/Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China; Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, Beijing, China.
| | - Feng Sun
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education/Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.
| |
Collapse
|
9
|
Chatterjee A, Ambrose K, Canaday DH, Delair S, Ezike N, Huber VC, Jhaveri R, Nyquist AC, Sporer A, Varman M, Vivekanandan R, Wojcik R, Jandhyala R. The association between influenza vaccine effectiveness and egg-based manufacturing technology: literature review and US expert consensus. Curr Med Res Opin 2024; 40:335-343. [PMID: 38054898 DOI: 10.1080/03007995.2023.2284386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Influenza is associated with significant disease burden in the US and is currently best controlled by vaccination programs. Influenza vaccine effectiveness (VE) is low and may be reduced by several factors, including egg adaptations. Although non-egg-based influenza vaccines reportedly have greater VE in egg-adapted seasons, evidence for egg adaptations' reduction of VE is indirect and dissociated, apart from two previous European consensuses. METHODS This study replicated the methodology used in a 2020 literature review and European consensus, providing an updated review and consensus opinion of 10 US experts on the evidence for a mechanistic basis for reduction of VE due to egg-based manufacturing methods. A mechanistic basis was assumed if sufficient evidence was found for underlying principles proposed to give rise to such an effect. Evidence for each principle was brought forward from the 2020 review and identified here by structured literature review and expert panel. Experts rated the strength of support for each principle and a mechanistic basis for reduction of VE due to egg-based influenza vaccine manufacture in a consensus method (consensus for strong/very strong evidence = ≥ 3.5 on 5-point Likert scale). RESULTS Experts assessed 251 references (from previous study: 185; this study: 66). The majority of references for all underlying principles were rated as strong or very strong supporting evidence (52-86%). Global surveillance, WHO candidate vaccine virus selection, and manufacturing stages involving eggs were identified as most likely to impact influenza VE. CONCLUSION After review of extensive evidence for reduction of VE due to egg-based influenza vaccine manufacture, influenza experts in the US joined those in Europe in unanimous agreement for a mechanistic basis for the effect. Vaccine providers and administrators should consider use of non-egg-based influenza vaccine manufacture to reduce the risk of egg adaptations and likely impact on VE.
Collapse
Affiliation(s)
- Archana Chatterjee
- Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | | | | | | | | | | | - Ravi Jhaveri
- Feinberg School of Medicine, Northwestern, IL, USA
| | | | | | | | | | | | - Ravi Jandhyala
- Medialis Ltd, Milton Keynes, UK
- King's College London, London, UK
| |
Collapse
|
10
|
Chi CY, Cheng MF, Ko K, Mould JF, Chen CJ, Huang YC, Lee PI. Cost-effectiveness analysis of cell-based versus egg-based quadrivalent influenza vaccines in the pediatric population in Taiwan. J Med Virol 2024; 96:e29279. [PMID: 38196182 DOI: 10.1002/jmv.29279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/03/2023] [Accepted: 11/19/2023] [Indexed: 01/11/2024]
Abstract
Cell-based influenza vaccines avoid egg-adaptive mutations, potentially improving vaccine effectiveness. We assessed the one-season cost-effectiveness of cell-based quadrivalent influenza vaccine (QIVc) against that of egg-derived quadrivalent influenza vaccines (QIVe) in children (6 months to 17 years of age) from payer and societal perspectives in Taiwan using an age-stratified static model. Base case and high egg adaptation scenarios were assessed. Deterministic and probabilistic sensitivity analyses were performed. The incremental cost-effectiveness ratio (ICER) threshold in Taiwan was assumed to be USD 99 177/quality-adjusted life year (QALY). Compared to QIVe, QIVc would prevent 15 665 influenza cases, 2244 complicated cases, and 259 hospitalizations per year. The base case ICER was USD 68 298/QALY and USD 40 085/QALY from the payer and societal perspective, respectively. In the high egg adaptation scenario, the ICER was USD 45 782/QALY from the payer's perspective and USD 17 489/QALY from the societal perspective. Deterministic sensitivity analyses indicated that infection incidence rate, vaccination coverage, and prevalence of the A/H3N2 strain were the main drivers of ICER. In conclusion, switching the immunization strategy from QIVe to QIVc is predicted to reduce the influenza-associated disease burden and be cost-effective for the pediatric population in Taiwan. The potential benefits of QIVc would be even higher during influenza seasons with high levels of egg adaptation.
Collapse
Affiliation(s)
- Chia-Yu Chi
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Ming-Fang Cheng
- Department of Paediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Karam Ko
- Medical Affairs, Seqirus Korea Ltd., Seoul, Korea
| | - Joaquin F Mould
- Global Medical Affairs, CSL Seqirus USA Inc., Summit, New Jersey, USA
| | - Chih-Jung Chen
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yhu-Chering Huang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ping-Ing Lee
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
11
|
Newby ML, Allen JD, Crispin M. Influence of glycosylation on the immunogenicity and antigenicity of viral immunogens. Biotechnol Adv 2024; 70:108283. [PMID: 37972669 PMCID: PMC10867814 DOI: 10.1016/j.biotechadv.2023.108283] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
A key aspect of successful viral vaccine design is the elicitation of neutralizing antibodies targeting viral attachment and fusion glycoproteins that embellish viral particles. This observation has catalyzed the development of numerous viral glycoprotein mimetics as vaccines. Glycans can dominate the surface of viral glycoproteins and as such, the viral glycome can influence the antigenicity and immunogenicity of a candidate vaccine. In one extreme, glycans can form an integral part of epitopes targeted by neutralizing antibodies and are therefore considered to be an important feature of key immunogens within an immunization regimen. In the other extreme, the existence of peptide and bacterially expressed protein vaccines shows that viral glycosylation can be dispensable in some cases. However, native-like glycosylation can indicate native-like protein folding and the presence of conformational epitopes. Furthermore, going beyond native glycan mimicry, in either occupancy of glycosylation sites or the glycan processing state, may offer opportunities for enhancing the immunogenicity and associated protection elicited by an immunogen. Here, we review key determinants of viral glycosylation and how recombinant immunogens can recapitulate these signatures across a range of enveloped viruses, including HIV-1, Ebola virus, SARS-CoV-2, Influenza and Lassa virus. The emerging understanding of immunogen glycosylation and its control will help guide the development of future vaccines in both recombinant protein- and nucleic acid-based vaccine technologies.
Collapse
Affiliation(s)
- Maddy L Newby
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
12
|
de Waure C, Gärtner BC, Lopalco PL, Puig-Barbera J, Nguyen-Van-Tam JS. Real world evidence for public health decision-making on vaccination policies: perspectives from an expert roundtable. Expert Rev Vaccines 2024; 23:27-38. [PMID: 38084895 DOI: 10.1080/14760584.2023.2290194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023]
Abstract
INTRODUCTION Influenza causes significant morbidity and mortality, but influenza vaccine uptake remains below most countries' targets. Vaccine policy recommendations vary, as do procedures for reviewing and appraising the evidence. AREAS COVERED During a series of roundtable discussions, we reviewed procedures and methodologies used by health ministries in four European countries to inform vaccine recommendations. We review the type of evidence currently recommended by each health ministry and the range of approaches toward considering randomized controlled trials (RCTs) and real-world evidence (RWE) studies when setting influenza vaccine recommendations. EXPERT OPINION Influenza vaccine recommendations should be based on data from both RCTs and RWE studies of efficacy, effectiveness, and safety. Such data should be considered alongside health-economic, cost-effectiveness, and budgetary factors. Although RCT data are more robust and less prone to bias, well-designed RWE studies permit timely evaluation of vaccine benefits, effectiveness comparisons over multiple seasons in large populations, and detection of rare adverse events, under real-world conditions. Given the variability of vaccine effectiveness due to influenza virus mutations and increasing diversification of influenza vaccines, we argue that consideration of both RWE and RCT evidence is the best approach to more nuanced and timely updates of influenza vaccine recommendations.
Collapse
Affiliation(s)
- Chiara de Waure
- Public Health, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Barbara C Gärtner
- Department and Institute of Microbiology, Saarland University Hospital, Homburg, Germany
| | | | - Joan Puig-Barbera
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Region, Valencia, Spain
| | | |
Collapse
|
13
|
Kikuchi C, Antonopoulos A, Wang S, Maemura T, Karamanska R, Lee C, Thompson AJ, Dell A, Kawaoka Y, Haslam SM, Paulson JC. Glyco-engineered MDCK cells display preferred receptors of H3N2 influenza absent in eggs used for vaccines. Nat Commun 2023; 14:6178. [PMID: 37794004 PMCID: PMC10551000 DOI: 10.1038/s41467-023-41908-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
Evolution of human H3N2 influenza viruses driven by immune selection has narrowed the receptor specificity of the hemagglutinin (HA) to a restricted subset of human-type (Neu5Acα2-6 Gal) glycan receptors that have extended poly-LacNAc (Galβ1-4GlcNAc) repeats. This altered specificity has presented challenges for hemagglutination assays, growth in laboratory hosts, and vaccine production in eggs. To assess the impact of extended glycan receptors on virus binding, infection, and growth, we have engineered N-glycan extended (NExt) cell lines by overexpressing β3-Ν-acetylglucosaminyltransferase 2 in MDCK, SIAT, and hCK cell lines. Of these, SIAT-NExt cells exhibit markedly increased binding of H3 HAs and susceptibility to infection by recent H3N2 virus strains, but without impacting final virus titers. Glycome analysis of these cell lines and allantoic and amniotic egg membranes provide insights into the importance of extended glycan receptors for growth of recent H3N2 viruses and relevance to their production for cell- and egg-based vaccines.
Collapse
Affiliation(s)
- Chika Kikuchi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Shengyang Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tadashi Maemura
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Rositsa Karamanska
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Chiara Lee
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Andrew J Thompson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Pandemic Preparedness, Infection and Advanced Research Center, The University of Tokyo, Tokyo, Japan
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
14
|
Puente-Massaguer E, Vasilev K, Beyer A, Loganathan M, Francis B, Scherm MJ, Arunkumar GA, González-Domínguez I, Zhu X, Wilson IA, Coughlan L, Sun W, Palese P, Krammer F. Chimeric hemagglutinin split vaccines elicit broadly cross-reactive antibodies and protection against group 2 influenza viruses in mice. SCIENCE ADVANCES 2023; 9:eadi4753. [PMID: 37703367 PMCID: PMC10499326 DOI: 10.1126/sciadv.adi4753] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023]
Abstract
Seasonal influenza virus vaccines are effective when they are well matched to circulating strains. Because of antigenic drift/change in the immunodominant hemagglutinin (HA) head domain, annual vaccine reformulations are necessary to maintain a match with circulating strains. In addition, seasonal vaccines provide little to no protection against newly emerging pandemic strains. Sequential vaccination with chimeric HA (cHA) constructs has been proven to direct the immune response toward the immunosubdominant but more conserved HA stalk domain. In this study, we show that immunization with group 2 cHA split vaccines in combination with the CpG 1018 adjuvant elicits broadly cross-reactive antibodies against all group 2 HAs, as well as systemic and local antigen-specific T cell responses. Antibodies elicited after sequential vaccination are directed to conserved regions of the HA such as the stalk and the trimer interface and also to the N2 neuraminidase (NA). Immunized mice were fully protected from challenge with a broad panel of influenza A viruses.
Collapse
Affiliation(s)
- Eduard Puente-Massaguer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kirill Vasilev
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Annika Beyer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Madhumathi Loganathan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin Francis
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael J. Scherm
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lynda Coughlan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
15
|
Equils O, Bakaj A, Wilson-Mifsud B, Chatterjee A. Restoring Trust: The Need for Precision Medicine in Infectious Diseases, Public Health and Vaccines. Hum Vaccin Immunother 2023; 19:2234787. [PMID: 37465958 PMCID: PMC10361134 DOI: 10.1080/21645515.2023.2234787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
There are limited data on precision medicine in infectious diseases and vaccines; however, precise management of infectious diseases plays a critical role in trust for government, health-care organizations, science, and pharma. The improvement in biomedical technologies, availability of large clinical and -omic data and appropriate application of artificial intelligence may allow precision in vaccines and public health and restore trust. This is an invited editorial on the role of precision medicine in infectious diseases and vaccines.
Collapse
Affiliation(s)
- Ozlem Equils
- Public Health Non-Profit, MiOra, Los Angeles, CA, USA
- Clinical Development, Cidara Therapeutics, San Diego, CA, USA
| | - Angela Bakaj
- Public Health Non-Profit, MiOra, Los Angeles, CA, USA
| | - Brittany Wilson-Mifsud
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Archana Chatterjee
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
16
|
Zhang J, Nian X, Liu B, Zhang Z, Zhao W, Han X, Ma Y, Jin D, Ma H, Zhang Q, Qiu R, Li F, Gong Z, Li X, Yang Y, Tian Y, Zhou L, Duan K, Li X, Ma Z, Yang X. Development of MDCK-based quadrivalent split seasonal influenza virus vaccine with high safety and immunoprotection: A preclinical study. Antiviral Res 2023; 216:105639. [PMID: 37270159 DOI: 10.1016/j.antiviral.2023.105639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/12/2023] [Accepted: 05/17/2023] [Indexed: 06/05/2023]
Abstract
Vaccination remains the best prevention strategy against influenza. The MDCK-based influenza vaccine prompted the development of innovative cell culture manufacturing processes. In the present study, we report the effects of multiple administrations of a candidate, seasonal, MDCK-based, quadrivalent split influenza virus vaccine MDCK-QIV in Sprague-Dawley (SD) rats. Moreover, the effects of the vaccine were evaluated in terms of fertility and early embryonic development, embryo-fetal development, and perinatal toxicity in the SD rats and immunogenicity in Wistar rats and BALB/c mice. Regarding the safety profile, MDCK-QIV demonstrated tolerance in local stimulation with repeated dose administration and presented no significant effect on the development, growth, behavior, fertility, and reproductive performance of the adult male rats, maternal rats, and their offspring. MDCK-QIV elicited strong hemagglutination inhibition neutralizing antibody response and protection against the influenza virus in the mouse model. Thus, data supported that MDCK-QIV could be further evaluated in human clinical trial, which is currently underway.
Collapse
Affiliation(s)
- Jiayou Zhang
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Bo Liu
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Zhegang Zhang
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Wei Zhao
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Xixin Han
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Yumei Ma
- Lanzhou BaiLing Biotech Co., Ltd, 730010, Lanzhou, China
| | - Dongwu Jin
- Lanzhou BaiLing Biotech Co., Ltd, 730010, Lanzhou, China
| | - Hua Ma
- Lanzhou BaiLing Biotech Co., Ltd, 730010, Lanzhou, China
| | - Qingmei Zhang
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Ran Qiu
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Fang Li
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Zheng Gong
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Xuedan Li
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Ying Yang
- Hubei Topgene Biotechnology Co., Ltd, 430074, Wuhan, China
| | - Yichao Tian
- Hubei Topgene Biotechnology Co., Ltd, 430074, Wuhan, China
| | - Li Zhou
- Hubei Topgene Biotechnology Co., Ltd, 430074, Wuhan, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Xinguo Li
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Zhongren Ma
- Lanzhou BaiLing Biotech Co., Ltd, 730010, Lanzhou, China.
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China; China National Biotec Group Company Limited, 100029, Beijing, China.
| |
Collapse
|
17
|
Rockman S, Laurie K, Ong C, Rajaram S, McGovern I, Tran V, Youhanna J. Cell-Based Manufacturing Technology Increases Antigenic Match of Influenza Vaccine and Results in Improved Effectiveness. Vaccines (Basel) 2022; 11:52. [PMID: 36679895 PMCID: PMC9861528 DOI: 10.3390/vaccines11010052] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
To ensure that vaccination offers the best protection against an infectious disease, sequence identity between the vaccine and the circulating strain is paramount. During replication of nucleic acid, random mutations occur due to the level of polymerase fidelity. In traditional influenza vaccine manufacture, vaccine viruses are propagated in fertilized chicken eggs, which can result in egg-adaptive mutations in the antigen-encoding genes. Whilst this improves infection and replication in eggs, mutations may reduce the effectiveness of egg-based influenza vaccines against circulating human viruses. In contrast, egg-adaptive mutations are avoided when vaccine viruses are propagated in Madin-Darby canine kidney (MDCK) cell lines during manufacture of cell-based inactivated influenza vaccines. The first mammalian cell-only strain was included in Flucelvax® Quadrivalent in 2017. A sequence analysis of the viruses selected for inclusion in this vaccine (n = 15 vaccine strains, containing both hemagglutinin and neuraminidase) demonstrated that no mutations occur in the antigenic sites of either hemagglutinin or neuraminidase, indicating that cell adaptation does not occur during production of this cell-based vaccine. The development of this now entirely mammalian-based vaccine system, which incorporates both hemagglutinin and neuraminidase, ensures that the significant protective antigens are equivalent to the strains recommended by the World Health Organization (WHO) in both amino acid sequence and glycosylation pattern. The inclusion of both proteins in a vaccine may provide an advantage over recombinant vaccines containing hemagglutinin alone. Findings from real world effectiveness studies support the use of cell-based influenza vaccines.
Collapse
Affiliation(s)
- Steven Rockman
- CSL Seqirus Ltd., Parkville, VIC 3050, Australia
- Department of Immunology and Microbiology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Karen Laurie
- CSL Seqirus Ltd., Parkville, VIC 3050, Australia
| | - Chi Ong
- CSL Seqirus Ltd., Parkville, VIC 3050, Australia
| | | | | | - Vy Tran
- CSL Seqirus Ltd., Kirkland, QC H9H 4M7, Canada
| | | |
Collapse
|
18
|
Serial Passaging of Seasonal H3N2 Influenza A/Singapore/G2-31.1/2014 Virus in MDCK-SIAT1 Cells and Primary Chick Embryo Cells Generates HA D457G Mutation and Other Variants in HA, NA, PB1, PB1-F2, and NS1. Int J Mol Sci 2022; 23:ijms232012408. [PMID: 36293269 PMCID: PMC9604028 DOI: 10.3390/ijms232012408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza remains one of the most prevalent viruses circulating amongst humans and has resulted in several pandemics. The prevention and control of H3N2 influenza is complicated by its propensity for evolution, which leads to vaccine mismatch and reduced vaccine efficacies. This study employed the strategy of serial passaging to compare the evolution of the human seasonal influenza strain A/Singapore/G2-31.1/2014(H3N2) in MDCK-SIAT1 versus primary chick embryo fibroblast (CEF) cells. Genetic analysis of the HA, NS1, NA, and PB1 gene segments by Sanger sequencing revealed the presence of specific mutations and a repertoire of viral quasispecies following serial passaging. Most quasispecies were also found in PB1, which exhibited consistently high transversion-to-transition ratios in all five MDCK-SIAT1 passages. Most notably, passage 5 virus harbored the D457G substitution in the HA2 subunit, while passage 3 virus acquired K53Q and Q69H mutations in PB1-F2. An A971 variant leading to a non-synonymous R316Q substitution in PB1 was also identified in MDCK-SIAT1 passages 2 and 4. With an increasing number of passages, the proportion of D457G mutations progressively increased and was associated with larger virus plaque sizes. However, microneutralization assays revealed no significant differences in the neutralizing antibody profiles of human-influenza-immune serum samples against pre-passaged virus and passage 5 virus. In contrast, viable virus was only detected in passage 1 of CEF cells, which gave rise to multiple viral RNA quasispecies. Our findings highlight that serial passaging is able to drive differential adaptation of H3N2 influenza in different host species and may alter viral virulence. More studies are warranted to elucidate the complex relationships between H3N2 virus evolution, viral virulence changes, and low vaccine efficacy.
Collapse
|
19
|
Liang W, Tan TJC, Wang Y, Lv H, Sun Y, Bruzzone R, Mok CKP, Wu NC. Egg-adaptive mutations of human influenza H3N2 virus are contingent on natural evolution. PLoS Pathog 2022; 18:e1010875. [PMID: 36155668 PMCID: PMC9536752 DOI: 10.1371/journal.ppat.1010875] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 10/06/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Egg-adaptive mutations in influenza hemagglutinin (HA) often emerge during the production of egg-based seasonal influenza vaccines, which contribute to the largest share in the global influenza vaccine market. While some egg-adaptive mutations have minimal impact on the HA antigenicity (e.g. G186V), others can alter it (e.g. L194P). Here, we show that the preference of egg-adaptive mutation in human H3N2 HA is strain-dependent. In particular, Thr160 and Asn190, which are found in many recent H3N2 strains, restrict the emergence of L194P but not G186V. Our results further suggest that natural amino acid variants at other HA residues also play a role in determining the preference of egg-adaptive mutation. Consistently, recent human H3N2 strains from different clades acquire different mutations during egg passaging. Overall, these results demonstrate that natural mutations in human H3N2 HA can influence the preference of egg-adaptation mutation, which has important implications in seed strain selection for egg-based influenza vaccine.
Collapse
Affiliation(s)
- Weiwen Liang
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Timothy J. C. Tan
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Yiquan Wang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Huibin Lv
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yuanxin Sun
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Roberto Bruzzone
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Istituto Pasteur Italia, Rome, Italy
- Centre for Immunology & Infection, Hong Kong Science Park, Hong Kong SAR, China
| | - Chris K. P. Mok
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- * E-mail: (CKPM); (NCW)
| | - Nicholas C. Wu
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail: (CKPM); (NCW)
| |
Collapse
|
20
|
Lupi GA, Santiago Valtierra FX, Cabrera G, Spinelli R, Siano ÁS, González V, Osuna A, Oresti GM, Marcipar I. Development of low-cost cage-like particles to formulate veterinary vaccines. Vet Immunol Immunopathol 2022; 251:110460. [PMID: 35901545 DOI: 10.1016/j.vetimm.2022.110460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 10/17/2022]
Abstract
Low-cost adjuvants are urgently needed for the development of veterinary vaccines able to trigger strong immune responses. In this work, we describe a method to obtain a low-cost cage-like particles (ISCOMATRIX-like) adjuvant useful to formulate veterinary vaccines candidates. The main components to form the particles are lipids and saponins, which were obtained from egg yolk by ethanolic extraction and by dialyzing a non-refined saponins extract, respectively. Lipids were fully characterized by thin layer chromatography (TLC) and gas-chromatography (GC) and enzymatic methods, and saponins were characterized by TLC, HPLC and MALDI-TOF. Cage-like particles were prepared with these components or with commercial inputs. Both particles and the traditional Alum used in veterinary vaccines were compared by immunizing mice with Ovalbumin (OVA) formulated with these adjuvants and assessing IgG1, IgG2a anti OVA antibodies and specific Delayed-type Hypersensitivity (DTH). In the yolk extract, a mixture of phospholipids, cholesterol and minor components of the extract (e.g. lyso-phospholipids) with suitable proportions to generate cage-like particles was obtained. Also, semi-purified saponins with similar features to those of the QuilA® were obtained. Cage-like particles prepared with these components have 40-50 nm and triggers similar levels of Anti-OVA IgG1 and DTH than with commercial inputs but higher specific-IgG2a. Both adjuvants largely increased the levels of IgG1, IgG2a and DTH in relation to the formulation with Alum. The methods described to extract lipids from egg yolk and saponins from non-refined extract allowed us to obtain an inexpensive and highly effective adjuvant.
Collapse
Affiliation(s)
- Giuliana A Lupi
- Laboratorio de Tecnología Inmunológica (Facultad de Bioquímica y Cs Biológicas Universidad Nacional del Litoral) - Santa Fe - Argentina - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bs.As., Argentina
| | - Florencia X Santiago Valtierra
- Departamento de Biología, Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina; Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina, Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Gabriel Cabrera
- Laboratorio de Tecnología Inmunológica (Facultad de Bioquímica y Cs Biológicas Universidad Nacional del Litoral) - Santa Fe - Argentina - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bs.As., Argentina
| | - Roque Spinelli
- Laboratorio de Péptidos Bioactivos - Departamento de Química Orgánica (Facultad de Bioquímica y Cs Biológicas Universidad Nacional del Litoral) - Santa Fe - Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bs.As., Argentina
| | - Álvaro S Siano
- Laboratorio de Péptidos Bioactivos - Departamento de Química Orgánica (Facultad de Bioquímica y Cs Biológicas Universidad Nacional del Litoral) - Santa Fe - Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bs.As., Argentina
| | - Verónica González
- Grupo de Polímeros y Reactores de Polimerización, INTEC (Universidad Nacional del Litoral, CONICET), Santa Fe, Argentina
| | - Antonio Osuna
- Grupo de Investigación en Bioquímica Molecular y Parasitología, Departamento de Parasitología, Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Gerardo M Oresti
- Departamento de Biología, Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina; Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina, Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Iván Marcipar
- Laboratorio de Tecnología Inmunológica (Facultad de Bioquímica y Cs Biológicas Universidad Nacional del Litoral) - Santa Fe - Argentina - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bs.As., Argentina.
| |
Collapse
|
21
|
Boikos C, McGovern I, Molrine D, Ortiz JR, Puig-Barberà J, Haag M. Review of Analyses Estimating Relative Vaccine Effectiveness of Cell-Based Quadrivalent Influenza Vaccine in Three Consecutive US Influenza Seasons. Vaccines (Basel) 2022; 10:896. [PMID: 35746504 PMCID: PMC9228909 DOI: 10.3390/vaccines10060896] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/13/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
The adaptation of influenza seed viruses in egg culture can result in a variable antigenic vaccine match each season. The cell-based quadrivalent inactivated influenza vaccine (IIV4c) contains viruses grown in mammalian cell lines rather than eggs. IIV4c is not subject to egg-adaptive changes and therefore may offer improved protection relative to egg-based vaccines, depending on the degree of match with circulating influenza viruses. We summarize the relative vaccine effectiveness (rVE) of IIV4c versus egg-based quadrivalent influenza vaccines (IIV4e) to prevent influenza-related medical encounters (IRMEs) from three retrospective observational cohort studies conducted during the 2017-2018, 2018-2019, and 2019-2020 US influenza seasons using the same underlying electronic medical record dataset for all three seasons-with the addition of linked medical claims for the latter two seasons. We identified IRMEs using diagnostic codes specific to influenza disease (ICD J09*-J11*) from the records of over 10 million people. We estimated rVE using propensity score methods adjusting for age, sex, race, ethnicity, geographic location, week of vaccination, and health status. Subgroup analyses included specific age groups. IIV4c consistently had higher relative effectiveness than IIV4e across all seasons assessed, which were characterized by different dominant circulating strains and variable antigenic drift or egg adaptation.
Collapse
Affiliation(s)
| | | | | | - Justin R. Ortiz
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Joan Puig-Barberà
- Foundation for the Promotion of Health and Biomedical Research (FISABIO), 46020 Valencia, Spain;
| | - Mendel Haag
- Seqirus Inc., 1101 Amsterdam, CL, The Netherlands;
| |
Collapse
|
22
|
Influenza Viruses and Vaccines: The Role of Vaccine Effectiveness Studies for Evaluation of the Benefits of Influenza Vaccines. Vaccines (Basel) 2022; 10:vaccines10050714. [PMID: 35632470 PMCID: PMC9143275 DOI: 10.3390/vaccines10050714] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Influenza is a vaccine preventable disease and vaccination remains the most effective method of controlling the morbidity and mortality of seasonal influenza, especially with respect to risk groups. To date, three types of influenza vaccines have been licensed: inactivated, live-attenuated, and recombinant haemagglutinin vaccines. Effectiveness studies allow an assessment of the positive effects of influenza vaccines in the field. The effectiveness of current influenza is suboptimal, being estimated as 40% to 60% when the vaccines strains are antigenically well-matched with the circulating viruses. This review focuses on influenza viruses and vaccines and the role of vaccine effectiveness studies for evaluating the benefits of influenza vaccines. Overall, influenza vaccines are effective against morbidity and mortality in all age and risk groups, especially in young children and older adults. However, the effectiveness is dependent on several factors such as the age of vaccinees, the match between the strain included in the vaccine composition and the circulating virus, egg-adaptations occurring during the production process, and the subject’s history of previous vaccination.
Collapse
|
23
|
Kang M, Zanin M, Wong SS. Subtype H3N2 Influenza A Viruses: An Unmet Challenge in the Western Pacific. Vaccines (Basel) 2022; 10:vaccines10010112. [PMID: 35062773 PMCID: PMC8778411 DOI: 10.3390/vaccines10010112] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Subtype H3N2 influenza A viruses (A(H3N2)) have been the dominant strain in some countries in the Western Pacific region since the 2009 influenza A(H1N1) pandemic. Vaccination is the most effective way to prevent influenza; however, low vaccine effectiveness has been reported in some influenza seasons, especially for A(H3N2). Antigenic mismatch introduced by egg-adaptation during vaccine production between the vaccine and circulating viral stains is one of the reasons for low vaccine effectiveness. Here we review the extent of this phenomenon, the underlying molecular mechanisms and discuss recent strategies to ameliorate this, including new vaccine platforms that may provide better protection and should be considered to reduce the impact of A(H3N2) in the Western Pacific region.
Collapse
Affiliation(s)
- Min Kang
- School of Public Health, Southern Medical University, Guangzhou 510515, China;
- Guangdong Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Mark Zanin
- State Key Laboratory for Respiratory Diseases and National Clinical Research Centre for Respiratory Disease, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou 511436, China;
- School of Public Health, The University of Hong Kong, 7 Sassoon Road, Pokfulam, Hong Kong, China
| | - Sook-San Wong
- State Key Laboratory for Respiratory Diseases and National Clinical Research Centre for Respiratory Disease, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou 511436, China;
- School of Public Health, The University of Hong Kong, 7 Sassoon Road, Pokfulam, Hong Kong, China
- Correspondence: ; Tel.: +86-178-2584-6078
| |
Collapse
|
24
|
Abstract
Human-to-human transmission of viruses, such as influenza viruses and coronaviruses, can promote virus evolution and the emergence of new strains with increased potential for creating pandemics. Clinical studies analyzing how a particular type of virus progressively evolves new traits, such as resistance to antiviral therapies, as a result of passing between different human hosts are difficult to carry out because of the complexity, scale, and cost of the challenge. Here, we demonstrate that spontaneous evolution of influenza A virus through both mutation and gene reassortment can be reconstituted in vitro by sequentially passaging infected mucus droplets between multiple human lung airway-on-a-chip microfluidic culture devices (airway chips). Modeling human-to-human transmission of influenza virus infection on chips in the continued presence of the antiviral drugs amantadine or oseltamivir led to the spontaneous emergence of clinically prevalent resistance mutations, and strains that were resistant to both drugs were identified when they were administered in combination. In contrast, we found that nafamostat, an inhibitor targeting host serine proteases, did not induce viral resistance. This human preclinical model may be useful for studying viral evolution in vitro and identifying potential influenza virus variants before they appear in human populations, thereby enabling preemptive design of new and more effective vaccines and therapeutics. IMPORTANCE The rapid evolution of viruses, such as influenza viruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is challenging the use and development of antivirals and vaccines. Studies of within-host viral evolution can contribute to our understanding of the evolutionary and epidemiological factors that shape viral global evolution as well as development of better antivirals and vaccines. However, little is known about how viral evolution of resistance to antivirals occurs clinically due to the lack of preclinical models that can faithfully model influenza infection in humans. Our study shows that influenza viral evolution through mutation or gene reassortment can be recapitulated in a human lung airway-on-a-chip (airway chip) microfluidic culture device that can faithfully recapitulate the influenza infection in vitro. This approach is useful for studying within-host viral evolution, evaluating viral drug resistance, and identifying potential influenza virus variants before they appear in human populations, thereby enabling the preemptive design of new and more effective vaccines and therapeutics.
Collapse
|
25
|
Ortiz de Lejarazu-Leonardo R, Montomoli E, Wojcik R, Christopher S, Mosnier A, Pariani E, Trilla Garcia A, Fickenscher H, Gärtner BC, Jandhyala R, Zambon M, Moore C. Estimation of Reduction in Influenza Vaccine Effectiveness Due to Egg-Adaptation Changes-Systematic Literature Review and Expert Consensus. Vaccines (Basel) 2021; 9:1255. [PMID: 34835186 PMCID: PMC8621612 DOI: 10.3390/vaccines9111255] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Influenza vaccines are the main tool to prevent morbidity and mortality of the disease; however, egg adaptations associated with the choice of the manufacturing process may reduce their effectiveness. This study aimed to estimate the impact of egg adaptations and antigenic drift on the effectiveness of trivalent (TIV) and quadrivalent (QIV) influenza vaccines. METHODS Nine experts in influenza virology were recruited into a Delphi-style exercise. In the first round, the experts were asked to answer questions on the impact of antigenic drift and egg adaptations on vaccine match (VM) and influenza vaccine effectiveness (IVE). In the second round, the experts were presented with the data from a systematic literature review on the same subject and aggregated experts' responses to round one questions. The experts were asked to review and confirm or amend their responses before the final summary statistics were calculated. RESULTS The experts estimated that, across Europe, the egg adaptations reduce, on average, VM to circulating viruses by 7-21% and reduce IVE by 4-16%. According to the experts, antigenic drift results in a similar impact on VM (8-24%) and IVE (5-20%). The highest reduction in IVE was estimated for the influenza virus A(H3N2) subtype for the under 65 age group. When asked about the frequency of the phenomena, the experts indicated that, on average, between the 2014 and 19 seasons, egg adaptation and antigenic drift were significant enough to impact IVE that occurred in two and three out of five seasons, respectively. They also agreed that this pattern is likely to reoccur in future seasons. CONCLUSIONS Expert estimates suggest there is a potential for 9% on average (weighted average of "All strains" over three age groups adjusted by population size) and up to a 16% increase in IVE (against A(H3N2), the <65 age group) if egg adaptations that arise when employing the traditional egg-based manufacturing process are avoided.
Collapse
Affiliation(s)
| | - Emanuele Montomoli
- Department of Molecular Medicine, University of Siena, 53100 Siena, Italy;
| | - Radek Wojcik
- Medialis Ltd., Banbury OX16 0AH, UK; (S.C.); (R.J.)
| | | | | | - Elena Pariani
- Department of Biomedical Science for Health, University of Milan, 20122 Milan, Italy;
| | - Antoni Trilla Garcia
- Preventive Medicine and Epidemiology, Hospital Clínic, University of Barcelona, 08007 Barcelona, Spain;
| | - Helmut Fickenscher
- Institute for Infection Medicine, Kiel University, 24118 Kiel, Germany;
- University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Barbara C. Gärtner
- Institute for Microbiology and Hygiene, Saarland University, Faculty of Medicine and Medical Center, Building 43, 66421 Homburg/Saar, Germany;
| | | | | | - Catherine Moore
- Wales Specialist Virology Centre, Public Health Wales, Cardiff CF14 4XW, UK;
| |
Collapse
|
26
|
de Lusignan S, Tsang RSM, Amirthalingam G, Akinyemi O, Sherlock J, Tripathy M, Deeks A, Ferreira F, Howsam G, Hobbs FDR, Joy M. Adverse events of interest following influenza vaccination, a comparison of cell culture-based with egg-based alternatives: English sentinel network annual report paper 2019/20. LANCET REGIONAL HEALTH-EUROPE 2021; 2:100029. [PMID: 34557791 PMCID: PMC8454842 DOI: 10.1016/j.lanepe.2021.100029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background The cell-based quadrivalent influenza vaccine (QIVc) is now offered as an alternative to egg-based quadrivalent (QIVe) and adjuvanted trivalent (aTIV) influenza vaccines in the UK. While post-licensure studies show non-inferiority of cell-based vaccines, it is not known how its safety profile compares to other types of vaccines in real-world use. Methods We conducted a retrospective cohort study using computerised medical records from the Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) sentinel network database. We used a self-controlled case series design and calculated the relative incidence (RI) of adverse events of interest (AEIs) over different risk periods. We then compared the RIs of AEIs within seven days of vaccination overall and between QIVc and QIVe in the 18–64 years age group, and between QIVc and aTIV in the ≥65 years age group. Findings The majority of AEIs occurred within seven days of vaccination, and a seasonal effect was observed. Using QIVc as the reference group, QIVe showed similar incidence of AEIs whereas live attenuated influenza vaccine (LAIV) and aTIV had lower incidence of AEIs. In the stratified analyses, QIVe and aTIV were associated with a 16% lower incidence of AEIs in the seven days post-vaccination in both the 18–64 years and ≥65 years age groups. Interpretation Routine sentinel network data allow comparisons of safety profiles of equally suitable seasonal influenza vaccines. The higher incidence of AEIs associated with QIVc suggest monitoring of several seasons would allow robust comparisons to be made. Funding Public Health England.
Collapse
Affiliation(s)
- Simon de Lusignan
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Woodstock Road, Oxford OX2 6GG, United Kingdom.,Royal College of General Practitioners Research and Surveillance Centre, 30 Euston Square, London NW1 2FB, United Kingdom
| | - Ruby S M Tsang
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Woodstock Road, Oxford OX2 6GG, United Kingdom
| | | | - Oluwafunmi Akinyemi
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Woodstock Road, Oxford OX2 6GG, United Kingdom
| | - Julian Sherlock
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Woodstock Road, Oxford OX2 6GG, United Kingdom
| | - Manasa Tripathy
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Woodstock Road, Oxford OX2 6GG, United Kingdom
| | - Alexandra Deeks
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Woodstock Road, Oxford OX2 6GG, United Kingdom
| | - Filipa Ferreira
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Woodstock Road, Oxford OX2 6GG, United Kingdom
| | - Gary Howsam
- Royal College of General Practitioners Research and Surveillance Centre, 30 Euston Square, London NW1 2FB, United Kingdom
| | - F D Richard Hobbs
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Woodstock Road, Oxford OX2 6GG, United Kingdom
| | - Mark Joy
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Woodstock Road, Oxford OX2 6GG, United Kingdom
| |
Collapse
|