1
|
Gallala M. Application of CRISPR/Cas gene editing for infectious disease control in poultry. Open Life Sci 2025; 20:20251095. [PMID: 40417002 PMCID: PMC12103187 DOI: 10.1515/biol-2025-1095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/11/2025] [Accepted: 03/11/2025] [Indexed: 05/27/2025] Open
Abstract
The poultry industry faces multifaceted challenges, including escalating demand for poultry products, climate change impacting feed availability, emergence of novel avian pathogens, and antimicrobial resistance. Traditional disease control measures are costly and not always effective, prompting the need for complementary methods. Gene editing (GE, also called genome editing) technologies, particularly CRISPR/Cas9, offer promising solutions. This article summarizes recent advancements in utilizing CRISPR/Cas GE to enhance infectious disease control in poultry. It begins with an overview of modern GE techniques, highlighting CRISPR/Cas9's advantages over other methods. The potential applications of CRISPR/Cas in poultry infectious disease prevention and control are explored, including the engineering of innovative vaccines, the generation of disease-resilient birds, and in vivo pathogen targeting. Additionally, insights are provided regarding regulatory frameworks and future perspectives in this rapidly evolving field.
Collapse
Affiliation(s)
- Mahdi Gallala
- Animal Resources Department, Ministry of Municipality, Doha, State of Qatar
| |
Collapse
|
2
|
Kovács L, Farkas M, Dobra PF, Lennon G, Könyves LP, Rusvai M. Avian Influenza Clade 2.3.4.4b: Global Impact and Summary Analysis of Vaccine Trials. Vaccines (Basel) 2025; 13:453. [PMID: 40432065 PMCID: PMC12115358 DOI: 10.3390/vaccines13050453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/11/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Avian influenza (AI), caused by orthomyxoviruses, is a globally significant disease affecting avian and non-avian species. It manifests in two variants, according to the two biovariants of the virus differentiated as highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) strains, both of which compromise animal welfare, reduce productivity, and cause substantial economic loss. The zoonotic potential of HPAI strains, particularly the currently dominant clade 2.3.4.4b, raises concerns about public health and epidemic risks. This review assesses the results of current vaccine trials targeting HPAI clade 2.3.4.4b, emphasizing these studies because most outbreak strains in domestic poultry currently belong to this dominant clade. METHODS Multiple scientific databases comprised reports of research trials on vaccine efficacy against HPAI clade 2.3.4.4b. The Boolean term "Clade 2.3.4.4b AND vaccine" was entered into the following databases: PubMed, PubAg, Scopus, Cochrane Library, and ScienceDirect. RESULTS The resulting papers were analyzed. Studies revealed that antigenic similarity between vaccine and field strains enhances protective efficacy (PE), reduces viral shedding, and improves hemagglutination inhibition titers. While multivalent vaccines showed potential, results were inconsistent and varied depending on strain compatibility. Single-dose vaccines may provide sufficient PE for poultry, though ducks and geese often require multiple doses, and long-term PE is yet unknown. It was discovered that vector vaccines can provide appropriate PE against clade 2.3.4.4.b. CONCLUSIONS Further analysis is needed as their effects may be short-lived, and subsequent doses may be required. Limited research exists on the long-term efficacy of these vaccines and their effectiveness in many avian species. Addressing these gaps is crucial for optimizing vaccination strategies. A re-evaluation of vaccination strategies is recommended but essential to implement adequate biosecurity measures on in poultry farms. This review synthesizes current evidence and may assist veterinarians and authorities in deciding whether to apply or license vaccines to reduce economic losses caused by AI.
Collapse
Affiliation(s)
- László Kovács
- Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine, 1078 Budapest, Hungary; (L.K.); (G.L.); (L.P.K.)
- Poultry-Care Kft., 5052 Újszász, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Máté Farkas
- Poultry-Care Kft., 5052 Újszász, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078 Budapest, Hungary
- Institute of Food Chain Science, Department of Digital Food Science, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Péter Ferenc Dobra
- Department of Pathology, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Georgia Lennon
- Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine, 1078 Budapest, Hungary; (L.K.); (G.L.); (L.P.K.)
| | - László Péter Könyves
- Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine, 1078 Budapest, Hungary; (L.K.); (G.L.); (L.P.K.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078 Budapest, Hungary
| | | |
Collapse
|
3
|
Esaki M, Chollot M, Rémy S, Courvoisier-Guyader K, Penzes Z, Pasdeloup D, Denesvre C. Tegument Protein pUL47 Is Important but Not Essential for Horizontal Transmission of Vaccinal Strain SB-1 of Gallid Alphaherpesvirus 3. Viruses 2025; 17:431. [PMID: 40143358 PMCID: PMC11946105 DOI: 10.3390/v17030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
The gallid alphaherpesvirus 3 (GaAHV3) SB-1, a Mardivirus used as a vaccine against Marek's disease, has been proposed as an interesting viral vector for poultry vaccination. However, SB-1 is highly transmissible between chickens, a feature that may be a limitation for the use of live recombinant vaccines. We have previously shown that UL47 is essential for horizontal transmission of the pathogenic Marek's disease virus between chickens, but it is completely dispensable for replication and pathogenesis. In contrast, the role of UL47 in the biology of SB-1 remains unknown. To study that, we generated an SB-1 mutant lacking UL47 (∆47) from a commercial SB-1 isolate. This mutant replicated and spread like the WT in primary fibroblasts, indicating no growth defects in cell culture. In vivo, chickens inoculated with ∆47 had significantly reduced viral loads in the blood and the spleen, and transport to the skin was delayed compared to WT inoculated chickens. Strikingly, the ∆47 mutant was present in 66% of contact birds. As expected, 100% of contact birds were positive for the WT. In conclusion, our findings reveal that UL47 facilitates GaAHV3 SB-1 replication in vivo, which is important for latency establishment but is not essential for horizontal transmission, unlike for MDV.
Collapse
Affiliation(s)
- Motoyuki Esaki
- Ceva Santé Animale, Ceva-Japan, Yokohama, Kanagawa 230-0045, Japan;
| | - Mélanie Chollot
- Equipe Biologie des Virus Aviaires, UMR1282 ISP, INRAE, 37380 Nouzilly, France; (M.C.); (K.C.-G.); (D.P.)
| | - Sylvie Rémy
- Equipe Biologie des Virus Aviaires, UMR1282 ISP, INRAE, 37380 Nouzilly, France; (M.C.); (K.C.-G.); (D.P.)
| | - Katia Courvoisier-Guyader
- Equipe Biologie des Virus Aviaires, UMR1282 ISP, INRAE, 37380 Nouzilly, France; (M.C.); (K.C.-G.); (D.P.)
| | - Zoltan Penzes
- Ceva Santé Animale, Ceva-Phylaxia, 1107 Budapest, Hungary;
| | - David Pasdeloup
- Equipe Biologie des Virus Aviaires, UMR1282 ISP, INRAE, 37380 Nouzilly, France; (M.C.); (K.C.-G.); (D.P.)
| | - Caroline Denesvre
- Equipe Biologie des Virus Aviaires, UMR1282 ISP, INRAE, 37380 Nouzilly, France; (M.C.); (K.C.-G.); (D.P.)
| |
Collapse
|
4
|
Chen Y, Yu Q, Fan W, Zeng X, Zhang Z, Tian G, Liu C, Bao H, Wu L, Zhang Y, Liu Y, Wang S, Cui H, Duan Y, Chen H, Gao Y. Recombinant Marek's disease virus type 1 provides full protection against H9N2 influenza A virus in chickens. Vet Microbiol 2024; 298:110242. [PMID: 39243669 DOI: 10.1016/j.vetmic.2024.110242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
The H9N2 subtype of the avian influenza virus (AIV) poses a significant threat to the poultry industry and human health. Recombinant vaccines are the preferred method of controlling H9N2 AIV, and Marek's disease virus (MDV) is the ideal vector for recombinant vaccines. During this study, we constructed two recombinant MDV type 1 strains that carry the hemagglutinin (HA) gene of AIV to provide dual protection against both AIV and MDV. To assess the effects of different MDV insertion sites on the protective efficacy of H9N2 AIV, the HA gene of H9N2 AIV was inserted in UL41 and US2 of the MDV type 1 vector backbone to obtain recombinant viruses rMDV-UL41/HA and rMDV-US2/HA, respectively. An indirect immunofluorescence assay showed sustained expression of HA protein in both recombinant viruses. Additionally, the insertion of the HA gene in UL41 and US2 did not affect MDV replication in cell cultures. After immunization of specific pathogen-free chickens, although both the rMDV-UL41/HA and rMDV-US2/HA groups exhibited similar levels of hemagglutination inhibition antibody titers, only the rMDV-UL41/HA group provided complete protection against the H9N2 AIV challenge, and also offered complete protection against challenge with MDV. These results demonstrated that rMDV-UL41/HA could be used as a promising bivalent vaccine strain against both H9N2 avian influenza and Marek's disease in chickens.
Collapse
Affiliation(s)
- Yuntong Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Qingqing Yu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Wenrui Fan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Xianying Zeng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Zibo Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Guobin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Changjun Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Hongmei Bao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Longbo Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yanping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yongzhen Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Suyan Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Hongyu Cui
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yulu Duan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China.
| | - Yulong Gao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China.
| |
Collapse
|
5
|
Pekarek MJ, Weaver EA. Influenza B Virus Vaccine Innovation through Computational Design. Pathogens 2024; 13:755. [PMID: 39338946 PMCID: PMC11434669 DOI: 10.3390/pathogens13090755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
As respiratory pathogens, influenza B viruses (IBVs) cause a significant socioeconomic burden each year. Vaccine and antiviral development for influenza viruses has historically viewed IBVs as a secondary concern to influenza A viruses (IAVs) due to their lack of animal reservoirs compared to IAVs. However, prior to the global spread of SARS-CoV-2, the seasonal epidemics caused by IBVs were becoming less predictable and inducing more severe disease, especially in high-risk populations. Globally, researchers have begun to recognize the need for improved prevention strategies for IBVs as a primary concern. This review discusses what is known about IBV evolutionary patterns and the effect of the spread of SARS-CoV-2 on these patterns. We also analyze recent advancements in the development of novel vaccines tested against IBVs, highlighting the promise of computational vaccine design strategies when used to target both IBVs and IAVs and explain why these novel strategies can be employed to improve the effectiveness of IBV vaccines.
Collapse
Affiliation(s)
| | - Eric A. Weaver
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| |
Collapse
|
6
|
Jogi HR, Smaraki N, Rajak KK, Yadav AK, Bhatt M, Einstien C, Revathi A, Thakur R, Kamothi DJ, Dedeepya PVSS, Savsani HH. Revolutionizing Veterinary Health with Viral Vector-Based Vaccines. Indian J Microbiol 2024; 64:867-878. [PMID: 39282171 PMCID: PMC11399537 DOI: 10.1007/s12088-024-01341-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/13/2024] [Indexed: 09/18/2024] Open
Abstract
Vaccines signify one of the economical and reasonable means to prevent and eradicate the important infectious diseases. Conventional vaccines like live attenuated and inactivated vaccines comprise of whole pathogen either in attenuated or killed form. While, new generation vaccines have been designed to elicit immune response by genetically modifying only the nucleic acid portion of that pathogen. These new generation therapeutics include mRNA vaccines, DNA plasmid vaccines, chimeric vaccines and recombinant viral vector-based vaccines. Nucleic acid based vaccines use genetic material itself thus, they are highly stable and potent in nature to induce long-lasting immune response. Amongst these novel vaccine platforms, viral vector-based vaccines is one such emerging field which has proven to be extremely effective and potent. Nowadays, veterinary medicine has also accepted this innovative vectored vaccine platform to develop an effective control strategy against certain important viral diseases of animals. Viral vector-based vaccine uses various DNA and RNA viruses of human or animal origin to carry an immunogenic transgene of target pathogen. These vaccines enhance both humoral and cell mediated immune response without use of any accessory immune-stimulants. Till today, several viruses have been modified to be characterized as vaccine vectors. Currently, large number of research programs are going on to develop vectored vaccines and novel viral vector for veterinary use. In the present review, different kinds of viral vectored vaccines having veterinary importance have been discussed.
Collapse
Affiliation(s)
- Harsh Rajeshbhai Jogi
- Division of Biological Products, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Nabaneeta Smaraki
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Kaushal Kishor Rajak
- Division of Biological Products, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Ajay Kumar Yadav
- Division of Biological Products, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Mukesh Bhatt
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Chris Einstien
- Division of Biological Products, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Annepu Revathi
- Division of Biological Products, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Ravi Thakur
- Division of Biological Products, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Dhaval J Kamothi
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - P V S S Dedeepya
- Division of Biological Products, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - H H Savsani
- Veterinary College, Kamdhenu University, Junagadh, Gujarat 362001 India
| |
Collapse
|
7
|
Lee J, Lee CW, Suarez DL, Lee SA, Kim T, Spackman E. Efficacy of commercial recombinant HVT vaccines against a North American clade 2.3.4.4b H5N1 highly pathogenic avian influenza virus in chickens. PLoS One 2024; 19:e0307100. [PMID: 39012858 PMCID: PMC11251577 DOI: 10.1371/journal.pone.0307100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024] Open
Abstract
The outbreak of clade 2.3.4.4b H5 highly pathogenic avian influenza (HPAI) in North America that started in 2021 has increased interest in applying vaccination as a strategy to help control and prevent the disease in poultry. Two commercially available vaccines based on the recombinant herpes virus of turkeys (rHVT) vector were tested against a recent North American clade 2.3.4.4b H5 HPAI virus isolate: A/turkey/Indiana/22-003707-003/2022 H5N1 in specific pathogen free white leghorn (WL) chickens and commercial broiler chickens. One rHVT-H5 vaccine encodes a hemagglutinin (HA) gene designed by the computationally optimized broadly reactive antigen method (COBRA-HVT vaccine). The other encodes an HA gene of a clade 2.2 virus (2.2-HVT vaccine). There was 100% survival of both chicken types COBRA-HVT vaccinated groups and in the 2.2-HVT vaccinated groups there was 94.8% and 90% survival of the WL and broilers respectively. Compared to the 2.2-HVT vaccinated groups, WL in the COBRA-HVT vaccinated group shed significantly lower mean viral titers by the cloacal route and broilers shed significantly lower titers by the oropharyngeal route than broilers. Virus titers detected in oral and cloacal swabs were otherwise similar among both vaccine groups and chicken types. To assess antibody-based tests to identify birds that have been infected after vaccination (DIVA-VI), sera collected after the challenge were tested with enzyme-linked lectin assay-neuraminidase inhibition (ELLA-NI) for N1 neuraminidase antibody detection and by commercial ELISA for detection of antibodies to the NP protein. As early as 7 days post challenge (DPC) 100% of the chickens were positive by ELLA-NI. ELISA was less sensitive with a maximum of 75% positive at 10DPC in broilers vaccinated with 2.2-HVT. Both vaccines provided protection from challenge to both types of chickens and ELLA-NI was sensitive at identifying antibodies to the challenge virus therefore should be evaluated further for DIVA-VI.
Collapse
MESH Headings
- Animals
- Chickens/virology
- Chickens/immunology
- Influenza in Birds/prevention & control
- Influenza in Birds/virology
- Influenza in Birds/immunology
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- North America
- Vaccination
- Poultry Diseases/prevention & control
- Poultry Diseases/virology
- Poultry Diseases/immunology
- Herpesvirus 1, Meleagrid/immunology
- Herpesvirus 1, Meleagrid/genetics
Collapse
Affiliation(s)
- Jiho Lee
- U.S. Department of Agriculture, Exotic and Emerging Avian Viral Diseases Unit, U.S. National Poultry Research Center, Agricultural Research Service, Athens, Georgia, United States of America
| | - Chang-Won Lee
- U.S. Department of Agriculture, Exotic and Emerging Avian Viral Diseases Unit, U.S. National Poultry Research Center, Agricultural Research Service, Athens, Georgia, United States of America
| | - David L. Suarez
- U.S. Department of Agriculture, Exotic and Emerging Avian Viral Diseases Unit, U.S. National Poultry Research Center, Agricultural Research Service, Athens, Georgia, United States of America
| | - Scott A. Lee
- U.S. Department of Agriculture, Exotic and Emerging Avian Viral Diseases Unit, U.S. National Poultry Research Center, Agricultural Research Service, Athens, Georgia, United States of America
| | - Taejoong Kim
- U.S. Department of Agriculture, Endemic Poultry Viral Diseases Unit, U.S. National Poultry Research Center, Agricultural Research Service, Athens, Georgia, United States of America
| | - Erica Spackman
- U.S. Department of Agriculture, Exotic and Emerging Avian Viral Diseases Unit, U.S. National Poultry Research Center, Agricultural Research Service, Athens, Georgia, United States of America
| |
Collapse
|
8
|
Ingrao F, Ngabirano E, Rauw F, Dauphin G, Lambrecht B. Immunogenicity and protective efficacy of a multivalent herpesvirus vectored vaccine against H9N2 low pathogenic avian influenza in chicken. Vaccine 2024; 42:3410-3419. [PMID: 38641498 DOI: 10.1016/j.vaccine.2024.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/15/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
The application of recombinant herpesvirus of turkey, expressing the H9 hemagglutinin gene from low pathogenic avian influenza virus (LPAIV) H9N2 and the avian orthoavulavirus-1 (AOAV-1) (commonly known as Newcastle Disease virus (NDV)) fusion protein (F) as an rHVT-H9-F vaccine, is an alternative to currently used classical vaccines. This study investigated H9- and ND-specific humoral and mucosal responses, H9-specific cell-mediated immunity, and protection conferred by the rHVT-H9-F vaccine in specific pathogen-free (SPF) chickens. Vaccination elicited systemic NDV F- and AIV H9-specific antibody response but also local antibodies in eye wash fluid and oropharyngeal swabs. The ex vivo H9-specific stimulation of splenic and pulmonary T cells in the vaccinated group demonstrated the ability of vaccination to induce systemic and local cellular responses. The clinical protection against a challenge using a LPAIV H9N2 strain of the G1 lineage isolated in Morocco in 2016 was associated with a shorter duration of shedding along with reduced viral genome load in the upper respiratory tract and reduced cloacal shedding compared to unvaccinated controls.
Collapse
MESH Headings
- Animals
- Influenza A Virus, H9N2 Subtype/immunology
- Influenza A Virus, H9N2 Subtype/genetics
- Chickens/immunology
- Influenza in Birds/prevention & control
- Influenza in Birds/immunology
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Virus Shedding/immunology
- Specific Pathogen-Free Organisms
- Newcastle disease virus/immunology
- Newcastle disease virus/genetics
- Poultry Diseases/prevention & control
- Poultry Diseases/immunology
- Poultry Diseases/virology
- Immunity, Cellular
- Herpesvirus 1, Meleagrid/immunology
- Herpesvirus 1, Meleagrid/genetics
- Vaccination/methods
- Immunity, Humoral
- Genetic Vectors/immunology
- Immunogenicity, Vaccine
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
Collapse
Affiliation(s)
- Fiona Ingrao
- Service of Avian Virology and Immunology, Sciensano, 1180 Brussels, Belgium.
| | - Eva Ngabirano
- Service of Avian Virology and Immunology, Sciensano, 1180 Brussels, Belgium
| | - Fabienne Rauw
- Service of Avian Virology and Immunology, Sciensano, 1180 Brussels, Belgium
| | - Gwenaëlle Dauphin
- Ceva Santé Animale, 10 Avenue de la Ballastière, 33500 Libourne, France
| | | |
Collapse
|
9
|
Yin J, Zhang L, Wang C, Qin C, Miao M. Immunogenicity and safety of ebolavirus vaccines in healthy adults: a systematic review and meta-analysis of randomized controlled trials. Expert Rev Vaccines 2024; 23:148-159. [PMID: 38112249 DOI: 10.1080/14760584.2023.2296937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND This review aimed to systematically evaluate the immunogenicity and safety of the candidate Ebola virus vaccine (EVV). METHODS We searched five databases for randomized controlled trials (RCTs) evaluating the effects of EVV on healthy adults. The primary outcomes were relative risk (RR) of sero-conversion or sero-response of EVV in healthy adults between the groups that received EVV and the controls. RESULTS Twenty-nine RCTs (n = 23573) were included. There was a significant difference in RR of sero-conversion of EVV (RR 13.18; 95% CI 11.28-15.41; I2 = 33%; P < 0.01) between the two groups. There was a significant difference in RR of adverse events (AEs) of EVV (RR 1.49; 95% CI 1.27-1.74; I2 = 88%; P < 0.01), although no difference in RR of serious AE (SAE) between the two groups. Subgroup analysis showed that there was no significant difference in RR of AEs for DNAEBO, EBOV-GP, MVA, and rVSVN4CT1 vaccines, compared with controls. CONCLUSIONS The DNAEBO, EBOV-GP, MVA, and rVSVN4CT1 vaccines are likely to be safe and immunogenic, tending to support the vaccination against Ebola disease. These findings should provide much-needed evidence for public health policy makers to develop preventive measures based on disease prevalence features and socio-economic conditions.
Collapse
Affiliation(s)
- Juntao Yin
- Department of Pharmacy, Huaihe Hospital, Henan University, Kaifeng, Henan, China
- National International Cooperation Base of Chinese Medicine, Henan University of Chinese Medicine, zhengzhou, Henan, China
| | - Liang Zhang
- School of Medicine, Henan Technical Institute, Zhengzhou, China
| | - Chaoyang Wang
- Department of General Surgery, Huaihe Hospital, Henan University, Kaifeng, Henan, China
| | - Changjiang Qin
- Department of General Surgery, Huaihe Hospital, Henan University, Kaifeng, Henan, China
| | - Mingsan Miao
- National International Cooperation Base of Chinese Medicine, Henan University of Chinese Medicine, zhengzhou, Henan, China
| |
Collapse
|
10
|
Han L, Song S, Feng H, Ma J, Wei W, Si F. A roadmap for developing Venezuelan equine encephalitis virus (VEEV) vaccines: Lessons from the past, strategies for the future. Int J Biol Macromol 2023:125514. [PMID: 37353130 DOI: 10.1016/j.ijbiomac.2023.125514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Venezuelan equine encephalitis (VEE) is a zoonotic infectious disease caused by the Venezuelan equine encephalitis virus (VEEV), which can lead to severe central nervous system infections in both humans and animals. At present, the medical community does not possess a viable means of addressing VEE, rendering the prevention of the virus a matter of paramount importance. Regarding the prevention and control of VEEV, the implementation of a vaccination program has been recognized as the most efficient strategy. Nevertheless, there are currently no licensed vaccines or drugs available for human use against VEEV. This imperative has led to a surge of interest in vaccine research, with VEEV being a prime focus for researchers in the field. In this paper, we initially present a comprehensive overview of the current taxonomic classification of VEEV and the cellular infection mechanism of the virus. Subsequently, we provide a detailed introduction of the prominent VEEV vaccine types presently available, including inactivated vaccines, live attenuated vaccines, genetic, and virus-like particle vaccines. Moreover, we emphasize the challenges that current VEEV vaccine development faces and suggest urgent measures that must be taken to overcome these obstacles. Notably, based on our latest research, we propose the feasibility of incorporation codon usage bias strategies to create the novel VEEV vaccine. Finally, we prose several areas that future VEEV vaccine development should focus on. Our objective is to encourage collaboration between the medical and veterinary communities, expedite the translation of existing vaccines from laboratory to clinical applications, while also preparing for future outbreaks of new VEEV variants.
Collapse
Affiliation(s)
- Lulu Han
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China; Huaihe Hospital of Henan University, Clinical Medical College of Henan University, Kai Feng 475000, China
| | - Shuai Song
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, PR China
| | - Huilin Feng
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences of Henan University, Kai Feng 475000, China
| | - Jing Ma
- Huaihe Hospital of Henan University, Clinical Medical College of Henan University, Kai Feng 475000, China
| | - Wenqiang Wei
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences of Henan University, Kai Feng 475000, China.
| | - Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China.
| |
Collapse
|