1
|
Fiers J, Cay AB, Maes D, Tignon M. A Comprehensive Review on Porcine Reproductive and Respiratory Syndrome Virus with Emphasis on Immunity. Vaccines (Basel) 2024; 12:942. [PMID: 39204065 PMCID: PMC11359659 DOI: 10.3390/vaccines12080942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in pig production worldwide and responsible for enormous production and economic losses. PRRSV infection in gestating gilts and sows induces important reproductive failure. Additionally, respiratory distress is observed in infected piglets and fattening pigs, resulting in growth retardation and increased mortality. Importantly, PRRSV infection interferes with immunity in the respiratory tract, making PRRSV-infected pigs more susceptible to opportunistic secondary pathogens. Despite the availability of commercial PRRSV vaccines for more than three decades, control of the disease remains a frustrating and challenging task. This paper provides a comprehensive overview of PRRSV, covering its history, economic and scientific importance, and description of the viral structure and genetic diversity. It explores the virus's pathogenesis, including cell tropism, viral entry, replication, stages of infection and epidemiology. It reviews the porcine innate and adaptative immune responses to comprehend the modulation mechanisms employed by PRRS for immune evasion.
Collapse
Affiliation(s)
- Jorian Fiers
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
- Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Ann Brigitte Cay
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
| | - Dominiek Maes
- Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Marylène Tignon
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
| |
Collapse
|
2
|
Maragkakis G, Korou LM, Chaintoutis SC, Christodoulopoulos G, Dovas CI, Perrea D, Athansiou LV, Konstantopoulos P, Maes D, Papatsiros VG. Investigation of Fas (APO-1)-Related Apoptosis in Piglets Intradermally or Intramuscularly Vaccinated with a Commercial PRRSV MLV. Viral Immunol 2022; 35:129-137. [PMID: 35196156 DOI: 10.1089/vim.2021.0104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) induces apoptosis through the activation of death receptors, including cell-surface Fas receptor. The aim of this study was to investigate the impact of intradermal (ID) and intramuscular (IM) vaccination with a commercial PRRSV-modified live vaccine in piglets on Fas-related apoptosis. The study included 104 suckling piglets from a commercial farrow-to-finish pig farm, suffering from positive unstable PRRSV status. Animals were assigned in four groups: group A-Porcilis PRRS ID-vaccinated pigs, group B-Porcilis PRRS IM-vaccinated pigs, group C-Diluvac ID adjuvant-administered pigs, and group D-Diluvac IM adjuvant-administered pigs. Vaccines were administered at 2 weeks of age. Blood samples were collected from the same pigs at 4, 7, and 10 weeks of age. Sera were examined by quantitative real-time reverse transcription-PCR (qRT-PCR) for PRRSV and by ELISA for soluble Fas (sFas). At 4 weeks of age, all groups were negative qRT-PCR for PRRSV; at 7 weeks only group A was negative; and at 10 weeks all groups were positive. sFas was significantly increased in groups C (4 vs. 7, 4 vs. 10, and 7 vs. 10 weeks) and D (7 vs. 10 weeks). Significant differences among groups were noticed only at 10 weeks (A vs. C, A vs. D, B vs. C, B vs. D). A significant positive and moderate correlation between PRRSV viral load and Fas level was observed. In unvaccinated piglets, increased serum sFas levels reveal apoptotic suppression compared with vaccinated piglets. In the latter, vaccine-derived antibodies limit the infection and may attribute to the reduced Fas expression, suggesting a weak induction of lymphocyte-mediated cytotoxicity.
Collapse
Affiliation(s)
- Georgios Maragkakis
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
| | - Laskarina-Maria Korou
- Laboratory for Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Serafeim C Chaintoutis
- Diagnostic Laboratory, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Chrysostomos I Dovas
- Diagnostic Laboratory, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despina Perrea
- Laboratory for Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Labrini V Athansiou
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
| | - Panagiotis Konstantopoulos
- Laboratory for Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dominiek Maes
- Department of Obstetrics-Reproduction and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Vasileios G Papatsiros
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
| |
Collapse
|
3
|
Kim K, Ji P, Song M, Che TM, Bravo D, Pettigrew JE, Liu Y. Dietary plant extracts modulate gene expression profiles in alveolar macrophages of pigs experimentally infected with porcine reproductive and respiratory syndrome virus. J Anim Sci Biotechnol 2020; 11:74. [PMID: 32685145 PMCID: PMC7359597 DOI: 10.1186/s40104-020-00475-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/17/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Our previous study showed that 3 plant extracts enhanced the immune responses and growth efficiency of weaned pigs infected with porcine reproductive and respiratory syndrome virus (PRRSV), which is one of the most economically important disease in swine industry. However, each plant extract differently effected on growth efficiency and immune responses. Therefore, the objective of this study was conducted to characterize the effects and investigate the potential underlying mechanisms of 3 plant extracts on gene expression of alveolar macrophages in weaned pigs experimentally infected with PRRSV. RESULTS PRRSV infection altered (P < 0.05) the expression of 1,352 genes in pigs fed the control (CON; 755 up, 597 down). Compared with the infected CON, feeding capsicum (CAP), garlic botanical (GAR), or turmeric oleoresin (TUR) altered the expression of 46 genes (24 up, 22 down), 134 genes (59 up, 75 down), or 98 genes (55 up, 43 down) in alveolar macrophages of PRRSV-infected pigs, respectively. PRRSV infection up-regulated (P < 0.05) the expression of genes related to cell apoptosis, immune system process, and response to stimulus, but down-regulated (P < 0.05) the expression of genes involved in signaling transduction and innate immune response. Compared with the infected CON, feeding TUR or GAR reduced (P < 0.05) the expression of genes associated with antigen processing and presentation, feeding CAP up-regulated (P < 0.05) the expression of genes involved in antigen processing and presentation. Supplementation of CAP, GAR, or TUR also enhanced (P < 0.05) the expression of several genes related to amino acid metabolism, steroid hormone synthesis, or RNA degradation, respectively. CONCLUSIONS The results suggest that 3 plant extracts differently regulated the expression of genes in alveolar macrophages of PRRSV-infected pigs, especially altering genes involved in immunity.
Collapse
Affiliation(s)
- Kwangwook Kim
- Department of Animal Science, University of California, Davis, CA USA
| | - Peng Ji
- Department of Nutrition, University of California, Davis, CA USA
| | - Minho Song
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Tung M. Che
- Department of Animal Production, Nong Lam University, Ho Chi Minh City, Vietnam
| | - David Bravo
- Pancosma SA, Geneva, Switzerland
- Current address: Land O’Lakes Inc., Arden Hills, MN USA
| | | | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA USA
| |
Collapse
|
4
|
Ruedas-Torres I, Rodríguez-Gómez IM, Sánchez-Carvajal JM, Pallares FJ, Barranco I, Carrasco L, Gómez-Laguna J. Activation of the extrinsic apoptotic pathway in the thymus of piglets infected with PRRSV-1 strains of different virulence. Vet Microbiol 2020; 243:108639. [PMID: 32273018 DOI: 10.1016/j.vetmic.2020.108639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 11/17/2022]
Abstract
In the last decade, the outbreaks caused by virulent porcine reproductive and respiratory syndrome virus (PRRSV) strains from both PRRSV-1 and PRRSV-2 have considerably increased. PRRSV is able to modulate the host's immune response through the induction of apoptosis of cells in lymphoid organs like thymus, increasing the susceptibility to secondary infectious agents. The present study aimed to compare the impact of two PRRSV-1 strains, a field low virulent strain (3249 strain) and a virulent strain (Lena strain), in the thymus of infected pigs, focusing on clinical signs, histological analysis, viraemia, thymus viral load and the study of the different routes of apoptosis phenomena by immunohistochemistry. Sera and thymus samples were collected from infected animals with 3249 strain, Lena strain and mock-infected animals at 1, 3, 6, 8 and 13 days post-infection (dpi). Lena-infected animals showed severe clinical disease, high sera and thymus viral loads with evident thymic atrophy since 6 dpi, matching with PRRSV-N protein, TUNEL and cCasp3 expression in the thymic cortex. In both infected groups, there was an increase in the number of cells expressing molecules related to the extrinsic pathway of apoptosis (cCasp8 and Fas) in cortex and medulla, showing an important role in the apoptosis induction produced in thymus of PRRSV-infected piglets. The extensive apoptosis in the thymus through this pathway would lead to a decrease in the number of mature T lymphocytes and the sustained release of viral particles, which may explain the greater severity of the clinical signs observed in Lena-infected pigs.
Collapse
Affiliation(s)
- Inés Ruedas-Torres
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain.
| | - Irene Magdalena Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - Jose María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - Francisco José Pallares
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Murcia, 30100, Murcia, Spain
| | - Inmaculada Barranco
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| |
Collapse
|
5
|
Suleman M, Malgarin CM, Detmer SE, Harding JCS, MacPhee DJ. The porcine trophoblast cell line PTr2 is susceptible to porcine reproductive and respiratory syndrome virus-2 infection. Placenta 2019; 88:44-51. [PMID: 31670096 DOI: 10.1016/j.placenta.2019.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/05/2019] [Accepted: 10/04/2019] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Porcine reproductive and respiratory syndrome virus-2 (PRRSV-2) breaches the maternal-fetal interface (MFI) to infect porcine fetuses, yet the exact mechanism(s) of transmission is not understood. The objective of this study was to determine the susceptibility of porcine trophoblast cell line (PTr2) to PRRSV-2 infection to understand the potential role of the trophoblast in viral transmission to fetuses in vivo. METHODS PTr2 cells were exposed in vitro to PRRSV-2 and then subjected to immunofluorescence analysis (IF), flow cytometry (FCM), real-time quantitative PCR (RT-qPCR), transmission electron microscopy (TEM) and immunogold electron microscopy (IEM) to assess viral infection. The effects of PRRSV-2 on PTr2 cell cycle progression and apoptosis, as well as the ability of PTr2 cells to produce infectious viral particles were also examined. RESULTS PRRSV-2 was readily detected in PTr2 cells by IF, FCM, RT-qPCR, TEM and IEM techniques. RT-qPCR and FCM results of a time course of infection of PTr2 cells indicated PRRSV-2 load decreased over time after initial infection up to 72 h. PRRSV-2 infection altered PTr2 cell cycle with a selective increase of cells within the G2/M phase and also induced apoptosis. TEM and IEM demonstrated PRRSV-2 within and on the surface of PTr2 cells and PRRSV-2 virions released from PTr2 cells infected naïve MARC-145 cells inducing cytopathic effects. DISCUSSION Trophoblast cells are susceptible to PRRSV-2 infection and release live virions capable of inducing cytopathic effects in naïve cells. This suggests a possible mechanism by which PRRSV-2 can breach the MFI resulting in fetal infection and death.
Collapse
Affiliation(s)
- M Suleman
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada; Department of Microbiology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - C M Malgarin
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - S E Detmer
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - J C S Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - D J MacPhee
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
6
|
Desmonts de Lamache D, Moges R, Siddiq A, Allain T, Feener TD, Muench GP, McKenna N, Yates RM, Buret AG. Immuno-modulating properties of Tulathromycin in porcine monocyte-derived macrophages infected with porcine reproductive and respiratory syndrome virus. PLoS One 2019; 14:e0221560. [PMID: 31442273 PMCID: PMC6707645 DOI: 10.1371/journal.pone.0221560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/09/2019] [Indexed: 01/04/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a positive-stranded RNA virus that grows in macrophages and causes acute pneumonia in pigs. PRRSV causes devastating losses to the porcine industry. However, due to its high antigenic variability and poorly understood immunopathogenesis, there is currently no effective vaccine or treatment to control PRRSV infection. The common occurrence of PRRSV infection with bacterial infections as well as its inflammatory-driven pathobiology raises the question of the value of antibiotics with immunomodulating properties for the treatment of the disease it causes. The macrolide antibiotic Tulathromycin (TUL) has been found to exhibit potent anti-inflammatory and immunomodulating properties in cattle and pigs. The aim of this study was to characterize the anti-viral and immunomodulating properties of TUL in PRRSV-infected porcine macrophages. Our findings indicate that blood monocyte-derived macrophages are readily infected by PRRSV and can be used as an effective cellular model to study PRRSV pathogenesis. TUL did not change intracellular or extracellular viral titers, not did it alter viral receptors (CD163 and CD169) expression on porcine macrophages. In contrast, TUL exhibited potent immunomodulating properties, which therefore occurred in the absence of any direct antiviral effects against PRRSV. TUL had an additive effect with PRRSV on the induction of macrophage apoptosis, and inhibited virus-induced necrosis. TUL significantly attenuated PRRSV-induced macrophage pro-inflammatory signaling (CXCL-8 and mitochondrial ROS production) and prevented PRRSV inhibition of non-opsonized and opsonized phagocytic function. Together, these data demonstrate that TUL inhibits PRRSV-induced inflammatory responses in porcine macrophages and protects against the phagocytic impairment caused by the virus. Research in live pigs is warranted to assess the potential clinical benefits of this antibiotic in the context of virally induced inflammation and tissue injury.
Collapse
Affiliation(s)
| | - R. Moges
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - A. Siddiq
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - T. Allain
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - T. D. Feener
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - G. P. Muench
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - N. McKenna
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary AB, Canada
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - R. M. Yates
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary AB, Canada
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - A. G. Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- * E-mail:
| |
Collapse
|
7
|
Go N, Touzeau S, Islam Z, Belloc C, Doeschl-Wilson A. How to prevent viremia rebound? Evidence from a PRRSv data-supported model of immune response. BMC SYSTEMS BIOLOGY 2019; 13:15. [PMID: 30696429 PMCID: PMC6352383 DOI: 10.1186/s12918-018-0666-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/21/2018] [Indexed: 01/24/2023]
Abstract
Background Understanding what determines the between-host variability in infection dynamics is a key issue to better control the infection spread. In particular, pathogen clearance is desirable over rebounds for the health of the infected individual and its contact group. In this context, the Porcine Respiratory and Reproductive Syndrome virus (PRRSv) is of particular interest. Numerous studies have shown that pigs similarly infected with this highly ubiquitous virus elicit diverse response profiles. Whilst some manage to clear the virus within a few weeks, others experience prolonged infection with a rebound. Despite much speculation, the underlying mechanisms responsible for this undesirable rebound phenomenon remain unclear. Results We aimed at identifying immune mechanisms that can reproduce and explain the rebound patterns observed in PRRSv infection using a mathematical modelling approach of the within-host dynamics. As diverse mechanisms were found to influence PRRSv infection, we established a model that details the major mechanisms and their regulations at the between-cell scale. We developed an ABC-like optimisation method to fit our model to an extensive set of experimental data, consisting of non-rebounder and rebounder viremia profiles. We compared, between both profiles, the estimated parameter values, the resulting immune dynamics and the efficacies of the underlying immune mechanisms. Exploring the influence of these mechanisms, we showed that rebound was promoted by high apoptosis, high cell infection and low cytolysis by Cytotoxic T Lymphocytes, while increasing neutralisation was very efficient to prevent rebounds. Conclusions Our paper provides an original model of the immune response and an appropriate systematic fitting method, whose interest extends beyond PRRS infection. It gives the first mechanistic explanation for emergence of rebounds during PRRSv infection. Moreover, results suggest that vaccines or genetic selection promoting strong neutralising and cytolytic responses, ideally associated with low apoptotic activity and cell permissiveness, would prevent rebound. Electronic supplementary material The online version of this article (10.1186/s12918-018-0666-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natacha Go
- BIOEPAR, INRA, Oniris, Route de Gachet, CS 40706, Nantes, France. .,BIOCORE, Inria, INRA, CNRS, UPMC Univ Paris 06, Université Côte d'Azur, 2004 route des Lucioles, BP 93, Sophia Antipolis, France. .,Division of Genetics and Genomics, The Roslin Institute, Easter Bush, Midlothian, UK.
| | - Suzanne Touzeau
- BIOCORE, Inria, INRA, CNRS, UPMC Univ Paris 06, Université Côte d'Azur, 2004 route des Lucioles, BP 93, Sophia Antipolis, France.,ISA, INRA, CNRS, Université Côte d'Azur, 400 route des Chappes, BP 167, Sophia Antipolis, France
| | - Zeenath Islam
- Division of Genetics and Genomics, The Roslin Institute, Easter Bush, Midlothian, UK
| | - Catherine Belloc
- BIOEPAR, INRA, Oniris, Route de Gachet, CS 40706, Nantes, France
| | - Andrea Doeschl-Wilson
- Division of Genetics and Genomics, The Roslin Institute, Easter Bush, Midlothian, UK
| |
Collapse
|
8
|
Song L, Han X, Jia C, Zhang X, Jiao Y, Du T, Xiao S, Hiscox JA, Zhou EM, Mu Y. Porcine reproductive and respiratory syndrome virus inhibits MARC-145 proliferation via inducing apoptosis and G2/M arrest by activation of Chk/Cdc25C and p53/p21 pathway. Virol J 2018; 15:169. [PMID: 30400903 PMCID: PMC6219034 DOI: 10.1186/s12985-018-1081-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/16/2018] [Indexed: 12/03/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus(PRRSV) is an important immunosuppressive virus which can suppresses infected cells proliferation. In this work, we examined PRRSV ability to manipulate cell cycle progression of MARC-145 cells and explored the potential molecular mechanisms. The results showed that PRRSV infection imposed a growth-inhibitory effect on MARC-145 cells by inducing cell cycle arrest at G2/M phase. This arrest was due to the significant decrease of Cdc2-cyclinB1 complex activity in PRRSV-infected cells and the activity reduction was a result of Cdc2 Tyr15 phosphorylation and the accumulation of Cdc2 and cyclinB1 in the nucleus. Not only elevated Wee1 and Myt1 expression and inactivated Cdc25C, but also increase of p21 and 14–3-3σ in a p53-dependent manner caused the inhibitory Tyr15 phosphorylation of Cdc2. PRRSV infection also activated Chk1. Our data suggest PRRSV infection induces G2/M arrest via various molecular regulatory mechanisms. These results provide a new insights for PRRSV pathogenesis.
Collapse
Affiliation(s)
- Linlin Song
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Ximeng Han
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Cunyu Jia
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xin Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yunjie Jiao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Taofeng Du
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Shuqi Xiao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Julian A Hiscox
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China. .,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China.
| | - Yang Mu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China. .,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China.
| |
Collapse
|
9
|
Metz GE, Abeyá MM, Serena MS, Panei CJ, Echeverría MG. Evaluation of apoptosis markers in different cell lines infected with equine arteritis virus. Biotech Histochem 2018; 94:115-125. [PMID: 30350720 DOI: 10.1080/10520295.2018.1521989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Equine arteritis virus (EAV) induces apoptosis in infected cells. Cell death caused by EAV has been studied mainly using three cell lines, BHK-21, RK-13 and Vero cells. The mechanism of apoptosis varies among cell lines and results cannot be correlated owing to differences in EAV strains used. We evaluated different markers for apoptosis in BHK-21, RK-13 and Vero cell lines using the Bucyrus EAV reference strain. Acridine orange/ethidium bromide staining revealed morphological changes in infected cells, while flow cytometry indicated the extent of apoptosis. We also observed DNA fragmentation, but the DNA ladder was detected at different times post-infection depending on the cell line, i.e., 48, 72 and 96 h post-infection in RK-13, Vero and BHK-21 cells, respectively. Measurement of viral titers obtained with each cell line indicated that apoptosis causes interference with viral replication and therefore decreased viral titers. As an unequivocal marker of apoptosis, we measured the expression of caspase-3 and caspases-8 and -9 as extrinsic and intrinsic markers of apoptosis pathways, respectively. Caspase-8 in BHK-21 cells was the only protease that was not detected at any of the times assayed. We found that Bucyrus EAV strain exhibited a distinctive apoptosis pathway depending on the cell line.
Collapse
Affiliation(s)
- G E Metz
- a Department of Virology, Faculty of Veterinary Sciences , National University of La Plata , La Plata , Argentina
| | - M M Abeyá
- a Department of Virology, Faculty of Veterinary Sciences , National University of La Plata , La Plata , Argentina
| | - M S Serena
- a Department of Virology, Faculty of Veterinary Sciences , National University of La Plata , La Plata , Argentina
| | - C J Panei
- a Department of Virology, Faculty of Veterinary Sciences , National University of La Plata , La Plata , Argentina
| | - M G Echeverría
- a Department of Virology, Faculty of Veterinary Sciences , National University of La Plata , La Plata , Argentina
| |
Collapse
|
10
|
Intercellular transfer of mitochondria rescues virus-induced cell death but facilitates cell-to-cell spreading of porcine reproductive and respiratory syndrome virus. Virology 2018; 517:122-134. [DOI: 10.1016/j.virol.2017.12.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 11/21/2022]
|
11
|
ZHANG F, GAO P, GE XN, ZHOU L, GUO X, YANG HC. Critical role of cytochrome c1 and its cleavage in porcine reproductive and respiratory syndrome virus nonstructural protein 4-induced cell apoptosis via interaction with nsp4. JOURNAL OF INTEGRATIVE AGRICULTURE : JIA 2017; 16:2573-2585. [PMID: 32288954 PMCID: PMC7129397 DOI: 10.1016/s2095-3119(17)61670-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/12/2017] [Indexed: 06/11/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) actively induces cell apoptosis both in vitro and in vivo, which can contribute critically to viral pathogenesis. Previous studies have shown that the PRRSV nonstructural protein 4 (nsp4) is an important mediator of this process, but the underlying molecular details remain poorly understood. In this study, we found that the PRRSV nsp4 interacted with the mitochondrial inner membrane protein cytochrome c1 (cyto.c1) and induced its proteolytic cleavage. Interestingly, the cleaved N-terminal fragment of cyto.c1 was found to exert apoptotic activity, which could cause mitochondrial fragmentation, resulting in apoptotic cell death. And RNA interference (RNAi) silencing experiments further confirmed the crucial role which cyto.c1 played in nsp4- and PRRSV-induced cell apoptosis. Thus, our data provide an important piece of mechanistic clues for PRRSV-induced cell apoptosis and also elucidate a novel mechanism for the 3C-like proteases in this finding.
Collapse
Affiliation(s)
| | | | | | | | | | - Han-chun YANG
- Correspondence YANG Han-chun, Tel/Fax: +86-10-62731296
| |
Collapse
|
12
|
Kavanová L, Matiašková K, Levá L, Štěpánová H, Nedbalcová K, Matiašovic J, Faldyna M, Salát J. Concurrent infection with porcine reproductive and respiratory syndrome virus and Haemophilus parasuis in two types of porcine macrophages: apoptosis, production of ROS and formation of multinucleated giant cells. Vet Res 2017; 48:28. [PMID: 28472979 PMCID: PMC5418695 DOI: 10.1186/s13567-017-0433-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/19/2017] [Indexed: 01/27/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most significant and economically important infectious diseases affecting swine worldwide and can predispose pigs to secondary bacterial infections caused by, e.g. Haemophilus parasuis. The aim of the presented study was to compare susceptibility of two different types of macrophages which could be in contact with both pathogens during infection with PRRS virus (PRRSV) and in co-infection with H. parasuis. Alveolar macrophages (PAMs) as resident cells provide one of the first lines of defence against microbes invading lung tissue. On the other hand, monocyte derived macrophages (MDMs) represent inflammatory cells accumulating at the site of inflammation. While PAMs were relatively resistant to cytopathogenic effect caused by PRRSV, MDMs were much more sensitive to PRRSV infection. MDMs infected with PRRSV increased expression of pro-apoptotic Bad, Bax and p53 mRNA. Increased mortality of MDMs may be also related to a higher intensity of ROS production after infection with PRRSV. In addition, MDMs (but not PAMs) infected with H. parasuis alone formed multinucleated giant cells (MGC); these cells were not observed in MDMs infected with both pathogens. Higher sensitivity of MDMs to PRRSV infection, which is associated with limited MDMs survival and restriction of MGC formation, could contribute to the development of multifactorial respiratory disease of swine.
Collapse
Affiliation(s)
- Lenka Kavanová
- Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic.,Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 267/2, 61137, Brno, Czech Republic
| | - Katarína Matiašková
- Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic.,University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 612 42, Brno, Czech Republic
| | - Lenka Levá
- Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | - Hana Štěpánová
- Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | | | - Ján Matiašovic
- Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | - Martin Faldyna
- Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | - Jiří Salát
- Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic.
| |
Collapse
|
13
|
Han J, Zhou L, Ge X, Guo X, Yang H. Pathogenesis and control of the Chinese highly pathogenic porcine reproductive and respiratory syndrome virus. Vet Microbiol 2017; 209:30-47. [PMID: 28292547 DOI: 10.1016/j.vetmic.2017.02.020] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 12/24/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has remained a major threat to the worldwide swine industry ever since its first discovery in the early 1990s. Under the selective pressures in the field, this positive-stranded RNA virus undergoes rapid genetic evolution that eventually leads to emergence in 2006 of the devastating Chinese highly pathogenic PRRSV (HP-PRRSV). The atypical nature of HP-PRRSV has caused colossal economic losses to the swine producers in China and the surrounding countries. In this review, we summarize the recent advances in our understanding of the pathogenesis, evolution and ongoing field practices on the control of this troubling virus in China.
Collapse
Affiliation(s)
- Jun Han
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China.
| |
Collapse
|
14
|
Comparison of Asian porcine high fever disease isolates of porcine reproductive and respiratory syndrome virus to United States isolates for their ability to cause disease and secondary bacterial infection in swine. Vet Microbiol 2017; 203:6-17. [PMID: 28619168 DOI: 10.1016/j.vetmic.2017.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 11/21/2022]
Abstract
Epidemiologic data from Asian outbreaks of highly-pathogenic (HP) porcine reproductive and respiratory syndrome virus (PRRSV) suggest that disease severity was associated with both the virulence of the PRRSV isolates and secondary bacterial infections. Previous reports have indicated that U.S. isolates of PRRSV predispose to secondary bacterial infections as well, but the severity of disease that occurred in Asia in pigs infected with these HP-PRRSV strains has not been reported in the U.S. The objectives of this research were to compare the pathogenesis of Asian and U.S. PRRSV isolates with regard to their ability to cause disease and predispose to secondary bacterial infections in swine. To address these objectives groups of pigs were infected with 1 of 2 Asian HP-PRRSV strains (rJXwn06 or rSRV07) or 1 of 2 U.S. PRRSV strains (SDSU73 or VR-2332) alone or in combination with Streptococcus suis, Haemophilus parasuis, and Actinobacillus suis. Pigs infected with rJXwn06 exhibited the most severe clinical disease while the pigs infected with rSRV07 and SDSU73 exhibited moderate clinical disease, and pigs infected with VR-2332 exhibited minimal clinical signs. The frequency of secondary bacterial pneumonia was associated with the clinical severity induced by the PRRSV strains evaluated. The levels of proinflammatory cytokines in the serum were often lower for pigs coinfected with virus and bacteria compared to pigs infected with PRRSV alone indicating an alteration in the immune response in coinfected pigs. Combined our results demonstrate that severity of disease appears to be dependent on virulence of the PRRSV strain, and development of secondary bacterial infection.
Collapse
|
15
|
Nedumpun T, Wongyanin P, Sirisereewan C, Ritprajak P, Palaga T, Thanawongnuwech R, Suradhat S. Interleukin-1 receptor antagonist: an early immunomodulatory cytokine induced by porcine reproductive and respiratory syndrome virus. J Gen Virol 2017; 98:77-88. [PMID: 27902420 DOI: 10.1099/jgv.0.000665] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection poorly induces pro-inflammatory cytokines (IL-1, IL-6 and TNF-α) and type I IFN production during the early phase of infection. Our microarray analysis indicated strong upregulation of the IL1RA gene in type 2 PRRSV -infected monocyte-derived dendritic cells. Interleukin-1 receptor antagonist (IL-1Ra) is an early inhibitory cytokine that suppresses pro-inflammatory cytokines and T-lymphocyte responses. To investigate the induction of IL-1Ra by PRRSV, monocyte-derived dendritic cells were cultured with type 2 PRRSV or other swine viruses. PRRSV increased both IL1RA gene expression and IL-1Ra protein production in the culture. The enhanced production of IL-1Ra was further confirmed in PRRSV-cultured PBMC and PRRSV-exposed pigs by flow cytometry. Myeloid cell population appeared to be the major IL-1Ra producer both in vitro and in vivo. In contrast to the type 2 PRRSV, the highly pathogenic (HP)- PRRSV did not upregulate IL1RA gene expression in vitro. To determine the kinetics of PRRSV-induced IL1RA gene expression in relation to other pro-inflammatory cytokine genes, PRRSV-negative pigs were vaccinated with a commercially available type 2 modified-live PRRS vaccine or intranasally inoculated with HP-PRRSV. In modified-live PRRS vaccine pigs, upregulation of IL1RA, but not IL1B and IFNA, gene expression was observed from 2 days post- vaccination. Consistent with the in vitro findings, upregulation of IL1RA gene expression was not observed in the HP-PRRSV-infected pigs throughout the experiment. This study identified IL-1Ra as an early immunomodulatory mediator that could be involved in the immunopathogenesis of PRRSV infections.
Collapse
Affiliation(s)
- Teerawut Nedumpun
- Interdisciplinary Program of Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Piya Wongyanin
- Department of Medical Technology, Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University, Bangkok, Thailand
| | - Chaitawat Sirisereewan
- Graduate Program in Veterinary Pathobiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Patcharee Ritprajak
- Department of Microbiology, RU in Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Roongroje Thanawongnuwech
- Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand.,Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sanipa Suradhat
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand
| |
Collapse
|
16
|
Wu D, Xi QY, Cheng X, Dong T, Zhu XT, Shu G, Wang LN, Jiang QY, Zhang YL. miR-146a-5p inhibits TNF-α-induced adipogenesis via targeting insulin receptor in primary porcine adipocytes. J Lipid Res 2016; 57:1360-72. [PMID: 27324794 PMCID: PMC4959853 DOI: 10.1194/jlr.m062497] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Indexed: 02/05/2023] Open
Abstract
TNF-α is a multifunctional cytokine participating in immune disorders, inflammation, and tumor development with regulatory effects on energy metabolism. Our work focused on the function of TNF-α in adipogenesis of primary porcine adipocytes. TNF-α could suppress the insulin receptor (IR) at the mRNA and protein levels. Microarray analysis of TNF-α-treated porcine adipocytes was used to screen out 29 differentially expressed microRNAs (miRNAs), 13 of which were remarkably upregulated and 16 were intensely downregulated. These 29 differentially expressed miRNAs were predicted to mainly participate in the insulin signaling pathway, adipocytokine signaling pathway, and type 2 diabetes mellitus pathway by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. miR-146a-5p, reportedly involved in immunity and cancer relevant processes, was one of the most highly differentially expressed miRNAs after TNF-α treatment. Red Oil O staining and TG assay revealed that miR-146a-5p suppressed adipogenesis. A dual-luciferase reporter and siRNA assay verified that miR-146a-5p targeted IR and could inhibit its protein expression. miR-146a-5p was also validated to be involved in the insulin signaling pathway by reducing tyrosine phosphorylation of insulin receptor substrate-1. Our study provides the first evidence of miR-146a-5p targeting IR, which facilitates future studies related to obesity and diabetes using pig models.
Collapse
Affiliation(s)
- Di Wu
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, China, 510642
| | - Qian-Yun Xi
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, China, 510642
| | - Xiao Cheng
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, China, 510642
| | - Tao Dong
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, China, 510642
| | - Xiao-Tong Zhu
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, China, 510642
| | - Gang Shu
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, China, 510642
| | - Li-Na Wang
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, China, 510642
| | - Qing-Yan Jiang
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, China, 510642
| | - Yong-Liang Zhang
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, China, 510642
| |
Collapse
|
17
|
Ge M, Zhang Y, Liu Y, Liu T, Zeng F. Propagation of field highly pathogenic porcine reproductive and respiratory syndrome virus in MARC-145 cells is promoted by cell apoptosis. Virus Res 2016; 213:322-331. [DOI: 10.1016/j.virusres.2015.12.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 02/04/2023]
|
18
|
Jung K, Hu H, Saif LJ. Porcine deltacoronavirus induces apoptosis in swine testicular and LLC porcine kidney cell lines in vitro but not in infected intestinal enterocytes in vivo. Vet Microbiol 2015; 182:57-63. [PMID: 26711029 PMCID: PMC7117480 DOI: 10.1016/j.vetmic.2015.10.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 01/05/2023]
Abstract
The mechanisms of PDCoV induced cell death in vivo and in vitro were unknown. No PDCoV-infected enterocytes in vivo showed positive TUNEL staining. TUNEL-positive signals (apoptotic nuclear fragmentation) were found in infected LLC-PK and ST cells that also showed cytopathic effects. PDCoV does not induce apoptosis in infected enterocytes in vivo, but in LLC-PK and ST cells in vitro.
We compared the mechanisms of porcine delatacoronavirus (PDCoV) induced death of infected enterocytes in vivo and infected LLC porcine kidney (LLC-PK) and swine testicular (ST) cells in vitro. We conducted histologic analysis and immunofluorescence (IF) staining for the detection of PDCoV antigens, and TUNEL assay in singly or serially cut tissue sections from the small and large intestines of four, 11- to 14-day-old gnotobiotic pigs, inoculated orally with 8.8–11.0 log10 genomic equivalents (GE) of US PDCoV strains OH-FD22 or OH-FD100 (n = 3), or mock (n = 1). Similar comparative assays were done on LLC-PK and ST cells inoculated with the cell-adapted PDCoV strain OH-FD22-P44 (passage 44) in cell culture medium with 2.5–10 μg/ml of trypsin and 1% pancreatin, respectively. At post-inoculation days 3–4, infected pigs showed severe watery diarrhea and/or vomiting and mainly, diffuse, severe atrophic enteritis, with mild to moderate cytoplasmic vacuolation of the enteroctyes lining the atrophied villous epithelium. By IF, PDCoV antigens were evident in villous or crypt epithelial cells. No PDCoV antigen-positive, small and large intestinal villous or crypt epithelial cells, of which cytoplasm was also either vacuolated or morphologically normal, showed positive TUNEL staining. In contrast, by double IF and TUNEL staining, most of the TUNEL-positive signals (apoptotic nuclear fragmentation) were found in PDCoV antigen-positive LLC-PK and ST cells that also showed cytopathic effects, such as cell rounding, detachment and clumping in clusters. Secondary annexin V/propidium iodide (PI) staining revealed increased numbers of annexin V- or PI-positive LLC-PK and ST cells at 21 h after inoculation, compared to the negative controls. Thus, PDCoV does not induce apoptosis in the infected intestinal enterocytes in vivo, but in two infected cell lines of swine origin, LLC-PK and ST cells.
Collapse
Affiliation(s)
- Kwonil Jung
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural, and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio, USA.
| | - Hui Hu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural, and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio, USA
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural, and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio, USA.
| |
Collapse
|
19
|
Glycoprotein 5 of porcine reproductive and respiratory syndrome virus strain SD16 inhibits viral replication and causes G2/M cell cycle arrest, but does not induce cellular apoptosis in Marc-145 cells. Virology 2015; 484:136-145. [PMID: 26093497 DOI: 10.1016/j.virol.2015.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/23/2015] [Accepted: 05/30/2015] [Indexed: 11/24/2022]
Abstract
Cell apoptosis is common after infection with porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV GP5 has been reported to induce cell apoptosis. To further understand the role of GP5 in PRRSV induced cell apoptosis, we established Marc-145 cell lines stably expressing full-length GP5, GP5(Δ84-96) (aa 84-96 deletion), and GP5(Δ97-119) (aa 97-119 deletion). Cell proliferation, cell cycle progression, cell apoptosis and virus replication in these cell lines were evaluated. Neither truncated nor full-length GP5 induced cell apoptosis in Marc-145 cells. However, GP5(Δ97-119), but not full-length or GP5(Δ84-96), induced a cell cycle arrest at the G2/M phase resulting in a reduction in the growth of Marc-145 cells. Additionally, GP5(Δ84-96) inhibited the replication of PRRSV in Marc-145 cells through induction of IFN-β. These findings suggest that PRRSV GP5 is not responsible for inducing cell apoptosis in Marc-145 cells under these experimental conditions; however it has other important roles in virus/host cell biology.
Collapse
|
20
|
Li E, Sun N, Zhao JX, Sun YG, Huang JG, Lei HM, Guo JH, Hu YL, Wang WK, Li HQ. In vitro evaluation of antiviral activity of tea seed saponins against porcine reproductive and respiratory syndrome virus. Antivir Ther 2015; 20:743-52. [DOI: 10.3851/imp2937] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2015] [Indexed: 10/24/2022]
|
21
|
Gao J, Ji P, Zhang M, Wang X, Li N, Wang C, Xiao S, Mu Y, Zhao Q, Du T, Sun Y, Hiscox JA, Zhang G, Zhou EM. GP5 expression in Marc-145 cells inhibits porcine reproductive and respiratory syndrome virus infection by inducing beta interferon activity. Vet Microbiol 2014; 174:409-418. [DOI: 10.1016/j.vetmic.2014.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/14/2022]
|
22
|
Ren JQ, Sun WC, Lu HJ, Wen SB, Jing J, Yan FL, Liu H, Liu CX, Xiao PP, Chen X, Du SW, Du R, Jin NY. Construction and immunogenicity of a DNA vaccine coexpressing GP3 and GP5 of genotype-I porcine reproductive and respiratory syndrome virus. BMC Vet Res 2014; 10:128. [PMID: 24916952 PMCID: PMC4090398 DOI: 10.1186/1746-6148-10-128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 05/28/2014] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The European (EU) genotype of porcine reproductive and respiratory syndrome virus (Genotype-I PRRSV) has recently emerged in China. The coexistence of Genotype-I and -II PRRSV strains could cause seriously affect PRRSV diagnosis and management. Current vaccines are not able to protect against PRRSV infection completely and have inherent drawbacks. Thus, genetically engineered vaccines, including DNA vaccine and live vector engineered vaccines, have been developed. This study aimed to determine the enhanced immune responses of mice inoculated with a DNA vaccine coexpressing GP3 and GP5 of a Genotype-I PRRSV. RESULTS To evaluate the immunogenicity of GP3 and GP5 proteins from European-type PRRSV, three DNA vaccines, pVAX1-EU-ORF3-ORF5, pVAX1-EU-ORF3 and pVAX1-EU-ORF5, were constructed, which were based on a Genotype-I LV strain (GenBank ID: M96262). BALB/c mice were immunized with the DNA vaccines; delivered in the form of chitosan-DNA nanoparticles. To increase the efficiency of the vaccine, Quil A (Quillaja) was used as an adjuvant. GP3 and GP5-specific antibodies, neutralizing antibodies and cytokines (IL-2, IL-4, IL-10 and IFN gamma) from the immunized mice sera, and other immune parameters, were examined, including T-cell proliferation responses and subgroups of spleen T-lymphocytes. The results showed that ORF3 and ORF5 proteins of Genotype-I PRRSV induced GP3 and GP5-specific antibodies that could neutralize the virus. The levels of Cytokines IL-2, IL-4, IL-10, and IFN-γ of the experimental groups were significantly higher than those of control groups after booster vaccination (P < 0.05). The production of CD3+CD4+ and CD3+CD8+ T lymphocyte was also induced. T lymphocyte proliferation assays showed that the PRRSV LV strain virus could stimulate the proliferation of T lymphocytes in mice in the experimental group. CONCLUSIONS Using Quil A as adjuvant, Genotype-I PRRSV GP3 and GP5 proteins produced good immunogenicity and reactivity. More importantly, better PRRSV-specific neutralizing antibody titers and cell-mediated immune responses were observed in mice immunized with the DNA vaccine co-expressing GP3 and GP5 proteins than in mice immunized with a DNA vaccine expressing either protein singly. The results of this study demonstrated that co-immunization with GP3 and GP5 produced a better immune response in mice.
Collapse
Affiliation(s)
- Jing-Qiang Ren
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Wen-Chao Sun
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
- College of Animal Science and Technology, Graduate School, Jilin Agricultural University, Changchun 130118, China
| | - Hui-Jun Lu
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
| | - Shu-Bo Wen
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
- College of Animal Science and Technology, Graduate School, Jilin Agricultural University, Changchun 130118, China
| | - Jie Jing
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Fu-Long Yan
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
- College of Animal Science and Technology, Graduate School, Jilin Agricultural University, Changchun 130118, China
| | - Hao Liu
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Cun-Xia Liu
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
| | - Peng-Peng Xiao
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xing Chen
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
- College of Animal Science and Technology, Graduate School, Jilin Agricultural University, Changchun 130118, China
| | - Shou-Wen Du
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Rui Du
- College of Animal Science and Technology, Graduate School, Jilin Agricultural University, Changchun 130118, China
| | - Ning-Yi Jin
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
23
|
Wang L, Zhou L, Zhang H, Li Y, Ge X, Guo X, Yu K, Yang H. Interactome profile of the host cellular proteins and the nonstructural protein 2 of porcine reproductive and respiratory syndrome virus. PLoS One 2014; 9:e99176. [PMID: 24901321 PMCID: PMC4047090 DOI: 10.1371/journal.pone.0099176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/12/2014] [Indexed: 11/23/2022] Open
Abstract
The nonstructural protein 2 (NSP2) is considered to be one of crucial viral proteins in the replication and pathogenesis of porcine reproductive and respiratory syndrome virus (PRRSV). In the present study, the host cellular proteins that interact with the NSP2 of PRRSV were immunoprecipitated with anti-Myc antibody from the MARC-145 cells infected by a recombinant PRRSV with 3xMyc tag insertion in its NSP2-coding region, and then 285 cellular proteins interacting with NSP2 were identified by LC-MS/MS. The Gene Ontology and enriched KEGG Pathway bioinformatics analyses indicated that the identified proteins could be assigned to different subcellular locations and functional classes. Functional analysis of the interactome profile highlighted cellular pathways associated with infectious disease, translation, immune system, nervous system and signal transduction. Two interested cellular proteins–BCL2-associated athanogene 6 (BAG6) and apoptosis-inducing factor 1 (AIF1) which may involve in transporting of NSP2 to Endoplasmic reticulum (ER) or PRRSV-driven apoptosis were validated by Western blot. The interactome data between PRRSV NSP2 and cellular proteins contribute to the understanding of the roles of NSP2 in the replication and pathogenesis of PRRSV, and also provide novel cellular target proteins for elucidating the associated molecular mechanisms of the interaction of host cellular proteins with viral proteins in regulating the viral replication.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Han Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Yan Li
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Kangzhen Yu
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
- The Ministry of Agriculture of the People’s Republic of China, Beijing, People’s Republic of China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
- * E-mail:
| |
Collapse
|
24
|
Badaoui B, Rutigliano T, Anselmo A, Vanhee M, Nauwynck H, Giuffra E, Botti S. RNA-sequence analysis of primary alveolar macrophages after in vitro infection with porcine reproductive and respiratory syndrome virus strains of differing virulence. PLoS One 2014; 9:e91918. [PMID: 24643046 PMCID: PMC3958415 DOI: 10.1371/journal.pone.0091918] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 02/18/2014] [Indexed: 12/03/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) mainly infects porcine alveolar macrophages (PAMs), resulting in porcine reproductive and respiratory syndrome (PRRS) in pigs. Most of the transcriptomic studies on PAMs infected with PRRSV conducted thus far have made use of microarray technology. Here, we investigated the transcriptome of PAMs in vitro at 12 h post-infection with two European PRRSV strains characterized by low (Lelystad, LV) and high (Lena) virulence through RNA-Seq. The expression levels of genes, isoforms, alternative transcription start sites (TSS) and differential promoter usage revealed a complex pattern of transcriptional and post-transcriptional gene regulation upon infection with the two strains. Gene ontology analysis confirmed that infection of PAMs with both the Lena and LV strains affected signaling pathways directly linked to the innate immune response, including interferon regulatory factors (IRF), RIG1-like receptors, TLRs and PKR pathways. The results confirmed that interferon signaling is crucial for transcriptional regulation during PAM infection. IFN-β1 and IFN-αω, but not IFN-α, were up-regulated following infection with either the LV or Lena strain. The down-regulation of canonical pathways, such as the interplay between the innate and adaptive immune responses, cell death and TLR3/TLR7 signaling, was observed for both strains, but Lena triggered a stronger down-regulation than LV. This analysis contributes to a better understanding of the interactions between PRRSV and PAMs and outlines the differences in the responses of PAMs to strains with different levels of virulence, which may lead to the development of new PRRSV control strategies.
Collapse
Affiliation(s)
- Bouabid Badaoui
- Parco Tecnologico Padano, Via Einstein, Lodi, Italy
- * E-mail:
| | | | - Anna Anselmo
- Parco Tecnologico Padano, Via Einstein, Lodi, Italy
| | - Merijn Vanhee
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | | | - Sara Botti
- Parco Tecnologico Padano, Via Einstein, Lodi, Italy
| |
Collapse
|
25
|
Abstract
Bovine viral diarrhea virus (BVDV) continues to be of economic significance to the livestock industry in terms of acute disease and fetal loss. Many of the lesions relating to BVDV infection have been well described previously. The virus is perpetuated in herds through the presence of calves that are persistently infected. Relationships between various species and biotypes of BVDV and host defenses are increasingly understood. Understanding of the host defense mechanisms of innate immunity and adaptive immunity continues to improve, and the effects of the virus on these immune mechanisms are being used to explain how persistent infection develops. The noncytopathic biotype of BVDV plays the major role in its effects on the host defenses by inhibiting various aspects of the innate immune system and creation of immunotolerance in the fetus during early gestation. Recent advances have allowed for development of affordable test strategies to identify and remove persistently infected animals. With these improved tests and removal strategies, the livestock industry can begin more widespread effective control programs.
Collapse
Affiliation(s)
- B. W. Brodersen
- Nebraska Veterinary Diagnostic Center, University of Nebraska–Lincoln, Lincoln, NE, USA
| |
Collapse
|
26
|
Potential role of porcine reproductive and respiratory syndrome virus structural protein GP2 in apoptosis inhibition. BIOMED RESEARCH INTERNATIONAL 2014; 2014:160505. [PMID: 24511529 PMCID: PMC3910534 DOI: 10.1155/2014/160505] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 01/08/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a serious threat to the pork industry, and its pathogenesis needs further investigations. To study the role of two structural proteins of PRRSV in virus-host cells interactions, two stable cell lines (MARC-2a and MARC-N) expressing GP2 and N proteins, respectively, were established. We induced apoptosis in these cells by treating them with staurosporine and found a significant reduction in the number of apoptotic cells in MARC-2a as compared to MARC-N and MARC-145 cells. In addition, we found significantly higher activities of transcriptional factors (NF- κ B and AP-1) in both cell lines as compared to MARC-145 (parent cells). Overall, our data suggest that, although both stable cell lines activate NF- κ B and AP-1, GP2 triggers the antiapoptotic process through an intermediate step that needs to be further investigated.
Collapse
|
27
|
Ni YY, Zhao Z, Opriessnig T, Subramaniam S, Zhou L, Cao D, Cao Q, Yang H, Meng XJ. Computer-aided codon-pairs deoptimization of the major envelope GP5 gene attenuates porcine reproductive and respiratory syndrome virus. Virology 2013; 450-451:132-9. [PMID: 24503075 DOI: 10.1016/j.virol.2013.12.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 09/11/2013] [Accepted: 12/10/2013] [Indexed: 11/15/2022]
Abstract
Synthetic attenuated virus engineering (SAVE) is an emerging technology that enables rapid attenuation of viruses. In this study, by using SAVE we demonstrated rapid attenuation of an arterivirus, porcine reproductive and respiratory syndrome virus (PRRSV). The major envelope GP5 gene of PRRSV was codon-pair deoptimized aided by a computer algorithm. The codon-pair deoptimized virus, designated as SAVE5 with a deoptimized GP5 gene, was successfully rescued in vitro. The SAVE5 virus replicated at a lower level in vitro with a significant decrease of GP5 protein expression compared to the wild-type PRRSV VR2385 virus. Pigs experimentally infected with the SAVE5 virus had significantly lower viremia level up to 14 days post-infection as well as significantly reduced gross and histological lung lesions when compared to wild-type PRRSV VR2385 virus-infected pigs, indicating the attenuation of the SAVE5 virus. This study proved the feasibility of rapidly attenuating PRRSV by SAVE.
Collapse
Affiliation(s)
- Yan-Yan Ni
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Zhao Zhao
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Tanja Opriessnig
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Sakthivel Subramaniam
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Lei Zhou
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Dianjun Cao
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Qian Cao
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Hanchun Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
28
|
Sun N, Wang ZW, Wu CH, Li E, He JP, Wang SY, Hu YL, Lei HM, Li HQ. Antiviral activity and underlying molecular mechanisms of Matrine against porcine reproductive and respiratory syndrome virus in vitro. Res Vet Sci 2013; 96:323-7. [PMID: 24411654 DOI: 10.1016/j.rvsc.2013.12.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/13/2013] [Accepted: 12/15/2013] [Indexed: 12/22/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by porcine reproductive and respiratory syndrome virus (PRRSV), is an acute infectious disease. The prevalence of PRRS has made swine industry suffered huge financial losses. Matrine, a natural compound, has been demonstrated to possess anti-PRRSV activity in Marc-145 cells. However, the underlying molecular mechanisms were still unknown. The main objective of our study was to discuss the effect of Matrine on PRRSV N protein expression and PRRSV induced apoptosis. Indirect immunofluorescence assay (IFA) and Western blot were used to assess the effect of Matrine on N protein expression. Apoptosis was analyzed by fluorescence staining. In addition, the effect of Matrine on caspase-3 activation was investigated by Western blot. Indirect immunofluorescence assay and Western blot analysis demonstrated that Matrine could inhibit N protein expression in Marc-145 cells. And Matrine was found to be able to impair PRRSV-induced apoptosis by inhibiting caspase-3 activation.
Collapse
Affiliation(s)
- Na Sun
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Zhi-Wei Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Cai-Hong Wu
- Jiangsu Animal Husbandry & Veterinary College, Taizhou, Jiangsu 225300, PR China
| | - E Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jun-Ping He
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Shao-Yu Wang
- University of Western Sydney, School of Medicine, Locked Bag 1797, Penrith 2751, NSW, Australia
| | - Yuan-Liang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hai-Min Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, PR China
| | - Hong-Quan Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China.
| |
Collapse
|
29
|
Sun N, Li E, Wang Z, Zhao J, Wang S, He J, Bai Y, Li H. Sodium tanshinone IIA sulfonate inhibits porcine reproductive and respiratory syndrome virus via suppressing N gene expression and blocking virus-induced apoptosis. Antivir Ther 2013; 19:89-95. [PMID: 24158620 DOI: 10.3851/imp2694] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic loss in the swine industry. Currently, there is no effective way to prevent PRRSV infection. Sodium tanshinone IIA sulfonate (STS), a natural compound derived from Salvia miltiorrhiza, was shown to possess anti-PRRSV activity, but the underlying mechanisms remain unclear. The objective of this study was to investigate the effect of STS on PRRSV-induced cell apoptosis and PRRSV N protein expression pattern. METHODS Relative quantification real-time PCR was used to evaluate the inhibition of STS on N gene expression. Simultaneously indirect immunofluorescence assay (IFA) and western blot were used to assess the effect on N protein expression. Apoptosis was analysed using fluorescence microscope with an annexin V-EGFP kit. The effect of STS on caspase-3 cleaving was assessed by western blot. RESULTS Our results showed that STS could inhibit viral N gene expression at both the messenger RNA stage and at the protein level in PRRSV-infected cells in a dose-dependent manner. In addition, STS could also rescue PRRSV-induced apoptosis. CONCLUSIONS Our data suggest that STS may serve as a base compound for developing more effective drugs against PRRSV infection.
Collapse
Affiliation(s)
- Na Sun
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, PR China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Balka G, Ladinig A, Ritzmann M, Saalmüller A, Gerner W, Käser T, Jakab C, Rusvai M, Weißenböck H. Immunohistochemical Characterization of Type II Pneumocyte Proliferation after Challenge with Type I Porcine Reproductive and Respiratory Syndrome Virus. J Comp Pathol 2013; 149:322-30. [DOI: 10.1016/j.jcpa.2012.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 11/15/2012] [Accepted: 12/19/2012] [Indexed: 12/01/2022]
|
31
|
Ma Z, Wang Y, Zhao H, Xu AT, Wang Y, Tang J, Feng WH. Porcine reproductive and respiratory syndrome virus nonstructural protein 4 induces apoptosis dependent on its 3C-like serine protease activity. PLoS One 2013; 8:e69387. [PMID: 23936003 PMCID: PMC3720278 DOI: 10.1371/journal.pone.0069387] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 06/10/2013] [Indexed: 12/14/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease in pigs caused by PRRS virus (PRRSV). Although PRRSV infection-induced cell apoptosis has been established, the related viral protein is still unknown. Here, we reported that PRRSV nonstructural protein 4 (nsp4) was a critical apoptosis inducer. Nsp4 could activate caspase-3, -8, and -9. Using truncated constructs without different domains in nsp4, we demonstrated that the full-length of nsp4 structure was required for its apoptosis-inducing activity. Furthermore, using site-directed mutagenesis to inactivate the 3C-like serine protease activity of nsp4, we showed that nsp4-induced apoptosis was dependent on its serine protease activity. The ability of nsp4 to induce apoptosis was significantly impaired by His39, Asp64, and Ser118 mutations, suggesting that His39, Asp64, and Ser118 were essential for nsp4 to trigger apoptosis. In conclusion, our present work showed that PRRSV nsp4 could induce apoptosis in host cells and might be partially responsible for the apoptosis induced by PRRSV infection. PRRSV 3C-like protease-mediated apoptosis represents the first report in the genus Arterivirus, family Arteriviridae.
Collapse
Affiliation(s)
- Zhitao Ma
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Science, China Agricultural University, Beijing, China
| | - Yalan Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Science, China Agricultural University, Beijing, China
| | - Haiyan Zhao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Science, China Agricultural University, Beijing, China
| | - Ao-Tian Xu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongqiang Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jun Tang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
- * E-mail: (WF); (JT)
| | - Wen-hai Feng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Science, China Agricultural University, Beijing, China
- * E-mail: (WF); (JT)
| |
Collapse
|
32
|
Wang ZW, Sun N, Wu CH, Jiang JB, Bai YS, Li HQ. In vitro antiviral activity and underlying molecular mechanisms of dipotassium glycyrrhetate against porcine reproductive and respiratory syndrome virus. Antivir Ther 2013; 18:997-1004. [PMID: 23872789 DOI: 10.3851/imp2662] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome virus (PRRSV) has caused large economic losses in the swine industry. Currently, there is no effective way to prevent PRRSV infection. In this study, we investigated the inhibitory effect of dipotassium glycyrrhetate (DG), a derivative of glycyrrhetinic acid, on PRRSV infection ability. METHODS The cytotoxicity of DG was measured by MTT assay, and the effects of DG on PRRSV N gene/protein were investigated using real-time PCR, western blot and immunofluorescence assay. In addition, the effect of DG on cell apoptosis was analysed by fluorescence staining. RESULTS Our results indicated that DG could effectively inhibit virus replication and N gene expression in MARC-145 cells infected with PRRSV. When the infected cells received DG, the numbers of apoptotic cells were decreased, and the cleaved caspase-3 contents were decreased dramatically. CONCLUSIONS Our study demonstrates that DG could effectively inhibit the PRRS virus via multiple pathways including inhibition of virus replication and N gene expression and reduction of apoptotic cells. DG can serve as a potential chemical for PRRSV prevention and control.
Collapse
Affiliation(s)
- Zhi-Wei Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, PR China
| | | | | | | | | | | |
Collapse
|
33
|
Badaoui B, Tuggle CK, Hu Z, Reecy JM, Ait-Ali T, Anselmo A, Botti S. Pig immune response to general stimulus and to porcine reproductive and respiratory syndrome virus infection: a meta-analysis approach. BMC Genomics 2013; 14:220. [PMID: 23552196 PMCID: PMC3623894 DOI: 10.1186/1471-2164-14-220] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 03/22/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The availability of gene expression data that corresponds to pig immune response challenges provides compelling material for the understanding of the host immune system. Meta-analysis offers the opportunity to confirm and expand our knowledge by combining and studying at one time a vast set of independent studies creating large datasets with increased statistical power. In this study, we performed two meta-analyses of porcine transcriptomic data: i) scrutinized the global immune response to different challenges, and ii) determined the specific response to Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) infection. To gain an in-depth knowledge of the pig response to PRRSV infection, we used an original approach comparing and eliminating the common genes from both meta-analyses in order to identify genes and pathways specifically involved in the PRRSV immune response. The software Pointillist was used to cope with the highly disparate data, circumventing the biases generated by the specific responses linked to single studies. Next, we used the Ingenuity Pathways Analysis (IPA) software to survey the canonical pathways, biological functions and transcription factors found to be significantly involved in the pig immune response. We used 779 chips corresponding to 29 datasets for the pig global immune response and 279 chips obtained from 6 datasets for the pig response to PRRSV infection, respectively. RESULTS The pig global immune response analysis showed interconnected canonical pathways involved in the regulation of translation and mitochondrial energy metabolism. Biological functions revealed in this meta-analysis were centred around translation regulation, which included protein synthesis, RNA-post transcriptional gene expression and cellular growth and proliferation. Furthermore, the oxidative phosphorylation and mitochondria dysfunctions, associated with stress signalling, were highly regulated. Transcription factors such as MYCN, MYC and NFE2L2 were found in this analysis to be potentially involved in the regulation of the immune response. The host specific response to PRRSV infection engendered the activation of well-defined canonical pathways in response to pathogen challenge such as TREM1, toll-like receptor and hyper-cytokinemia/ hyper-chemokinemia signalling. Furthermore, this analysis brought forth the central role of the crosstalk between innate and adaptive immune response and the regulation of anti-inflammatory response. The most significant transcription factor potentially involved in this analysis was HMGB1, which is required for the innate recognition of viral nucleic acids. Other transcription factors like interferon regulatory factors IRF1, IRF3, IRF5 and IRF8 were also involved in the pig specific response to PRRSV infection. CONCLUSIONS This work reveals key genes, canonical pathways and biological functions involved in the pig global immune response to diverse challenges, including PRRSV infection. The powerful statistical approach led us to consolidate previous findings as well as to gain new insights into the pig immune response either to common stimuli or specifically to PRRSV infection.
Collapse
Affiliation(s)
- Bouabid Badaoui
- Parco Tecnologico Padano - CERSA, Via Einstein, Lodi, 26900, Italy.
| | | | | | | | | | | | | |
Collapse
|
34
|
Arceo ME, Ernst CW, Lunney JK, Choi I, Raney NE, Huang T, Tuggle CK, Rowland RRR, Steibel JP. Characterizing differential individual response to porcine reproductive and respiratory syndrome virus infection through statistical and functional analysis of gene expression. Front Genet 2013; 3:321. [PMID: 23335940 PMCID: PMC3546301 DOI: 10.3389/fgene.2012.00321] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/23/2012] [Indexed: 12/20/2022] Open
Abstract
We evaluated differences in gene expression in pigs from the Porcine Reproductive and Respiratory Syndrome (PRRS) Host Genetics Consortium initiative showing a range of responses to PRRS virus infection. Pigs were allocated into four phenotypic groups according to their serum viral level and weight gain. RNA obtained from blood at 0, 4, 7, 11, 14, 28, and 42 days post-infection (DPI) was hybridized to the 70-mer 20K Pigoligoarray. We used a blocked reference design for the microarray experiment. This allowed us to account for individual biological variation in gene expression, and to assess baseline effects before infection (0 DPI). Additionally, this design has the flexibility of incorporating future data for differential expression analysis. We focused on evaluating transcripts showing significant interaction of weight gain and serum viral level. We identified 491 significant comparisons [false discovery rate (FDR) = 10%] across all DPI and phenotypic groups. We corroborated the overall trend in direction and level of expression (measured as fold change) at 4 DPI using qPCR (r = 0.91, p ≤ 0.0007). At 4 and 7 DPI, network and functional analyses were performed to assess if immune related gene sets were enriched for genes differentially expressed (DE) across four phenotypic groups. We identified cell death function as being significantly associated (FDR ≤ 5%) with several networks enriched for DE transcripts. We found the genes interferon-alpha 1(IFNA1), major histocompatibility complex, class II, DQ alpha 1 (SLA-DQA1), and major histocompatibility complex, class II, DR alpha (SLA-DRA) to be DE (p ≤ 0.05) between phenotypic groups. Finally, we performed a power analysis to estimate sample size and sampling time-points for future experiments. We concluded the best scenario for investigation of early response to PRRSV infection consists of sampling at 0, 4, and 7 DPI using about 30 pigs per phenotypic group.
Collapse
Affiliation(s)
- Maria E Arceo
- Department of Animal Science, Michigan State University East Lansing, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Liu C, Chen H, Chen K, Gao Y, Gao S, Liu X, Li J. Sulfated modification can enhance antiviral activities of Achyranthes bidentata polysaccharide against porcine reproductive and respiratory syndrome virus (PRRSV) in vitro. Int J Biol Macromol 2013; 52:21-4. [DOI: 10.1016/j.ijbiomac.2012.09.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/10/2012] [Accepted: 09/25/2012] [Indexed: 11/15/2022]
|
36
|
Provost C, Jia JJ, Music N, Lévesque C, Lebel MÈ, del Castillo JRE, Jacques M, Gagnon CA. Identification of a new cell line permissive to porcine reproductive and respiratory syndrome virus infection and replication which is phenotypically distinct from MARC-145 cell line. Virol J 2012; 9:267. [PMID: 23148668 PMCID: PMC3546013 DOI: 10.1186/1743-422x-9-267] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 11/01/2012] [Indexed: 12/04/2022] Open
Abstract
Background Airborne transmitted pathogens, such as porcine reproductive and respiratory syndrome virus (PRRSV), need to interact with host cells of the respiratory tract in order to be able to enter and disseminate in the host organism. Pulmonary alveolar macrophages (PAM) and MA104 derived monkey kidney MARC-145 cells are known to be permissive to PRRSV infection and replication and are the most studied cells in the literature. More recently, new cell lines developed to study PRRSV have been genetically modified to make them permissive to the virus. The SJPL cell line origin was initially reported to be epithelial cells of the respiratory tract of swine. Thus, the goal of this study was to determine if SJPL cells could support PRRSV infection and replication in vitro. Results The SJPL cell growth was significantly slower than MARC-145 cell growth. The SJPL cells were found to express the CD151 protein but not the CD163 and neither the sialoadhesin PRRSV receptors. During the course of the present study, the SJPL cells have been reported to be of monkey origin. Nevertheless, SJPL cells were found to be permissive to PRRSV infection and replication even if the development of the cytopathic effect was delayed compared to PRRSV-infected MARC-145 cells. Following PRRSV replication, the amount of infectious viral particles produced in SJPL and MARC-145 infected cells was similar. The SJPL cells allowed the replication of several PRRSV North American strains and were almost efficient as MARC-145 cells for virus isolation. Interestingly, PRRSV is 8 to 16 times more sensitive to IFNα antiviral effect in SJPL cell in comparison to that in MARC-145 cells. PRRSV induced an increase in IFNβ mRNA and no up regulation of IFNα mRNA in both infected cell types. In addition, PRRSV induced an up regulation of IFNγ and TNF-α mRNAs only in infected MARC-145 cells. Conclusions In conclusion, the SJPL cells are permissive to PRRSV. In addition, they are phenotypically different from MARC-145 cells and are an additional tool that could be used to study PRRSV pathogenesis mechanisms in vitro.
Collapse
Affiliation(s)
- Chantale Provost
- Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Centre de recherche en infectiologie porcine (CRIP), Faculté de médecine vétérinaire Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, J2S 7C6, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Recent progress in studies of arterivirus- and coronavirus-host interactions. Viruses 2012; 4:980-1010. [PMID: 22816036 PMCID: PMC3397358 DOI: 10.3390/v4060980] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 05/30/2012] [Accepted: 06/14/2012] [Indexed: 12/15/2022] Open
Abstract
Animal coronaviruses, such as infectious bronchitis virus (IBV), and arteriviruses, such as porcine reproductive and respiratory syndrome virus (PRRSV), are able to manifest highly contagious infections in their specific native hosts, thereby arising in critical economic damage to animal industries. This review discusses recent progress in studies of virus-host interactions during animal and human coronavirus and arterivirus infections, with emphasis on IBV-host cell interactions. These interactions may be directly involved in viral replication or lead to the alteration of certain signaling pathways, such as cell stress response and innate immunity, to facilitate viral replication and pathogenesis.
Collapse
|
38
|
Interplay between interferon-mediated innate immunity and porcine reproductive and respiratory syndrome virus. Viruses 2012; 4:424-46. [PMID: 22590680 PMCID: PMC3347317 DOI: 10.3390/v4040424] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/15/2012] [Accepted: 03/18/2012] [Indexed: 12/24/2022] Open
Abstract
Innate immunity is the first line of defense against viral infection, and in turn, viruses have evolved to evade host immune surveillance. As a result, viruses may persist in host and develop chronic infections. Type I interferons (IFN-α/β) are among the most potent antiviral cytokines triggered by viral infections. Porcine reproductive and respiratory syndrome (PRRS) is a disease of pigs that is characterized by negligible induction of type I IFNs and viral persistence for an extended period. For IFN production, RIG-I/MDA5 and JAK-STAT pathways are two major signaling pathways, and recent studies indicate that PRRS virus is armed to modulate type I IFN responses during infection. This review describes the viral strategies for modulation of type I IFN responses. At least three non-structural proteins (Nsp1, Nsp2, and Nsp11) and a structural protein (N nucleocapsid protein) have been identified and characterized to play roles in the IFN suppression and NF-κB pathways. Nsp's are early proteins while N is a late protein, suggesting that additional signaling pathways may be involved in addition to the IFN pathway. The understanding of molecular bases for virus-mediated modulation of host innate immune signaling will help us design new generation vaccines and control PRRS.
Collapse
|
39
|
Ait-Ali T, Wilson AD, Carré W, Westcott DG, Frossard JP, Mellencamp MA, Mouzaki D, Matika O, Waddington D, Drew TW, Bishop SC, Archibald AL. Host inhibits replication of European porcine reproductive and respiratory syndrome virus in macrophages by altering differential regulation of type-I interferon transcriptional response. Immunogenetics 2011; 63:437-48. [PMID: 21380581 DOI: 10.1007/s00251-011-0518-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 02/17/2011] [Indexed: 10/18/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an infectious disease caused by a positive RNA strand arterivirus. PRRS virus (PRRSV) interacts primarily with lung macrophages. Little is known how the virus subverts the innate immune response to initiate its replication in alveolar macrophages. Large-scale transcriptional responses of macrophages with different levels of susceptibility to PRRSV infection were compared over 30 h of infection. This study demonstrates a rapid and intense host transcriptional remodelling during the early phase of the replication of the virus which correlates with transient repression of type-I interferon transcript as early as 8 h post-infection. These results support the suggestion from previous studies that host innate immune response inhibits replication of European porcine reproductive and respiratory syndrome virus in macrophages by altering differential regulation of type-I interferon transcriptional response.
Collapse
Affiliation(s)
- Tahar Ait-Ali
- The Roslin Institute and Royal Dick School of Veterinary Studies, The University of Edinburgh, Roslin, Midlothian EH25 9RG, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pedrera M, Gómez-Villamandos JC, Risalde MA, Molina V, Sánchez-Cordón PJ. Characterization of apoptosis pathways (intrinsic and extrinsic) in lymphoid tissues of calves inoculated with non-cytopathic bovine viral diarrhoea virus genotype-1. J Comp Pathol 2011; 146:30-9. [PMID: 21612789 DOI: 10.1016/j.jcpa.2011.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 03/24/2011] [Accepted: 03/29/2011] [Indexed: 11/26/2022]
Abstract
Previous studies have shown that activation of effector caspase-3 is associated with the apoptosis of lymphocytes occurring during infection with bovine viral diarrhoea virus (BVDV); however, the regulation of the apoptosis pathways that induce cell death via activation of effector caspase-3 has not yet been clarified. The aim of this study was to examine immunohistochemically the expression of cleaved caspase (CCasp)-8 (initiator caspase of the extrinsic pathway), CCasp9 (initiator caspase of the intrinsic pathway) and Bcl-2 (an anti-apoptotic marker) in gut-associated lymphoid tissue (GALT) of the ileum from calves inoculated with a non-cytopathic strain of BVDV genotype-1. CCasp8 had similar expression to that of CCasp3. In interfollicular T-cell areas there was moderate apoptosis and evidence of moderate activation of initiator caspase-8. In B-cell follicles there was marked lymphocyte apoptosis and evidence of intense caspase-8 activation, highlighting the potentially major role of the extrinsic pathway in lymphocyte apoptosis in the GALT during BVDV infection. Additionally, there was a significant decrease in the number of CCasp9(+) cells from the start of the experiment and this was linked to inactivation of caspase-9. Therefore, the intrinsic pathway may play only a minor role in the induction of lymphocyte apoptosis. Finally, the observed overexpression of Bcl-2 protein could play a major role in protecting lymphocytes in the T-cell areas against apoptosis, while low levels of Bcl-2 expression could be associated with the follicular lymphocyte apoptosis occurring during BVDV infection.
Collapse
Affiliation(s)
- M Pedrera
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba, Edificio Sanidad Animal, Campus de Rabanales, 14014 Córdoba, Spain
| | | | | | | | | |
Collapse
|
41
|
Chia MY, Hsiao SH, Chan HT, Do YY, Huang PL, Chang HW, Tsai YC, Lin CM, Pang VF, Jeng CR. Evaluation of the immunogenicity of a transgenic tobacco plant expressing the recombinant fusion protein of GP5 of porcine reproductive and respiratory syndrome virus and B subunit of Escherichia coli heat-labile enterotoxin in pigs. Vet Immunol Immunopathol 2011; 140:215-25. [PMID: 21277027 DOI: 10.1016/j.vetimm.2011.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/12/2010] [Accepted: 01/01/2011] [Indexed: 11/22/2022]
Abstract
Escherichia coli heat-labile enterotoxin B subunit (LTB) can be used as an adjuvant for co-administered antigens. Our previous study showed that the expression of neutralizing epitope GP5 of porcine reproductive and respiratory syndrome virus (PRRSV) in transgenic tobacco plant (GP5-T) could induce PRRSV-specific immune responses in pigs. A transgenic tobacco plant co-expressing LTB and PRRSV GP5 as a fusion protein (LTB-GP5-T) was further constructed and its immunogenicity was evaluated. Pigs were given orally three consecutive doses of equal concentration of recombinant GP5 protein expressed in leaves of LTB-GP5-T or GP5-T at a 2-week interval and challenged with PRRSV at 7 weeks post-initial immunization. Pigs receiving LTB-GP5-T or GP5-T developed PRRSV-specific antibody- and cell-mediated immunity and showed significantly lower viremia and tissue viral load and milder lung lesions than wild type tobacco plant (W-T). The LTB-GP5-T-treated group had relatively higher immune responses than the GP5-T-treated group, although the differences were not statistically significant.
Collapse
Affiliation(s)
- Min-Yuan Chia
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, Taipei 106, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Immunopathological characterization of porcine circovirus type 2 infection-associated follicular changes in inguinal lymph nodes using high-throughput tissue microarray. Vet Microbiol 2010; 149:72-84. [PMID: 21126833 DOI: 10.1016/j.vetmic.2010.10.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 10/11/2010] [Accepted: 10/22/2010] [Indexed: 11/23/2022]
Abstract
The immunopathogenesis of porcine circovirus type 2 (PCV2) infection in conventional pigs is complicated by various environmental factors and individual variation and is difficult to be completely reproduced experimentally. In the present field-based study, a tissue microarray (TMA) consisting of a series of lymphoid follicles having different PCV2-loads was constructed using formalin-fixed and paraffin-embedded superficial inguinal lymph nodes (LNs) from 102 pigs. Using the TMA, a wide range of parameters, including co-infected viral pathogens, immune cell subsets, and cell apoptosis/proliferation activity by immunohistochemical (IHC) staining or in situ hybridization (ISH) were measured, characterized, and compared. The signal location and area extent of each parameter were interpreted by pathologists, semi-quantified by automated image analysis software, and analyzed statistically. The results herein demonstrated a significant negative correlation between PCV2 and CD79a (p<0.001) and a significant positive correlation between PCV2 and lysozyme (p<0.001) or TUNEL (p<0.001) using Pearson correlation analysis. The amount of porcine respiratory and reproductive syndrome virus (PRRSV) and porcine parvovirus antigens did not correlate with the tissue loads of PCV2 nucleic acid. Multiple regression analysis further predicted that PCV2 contributed major effects on CD79a, lysozyme, and TUNEL but PRRSV showed relatively less effects on these parameters. In addition, the total signal intensity of Ki67 (index of cell proliferation activity) did not change significantly among cases with different PCV2 loads; however, as the loading of PCV2 nucleic acid increased, the main contribution of Ki67 signal gradually shifted from B cells in the germinal center to T cells and macrophages in the interfollicular regions. In the present study, the use of TMA to establish a mathematical model with a wider range of statistical analysis can bring us a step forward to understand the immunopathogenesis of PCV2 infection-associated follicular changes in LNs.
Collapse
|
43
|
Tuggle CK, Bearson SMD, Uthe JJ, Huang TH, Couture OP, Wang YF, Kuhar D, Lunney JK, Honavar V. Methods for transcriptomic analyses of the porcine host immune response: application to Salmonella infection using microarrays. Vet Immunol Immunopathol 2010; 138:280-91. [PMID: 21036404 DOI: 10.1016/j.vetimm.2010.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Technological developments in both the collection and analysis of molecular genetic data over the past few years have provided new opportunities for an improved understanding of the global response to pathogen exposure. Such developments are particularly dramatic for scientists studying the pig, where tools to measure the expression of tens of thousands of transcripts, as well as unprecedented data on the porcine genome sequence, have combined to expand our abilities to elucidate the porcine immune system. In this review, we describe these recent developments in the context of our work using primarily microarrays to explore gene expression changes during infection of pigs by Salmonella. Thus while the focus is not a comprehensive review of all possible approaches, we provide links and information on both the tools we use as well as alternatives commonly available for transcriptomic data collection and analysis of porcine immune responses. Through this review, we expect readers will gain an appreciation for the necessary steps to plan, conduct, analyze and interpret the data from transcriptomic analyses directly applicable to their research interests.
Collapse
Affiliation(s)
- C K Tuggle
- Department of Animal Science, and Center for Integrated Animal Genomics, 2255 Kildee Hall, Iowa State University, Ames, IA 50010, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lunney JK, Chen H. Genetic control of host resistance to porcine reproductive and respiratory syndrome virus (PRRSV) infection. Virus Res 2010; 154:161-9. [PMID: 20709118 DOI: 10.1016/j.virusres.2010.08.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/05/2010] [Indexed: 12/30/2022]
Abstract
This manuscript focuses on the advances made using genomic approaches to identify biomarkers that define genes and pathways that are correlated with swine resistance to infection with porcine reproductive and respiratory syndrome virus (PRRSV), the most economically important swine viral pathogen worldwide. International efforts are underway to assess resistance and susceptibility to infectious pathogens using tools such as gene arrays, single nucleotide polymorphisms (SNPs) chips, genome-wide association studies (GWAS), proteomics, and advanced bioinformatics. These studies should identify new candidate genes and biological pathways associated with host PRRS resistance and alternate viral disease processes and mechanisms; they may unveil biomarkers that account for genetic control of PRRS or, alternately, that reveal new targets for therapeutics or vaccines. Previous genomic approaches have expanded our understanding of quantitative trait loci (QTL) controlling traits of economic importance in pig production, e.g., feed efficiency, meat production, leanness; only recently have these included health traits and disease resistance. Genomic studies should have substantial impact for the pig industry since it is now possible to include the use of biomarkers for basic health traits alongside broader set of markers utilized for selection of pigs for improved performance and reproductive traits, as well as pork quality. Additionally these studies may reveal alternate PRRS control mechanisms that can be exploited for novel drugs, biotherapeutics and vaccine designs.
Collapse
Affiliation(s)
- Joan K Lunney
- Animal Parasitic Diseases Laboratory, ANRI, ARS, USDA, BARC-East, Beltsville, MD 20705, USA.
| | | |
Collapse
|
45
|
The role of porcine reproductive and respiratory syndrome (PRRS) virus structural and non-structural proteins in virus pathogenesis. Anim Health Res Rev 2010; 11:135-63. [DOI: 10.1017/s1466252310000034] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractPorcine reproductive and respiratory syndrome (PRRS) is an economically devastating viral disease affecting the swine industry worldwide. The etiological agent, PRRS virus (PRRSV), possesses a RNA viral genome with nine open reading frames (ORFs). The ORF1a and ORF1b replicase-associated genes encode the polyproteins pp1a and pp1ab, respectively. The pp1a is processed in nine non-structural proteins (nsps): nsp1α, nsp1β, and nsp2 to nsp8. Proteolytic cleavage of pp1ab generates products nsp9 to nsp12. The proteolytic pp1a cleavage products process and cleave pp1a and pp1ab into nsp products. The nsp9 to nsp12 are involved in virus genome transcription and replication. The 3′ end of the viral genome encodes four minor and three major structural proteins. The GP2a, GP3and GP4(encoded by ORF2a, 3 and 4), are glycosylated membrane associated minor structural proteins. The fourth minor structural protein, the E protein (encoded by ORF2b), is an unglycosylated membrane associated protein. The viral envelope contains two major structural proteins: a glycosylated major envelope protein GP5(encoded by ORF5) and an unglycosylated membrane M protein (encoded by ORF6). The third major structural protein is the nucleocapsid N protein (encoded by ORF7). All PRRSV non-structural and structural proteins are essential for virus replication, and PRRSV infectivity is relatively intolerant to subtle changes within the structural proteins. PRRSV virulence is multigenic and resides in both the non-structural and structural viral proteins. This review discusses the molecular characteristics, biological and immunological functions of the PRRSV structural and nsps and their involvement in the virus pathogenesis.
Collapse
|
46
|
Patel D, Stein DA, Zhang YJ. Morpholino oligomer-mediated protection of porcine pulmonary alveolar macrophages from arterivirus-induced cell death. Antivir Ther 2010; 14:899-909. [PMID: 19918094 DOI: 10.3851/imp1409] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome (PRRS) causes extensive economic losses in the swine industry. Current strategies and vaccines to control the disease are inadequate. We previously demonstrated that peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs) could potently inhibit PRRS virus (PRRSV) replication in cell cultures. PPMOs are single-stranded DNA analogues containing a modified backbone and cell-penetrating peptide. PPMOs are nuclease-resistant, water-soluble, can enter cells readily and exhibit highly specific binding to complementary RNA. In this study, we examined PPMO-mediated inhibition of PRRSV replication in a primary culture of porcine pulmonary alveolar macrophages (PAMs). METHODS PAMs were collected from piglets, pre-incubated in culture and infected with PRRSV. Viability, cytopathic effects, virus yield and apoptosis of PAMs in the presence or absence of a PPMO (5UP2) were examined. The 5UP2 PPMO is complementary to a conserved sequence in the 5'-terminal region of the PRRSV genome. The level of several interferon-associated gene products and activity of caspases were monitored. RESULTS PRRSV infection induced the activity of caspases-3/7, -8 and -9 significantly. Treatment of PAMs with 5UP2 resulted in protection of the cells from PRRSV-induced cell death for at least 7 days and avoided the activation of the caspases evaluated. 5UP2 treatment of PRRSV-infected PAMs also prevented the vigorous induction of interferon-beta and chemokines observed in infected and mock-treated PAMs. CONCLUSIONS PPMO-mediated suppression of PRRSV replication in PAMs was associated with a reduction of apoptotic and inflammatory responses. These results provide further rationale for the development of PPMO 5UP2 as an antiviral to control PRRSV infection.
Collapse
|
47
|
Ait-Ali T, Wilson AW, Finlayson H, Carré W, Ramaiahgari SC, Westcott DG, Waterfall M, Frossard JP, Baek KH, Drew TW, Bishop SC, Archibald AL. Functional analysis of the porcine USP18 and its role during porcine arterivirus replication. Gene 2009; 439:35-42. [PMID: 19285125 DOI: 10.1016/j.gene.2009.02.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 02/18/2009] [Accepted: 02/24/2009] [Indexed: 11/19/2022]
Abstract
Emerging evidence places deubiquitylation at the core of a multitude of regulatory processes, ranging from cell growth to innate immune response and health, such as cancer, degenerative and infectious diseases. Little is known about deubiquitylation in pig and arterivirus infection. This report provides information on the biochemical and functional role of the porcine USP18 during innate immune response to the porcine respiratory and reproductive syndrome virus (PRRSV). We have shown that UBP gene is the ortholog of the murine USP18 (Ubp43) gene and the human ubiquitin specific protease 18 (USP18) gene and encodes a biochemically functional de-ubiquitin enzyme which inhibits signalling pathways that lead to IFN-stimulating response element (ISRE) promotor regulation. Furthermore we have demonstrated that overexpression of the porcine USP18 leads to reduced replication and/or growth of PRRSV. Our data contrast with the conclusion of numerous reports demonstrating that USP18-deficient mice are highly resistant to viral and bacterial infections and to oncogenic transformation by BCR-ABL, and highlight USP18 as a potential target gene that promotes reduced replication of PRRSV.
Collapse
Affiliation(s)
- Tahar Ait-Ali
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian EH25 9PS, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kimman TG, Cornelissen LA, Moormann RJ, Rebel JMJ, Stockhofe-Zurwieden N. Challenges for porcine reproductive and respiratory syndrome virus (PRRSV) vaccinology. Vaccine 2009; 27:3704-18. [PMID: 19464553 DOI: 10.1016/j.vaccine.2009.04.022] [Citation(s) in RCA: 283] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/30/2009] [Accepted: 04/07/2009] [Indexed: 01/11/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to be a threat for the pig industry. Vaccines have been developed, but these failed to provide sustainable disease control, in particular against genetically unrelated strains. Here we give an overview of current knowledge and gaps in our knowledge that may be relevant for the development of a future generation of more effective vaccines. PRRSV replicates in cells of the monocyte/macrophage lineage, induces apoptosis and necrosis, interferes with the induction of a proinflammatory response, only slowly induces a specific antiviral response, and may cause persistent infections. The virus appears to use several evasion strategies to circumvent both innate and acquired immunity, including interference with antigen presentation, antibody-mediated enhancement, reduced cell surface expression of viral proteins, and shielding of neutralizing epitopes. In particular the downregulation of type I interferon-alpha production appears to interfere with the induction of acquired immunity. Current vaccines are ineffective because they suffer both from the immune evasion strategies of the virus and the antigenic heterogeneity of field strains. Future vaccines therefore must "uncouple" the immune evasion and apoptogenic/necrotic properties of the virus from its immunogenic properties, and they should induce a broad immune response covering the plasticity of its major antigenic sites. Alternatively, the composition of the vaccine should be changed regularly to reflect presently and locally circulating strains. Preferably new vaccines should also allow discriminating infected from vaccinated pigs to support a virus elimination strategy. Challenges in vaccine development are the incompletely known mechanisms of immune evasion and immunity, lack of knowledge of viral sequences that are responsible for the pathogenic and immunosuppressive properties of the virus, lack of knowledge of the forces that drive antigenic heterogeneity and its consequences for immunogenicity, and a viral genome that is relatively intolerant for subtle changes at functional sites.
Collapse
Affiliation(s)
- Tjeerd G Kimman
- Central Veterinary Institute of Wageningen UR (CVI), P.O. Box 65, 8200 AB Lelystad, The Netherlands.
| | | | | | | | | |
Collapse
|
49
|
Genini S, Delputte PL, Malinverni R, Cecere M, Stella A, Nauwynck HJ, Giuffra E. Genome-wide transcriptional response of primary alveolar macrophages following infection with porcine reproductive and respiratory syndrome virus. J Gen Virol 2008; 89:2550-2564. [PMID: 18796724 PMCID: PMC2885007 DOI: 10.1099/vir.0.2008/003244-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Porcine reproductive and respiratory syndrome is a major cause of economic loss for the swine industry worldwide. Porcine reproductive and respiratory syndrome virus (PRRSV) triggers weak and atypical innate immune responses, but key genes and mechanisms by which the virus interferes with the host innate immunity have not yet been elucidated. In this study, genes that control the response of the main target of PRRSV, porcine alveolar macrophages (PAMs), were profiled in vitro with a time-course experiment spanning the first round of virus replication. PAMs were obtained from six piglets and challenged with the Lelystad PRRSV strain, and gene expression was investigated using Affymetrix microarrays and real-time PCR. Of the 1409 differentially expressed transcripts identified by analysis of variance, two, five, 25, 16 and 100 differed from controls by a minimum of 1.5-fold at 1, 3, 6, 9 and 12 h post-infection (p.i.), respectively. A PRRSV infection effect was detectable between 3 and 6 h p.i., and was characterized by a consistent downregulation of gene expression, followed by the start of the host innate immune response at 9 h p.i. The expression of beta interferon 1 (IFN-β), but not of IFN-α, was strongly upregulated, whilst few genes commonly expressed in response to viral infections and/or induced by interferons were found to be differentially expressed. A predominance of anti-apoptotic transcripts (e.g. interleukin-10), a shift towards a T-helper cell type 2 response and a weak upregulation of tumour necrosis factor-α expression were observed within 12 h p.i., reinforcing the hypotheses that PRRSV has developed sophisticated mechanisms to escape the host defence.
Collapse
Affiliation(s)
- Sem Genini
- Parco Tecnologico Padano - CERSA, Via A. Einstein, 26900 Lodi, Italy
| | - Peter L Delputte
- Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Maria Cecere
- Parco Tecnologico Padano - CERSA, Via A. Einstein, 26900 Lodi, Italy
| | - Alessandra Stella
- Parco Tecnologico Padano - CERSA, Via A. Einstein, 26900 Lodi, Italy
| | - Hans J Nauwynck
- Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | |
Collapse
|
50
|
Costers S, Lefebvre DJ, Delputte PL, Nauwynck HJ. Porcine reproductive and respiratory syndrome virus modulates apoptosis during replication in alveolar macrophages. Arch Virol 2008; 153:1453-65. [DOI: 10.1007/s00705-008-0135-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 05/10/2008] [Indexed: 12/13/2022]
|