1
|
Pu G, Hou L, Zhao Q, Liu G, Wang Z, Zhou W, Niu P, Wu C, Li P, Huang R. Interactions between gut microbes and host promote degradation of various fiber components in Meishan pigs. mSystems 2025; 10:e0150024. [PMID: 39873521 PMCID: PMC11834408 DOI: 10.1128/msystems.01500-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025] Open
Abstract
Although metagenomic investigations into microbial fiber-degrading capabilities are currently prevalent, there is a notable gap in research concerning the regulatory mechanisms underpinning host-microbiota interactions that confer tolerance to high-fiber diets in pigs. In this study, 28 Meishan (MS) and 28 Large White (LW) pigs were subjected to feeding experiments involving various fiber levels. Subsequently, multi-omics was employed to investigate the influence of host-microbiota interactions on the fiber degradation of pigs. MS exhibited superior fiber digestibility compared with LW, particularly evident when fed a high-fiber diet. In MS, positive interactions among Treponema bryantii, Treponema sp., Rikenellaceae bacterium, and Bacteroidales bacterium WCE2004 facilitated the degradation of both cellulose and pectin. The reduced polymerization of polysaccharides and oligosaccharides observed in MS provides compelling evidence for their superior microbial fiber-degrading capability. The concentrations of propionate and butyrate retained in cecal lumen of MS was unchanged, whereas it was significantly increased in LW, indicating a strong absorption of short-chain fatty acids (SCFAs) in MS intestines. Correlation analysis using RNA-seq data revealed distinct patterns in LW and MS. In LW, microbial profiles along with GPR183 and GPR174 exhibited negative correlations with butyrate and propionate, respectively. Conversely, in MS, GPR174 and SLC2A4 were positively correlated with butyrate. Our findings underscore the dynamic collaboration among microbial species in degrading cellulose and pectin, coupled with the synergistic effects of SCFA transport-related genes, as crucial underpinnings for the heightened fiber digestibility observed in MS. These discoveries offer fresh perspectives into the intricate mechanisms governing host-microbiota interactions that influence fiber digestion in pigs. IMPORTANCE Studies on porcine intestinal microbiota have been widely conducted, and some microbial taxa with fiber degradation functions have been identified. However, the mechanisms of division among gut microbes in the degradation of complex fiber components are still unclear. In addition, the regulation of fiber digestion by host through absorption of short-chain fatty acids (SCFAs) needs to be further investigated. Our study used apparent total tract digestibility of dietary fiber to assess the utilization efficiency of dietary fiber between Meishan and Large White pigs. Subsequently, through metagenome sequencing and determination of fiber-degrading products, we found that in Meishan pigs, positive interactions among Treponema bryantii, Treponema sp., Rikenellaceae bacterium, and Bacteroidales bacterium WCE2004 facilitated the degradation of both cellulose and pectin. RNA-seq analysis elucidated breed-specific genes associated with SCFA absorption in cecum. By integrating multi-omics data, we constructed a framework outlining host-microbiota interactions that control dietary fiber utilization in pigs. Our data provide novel insights into host-microbiota interactions regulating fiber degradation and lay some theoretical foundations for improving the utilization efficiency of high-fiber cereal feed in pigs through targeted modulation of gut microbial function.
Collapse
Affiliation(s)
- Guang Pu
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Liming Hou
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Intestinal Microbiology, Huaian Academy, Nanjing Agricultural University, Nanjing, China
| | - Qingbo Zhao
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Gensheng Liu
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhongyu Wang
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wuduo Zhou
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Peipei Niu
- Laboratory of Intestinal Microbiology, Huaian Academy, Nanjing Agricultural University, Nanjing, China
| | - Chengwu Wu
- Laboratory of Intestinal Microbiology, Huaian Academy, Nanjing Agricultural University, Nanjing, China
| | - Pinghua Li
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Intestinal Microbiology, Huaian Academy, Nanjing Agricultural University, Nanjing, China
- Industrial Technology System Integration Innovation Center of Jiangsu Modern Agriculture (PIG), Nanjing, China
| | - Ruihua Huang
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Intestinal Microbiology, Huaian Academy, Nanjing Agricultural University, Nanjing, China
- Industrial Technology System Integration Innovation Center of Jiangsu Modern Agriculture (PIG), Nanjing, China
| |
Collapse
|
2
|
Mooyottu S, Muyyarikkandy MS, Yousefi F, Li G, Sahin O, Burrough E, Scaria J, Sponseller B, Ramirez A. Fecal microbiota transplantation modulates jejunal host-microbiota interface in weanling piglets. MICROBIOME 2025; 13:45. [PMID: 39920804 PMCID: PMC11803973 DOI: 10.1186/s40168-025-02042-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/20/2025] [Indexed: 02/09/2025]
Abstract
BACKGROUND Weaning-associated enteric diseases are a major concern in the swine industry. This study investigates the effects of fecal microbiota transplantation (FMT) on the jejunum of weanling piglets, a segment of bowel less studied in terms of microbiomic changes despite its primary involvement in major post-weaning enteric diseases, including postweaning diarrhea (PWD). Thirty-two 3-week-old piglets were divided equally into two groups: Control and FMT. The FMT group received fecal microbiota preparation from 3-month-old healthy pigs on the 1st and 3rd day after weaning. Half of each group was inoculated with an enterotoxigenic E. coli (ETEC) isolate 10 days post-FMT. Piglets were euthanized in the third week (14th and 18th days post-FMT) after weaning to collect intestinal tissues and contents for microbiomic, metabolomic, and transcriptomic analyses. RESULTS The jejunal microbiota showed a significant increase in alpha diversity in the third week post-FMT compared with the ileum and colon. FMT significantly enriched the jejunal microbiota composition, while multiple bacterial genera were specifically lacking in control weanling piglets. FMT was strongly associated with the enrichment of the genus Pseudoscardovia of the Bifidobacteriaceae family, which was found lacking in the jejunum of weanling control piglets and inversely associated with the abundance of the genus Bifidobacterium within the same family. Other genera associated with FMT included Solobacterium, Shuttleworthia, and Pseudoraminibacter, whereas bacteria such as Erysipelotrichaceae and Acidaminococcus were identified as most abundant in the control piglets. Metabolomic analysis revealed a significant modulatory effect of FMT on carbohydrate, amino acid, nucleotide, vitamin, and xenobiotic metabolisms, suggesting improved nutrient utilization. Transcriptomic analyses further confirmed the regulatory effects of FMT on gene expression associated with immune, metabolic, barrier, and neuroendocrine functions. Prior FMT treatment in the context of ETEC infection indicated a potential protective role, as evidenced by a significant shift in microbial diversity and metabolomic compositions and decreased diarrhea severity even though no effect on pathogen shedding was evident. CONCLUSIONS This study underscores the promise of FMT in enhancing jejunal health. In addition, the results suggest that FMT could be considered a potential strategy to address conditions associated with small intestinal dysbiosis in swine and other monogastric species with similar gut anatomy and physiology, such as humans. Video Abstract.
Collapse
Affiliation(s)
- Shankumar Mooyottu
- Auburn University, Auburn, AL, 36849, USA.
- Iowa State University, Ames, IA, 50011, USA.
| | | | | | - Ganwu Li
- Iowa State University, Ames, IA, 50011, USA
| | | | | | - Joy Scaria
- Oklahoma State University, Stillwater, OK, 74078, USA
| | - Brett Sponseller
- Iowa State University, Ames, IA, 50011, USA
- University of Kentucky, Lexington, KY, 40506, USA
| | - Alejandro Ramirez
- Iowa State University, Ames, IA, 50011, USA.
- University of Arizona, Tucson, AZ, 85721, United States.
| |
Collapse
|
3
|
Miao J, Cui L, Zeng H, Hou M, Wang J, Hang S. Lactiplantibacillus plantarum L47 and inulin affect colon and liver inflammation in piglets challenged by enterotoxigenic Escherichia coli through regulating gut microbiota. Front Vet Sci 2024; 11:1496893. [PMID: 39664894 PMCID: PMC11631943 DOI: 10.3389/fvets.2024.1496893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/07/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction Infection by pathogenic bacteria during weaning is a common cause of diarrhea and intestinal inflammation in piglets. Supplementing the diet with synbiotics is beneficial for animal health. The strain of Lactiplantibacillus plantarum L47 (L47) isolated in our lab exhibited good probiotic properties when combined with inulin. Here, the effectiveness of combining L47 and inulin (CLN) in protecting against enterotoxigenic Escherichia coli (ETEC) induced colon and liver inflammation in weaned piglets was evaluated. Methods Twenty-eight piglets aged 21 days were randomly assigned into 4 groups: CON (control), LI47 (oral CLN culture fluid, 1010 CFU/d of L47 and 1 g/d of inulin), ECON (oral ETEC culture fluid, 1010 CFU/d), and ELI47 (oral CLN and ETEC culture fluid). After 24 days, the colon and liver samples were collected for further analysis. Results and discussion CLN alleviated colon damage caused by ETEC challenge, as evidenced by an increase of colonic crypt depth, mRNA expression of tight junction Claudin-1 and Occludin, GPX activity, the concentration of IL-10 and sIgA (p < 0.05). Moreover, there was a decrease in MDA activity, the load of E. coli, the concentration of LPS, gene expression of TLR4, and the concentration of TNF-α and IL-6 (p < 0.05) in colonic mucosa. Additionally, CLN counteracted liver damage caused by ETEC challenge by modulating pathways associated with immunity and disease occurrence (p < 0.05). Conclusion Supplementing with CLN alleviated colon inflammation induced by ETEC challenge by decreasing the E. coli/LPS/TLR4 pathway and regulating hepatic immune response and disease-related pathways, suggesting that CLN could protect intestinal and liver health in animals.
Collapse
Affiliation(s)
| | | | | | | | | | - Suqin Hang
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Szczepanik K, Dobrowolski P, Świątkiewicz M. Effects of Hermetia illucens larvae meal and astaxanthin on intestinal histology and expression of tight junction proteins in weaned piglets. J Anim Physiol Anim Nutr (Berl) 2024; 108:1820-1832. [PMID: 39016044 DOI: 10.1111/jpn.14024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
The weaning phase in piglets causes significant physiological stress, disrupts intestinal integrity and reduces productivity, necessitating strategies to improve intestinal health and nutrient absorption. While current research highlights the role of diet in mitigating these adverse effects, identifying effective dietary supplements remains a challenge. This study evaluated the effects of Hermetia illucens (HI) larvae meal and astaxanthin (AST) on the intestinal histology of weaned piglets. In a controlled experiment, 48 weaned piglets were divided into six groups and received varying levels of HI larval meal (2.5% and 5%) and AST in their diets. The methodology involved comprehensive histological examinations of the small intestine, assessing absorption area, villi elongation, crypt depth, goblet cells, enterocytes and expression of ileal tight junction (TJ) proteins. The study found that HI larval meal significantly improved nutrient absorption in the jejunum and ileum (p < 0.001), thereby enhancing feed conversion. AST supplementation increased the number of enterocytes (p < 0.001). Both HI larval meal and AST positively affected intestinal morphology and function, increasing muscularis muscle mass and villi elongation (p < 0.001 and p < 0.05, respectively). The 2.5% HI meal improved the villi length to crypt depth ratio and slightly increased the goblet cell count (both p < 0.05). Ki-67 antibody analysis showed increased cell proliferation in the duodenal and jejunal crypts, particularly with the 2.5% HI meal (p < 0.001). Insect meal did not affect TJ protein expression, indicating that it had no effect on intestinal permeability. These findings suggest that HI larval meal and AST can enhance the intestinal wellness and productivity of weaned piglets.
Collapse
Affiliation(s)
- Kinga Szczepanik
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Balice, Poland
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Lublin, Poland
| | - Malgorzata Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Balice, Poland
| |
Collapse
|
5
|
Increased Proportion of Fiber-Degrading Microbes and Enhanced Cecum Development Jointly Promote Host To Digest Appropriate High-Fiber Diets. mSystems 2023; 8:e0093722. [PMID: 36511688 PMCID: PMC9948726 DOI: 10.1128/msystems.00937-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Previous study found that appropriate high-fiber diet (containing 19.10% total dietary fiber [TDF], treatment II) did not reduce apparent fiber digestibility of Chinese Suhuai finishing pigs and increased the yield of short-chain fatty acids (SCFAs), but too high-fiber diet (containing 24.11% TDF, treatment IV) significantly reduced apparent fiber digestibility compared with normal diet (containing 16.70% TDF, control group). However, characteristics of microbiota at the species level and histological structure in pigs with the ability to digest appropriate high-fiber diets were still unknown. This study conducted comparative analysis of cecal physiology and microbial populations colonizing cecal mucosa. The results showed intestinal development indexes including cecum length, densities of cecal goblet cells, and renewal of cecal epithelial cells in treatment II and IV had better performance than those in the control. Paludibacter jiangxiensis, Coprobacter fastidiosus, Bacteroides coprocola CAG:162, Bacteroides barnesiae, and Parabacteroides merdae enriched in treatment II expressed large number of glycoside hydrolase (GH)-encoding genes and had the largest number of GH families. In addition, pathogenic bacteria (Shigella sonnei, Mannheimia haemolytica, and Helicobacter felis) were enriched in treatment IV. Correlation analysis revealed that the intestinal development index positively correlated with the relative abundance of cecal mucosal microbiota and the amount of digested fiber. These results indicated that increased proportions of fiber-degrading microbes and enhanced intestinal development jointly promote the host to digest an appropriate high-fiber diet. However, although too-high fiber levels in diet could maintain the adaptive development of cecal epithelium, the proportions of pathogenic bacteria increased, which might lead to a decrease of fiber digestion in pigs. IMPORTANCE Although studies about the effects of dietary fiber on fiber digestion and intestinal microbiota of pigs were widely in progress, few studies have been conducted on the dynamic response of intestinal microbiota to dietary fiber levels, and the characteristics of intestinal microbiota and intestinal epithelial development adapted to high-fiber diet s were still unclear. Appropriate high fiber promoted the thickness of large intestine wall, increased the density of cecal goblet cells, and promoted the renewal of cecal epithelial cells. In addition, appropriate high fiber improves the microbial abundance with fiber-digesting potential. However, excessive dietary fiber caused an increase in the abundance of pathogenic bacteria. These results indicated that an increased proportion of fiber-degrading microbes and enhanced intestinal development jointly promote host to digest appropriate high-fiber diets. However, although too-high fiber levels in diet could maintain the adaptive development of cecal epithelium, the proportions of pathogenic bacteria increased, which might lead to a decrease of fiber digestion in pigs. Our data provided a theoretical basis for rational and efficient utilization of unconventional feed resources in pig production.
Collapse
|
6
|
Wiarda JE, Loving CL. Intraepithelial lymphocytes in the pig intestine: T cell and innate lymphoid cell contributions to intestinal barrier immunity. Front Immunol 2022; 13:1048708. [PMID: 36569897 PMCID: PMC9772029 DOI: 10.3389/fimmu.2022.1048708] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Intraepithelial lymphocytes (IELs) include T cells and innate lymphoid cells that are important mediators of intestinal immunity and barrier defense, yet most knowledge of IELs is derived from the study of humans and rodent models. Pigs are an important global food source and promising biomedical model, yet relatively little is known about IELs in the porcine intestine, especially during formative ages of intestinal development. Due to the biological significance of IELs, global importance of pig health, and potential of early life events to influence IELs, we collate current knowledge of porcine IEL functional and phenotypic maturation in the context of the developing intestinal tract and outline areas where further research is needed. Based on available findings, we formulate probable implications of IELs on intestinal and overall health outcomes and highlight key findings in relation to human IELs to emphasize potential applicability of pigs as a biomedical model for intestinal IEL research. Review of current literature suggests the study of porcine intestinal IELs as an exciting research frontier with dual application for betterment of animal and human health.
Collapse
Affiliation(s)
- Jayne E. Wiarda
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States,Immunobiology Graduate Program, Iowa State University, Ames, IA, United States,Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Crystal L. Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States,Immunobiology Graduate Program, Iowa State University, Ames, IA, United States,*Correspondence: Crystal L. Loving,
| |
Collapse
|
7
|
Effects of dietary supplementation of bovine lactoferrin on growth performance, immune function and intestinal health in weaning piglets. Biometals 2022; 36:587-601. [PMID: 36342570 DOI: 10.1007/s10534-022-00461-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
Abstract
Weaning is a crucial period in the pig's life cycle, which is frequently followed by gastrointestinal (GI) infections, diarrhea and even death. This study focused on the impact of bovine lactoferrin (bLF) supplementation on the intestinal health of weaning piglets. Weaning piglets (Duroc × Landrace × Yorkshire, 23 days) were randomly allocated into four groups, which included negative control group (CON): basic diet; positive control group (ANT): basic diet + 20 mg/kg flavomycin + 100 mg/kg aureomycin; treatment group bLF-A: basic diet + 1 g/kg bLF; treatment group bLF-B: basic diet + 3 g/kg bLF. The result showed that dietary supplementation of bLF can improve growth performance and reduce diarrhea, which exhibits dose-dependency (P < 0.05). Compared with CON group, supplementation with bLF significantly improved immunity, and increased villus height and ratio of villus height/crypt depth at the small intestinal mucosa (P < 0.05). The mRNA expression of claudin-1, occludin and ZO-1 was greatly increased in the ileum of bLF group on days 7 and 14 (P < 0.05). Furthermore, the supplementation of bLF increased the abundance of Lactobacillus and Bifidobacterium and decreased the abundance of Escherichia coli in the cecum on day 7 (P < 0.05). The dietary supplementation of bLF enhanced the growth performance, reduced diarrhea rate in weaning piglets by improving intestinal immunity, morphology and barrier function, balancing intestinal microbiota. And bLF can be a promising feed additive in relieving stress situation of weaning piglets.
Collapse
|
8
|
Xu X, Huang P, Cui X, Li X, Sun J, Ji Q, Wei Q, Huang Y, Li Z, Bao G, Liu Y. Effects of Dietary Coated Lysozyme on the Growth Performance, Antioxidant Activity, Immunity and Gut Health of Weaned Piglets. Antibiotics (Basel) 2022; 11:antibiotics11111470. [PMID: 36358125 PMCID: PMC9686649 DOI: 10.3390/antibiotics11111470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to evaluate the effects of dietary coated lysozyme on growth performance, serum biochemical indexes, antioxidant activity, digestive enzyme activity, intestinal permeability, and the cecal microbiota in weaned piglets. In total, 144 weaned Large White × Landrace piglets were divided into six treatment groups, with 3 replicates and 8 piglets per replicate: CN, a basal diet; CL-L, CL-M, and CL-H, basal diet supplemented with 100, 150, 500 mg/kg coated lysozyme; UL, basal diet supplemented with 150 mg/kg lysozyme; and Abs, basal diet supplemented with 150 mg/kg guitaromycin for 6 weeks. Compared with the CN and UL diets, dietary CL-H inclusion increased the average daily gain (ADG) and decreased the feed/gain (F/G) ratio of piglets (p < 0.05). The addition of 500 mg/kg coated lysozyme to the diet significantly increased the total protein (TP) and globulin (Glob) plasma levels of weaned piglets (p < 0.05). Supplementation with 500 mg/kg coated lysozyme significantly increased the serum IgM concentration and increased lipase activity in the duodenum (p < 0.05). The addition of coated lysozyme and lysozyme significantly decreased the malondialdehyde (MDA) content, while the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC) levels all increased (p < 0.05). High-throughput sequencing results showed that CL-H treatment effectively improved the intestinal microbiome. The relative abundance of Terrisporobacter in the CL-H and CL-M groups was significantly lower than that in the other groups (p < 0.05). LEfSe analysis results showed that the relative abundance of Coprococcus_3 was higher in the CL-M treatment group. The marker species added to the CL-H treatment group was Anaerofilum. In summary, as a potential substitute for feed antibiotics, lysozyme is directly used as a dietary additive, which is inefficient. Therefore, we used palm oil as the main coating material to coat lysozyme. Lysozyme after coating can more effectively improve the growth performance of piglets by improving the intestinal flora, improving the activity of digestive enzymes, reducing the damage to intestinal permeability and oxidative stress in piglets caused by weaning stress, and improving the immunity of piglets.
Collapse
Affiliation(s)
- Xiangfei Xu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Animal Science and Technology·College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Pan Huang
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xuemei Cui
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xuefeng Li
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiaying Sun
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Quanan Ji
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qiang Wei
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yee Huang
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhefeng Li
- Hangzhou King Techina Technology Company Academic Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou 311199, China
| | - Guolian Bao
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Animal Science and Technology·College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
- Correspondence: (G.B.); (Y.L.); Tel.: +86-057186419022 (Y.L.)
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (G.B.); (Y.L.); Tel.: +86-057186419022 (Y.L.)
| |
Collapse
|
9
|
Lewton JR, Woodward AD, Moser RL, Thelen KM, Moeser AJ, Trottier NL, Tempelman RJ, Rozeboom DW. Effects of a multi-strain Bacillus subtilis-based direct-fed microbial on immunity markers and intestinal morphology in diets fed to weanling pigs. Transl Anim Sci 2022; 6:txac083. [PMID: 35854968 PMCID: PMC9278820 DOI: 10.1093/tas/txac083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/16/2022] [Indexed: 11/22/2022] Open
Abstract
The objective of this experiment was to evaluate the effects of a multi-strain Bacillus subtilis-based direct-fed microbial (DFM) on nursery pig health as indicated by intestinal mucosal and blood plasma immunological markers and intestinal morphology. Eighty pigs, of equal number of barrows and gilts (initial BW: 7.0 ± 0.60 kg), weaned at 21 ± 1 d of age were randomly allotted to sixteen pens, with five pigs per pen. Two dietary treatments were implemented, a basal control (CON) and a basal control plus DFM (CDFM). Both diets were corn, soybean meal, and distillers dried grains based and were formulated to meet or exceed all nutritional requirements (NRC, 2012) and manufactured on site. Diets were fed for 42 d. On d 21 and 42 of the experiment, one pig per pen was randomly selected and euthanized, with equal number of males and females represented. Blood samples were collected prior to euthanasia for assessment of plasma concentrations of immunoglobulin A (IgA) and intestinal fatty acid binding protein. Segments of the gastrointestinal tract including duodenum, jejunum, ileum, ascending and distal colon were removed for analysis of intestinal morphology, and levels of interleukin 6, interleukin 10 (IL-10), and tumor necrosis factor alpha. Jejunal villus height was greater in the CDFM pigs as compared with CON pigs (P = 0.02) and ascending colon crypt depth tended to be greater on d 21 (P = 0.10). Compared to CON, CDFM significantly increased overall plasma IgA (P = 0.03) (0.58 vs. 0.73 0.05 mg/mL, respectively), while it tended to increase plasma IgA (P = 0.06) on d 21 (0.34 vs. 0.54 ± 0.07 mg/mL, respectively) and tended to increase overall IL-10 (P = 0.10) in the jejunum (113 vs. 195 ± 35 pg/mL, respectively). Addition of a multi-strain Bacillus subtilis-based DFM may have an early benefit to nursery pig health status, observed through specific changes in morphology and both systemic and localized immunological markers.
Collapse
Affiliation(s)
- Jaron R Lewton
- Department of Animal Science, Michigan State University , East Lansing, MI 48824 , USA
| | | | | | - Kyan M Thelen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University , East Lansing, MI 48824 , USA
| | - Adam J Moeser
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University , East Lansing, MI 48824 , USA
| | - Nathalie L Trottier
- Department of Animal Science, Cornell University , Ithaca, NY 14853 , Greece
| | - Robert J Tempelman
- Department of Animal Science, Michigan State University , East Lansing, MI 48824 , USA
| | - Dale W Rozeboom
- Department of Animal Science, Michigan State University , East Lansing, MI 48824 , USA
| |
Collapse
|
10
|
Pednekar DD, Liguori MA, Marques CNH, Zhang T, Zhang N, Zhou Z, Amoako K, Gu H. From Static to Dynamic: A Review on the Role of Mucus Heterogeneity in Particle and Microbial Transport. ACS Biomater Sci Eng 2022; 8:2825-2848. [PMID: 35696291 DOI: 10.1021/acsbiomaterials.2c00182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mucus layers (McLs) are on the front line of the human defense system that protect us from foreign abiotic/biotic particles (e.g., airborne virus SARS-CoV-2) and lubricates our organs. Recently, the impact of McLs on human health (e.g., nutrient absorption and drug delivery) and diseases (e.g., infections and cancers) has been studied extensively, yet their mechanisms are still not fully understood due to their high variety among organs and individuals. We characterize these variances as the heterogeneity of McLs, which lies in the thickness, composition, and physiology, making the systematic research on the roles of McLs in human health and diseases very challenging. To advance mucosal organoids and develop effective drug delivery systems, a comprehensive understanding of McLs' heterogeneity and how it impacts mucus physiology is urgently needed. When the role of airway mucus in the penetration and transmission of coronavirus (CoV) is considered, this understanding may also enable a better explanation and prediction of the CoV's behavior. Hence, in this Review, we summarize the variances of McLs among organs, health conditions, and experimental settings as well as recent advances in experimental measurements, data analysis, and model development for simulations.
Collapse
Affiliation(s)
- Dipesh Dinanath Pednekar
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Madison A Liguori
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | | | - Teng Zhang
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States.,BioInspired Syracuse, Syracuse University, Syracuse, New York 13244, United States
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zejian Zhou
- Department of Electrical and Computer Engineering and Computer Science, University of New Haven, West Haven, Connecticut 06516, United States
| | - Kagya Amoako
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Huan Gu
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| |
Collapse
|
11
|
De Mille CM, Burrough ER, Kerr BJ, Schweer WP, Gabler NK. Dietary Pharmacological Zinc and Copper Enhances Voluntary Feed Intake of Nursery Pigs. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.874284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of the three experiments herein were to characterize the effect of pharmacological zinc and copper concentrations on nursery pig feed intake, stomach ghrelin, energy and nutrient digestibility, and mineral retention in post-weaned pigs. In Expt. 1, 300 weaned pigs were allotted across three dietary treatments (n = 10 pens/treatment) and fed in two diet phases (P1 and P2) lasting 7 and 14 days, respectively. Treatments were: (1) Control diet with no pharmacological minerals in P1 and P2, CON; (2) CON + 3,000 mg/kg Zn and 200 mg/kg Cu (P1), no pharmacological minerals in P2, ZC-CON; and (3) CON + 3,000 mg/kg Zn and 200 mg/kg Cu (P1), CON + 2,000 mg/kg Zn and 200 mg/kg Cu (P2); ZC. Over the 21-day test period, ZC pigs had 15% higher ADG and 13–24% ADFI compared to the CON and ZC-CON pigs (P < 0.05). ZC-CON and ZC pig daily feed intakes were 29 and 73% higher by day 5 and 7 post-weaning, respectively, compared to the CON pigs (P < 0.0001). However, removing pharmacological minerals in P2 abruptly decreased ZC-CON daily feed intake within 24 h to similar intakes as the CON compared to the ZC pigs (0.17, 0.14, and 0.22 kg/d, respectively, P < 0.05). Dietary pharmacological minerals increased stomach fundus ghrelin-positive cells than CON pigs at day 7 (P = 0.005) and day 21 (P < 0.001). However, fasting plasma total and acyl-ghrelin concentrations did not differ from a control in response to zinc oxide daily drenching (Expt. 2). Expt. 3 showed that zinc and copper to have moderate to low retention; however, pharmacological zinc and copper diets increased zinc (P < 0.05) and copper retention (P = 0.06) after 28 days post-weaning compared to control pigs. Pharmacological zinc and copper did not improve digestible energy, metabolizable energy or nitrogen balance. Altogether, dietary pharmacological zinc and copper concentrations improve growth rates and mineral retention in nursery pigs. This improved performance may partially be explained by increased stomach ghrelin abundance and enhanced early feed intake in newly weaned pigs fed pharmacological concentrations of zinc and copper.
Collapse
|
12
|
Fabà L, de Groot N, Ramis G, Cabrera-Gómez CG, Doelman J. Serotonin receptors and their association with the immune system in the gastrointestinal tract of weaning piglets. Porcine Health Manag 2022; 8:8. [PMID: 35090573 PMCID: PMC8796611 DOI: 10.1186/s40813-022-00250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/19/2021] [Indexed: 11/12/2022] Open
Abstract
Background Immune cell activation and perpetuation of inflammation have been attributed to the neurotransmitter serotonin (5-hydroxytryptamine; 5-HT). Our hypothesis was that the 5-HT system plays a role in GI health and immunity in post-weaning piglets. A disruption of the 5-HT system post-weaning with transcriptional upregulation of 5-HT receptors may be linked to increased cytokine mRNA abundance and immune system activation.
Methods The objective of this exploratory study was to assess the relationship between 5-HT receptor expression and immune system biomarkers in piglets at 1 (n = 9) and 15 (n = 10) days post-weaning. The mRNA transcript abundance of three 5-HT receptors (5-HTR3, 5-HTR4, and 5-HTR7) measured in jejunum and colon tissues were used to determine the relationship with the immune system and jejunal morphometry at 2 timepoints post-weaning using correlations, mixed models, and multivariate analysis techniques. Results Overall, 5-HT receptor mRNA expression decreased from day 1 to day 15 post-weaning. Time × tissue interactions showed the lowest 5-HTR3 expression in the colon and lower 5-HTR7 expression in the jejunum at 15 days post-weaning. 5-HTR3 and 5-HTR4 expression were negatively associated with pro-inflammatory (IFN-ɣ) and anti-inflammatory (IL-10 and IL-12β) cytokines in jejunum, and with TNF-α in the colon at 1-day post-weaning. At 15 days post-weaning, 5-HTR3 in the colon was negatively associated with pro-inflammatory (IL-1α, IL-1β, TNF-α, IL-8, and IFN-ɣ) and anti-inflammatory (IL-10 and IL-12β) cytokines. Furthermore, 5-HTR7 expressed a predominantly pro-inflammatory profile (IFN-α, IL-1α, IL-1β, IL-8, TNF-α and IL-12α) in the jejunum at the same timepoint, whereas colonic 5-HTR7 expression was negatively correlated with IL-1α, IL-1β, IL-10 and TGF-β. Lastly, positive correlations were found for increased expression of 5-HTR4 receptor with villus height, 5-HTR7 receptor expression and crypt depth, and increased expression of 5-HTR3 and 5-HTR4 receptor with villus height to crypt depth ratio at 1-day post-weaning. Conclusions The 5-HT receptor mRNA abundance was associated with the immune system and intestinal morphometry in piglets. The 5-HT receptors were highly expressed at weaning in both jejunum and colon tissues relative to 15 days post-weaning. Although a clear relationship between immune system and 5-HTR expression is observed, particularly at day 15, a cause-consequence cannot be proven with current data. Further research is warranted to elucidate the effects of 5-HT on gastrointestinal inflammation during the weaning process in piglets, which could be the basis for new interventions to ease weaning stress.
Collapse
Affiliation(s)
- Lluís Fabà
- Trouw Nutrition R&D, Boxmeer, The Netherlands.
| | | | - Guillermo Ramis
- Dpto. Producción Animal, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | | | | |
Collapse
|
13
|
Rodrigues LA, Ferreira FNA, Costa MO, Wellington MO, Columbus DA. Factors affecting performance response of pigs exposed to different challenge models: a multivariate approach. J Anim Sci 2021; 99:6290803. [PMID: 34061959 DOI: 10.1093/jas/skab035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/27/2021] [Indexed: 01/15/2023] Open
Abstract
Factors associated with the severity with which different challenge models (CMs) compromise growth performance in pigs were investigated using hierarchical clustering on principal components (HCPC) analysis. One hundred seventy-eight studies reporting growth performance variables (average daily gain [ADG], average daily feed intake [ADFI], gain:feed [GF], and final body weight [FBW]) of a Control (Ct) vs. a Challenged (Ch) group of pigs using different CMs (enteric [ENT], environmental [ENV], lipopolysaccharide [LPS], respiratory [RES], or sanitary condition [SAN] challenges) were included. Studies were grouped by similarity in performance in three clusters (C1, C2, and C3) by HCPC. The effects of CM, cluster, and sex (males [M], females [F], mixed [Mi]) were investigated. Linear (LRP) and quadratic (QRP) response plateau models were fitted to assess the interrelationships between the change in ADG (∆ADG) and ADFI (∆ADFI) and the duration of challenge. All variables increased from C1 through C3, except for GF, which decreased (P < 0.05). LPS was more detrimental to ADG than ENV, RES, and SAN models (P < 0.05). Furthermore, LPS also lowered GF more than all the other CMs (P < 0.05). The ∆ADG independent of ∆ADFI was significant in LPS and SAN (P < 0.05), showed a trend toward the significance in ENT and RES (P < 0.10), and was not significant in ENV (P > 0.10), while the ∆ADG dependent on ∆ADFI was significant in ENT, ENV, and LPS only (P < 0.05). The critical value of ∆ADFI influencing the ∆ADG was significant in pigs belonging to C1 (P < 0.05) but not C2 or C3 (P > 0.10). The ∆ADG independent of duration post-Ch (irreparable portion of growth) was significant in C1 and C2 pigs, whereas the ∆ADFI independent of duration post-Ch (irreparable portion of feed intake) was significant in C1 pigs only (P < 0.05). Moreover, the time for recovery of ADG and ADFI after Ch was significant in pigs belonging to C1 and C2 (P < 0.05). Control F showed reduced ADG compared with Ct-M, and Ch-F showed reduced ADFI compared with Ch-M (P < 0.05). Moreover, the irreparable portion of ΔADG was 4.8 higher in F (-187.7; P < 0.05) compared with M (-39.1; P < 0.05). There are significant differences in growth performance response to CM based on cluster and sex. Furthermore, bacterial lipopolysaccharide appears to be an appropriate noninfectious model for immune stimulation and growth impairment in pigs.
Collapse
Affiliation(s)
- Lucas A Rodrigues
- Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9, Canada.,Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Felipe N A Ferreira
- Technical Services Department, Agroceres Multimix, Rio Claro, SP 13502-741, Brazil
| | - Matheus O Costa
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada.,Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, The Netherlands
| | - Michael O Wellington
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Daniel A Columbus
- Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9, Canada.,Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
14
|
Wei X, Tsai T, Howe S, Zhao J. Weaning Induced Gut Dysfunction and Nutritional Interventions in Nursery Pigs: A Partial Review. Animals (Basel) 2021; 11:1279. [PMID: 33946901 PMCID: PMC8146462 DOI: 10.3390/ani11051279] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 01/08/2023] Open
Abstract
Weaning is one of the most stressful events in the life of a pig. Unsuccessful weaning often leads to intestinal and immune system dysfunctions, resulting in poor growth performance as well as increased morbidity and mortality. The gut microbiota community is a complex ecosystem and is considered an "organ," producing various metabolites with many beneficial functions. In this review, we briefly introduce weaning-associated gut microbiota dysbiosis. Then, we explain the importance of maintaining a balanced gut microbiota. Finally, we discuss dietary supplements and their abilities to restore intestinal balance and improve the growth performance of weaning pigs.
Collapse
Affiliation(s)
| | | | | | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA; (X.W.); (T.T.); (S.H.)
| |
Collapse
|
15
|
Ansia I, Drackley JK. Technical note: Evaluation of 3 methods to determine mucin protein concentration in ileal digesta of young preweaning calves. J Dairy Sci 2020; 103:6250-6257. [PMID: 32331876 DOI: 10.3168/jds.2019-18121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/02/2020] [Indexed: 11/19/2022]
Abstract
The use of alternative sources of protein to substitute for milk proteins in milk replacers (MR) can increase the synthesis of endogenous proteins and therefore alter ileal or total-tract digestibility calculations. Mucin is the main component of gastrointestinal mucus and represents the greatest contribution to total endogenous protein. Mucin is difficult to isolate and has not been extensively studied in dairy calves. We explored 3 different procedures to analyze and estimate mucin protein (MUP) in ileal digesta of young dairy calves. Ileal digesta samples were collected from nine 30-d-old ileal-cannulated calves that were enrolled in a 3 × 3 replicated Latin square with 5-d periods. The 3 diets were a control whey protein-based MR (WPC), an isonitrogenous MR in which 50% of the protein was from enzyme-treated soybean meal (ESBM), and an N-free MR (NFREE). Mucin protein concentration and flow were analyzed by fractionation of the digesta and ethanol precipitation; this process served as the reference method. Alternative methods to estimate MUP consisted of using commercial enzymatic kits to analyze glucosamine (N-acetylglucosamine, GlcNAc) and galactosamine (N-acetylgalactosamine, GalNAc), 2 amino-sugars that are highly enriched in mucin. Before GlcNAc determination, samples were processed using 3 different procedures: sample clarification (GLCL), clarification plus hydrolysis (GLCH), and hydrolysis alone (GLHL). The MUP was estimated by regression of the GlcNAc and GalNAc values using previously validated equations. According with the bias and agreement analysis, none of the methods yielded MUP values similar to the reference method. However, GLHL showed a strong association with the reference method (ρ = 0.73). It allowed identifying the smaller MUP flows with NFREE compared with the other 2 diets and detecting the greater flow of ESBM than WPC, as observed with the reference method. Using the GlcNAc values from GLHL and the MUP measured with the reference method, we were able to establish a linear relationship between both methods (adjusted R2 = 0.75). We found that the GLHL method enabled detecting differences in MUP ileal flows between diets differing in protein level and source. Inferences about MUP secretions must be done cautiously because many dietary and physiological factors are involved. The adoption of practical techniques to determine MUP can help to increase our knowledge about gastrointestinal tract function and to improve the accuracy of MR digestibility calculations.
Collapse
Affiliation(s)
- I Ansia
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - J K Drackley
- Department of Animal Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
16
|
Wiarda JE, Trachsel JM, Bond ZF, Byrne KA, Gabler NK, Loving CL. Intraepithelial T Cells Diverge by Intestinal Location as Pigs Age. Front Immunol 2020; 11:1139. [PMID: 32612605 PMCID: PMC7308531 DOI: 10.3389/fimmu.2020.01139] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
T cells resident within the intestinal epithelium play a central role in barrier integrity and provide a first line of immune defense. Intraepithelial T cells (IETs) are among the earliest immune cells to populate and protect intestinal tissues, thereby giving them an important role in shaping gut health early in life. In pigs, IETs are poorly defined, and their maturation in young pigs has not been well-studied. Given the importance of IETs in contributing to early life and long-term intestinal health through interactions with epithelial cells, the microbiota, and additional environmental factors, a deeper characterization of IETs in pigs is warranted. The objective of this study was to analyze age- and intestinal location-dependent changes in IETs across multiple sites of the small and large intestine in pigs between 4- and 8-weeks of age. IETs increased in abundance over time and belonged to both γδ and αβ T cell lineages. Similar compositions of IETs were identified across intestinal sites in 4-week-old pigs, but compositions diverged between intestinal sites as pigs aged. CD2+CD8α+ γδ T cells and CD4-CD8α+ αβ T cells comprised >78% of total IETs at all intestinal locations and ages examined. Greater percentages of γδ IETs were present in large intestine compared to small intestine in older pigs. Small intestinal tissues had greater percentages of CD2+CD8α- γδ IETs, while CD2+CD8α+ γδ IET percentages were greater in the large intestine. Percentages of CD4-CD8α+ αβ IETs increased over time across all intestinal sites. Moreover, percentages of CD27+ cells decreased in ileum and large intestine over time, indicating increased IET activation as pigs aged. Percentages of CD27+ cells were also higher in small intestine compared to large intestine at later timepoints. Results herein emphasize 4- to 8-weeks of age as a critical window of IET maturation and suggest strong associations between intestinal location and age with IET heterogeneity in pigs.
Collapse
Affiliation(s)
- Jayne E Wiarda
- Food Safety and Enteric Pathogens Research Unit, Agricultural Research Service, United States Department of Agriculture, National Animal Disease Center, Ames, IA, United States.,Immunobiology Graduate Program, Iowa State University, Ames, IA, United States.,Oak Ridge Institute for Science and Education, Agricultural Research Service Participation Program, Oak Ridge, TN, United States
| | - Julian M Trachsel
- Food Safety and Enteric Pathogens Research Unit, Agricultural Research Service, United States Department of Agriculture, National Animal Disease Center, Ames, IA, United States
| | - Zahra F Bond
- Food Safety and Enteric Pathogens Research Unit, Agricultural Research Service, United States Department of Agriculture, National Animal Disease Center, Ames, IA, United States
| | - Kristen A Byrne
- Food Safety and Enteric Pathogens Research Unit, Agricultural Research Service, United States Department of Agriculture, National Animal Disease Center, Ames, IA, United States
| | - Nicholas K Gabler
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Crystal L Loving
- Food Safety and Enteric Pathogens Research Unit, Agricultural Research Service, United States Department of Agriculture, National Animal Disease Center, Ames, IA, United States
| |
Collapse
|
17
|
Luise D, Bovo S, Bosi P, Fanelli F, Pagotto U, Galimberti G, Mazzoni G, Dall'Olio S, Fontanesi L. Targeted metabolomic profiles of piglet plasma reveal physiological changes over the suckling period. Livest Sci 2020. [DOI: 10.1016/j.livsci.2019.103890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Nutritional Regulation of Gut Barrier Integrity in Weaning Piglets. Animals (Basel) 2019; 9:ani9121045. [PMID: 31795348 PMCID: PMC6940750 DOI: 10.3390/ani9121045] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Weaning is a very stressful period in the piglet’s life in intensive farming: it is a sudden process occurring between three to four weeks of age, when the gastrointestinal tract (GIT) is still immature. The GIT is formed by the epithelial, immune and enteric nervous system which controls epithelial barrier integrity as well as gut functions including the transport of luminal nutrients, water and electrolytes. Early weaning is characterized by a breakdown of these gut functions, an increase in intestinal permeability and the appearance of gastrointestinal functional disorders, which can have long-lasting consequences in the pig’s life. Weaning, therefore, requires the correct level of nutrients, high quality ingredients, and management, which are directed primarily at encouraging rapid feed intake whilst reducing mortality and morbidity. This review describes the organization of the GIT and highlights the interactions between feed components and the morphology and physiology of the epithelial barrier. Novel dietary strategies focused on improving gut health are also discussed, considering the impacts of selected feed ingredients or additives on the GIT such as functional amino acids, phytochemicals and organic acids. Abstract Weaning is very stressful for piglets and leads to alterations in the intestinal barrier, a reduction in nutrient absorption and a higher susceptibility to intestinal diseases with heavy economic losses. This review describes the structures involved in the intestinal barrier: the epithelial barrier, immune barrier and the enteric nervous system. Here, new insights into the interactions between feed components and the physiology and morphology of the epithelial barrier are highlighted. Dietary strategies focused on improving gut health are also described including amino acids, phytochemicals and organic acids.
Collapse
|
19
|
Wang X, Tsai T, Deng F, Wei X, Chai J, Knapp J, Apple J, Maxwell CV, Lee JA, Li Y, Zhao J. Longitudinal investigation of the swine gut microbiome from birth to market reveals stage and growth performance associated bacteria. MICROBIOME 2019; 7:109. [PMID: 31362781 PMCID: PMC6664762 DOI: 10.1186/s40168-019-0721-7] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/05/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Despite recent advances in the understanding of the swine gut microbiome at different growth stages, a comprehensive longitudinal study of the lifetime (birth to market) dynamics of the swine gut microbiome is lacking. RESULTS To fill in this gap of knowledge, we repeatedly collected a total of 273 rectal swabs from 18 pigs during lactation (day (d) 0, 11, 20), nursery (d 27, 33, 41, 50, 61), growing (d 76, 90, 104, 116), and finishing (d 130, 146, 159, 174) stages. DNA was extracted and subjected to sequencing with an Illumina Miseq sequencer targeting the V4 region of the 16S rRNA gene. Sequences were analyzed with the Deblur algorithm in the QIIME2 package. A total of 19 phyla were detected in the lifetime pig gut microbiome with Firmicutes and Bacteroidetes being the most abundant. Alpha diversity including community richness (e.g., number of observed features) and diversity (e.g., Shannon index) showed an overall increasing trend. Distinct shifts in microbiome structure along different growth stages were observed. LEfSe analysis revealed 91 bacterial features that are stage-specific. To validate these discoveries, we performed fecal microbiota transplantation (FMT) by inoculating weanling pigs with mature fecal microbiota from a growing stage pig. Similar stage-specific patterns in microbiome diversity and structures were also observed in both the FMT pigs and their littermates. Although FMT remarkably increased growth performance, it did not change the overall swine gut microbiome. Only a few taxa including those associated with Streptococcus and Clostridiaceae were enriched in the FMT pigs. These data, together with several other lines of evidence, indicate potential roles these taxa play in promoting animal growth performance. Diet, especially crude fiber from corn, was a major factor shaping the swine gut microbiome. The priority effect, i.e., the order and timing of species arrival, was more evident in the solid feed stages. CONCLUSIONS The distinct stage-associated swine gut microbiome may be determined by the differences in diet and/or gut physiology at different growth stages. Our study provides insight into mechanisms governing gut microbiome succession and also underscores the importance of optimizing stage-specific probiotics aimed at improving animal health and production.
Collapse
Affiliation(s)
- Xiaofan Wang
- Department of Animal Science, University of Arkansas, Fayetteville, AR USA
| | - Tsungcheng Tsai
- Department of Animal Science, University of Arkansas, Fayetteville, AR USA
| | - Feilong Deng
- Department of Animal Science, University of Arkansas, Fayetteville, AR USA
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Xiaoyuan Wei
- Department of Animal Science, University of Arkansas, Fayetteville, AR USA
| | - Jianmin Chai
- Department of Animal Science, University of Arkansas, Fayetteville, AR USA
| | - Joshua Knapp
- Department of Animal Science, University of Arkansas, Fayetteville, AR USA
| | - Jason Apple
- Department of Animal Science, University of Arkansas, Fayetteville, AR USA
| | - Charles V. Maxwell
- Department of Animal Science, University of Arkansas, Fayetteville, AR USA
| | - Jung Ae Lee
- Agricultural Statistics Laboratory, University of Arkansas, Fayetteville, AR USA
| | - Ying Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Jiangchao Zhao
- Department of Animal Science, University of Arkansas, Fayetteville, AR USA
| |
Collapse
|
20
|
Rieger J, Drewes B, Hünigen H, Plendl J. Mucosubstances in the porcine gastrointestinal tract: Fixation, staining and quantification. Eur J Histochem 2019; 63. [PMID: 31232013 PMCID: PMC6603293 DOI: 10.4081/ejh.2019.3030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022] Open
Abstract
Mucins are of great interest in intestinal research and histochemical methods are often employed to identify them. Since it is in the nature of mucins that they are "hard to hold onto" once they come into contact with water, a frequently used medium in histochemistry, there are a number of challenges that may decrease diagnostic accuracy. As the outcome of methods published for microscopic detection of mucosubstances proved to be unsatisfactory in our hands, the aim was the establishment of a reliable and reproducible protocol. Tissue samples were available from pig feeding experiments. In the present study, we focus on a fixation / staining procedure without making comparisons between differently fed pigs. Several fixation and staining procedures were evaluated for their use in semiautomatic quantification and quality assessment of different mucus fractions simultaneous on one tissue section. Cryostat sectioning, subsequent fixation steps with heat, ethanol and modified Bouin's solution, followed by triple staining with high iron diamine, alcian blue and periodic acid-Schiff turned out to be the best method to identify sulfomucin, sialomucin and neutral mucin simultaneous on one tissue section. This methodology resulted in very good morphology of goblet cells with intact mucin containing vesicles within the cells, which was comparable to ultrastructural electron microscopical observations. Semiautomatic quantification of different mucins was possible. In conclusion, reliable mucus quantification and assessment of mucus quality requires strictly tested procedures. According to our experience, the most important aim after cryosectioning is fast fixation of the mucosubstances, which requires a combination of different fixation steps.
Collapse
Affiliation(s)
- Juliane Rieger
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universität Berlin.
| | | | | | | |
Collapse
|
21
|
Xiong X, Tan B, Song M, Ji P, Kim K, Yin Y, Liu Y. Nutritional Intervention for the Intestinal Development and Health of Weaned Pigs. Front Vet Sci 2019; 6:46. [PMID: 30847348 PMCID: PMC6393345 DOI: 10.3389/fvets.2019.00046] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/04/2019] [Indexed: 01/20/2023] Open
Abstract
Weaning imposes simultaneous stress, resulting in reduced feed intake, and growth rate, and increased morbidity and mortality of weaned pigs. Weaning impairs the intestinal integrity, disturbs digestive and absorptive capacity, and increases the intestinal oxidative stress, and susceptibility of diseases in piglets. The improvement of intestinal development and health is critically important for enhancing nutrient digestibility capacity and disease resistance of weaned pigs, therefore, increasing their survival rate at this most vulnerable stage, and overall productive performance during later stages. A healthy gut may include but not limited several important features: a healthy proliferation of intestinal epithelial cells, an integrated gut barrier function, a preferable or balanced gut microbiota, and a well-developed intestinal mucosa immunity. Burgeoning evidence suggested nutritional intervention are one of promising measures to enhance intestinal health of weaned pigs, although the exact protective mechanisms may vary and are still not completely understood. Previous research indicated that functional amino acids, such as arginine, cysteine, glutamine, or glutamate, may enhance intestinal mucosa immunity (i.e., increased sIgA secretion), reduce oxidative damage, stimulate proliferation of enterocytes, and enhance gut barrier function (i.e., enhanced expression of tight junction protein) of weaned pigs. A number of feed additives are marketed to assist in boosting intestinal immunity and regulating gut microbiota, therefore, reducing the negative impacts of weaning, and other environmental challenges on piglets. The promising results have been demonstrated in antimicrobial peptides, clays, direct-fed microbials, micro-minerals, milk components, oligosaccharides, organic acids, phytochemicals, and many other feed additives. This review summarizes our current understanding of nutritional intervention on intestinal health and development of weaned pigs and the importance of mechanistic studies focusing on this research area.
Collapse
Affiliation(s)
- Xia Xiong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Bie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Minho Song
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Peng Ji
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Kwangwook Kim
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| |
Collapse
|
22
|
De Keyser K, Dierick N, Kanto U, Hongsapak T, Buyens G, Kuterna L, Vanderbeke E. Medium-chain glycerides affect gut morphology, immune- and goblet cells in post-weaning piglets: In vitro fatty acid screening with Escherichia coli and in vivo consolidation with LPS challenge. J Anim Physiol Anim Nutr (Berl) 2018; 103:221-230. [PMID: 30280433 DOI: 10.1111/jpn.12998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/01/2018] [Accepted: 08/26/2018] [Indexed: 01/14/2023]
Abstract
The influence of medium-chain glycerides on performance and gastrointestinal well-being in weaning piglets was assessed. First, caproic (C6), caprylic (C8) and capric (C10) acid activity against Escherichia coli was screened in vitro. Pig flora of the whole small intestine was used as inoculum. Seven in vitro incubations were done in duplicate at pH = 3 and 5: C10 (15 mM), C8 (12 mM), C6 (15, 12, 10 mM), a non-incubated-negative control and incubated negative control. Culture suspensions were plated on E. coli-selective agar. Controls showed bacterial growth. C6 and C8 showed no growth at both pH-values, where C10 showed growth at pH = 5. Secondly, an in vivo study was done with 80 weaned piglets over 42 days, housed in pens of eight animals (five pens/treatment), fed a basal diet containing broken rice/soya bean meal/fish meal and supplemented with C6 and C8 in medium-chain glyceride form (MCT6/8, 0.175%) or antibiotic growth promoter (AGP, 0.020%) (Kasetsart University, Thailand) serving as control. Feed intake, daily gain and feed-to-gain ratio did not differ between MCT6/8 and AGP. Per replicate, two random selected piglets were challenged intravenously with E. coli-lipopolysaccharide (LPS) or saline solution (S) at Days 21 and 28. All challenged animals were sacrificed; blood and digestive tract samples (jejunum/ileum) were collected at Day 35. LPS challenge consistently reduced villus height and crypt depth for MCT6/8 and AGP. However, LPS-challenged piglets supplemented with MCT6/8 restored villus height, where AGP did not. MCT6/8 piglets had higher serum IgA, more jejunal IgA-positive plasma cells and goblet cells than AGP. At the ileal level, results were similar, though less pronounced. The present study offers new insight in the benefits of MCT6/8 over AGP in the post-weaning period. There is in vitro anti-microbial action of C6 and C8 on E. coli. In vivo, MCT6/8 also has protective effects in the small intestine that may result in growth promotion.
Collapse
Affiliation(s)
| | - Noël Dierick
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Uthai Kanto
- Department of Animal Science, Faculty of Agriculture, Kasetsart University, Nakhon Pathom, Thailand
| | - Tassanan Hongsapak
- Department of Animal Science, Faculty of Agriculture, Kasetsart University, Nakhon Pathom, Thailand
| | | | | | | |
Collapse
|
23
|
Liu JB, Cao SC, Liu J, Xie YN, Zhang HF. Effect of probiotics and xylo-oligosaccharide supplementation on nutrient digestibility, intestinal health and noxious gas emission in weanling pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 31:1660-1669. [PMID: 29642680 PMCID: PMC6127592 DOI: 10.5713/ajas.17.0908] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/01/2018] [Accepted: 03/13/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This study was conducted to evaluate the effect of probiotics (Bacillus subtilis and Enterococcus faecium) and xylo-oligosaccharide (XOS) supplementation on growth performance, nutrient digestibility, serum profiles, intestinal health, fecal microbiota and noxious gas emission in weanling pigs. METHODS A total of 240 weanling pigs ([Yorkshire×Landrace]×Duroc) with an average body weight (BW) of 6.3±0.15 kg were used in this 28-day trial. Pigs were randomly allocated in 1 of the following 4 dietary treatments in a 2×2 factorial arrangement with 2 levels of probiotics (0 and 500 mg/kg probiotics) and XOS (0 and 200 mg/kg XOS) based on the BW and sex. RESULTS Administration of probiotics or XOS improved average daily gain (p<0.05) during 0 to 14 d and the overall period, while pigs that were treated with XOS had a greater average daily gain and feed efficiency (p<0.05) compared with unsupplemented treatments throughout 15 to 28 d and the whole experiment. Either probiotics or XOS treatments increased the apparent total tract digestibility of nutrients (p<0.05) during 0 to 14 d. No effects on serum profiles were observed among treatments. The XOS increased villus height: crypt depth ratio in jejunum (p<0.05). The supplementation of probiotics (500 mg/kg) or XOS (200 mg/kg) alone improved the apparent total tract digestibility of dry matter, nitrogen and gross energy on d 14, the activity of trypsin and decreased fecal NH3 concentration (p<0.05). Administration of XOS decreased fecal Escherichia coli counts (p<0.05), while increased lactobacilli (p<0.05) on d 14. There was no interaction between dietary supplementation of probiotics and XOS. CONCLUSION Inclusion of XOS at 200 mg/kg or probiotics (Bacillus subtilis and Enterococcus faecium) at 500 mg/kg in diets containing no antibiotics significantly improved the growth performance of weanling pigs. Once XOS is supplemented, further providing of probiotics is not needed since it exerts little additional effects.
Collapse
Affiliation(s)
- J B Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - S C Cao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - J Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Y N Xie
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - H F Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
24
|
Brugman S, Ikeda-Ohtsubo W, Braber S, Folkerts G, Pieterse CMJ, Bakker PAHM. A Comparative Review on Microbiota Manipulation: Lessons From Fish, Plants, Livestock, and Human Research. Front Nutr 2018; 5:80. [PMID: 30234124 PMCID: PMC6134018 DOI: 10.3389/fnut.2018.00080] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022] Open
Abstract
During recent years the impact of microbial communities on the health of their host (being plants, fish, and terrestrial animals including humans) has received increasing attention. The microbiota provides the host with nutrients, induces host immune development and metabolism, and protects the host against invading pathogens (1-6). Through millions of years of co-evolution bacteria and hosts have developed intimate relationships. Microbial colonization shapes the host immune system that in turn can shape the microbial composition (7-9). However, with the large scale use of antibiotics in agriculture and human medicine over the last decades an increase of diseases associated with so-called dysbiosis has emerged. Dysbiosis refers to either a disturbed microbial composition (outgrowth of possible pathogenic species) or a disturbed interaction between bacteria and the host (10). Instead of using more antibiotics to treat dysbiosis there is a need to develop alternative strategies to combat disturbed microbial control. To this end, we can learn from nature itself. For example, the plant root (or "rhizosphere") microbiome of sugar beet contains several bacterial species that suppress the fungal root pathogen Rhizoctonia solani, an economically important fungal pathogen of this crop (11). Likewise, commensal bacteria present on healthy human skin produce antimicrobial molecules that selectively kill skin pathogen Staphylococcus aureus. Interestingly, patients with atopic dermatitis (inflammation of the skin) lacked antimicrobial peptide secreting commensal skin bacteria (12). In this review, we will give an overview of microbial manipulation in fish, plants, and terrestrial animals including humans to uncover conserved mechanisms and learn how we might restore microbial balance increasing the resilience of the host species.
Collapse
Affiliation(s)
- Sylvia Brugman
- Cell Biology and Immunology Group, Animal Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Wakako Ikeda-Ohtsubo
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| | - Corné M. J. Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| | - Peter A. H. M. Bakker
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
25
|
Liu JB, Cao SC, Liu J, Pu J, Chen L, Zhang HF. Effects of dietary energy and lipase levels on nutrient digestibility, digestive physiology and noxious gas emission in weaning pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 31:1963-1973. [PMID: 29879828 PMCID: PMC6212735 DOI: 10.5713/ajas.18.0087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/10/2018] [Indexed: 12/02/2022]
Abstract
Objective This study was conducted to evaluate the effect of dietary energy and lipase supplementation on growth performance, nutrient digestibility, serum profiles, intestinal morphology, small intestinal digestive enzyme activities, biochemical index of intestinal development and noxious gas emission in weaning pigs. Methods A total of 240 weaning pigs ([Yorkshire×Landrace]×Duroc) with an average body weight (BW) of 7.3±0.12 kg were used in this 28-d experiment. Weaning pigs were randomly allocated to 4 dietary treatments in a 2×2 factorial arrangement with 2 levels of energy (net energy = 2,470 kcal/kg for low energy diet and 2,545 kcal/kg for basal diet) and 2 levels of lipase (0 and 1.5 U/g of lipase) according to BW and sex. There were 6 replications (pens) per treatment and 10 pigs per pen (5 barrows and 5 gilts). Results Weaning pigs fed the low energy diet had lower (p<0.05) gain-to-feed ratio (G:F) throughout the experiment, apparent digestibility of dry matter, nitrogen, ether extract, and gross energy during d 0 to 14, average daily gain during d 15 to 28, lipase activity in duodenum and ileum and protein/DNA in jejunum (p<0.05), respectively. Lipase supplementation had no effect on growth performance but affected apparent nutrient digestibility (p<0.05) on d 14 and enhanced lipase activity in the duodenum and ileum and protease activity in duodenum and jejunum of pigs (p<0.05) fed the low energy diet. Lipase reduced serum low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG), NH3 production (p<0.05) from the feces. Conclusion The low energy diet decreased G:F throughout the experiment and nutrient digestibility during d 0 to 14 as well as lipase activity in duodenum and ileum. Lipase supplementation increased nutrient digestibility during d 0 to 14 and exerted beneficial effects on lipase activity in duodenum and ileum as well as protease activity in duodenum and jejunum, while reduced serum LDL-C, TG and fecal NH3.
Collapse
Affiliation(s)
- J B Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.,State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - S C Cao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - J Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - J Pu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - L Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - H F Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
26
|
Li Y, Zhang H, Su W, Ying Z, Chen Y, Zhang L, Lu Z, Wang T. Effects of dietary Bacillus amyloliquefaciens supplementation on growth performance, intestinal morphology, inflammatory response, and microbiota of intra-uterine growth retarded weanling piglets. J Anim Sci Biotechnol 2018; 9:22. [PMID: 29564121 PMCID: PMC5848560 DOI: 10.1186/s40104-018-0236-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/16/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The focus of recent research has been directed toward the probiotic potential of Bacillus amyloliquefaciens (BA) on the gut health of animals. However, little is known about BA's effects on piglets with intra-uterine growth retardation (IUGR). Therefore, this study investigated the effects of BA supplementation on the growth performance, intestinal morphology, inflammatory response, and microbiota of IUGR piglets. METHODS Eighteen litters of newborn piglets were selected at birth, with one normal birth weight (NBW) and two IUGR piglets in each litter (i.e., 18 NBW and 36 IUGR piglets in total). At weaning, the NBW piglet and one of the IUGR piglets were assigned to groups fed a control diet (i.e., the NBW-CON and IUGR-CON groups). The other IUGR piglet was assigned to a group fed the control diet supplemented with 2.0 g BA per kg of diet (i.e., IUGR-BA group). The piglets were thus distributed across three groups for a four-week period. RESULTS IUGR reduced the growth performance of the IUGR-CON piglets compared with the NBW-CON piglets. It was also associated with decreased villus sizes, increased apoptosis rates, reduced goblet cell numbers, and an imbalance between pro- and anti-inflammatory cytokines in the small intestine. Supplementation with BA improved the average daily weight gain and the feed efficiency of the IUGR-BA group compared with the IUGR-CON group (P < 0.05). The IUGR-BA group exhibited increases in the ratio of jejunal villus height to crypt depth, in ileal villus height, and in ileal goblet cell density. They also exhibited decreases in the numbers of jejunal and ileal apoptotic cells and ileal proliferative cells (P < 0.05). Supplementation with BA increased interleukin 10 content, but it decreased tumor necrosis factor alpha level in the small intestines of the IUGR-BA piglets (P < 0.05). Furthermore, compared with the IUGR-CON piglets, the IUGR-BA piglets had less Escherichia coli in their jejunal digesta, but more Lactobacillus and Bifidobacterium in their ileal digesta (P < 0.05). CONCLUSIONS Dietary supplementation with BA improves morphology, decreases inflammatory response, and regulates microbiota in the small intestines of IUGR piglets, which may contribute to improved growth performance during early life.
Collapse
Affiliation(s)
- Yue Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Hao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Weipeng Su
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Zhixiong Ying
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| |
Collapse
|
27
|
Koltes DA, Lester HD, Frost M, Aldridge D, Christensen KD, Scanes CG. Effects of bacitracin methylene disalicylate and diet change on gastrointestinal integrity and endotoxin permeability in the duodenum of broiler chicken. BMC Res Notes 2017; 10:470. [PMID: 28886731 PMCID: PMC5591554 DOI: 10.1186/s13104-017-2781-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/31/2017] [Indexed: 01/05/2023] Open
Abstract
Objective To determine the effect of bacitracin methylene disalicylate (BMD) and feed changes on gastrointestinal integrity, endotoxin permeability, and morphometric parameters in the duodenum of broilers. Results Birds were raised on a starter diet without growth promoting antibiotics for 31 days then switched to a grower diet. Four of the pens including 50 g/ton of BMD while 4 pens remained antibiotic free. Eight birds per treatment were sampled prior to the feed change and at 3 and 7 days following the feed change. Gastrointestinal integrity and endotoxin permeability in the duodenum were determined using a modified Ussing Chamber and an adjacent section fixed in 10% formalin for morphometric analysis. Data were analyzed using Proc Glimmix of SAS with the model fitting BMD treatment, time, and the interaction of BMD treatment and time as fixed effects. Intestinal integrity increased at d 3 and 7 compared to prior to the feed change and addition of BMD (P > 0.001) and villus height was decreased with BMD supplementation (P = 0.049). All other tested effects similar (P > 0.1). In conclusion, the practice of changing feed had a greater effect on intestinal health than addition of BMD. However, the factors driving these differences 42 are unclear. Electronic supplementary material The online version of this article (doi:10.1186/s13104-017-2781-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dawn A Koltes
- Department of Poultry Science, University of Arkansas, 1260 W. Maple, POSC O-215, Fayetteville, AR, 72701, USA.
| | - Howard D Lester
- Department of Poultry Science, University of Arkansas, 1260 W. Maple, POSC O-215, Fayetteville, AR, 72701, USA
| | - Maurice Frost
- Department of Poultry Science, University of Arkansas, 1260 W. Maple, POSC O-215, Fayetteville, AR, 72701, USA.,Hy-line International, Des Moines, IA, 50309, USA
| | - Douglas Aldridge
- Department of Poultry Science, University of Arkansas, 1260 W. Maple, POSC O-215, Fayetteville, AR, 72701, USA
| | - Karen D Christensen
- Department of Poultry Science, University of Arkansas, 1260 W. Maple, POSC O-215, Fayetteville, AR, 72701, USA
| | - Colin G Scanes
- Department of Poultry Science, University of Arkansas, 1260 W. Maple, POSC O-215, Fayetteville, AR, 72701, USA
| |
Collapse
|
28
|
Kern M, Aschenbach JR, Tedin K, Pieper R, Loss H, Lodemann U. Characterization of Inflammasome Components in Pig Intestine and Analysis of the Influence of Probiotic Enterococcus Faecium during an Escherichia Coli Challenge. Immunol Invest 2017; 46:742-757. [DOI: 10.1080/08820139.2017.1360341] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Martina Kern
- Department of Veterinary Medicine, Institute of Veterinary Physiology, Freie Universitaet Berlin, Berlin, Germany
| | - Jörg R Aschenbach
- Department of Veterinary Medicine, Institute of Veterinary Physiology, Freie Universitaet Berlin, Berlin, Germany
| | - Karsten Tedin
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Freie Universitaet Berlin, Berlin, Germany
| | - Robert Pieper
- Department of Veterinary Medicine, Institute of Animal Nutrition, Freie Universitaet Berlin, Berlin, Germany
| | - Henriette Loss
- Department of Veterinary Medicine, Institute of Veterinary Physiology, Freie Universitaet Berlin, Berlin, Germany
| | - Ulrike Lodemann
- Department of Veterinary Medicine, Institute of Veterinary Physiology, Freie Universitaet Berlin, Berlin, Germany
| |
Collapse
|
29
|
Gresse R, Chaucheyras-Durand F, Fleury MA, Van de Wiele T, Forano E, Blanquet-Diot S. Gut Microbiota Dysbiosis in Postweaning Piglets: Understanding the Keys to Health. Trends Microbiol 2017; 25:851-873. [PMID: 28602521 DOI: 10.1016/j.tim.2017.05.004] [Citation(s) in RCA: 497] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/02/2017] [Accepted: 05/05/2017] [Indexed: 12/13/2022]
Abstract
Weaning is a critical event in the pig's life cycle, frequently associated with severe enteric infections and overuse of antibiotics; this raises serious economic and public health concerns. In this review, we explain why gut microbiota dysbiosis, induced by abrupt changes in the diet and environment of piglets, emerges as a leading cause of post-weaning diarrhea, even if the exact underlying mechanisms remain unclear. Then, we focus on nonantimicrobial alternatives, such as zinc oxide, essential oils, and prebiotics or probiotics, which are currently evaluated to restore intestinal balance and allow a better management of the crucial weaning transition. Finally, we discuss how in vitro models of the piglet gut could be advantageously used as a complement to ex vivo and in vivo studies for the development and testing of new feed additives.
Collapse
Affiliation(s)
- Raphaële Gresse
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRA, F-63000 Clermont-Ferrand, France; Lallemand Animal Nutrition, F-31702 Blagnac Cedex, France
| | | | | | - Tom Van de Wiele
- Ghent University, Center for Microbial Ecology and Technology, B-9000, Gent, Belgium
| | - Evelyne Forano
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRA, F-63000 Clermont-Ferrand, France
| | | |
Collapse
|
30
|
Duan Y, Guo Q, Wen C, Wang W, Li Y, Tan B, Li F, Yin Y. Free Amino Acid Profile and Expression of Genes Implicated in Protein Metabolism in Skeletal Muscle of Growing Pigs Fed Low-Protein Diets Supplemented with Branched-Chain Amino Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9390-9400. [PMID: 27960294 DOI: 10.1021/acs.jafc.6b03966] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Revealing the expression patterns of genes involved in protein metabolism as affected by diets would be useful for further clarifying the importance of the balance among the branched-chain amino acids (BCAAs), which include leucine (Leu), isoleucine (Ile), and valine (Val). Therefore, we used growing pigs to explore the effects of different dietary BCAA ratios on muscle protein metabolism. The Leu:Ile:Val ratio was 1:0.51:0.63 (20% crude protein, CP), 1:1:1 (17% CP), 1:0.75:0.75 (17% CP), 1:0.51:0.63 (17% CP), and 1:0.25:0.25 (17% CP), respectively. Results showed that compared with the control group, low-protein diets with the BCAA ratio ranging from 1:0.75:0.75 to 1:0.25:0.25 elevated muscle free amino acid (AA) concentrations and AA transporter expression, significantly activated the mammalian target of rapamycin complex 1 pathway, and decreased serum urea nitrogen content and the mRNA expression of genes related to muscle protein degradation (P < 0.05). In conclusion, these results indicated that maintaining the dietary Leu:Ile:Val ratio within 1:0.25:0.25-1:0.75:0.75 in low-protein diets (17% CP) would facilitate the absorption and utilization of free AA and result in improved protein metabolism and muscle growth.
Collapse
Affiliation(s)
- Yehui Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences ; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- University of Chinese Academy of Sciences , Beijing 100039, China
| | - Qiuping Guo
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences ; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- University of Chinese Academy of Sciences , Beijing 100039, China
| | - Chaoyue Wen
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University , Changsha, Hunan 410018, China
| | - Wenlong Wang
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University , Changsha, Hunan 410018, China
| | - Yinghui Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences ; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- University of Chinese Academy of Sciences , Beijing 100039, China
| | - Bie Tan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences ; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
| | - Fengna Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences ; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS; Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients , Changsha 410128, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences ; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University , Changsha, Hunan 410018, China
| |
Collapse
|
31
|
Kluess JW, Kahlert S, Krüger J, Rothkötter HJ, Berk A, Kersten S, Dänicke S. Postweaning development of porcine small intestinal morphology and epithelial cell proliferation1. J Anim Sci 2016. [DOI: 10.2527/jas.2015-9774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- J. W. Kluess
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - S. Kahlert
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - J. Krüger
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - H.-J. Rothkötter
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - A. Berk
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - S. Kersten
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - S. Dänicke
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| |
Collapse
|
32
|
He J, Feng G, Ao X, Li Y, Qian H, Liu J, Bai G, He Z. Effects of L-glutamine on growth performance, antioxidant ability, immunity and expression of genes related to intestinal health in weanling pigs. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
33
|
Supplementation of branched-chain amino acids to a reduced-protein diet improves growth performance in piglets: involvement of increased feed intake and direct muscle growth-promoting effect. Br J Nutr 2016; 115:2236-45. [DOI: 10.1017/s0007114516000842] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AbstractThe aim of this study was to investigate whether supplementing branched-chain amino acids (AA) (BCAA) along with a reduced-protein diet increases piglet growth, and whether elevated feed intake and muscle growth-promoting effect contribute to this improvement. In Expt 1, twenty-eight weanling piglets were randomly fed one of the following four diets: a positive control (PC) diet, a reduced-protein negative control (NC) diet, an NC diet supplemented with BCAA to the same levels as in the PC diet (test 1 (T1)) and an NC diet supplemented with a 2-fold dose of BCAA in T1 diet (test 2 (T2)) for 28 d. In Expt 2, twenty-one weanling piglets were randomly assigned to NC, T1 and pair-fed T1 (P) groups. NC and T1 diets were the same as in Expt 1, whereas piglets in the P group were individually pair-fed with the NC group. In Expt 1, the NC group had reduced piglet growth and feed intake compared with the PC group, which were restored in T1 and T2 groups, but no differences were detected between T1 and T2 groups. In Expt 2, T1 and P groups showed increases in growth and mass of some muscles compared with the NC group. Increased feed intake after BCAA supplementation was associated with increased mRNA expressions of agouti-related peptide and co-express neuropeptide Y (NPY) and phosphorylation of mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase 1 (S6K1), as well as decreased mRNA expressions of melanocortin-4 receptor and cocaine- and amphetamine-regulated transcript and phosphorylation of eukaryotic initiation factor 2α in the hypothalamus. No differences were observed among PC, T1 and T2 groups except for higher NPY mRNA expression in the T2 group than in the PC group (Expt 1). Phosphorylation of mTOR and S6K1 in muscle was enhanced after BCAA supplementation, which was independent of change in feed intake (Expt 2). In conclusion, supplementing BCAA to reduced-protein diets increases feed intake and muscle mass, and contributes to better growth performance in piglets.
Collapse
|
34
|
Zapata DJ, Rodríguez BJ, Ramírez MC, Lopera A, Parra J. Escherichia coli lipopolysaccharide affects intestinal mucin secretion in weaned pigs. REV COLOMB CIENC PEC 2015. [DOI: 10.17533/udea.rccp.v28n3a01] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
35
|
Effects of Transport at Weaning on the Behavior, Physiology and Performance of Pigs. Animals (Basel) 2014; 4:657-69. [PMID: 26479005 PMCID: PMC4494433 DOI: 10.3390/ani4040657] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Pigs are commonly transported to separate production facilities at weaning to reduce disease transfer, enhance productivity and to improve overall operational efficiency. A review of the scientific literature suggests that these animals experience stress due to concurrent weaning and transport; however, gaps in the knowledge include the short and long term health and welfare implications of transporting pigs at weaning. Pig welfare and the efficiency of the swine industry may improve if science-based recommendations were in place. Abstract Transport of pigs to separate production facilities at the time of weaning is a common practice, primarily performed to reduce vertical transfer of disease and enhance production and overall farm efficiency. During transport, pigs are exposed to numerous stressors in conjunction with the stress experienced as a result of weaning. In this review, the behavioral and physiological response of pigs experiencing weaning and transport simultaneously will be described, including the effects of space allowance, season and transport duration. Based on the scientific literature, the gaps in the knowledge regarding potential welfare issues are discussed. Changes in behavior and physiology suggest that weaned pigs may experience stress due to transport. Space allowance, season and duration are aspects of transport that can have a marked impact on these responses. To date, the literature regarding the effects of transport on weaned pigs has primarily focused on the short term stress response and little is known about the effects of concurrent weaning and transport on other aspects of pig welfare including morbidity and mortality rates. Greater understanding of the short and long term consequences of transport on weaned pig welfare particularly in relation to factors such as trip duration, provision of feed and water, and best handling practices would benefit the swine industry. Furthermore, the development of guidelines and recommendations to enhance the short and long term welfare of weaned pigs in relation to transport are needed.
Collapse
|
36
|
Xiong X, Yang H, Li L, Wang Y, Huang R, Li F, Wang S, Qiu W. Effects of antimicrobial peptides in nursery diets on growth performance of pigs reared on five different farms. Livest Sci 2014. [DOI: 10.1016/j.livsci.2014.04.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Ren M, Liu C, Zeng X, Yue L, Mao X, Qiao S, Wang J. Amino acids modulates the intestinal proteome associated with immune and stress response in weaning pig. Mol Biol Rep 2014; 41:3611-20. [PMID: 24510411 DOI: 10.1007/s11033-014-3225-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 01/29/2014] [Indexed: 10/25/2022]
Abstract
The objective of this study was to investigate the effects of free amino acids supplementation to protein restricted diet on the intestinal morphology and proteome composition in weaning pigs. Weanling piglets were randomly fed one of the three diets including a corn-soybean based control diet and two lower protein diets with or without free amino acids supplementation for 2 weeks. The jejunum samples of piglets were collected for morphology and proteome analysis. Compared with the control diet, the protein restricted diet had a significant lower average daily gain and higher feed conversion rate. Free amino acids supplementation to the protein restricted diet significantly improved average daily gain and higher feed conversion rate, compared with the protein restricted diet. The villous height in pigs fed the protein restricted diet was lower than that of the control and free amino acids diet. Using two-dimensional gel electrophoresis and mass spectrometry, we identified 16 differentially expressed protein spots in the jejunum of the weaning piglet. These proteins were related to stress and immune response, the metabolism of carbohydrates and lipids, and tissue structure. Based on the proteome and ELISA analysis, free amino acids diet significantly down-regulated the jejunal expression of stress protein heat shock 60 kDa protein. Our results indicated that amino acids supplementation to the protein restricted diet could enhance weight gain and feed efficiency in weanling pigs through improving intestinal nutrient absorption and transportation, gut health, and mucosal immunity.
Collapse
Affiliation(s)
- Man Ren
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2. Yuanmingyuan West Road, Beijing, 100193, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Levast B, Berri M, Wilson HL, Meurens F, Salmon H. Development of gut immunoglobulin A production in piglet in response to innate and environmental factors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:235-244. [PMID: 24384471 DOI: 10.1016/j.dci.2013.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 06/03/2023]
Abstract
The current review focuses on pre- and post-natal development of intestinal immunoglobulin A (IgA) production in pig. IgA production is influenced by intrinsic genetic factors in the foetus as well as extrinsic environmental factors during the post-natal period. At birth, piglets are exposed to new antigens through maternal colostrums/milk as well as exogenous microbiota. This exposure to new antigens is critical for the proper development of the gut mucosal immune system and is characterized mainly by the establishment of IgA response. A second critical period for neonatal intestinal immune system development occurs at weaning time when the gut environment is exposed to new dietary antigens. Neonate needs to establish oral tolerance and in the absence of protective milk need to fight potential new pathogens. To improve knowledge about the immune response in the neonates, it is important to identify intrinsic and extrinsic factors which influence the intestinal immune system development and to elucidate their mechanism of action.
Collapse
Affiliation(s)
- Benoît Levast
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada.
| | - Mustapha Berri
- Institut National de la Recherche Agronomique (INRA), UMR1282 ISP, Nouzilly, France; Université de Tours, UMR1282 ISP, Tours, France
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - François Meurens
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - Henri Salmon
- Institut National de la Recherche Agronomique (INRA), UMR1282 ISP, Nouzilly, France; Université de Tours, UMR1282 ISP, Tours, France
| |
Collapse
|
39
|
Klunker LR, Kahlert S, Panther P, Diesing AK, Reinhardt N, Brosig B, Kersten S, Dänicke S, Rothkötter HJ, Kluess JW. Deoxynivalenol and E.coli lipopolysaccharide alter epithelial proliferation and spatial distribution of apical junction proteins along the small intestinal axis1. J Anim Sci 2013; 91:276-85. [DOI: 10.2527/jas.2012-5453] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- L. R. Klunker
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - S. Kahlert
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - P. Panther
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - A.-K. Diesing
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - N. Reinhardt
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - B. Brosig
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - S. Kersten
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - S. Dänicke
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - H.-J. Rothkötter
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - J. W. Kluess
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
40
|
Gebert S, Davis E, Rehberger T, Maxwell CV. Lactobacillus brevis strain 1E1 administered to piglets through milk supplementation prior to weaning maintains intestinal integrity after the weaning event. Benef Microbes 2012; 2:35-45. [PMID: 21831788 DOI: 10.3920/bm2010.0043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Early colonisation in the gastrointestinal tract by commensal microbes influences the progressive development and maturity of digestive and immune system functionality in the neonate. Application of strategically selected direct-fed microbials to neonatal pigs may provide an opportunity to dictate a portion of the intestinal microbial community and exert a beneficial influence on these developmental processes. Experiments were conducted to determine the effects of early administration of Lactobacillus brevis strain 1E1 to neonatal piglets (n=224) via a milk supplement system on gastrointestinal microbial counts, villous architecture, and immune cell phenotypes during the lactation phase and after weaning. Pigs administered the direct-fed microbial had lower Escherichia coli counts in the jejunum and ileum (P<0.05), and lower coliform counts in the jejunum compared to unsupplemented pigs (P<0.05). The villous height:crypt depth ratio was greater in the ileum at 9 days of age when pigs were provided L. brevis 1E1 compared to unsupplemented pigs (P<0.05), as well as in the duodenum of pigs supplemented with L. brevis 1E1 at 22 days of age (P<0.05). The number of leukocytes expressing CD2 (P<0.05), CD4 (P=0.07) and MHC-II (P=0.07) was lower in the jejunum of pigs administered L. brevis 1E1 compared to unsupplemented pigs, however direct-fed microbial treatment had no effect on the number of leukocytes expressing CD8, CD25 or SWC3. These data demonstrate that early colonisation of the porcine gastrointestinal tract with L. brevis strain 1E1 during the lactation phase influences the progression of intestinal structure, immune system development, and pathogen establishment, indicating a relationship between early microbial colonisation and development of intestinal maturity and integrity.
Collapse
|
41
|
Characterization of gastrointestinal microbial and immune populations post-weaning in conventionally-reared and segregated early weaned pigs. Livest Sci 2010. [DOI: 10.1016/j.livsci.2010.06.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Ontogeny and characterization of blood leukocyte subsets and serum proteins in piglets before and after weaning. Vet Immunol Immunopathol 2010; 133:95-108. [DOI: 10.1016/j.vetimm.2009.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 06/18/2009] [Accepted: 07/01/2009] [Indexed: 01/29/2023]
|
43
|
Jiang ZY, Sun LH, Lin YC, Ma XY, Zheng CT, Zhou GL, Chen F, Zou ST. Effects of dietary glycyl-glutamine on growth performance, small intestinal integrity, and immune responses of weaning piglets challenged with lipopolysaccharide1. J Anim Sci 2009; 87:4050-6. [DOI: 10.2527/jas.2008-1120] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
44
|
Primary porcine CD11R1+ antigen-presenting cells isolated from small intestinal mucosa mature but lose their T cell stimulatory function in response to cholera toxin treatment. Vet Immunol Immunopathol 2009; 134:239-48. [PMID: 19926143 DOI: 10.1016/j.vetimm.2009.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 10/09/2009] [Accepted: 10/19/2009] [Indexed: 11/22/2022]
Abstract
Antigen-presenting cells (APCs) in the small intestinal mucosa perform dual functions of maintaining tissue homeostasis and of protecting against intestinal pathogens as key inducers of both innate and adaptive immune responses. Intestinal APCs are thus important regulators of intestinal immunity and also potential target cells for mucosal adjuvants such as cholera toxin (Ctx), which was used successfully in several oral vaccination studies in pigs. The aims of the present study were (1) to isolate porcine small intestinal APCs and evaluate the feasibility of using these cells for functional in vitro studies and (2) to determine the response of intestinal APCs to Ctx. Microscopic and flow cytometric analyses using antibodies to CD1, CD11R1, CD16, and SIRPalpha (SWC3) revealed the presence of multiple subsets of MHC-II(++) APCs in porcine small intestinal mucosa. The alpha-integrin subunit CD11R1 was most frequently expressed and therefore chosen as a selection marker. CD11R1(+) cells were enriched from total lamina propria cells to >90% purity by immunomagnetic separation. Within the CD11R1 cells, we identified two populations with distinct forward and side scatter characteristics: (1) APCs identified by their high expression of MHC-II and consisting of SIRPalpha(+) and SIRPalpha(-) subsets, and (2) contaminating eosinophils. In culture, intestinal APCs spontaneously matured, as shown by significant (>5-fold) increase in CD80/CD86 expression. The SIRPalpha(+) APCs quickly disappeared from the cultures, likely due to increased apoptotic cell death. However, the observed spontaneous changes in the isolated cell population did not mask the effects of stimulation with Ctx, which resulted in a 2.5-fold increase in the expression of maturation markers CD80/CD86, but significant loss of T cell stimulatory function, corroborating previous results obtained with MoDC.
Collapse
|
45
|
Lessard M, Dupuis M, Gagnon N, Nadeau E, Matte JJ, Goulet J, Fairbrother JM. Administration of Pediococcus acidilactici or Saccharomyces cerevisiae boulardii modulates development of porcine mucosal immunity and reduces intestinal bacterial translocation after Escherichia coli challenge1,2. J Anim Sci 2009; 87:922-34. [DOI: 10.2527/jas.2008-0919] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Wang J, Peng K. Developmental Morphology of the Small Intestine of African Ostrich Chicks. Poult Sci 2008; 87:2629-35. [DOI: 10.3382/ps.2008-00163] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
47
|
Gómez-Conde MS, García J, Chamorro S, Eiras P, Rebollar PG, Pérez de Rozas A, Badiola I, de Blas C, Carabaño R. Neutral detergent-soluble fiber improves gut barrier function in twenty-five-day-old weaned rabbits1. J Anim Sci 2007; 85:3313-21. [PMID: 17709783 DOI: 10.2527/jas.2006-777] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effect of neutral detergent-soluble fiber level on gut barrier function and intestinal microbiota was examined in weaned rabbits. A control diet (AH) containing 103 g of neutral detergent-soluble fiber/ kg of DM included alfalfa hay as main source of fiber. Another diet (B-AP) was formulated by replacing half of the alfalfa hay with a mixture of beet and apple pulp resulting in 131 g of soluble fiber/kg of DM. A third diet (OH) was obtained by substituting half of the alfalfa hay with a mix of oat hulls and a soybean protein concentrate and contained 79 g of soluble fiber/kg of DM. Rabbits weaned at 25 d and slaughtered at 35 d were used to determine ileal digestibility, jejunal morphology, sucrase activity, lamina propria lymphocytes, and intestinal microbiota. Suckling 35-d-old rabbits were used to assess mucosa morphology. Mortality (from weaning to 63 d of age) was also determined. Villous height of the jejunal mucosa increased with soluble fiber (P = 0.001). Rabbits fed with the greatest level of soluble fiber (BA-P diet) showed the highest villous height/ crypt depth ratio (8.14; P = 0.001), sucrase specific activity (8,671 mumol of glucose/g of protein; P = 0.019), and the greatest ileal starch digestibility (96.8%; P = 0.002). The opposite effects were observed in rabbits fed decreased levels of soluble fiber (AH and OH diets; 4.70, 5,848 mumol of glucose/g of protein, as average, respectively). The lowest ileal starch digestibility was detected for animals fed OH diet (93.2%). Suckling rabbits of the same age showed a lower villous height/crypt depth ratio (6.70) compared with the B-AP diet group, but this ratio was higher than the AH or OH diet groups. Lower levels of soluble fiber tended (P = 0.074) to increase the cellular immune response (CD8+ lymphocytes). Diet affected IL-2 production (CD25+, P = 0.029; CD5+CD25+, P = 0.057), with no clear relationship between soluble fiber and IL-2. The intestinal microbiota biodiversity was not affected by diets (P >/= 0.38). Rabbits fed the B-AP and AH diets had a reduced cecal frequency of detection compatible with Campylobacter spp. (20.3 vs. 37.8, P = 0.074), and Clostridium perfringens (4.3 vs. 17.6%, P = 0.047), compared with the OH diet group. Moreover, the mortality rates decreased from 14.4 (OH diet) to 5.1% (B-AP diet) with the increased presence of soluble fiber in the diet. In conclusion, increased levels of dietary soluble fiber improve mucosal integrity and functionality.
Collapse
Affiliation(s)
- M S Gómez-Conde
- Departamento de Producción Animal, Universidad Politécnica de Madrid, E.T.S. Ingenieros Agrónomos, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Salinas I, Meseguer J, Esteban MA. Assessment of different protocols for the isolation and purification of gut associated lymphoid cells from the gilthead seabream (Sparus aurata L.). Biol Proced Online 2007; 9:43-55. [PMID: 18213363 PMCID: PMC2211574 DOI: 10.1251/bpo132] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 03/21/2007] [Accepted: 03/30/2007] [Indexed: 12/02/2022] Open
Abstract
Teleost gut associated lymphoid tissue (GALT) consists of leucocyte populations located both intraepithelially and in the lamina propria with no structural organization. The present study aims to assess different protocols for the isolation of GALT cells from an important fish species in the Mediterranean aquaculture, the gilthead seabream. Mechanical, chemical and enzymatic treatments were assayed. Nylon wool columns and continuous density gradients were used for further separation of cell subpopulations. Light microscopy and flow cytometry showed that the highest density band (HD) consisted of a homogeneous lymphocytic population, whereas the intermediate density band (ID) corresponded to epithelial and secretory cells and some lymphocytes. Respiratory burst activity of total cell suspensions revealed very low numbers of potential phagocytic cells, reflecting results from light microscopy and reports in other teleost species. The present data set up the basis for future functional characterization of GALT in seabream.
Collapse
Affiliation(s)
- Irene Salinas
- Fish Innate Immune System Group, Department of Cell Biology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | | | | |
Collapse
|
49
|
Davis M, Brown D, Baker A, Bos K, Dirain M, Halbrook E, Johnson Z, Maxwell C, Rehberger T. Effect of direct-fed microbial and antibiotic supplementation on gastrointestinal microflora, mucin histochemical characterization, and immune populations of weanling pigs. Livest Sci 2007. [DOI: 10.1016/j.livsci.2007.01.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
|