1
|
Ni M, Lin S, Shao Y, Tang J, Li S, Tan C, Gong Z, Li H, Wang J, Liu G, Chen J. Enteric pathogenicity characterization of emerging parainfluenza virus 5 in western China. Virology 2025; 604:110409. [PMID: 39842225 DOI: 10.1016/j.virol.2025.110409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Parainfluenza virus 5 (PIV5) is a member of the Paramyxoviridae family and causes respiratory symptoms in various animal species. Although the virus has been frequently detected among fecal samples, no study has described its infection of the intestine. Recently, diarrhea with low mortality has spread on pig farms in Gansu, China. Next-generation sequencing confirmed the emergence of PIV5 among the samples. The PIV5 strain was then successfully isolated and characterized in vitro. Further animal tests revealed that PIV5 can result in respiratory symptoms and mild diarrhea in piglets. Immunohistochemical staining confirmed PIV5 infection resulted in steatosis and contributed to diarrhea. A retrospective investigation revealed that the number of cases of PIV5 infection has increased since 2020. Overall, our study is the first to present data indicating that PIV5 infection leads to diarrhea. Although it has low pathogenicity, PIV5 may pose a potential threat to pig production in China.
Collapse
Affiliation(s)
- Minting Ni
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shengyu Lin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yongheng Shao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jiao Tang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Shuxian Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, 830052, China
| | - Chen Tan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Zhenli Gong
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Hongbo Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, 830052, China
| | - Jintao Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Guangliang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| | - Jianing Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Sozzi E, Leo G, Bertasio C, Alborali GL, Salogni C, Tonni M, Formenti N, Lelli D, Moreno A, Trogu T, Canziani S, Tolini C, Cerioli MP, Lavazza A. Presence and Characterisation of Porcine Respirovirus 1 (PRV1) in Northern Italy. Pathogens 2024; 13:85. [PMID: 38251392 PMCID: PMC10819322 DOI: 10.3390/pathogens13010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Porcine Respirovirus 1 (PRV1) is an enveloped, single-stranded, negative-sense RNA virus belonging to the genus Respirovirus within the Paramyxoviridae family. Since its first detection in China in 2013, PRV1 has been identified in several American and European countries. Although its pathogenicity is uncertain, recent studies have suggested that it may play a role in the Porcine Respiratory Disease Complex (PRDC) because of its capacity to replicate in the upper and lower respiratory tracts. This study aimed to determine the spread of PRV1 in Northern Italy and the phylogeny of the isolates. Therefore, PRV1 was investigated using real-time RT-PCR in 902 samples collected from September 2022 to September 2023 from pigs with respiratory symptoms in North Italy. Fourteen (1.55%) samples tested as PRV1-positive. The full-length fusion (F) gene, which codifies for a major surface protein, was amplified and used for phylogenetic analysis to help carry out molecular epidemiological studies on this virus. In addition, swine influenza virus (SIV) and porcine reproductive and respiratory syndrome virus (PRRSV) infections were detected in most of the PRV1-positive samples. In conclusion, we report the detection of PRV1 in Italy and discuss its potential role as a co-factor in causing the Porcine Respiratory Disease Complex.
Collapse
Affiliation(s)
- Enrica Sozzi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (G.L.); (C.B.); (G.L.A.); (C.S.); (M.T.); (N.F.); (D.L.); (A.M.); (T.T.); (S.C.); (C.T.); (M.P.C.); (A.L.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Welch M, Krueger K, Zhang J, Piñeyro P, Patterson A, Gauger P. Pathogenesis of an experimental coinfection of porcine parainfluenza virus 1 and influenza A virus in commercial nursery swine. Vet Microbiol 2023; 285:109850. [PMID: 37639899 DOI: 10.1016/j.vetmic.2023.109850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Porcine parainfluenza virus 1 (PPIV-1) is a recently characterized swine respirovirus. Previous experimental studies reported PPIV-1 replicates in the porcine respiratory tract causing minimal clinical disease or lesions. However, it is unknown if PPIV-1 co-infections with viral respiratory pathogens would cause respiratory disease consistent with natural infections reported in the field. The objective of this study was to evaluate if PPIV-1 increases the severity of influenza A virus respiratory disease in swine. Fifty conventional, five-week-old pigs were assigned to one of three challenge groups (n = 15) or a negative control group (n = 5). Pigs were challenged with a γ-cluster H1N2 influenza A virus in swine (IAV-S; A/Swine/North Carolina/00169/2006), PPIV-1 (USA/MN25890NS/2016), inoculum that contained equivalent titers of IAV-S and PPIV-1 (CO-IN), or negative control. Clinical scores representing respiratory disease and nasal swabs were collected daily and all pigs were necropsied five days post inoculation (DPI). The CO-IN group demonstrated a significantly lower percentage of pigs showing respiratory clinical signs relative to the IAV-S challenge group from 2 to 4 DPI. The IAV-S and CO-IN groups had significantly lower microscopic composite lesion scores in the upper respiratory tract compared to the PPIV-1 group although the IAV-S and CO-IN groups had significantly higher microscopic composite lung lesion scores. Collectively, PPIV-1 did not appear to influence severity of clinical disease, macroscopic lesions, or alter viral loads detected in nasal swabs or necropsy tissues when administered as a coinfection with IAV-S. Studies evaluating PPIV-1 coinfections with different strains of IAV-S, different respiratory pathogens or sequential exposure of PPIV-1 and IAV-S are warranted.
Collapse
Affiliation(s)
- Michael Welch
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| | - Karen Krueger
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| | - Pablo Piñeyro
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| | - Abby Patterson
- Boehringer Ingelheim Animal Health Inc., 2412 S. Loop Drive, Ames, IA 50010, USA
| | - Phillip Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA.
| |
Collapse
|
4
|
Lunardi M, Darold GM, Francescon RRS, Alfieri AA. First report of porcine respirovirus 1 in Brazil. Microb Pathog 2023; 182:106222. [PMID: 37406836 DOI: 10.1016/j.micpath.2023.106222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Porcine respirovirus 1 (PRV1), currently referred to as Respirovirus suis, was first described in deceased pigs at a Hong Kong slaughterhouse. Since then, PRV1 strains have been detected in pig herds in American, European, and Asian countries. Considering that Brazil is the fourth-largest global producer and exporter of pork, we aimed to detect the PRV1 RNA in biological samples collected from intensive pig farming in the midwestern region of Brazil. Oropharyngeal and rectal swabs were collected from pigs of different ages at an intensive commercial pig operation. These samples were tested using reverse transcription semi-nested polymerase chain reaction. In this study, the frequency of identification of PRV1 RNA in feces was found to be 2% (1/50), whereas the detection rate of PRV1 in the respiratory mucosa was approximately 1% (1/90). Therefore, a low rate of PRV1 detection was observed only in weaned pigs aged 33-50 days. Sequence analyses revealed that the two Brazilian PRV1 strains were closely related to previously reported strains mainly from Asian countries such as Vietnam, China, and South Korea. These strains clustered with PRV1 sequences classified into the European lineage 1. This is the first report of PRV1 in a commercial pig herd in Brazil. To accurately determine the frequency of detection of PRV1 among pigs in intensive commercial pig farms in Brazil, additional prospective and retrospective studies should be conducted. These studies should aim to detect PRV1 in pig herds with diverse respiratory disease statuses.
Collapse
Affiliation(s)
- Michele Lunardi
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Celso Garcia Cid Road, PO Box 10011, Londrina, Parana, CEP 86057-970, Brazil; Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Celso Garcia Cid Road, PO Box 10011, Londrina, Parana, CEP 86057-970, Brazil.
| | - Gabriela M Darold
- Laboratory of Veterinary Microbiology, Universidade de Cuiaba, 3300 Historiador Rubens de Mendonça Avenue, Cuiaba, Mato Grosso, CEP 78050-000, Brazil.
| | - Roger R S Francescon
- Laboratory of Veterinary Microbiology, Universidade de Cuiaba, 3300 Historiador Rubens de Mendonça Avenue, Cuiaba, Mato Grosso, CEP 78050-000, Brazil.
| | - Amauri A Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Celso Garcia Cid Road, PO Box 10011, Londrina, Parana, CEP 86057-970, Brazil; Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Celso Garcia Cid Road, PO Box 10011, Londrina, Parana, CEP 86057-970, Brazil.
| |
Collapse
|
5
|
Osemeke OH, Cezar GA, Paiva RC, Moraes DCA, Machado IF, Magalhaes ES, Poeta Silva APS, Mil-Homens M, Peng L, Jayaraman S, Trevisan G, Silva GS, Gauger PC, Linhares DCL. A cross-sectional assessment of PRRSV nucleic acid detection by RT-qPCR in serum, ear-vein blood swabs, nasal swabs, and oral swabs from weaning-age pigs under field conditions. Front Vet Sci 2023; 10:1200376. [PMID: 37635762 PMCID: PMC10449646 DOI: 10.3389/fvets.2023.1200376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/10/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction The porcine reproductive and respiratory syndrome virus (PRRSV) continues to challenge swine production in the US and most parts of the world. Effective PRRSV surveillance in swine herds can be challenging, especially because the virus can persist and sustain a very low prevalence. Although weaning-age pigs are a strategic subpopulation in the surveillance of PRRSV in breeding herds, very few sample types have been validated and characterized for surveillance of this subpopulation. The objectives of this study, therefore, were to compare PRRSV RNA detection rates in serum, oral swabs (OS), nasal swabs (NS), ear-vein blood swabs (ES), and family oral fluids (FOF) obtained from weaning-age pigs and to assess the effect of litter-level pooling on the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) detection of PRRSV RNA. Methods Three eligible PRRSV-positive herds in the Midwestern USA were selected for this study. 666 pigs across 55 litters were sampled for serum, NS, ES, OS, and FOF. RT-qPCR tests were done on these samples individually and on the litter-level pools of the swabs. Litter-level pools of each swab sample type were made by combining equal volumes of each swab taken from the pigs within a litter. Results Ninety-six piglets distributed across 22 litters were positive by PRRSV RT-qPCR on serum, 80 piglets distributed across 15 litters were positive on ES, 80 piglets distributed across 17 litters were positive on OS, and 72 piglets distributed across 14 litters were positive on NS. Cohen's kappa analyses showed near-perfect agreement between all paired ES, OS, NS, and serum comparisons (). The serum RT-qPCR cycle threshold values (Ct) strongly predicted PRRSV detection in swab samples. There was a ≥ 95% probability of PRRSV detection in ES-, OS-, and NS pools when the proportion of positive swab samples was ≥ 23%, ≥ 27%, and ≥ 26%, respectively. Discussion ES, NS, and OS can be used as surveillance samples for detecting PRRSV RNA by RT-qPCR in weaning-age pigs. The minimum number of piglets to be sampled by serum, ES, OS, and NS to be 95% confident of detecting ≥ 1 infected piglet when PRRSV prevalence is ≥ 10% is 30, 36, 36, and 40, respectively.
Collapse
Affiliation(s)
| | - Guilherme A. Cezar
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Rodrigo C. Paiva
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Daniel C. A. Moraes
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Isadora F. Machado
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Edison S. Magalhaes
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | | | - Mafalda Mil-Homens
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Li Peng
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Swaminathan Jayaraman
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Giovani Trevisan
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Gustavo S. Silva
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Phillip C. Gauger
- Veterinary Diagnostic and Production Animal Medicine Department of the College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Daniel C. L. Linhares
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| |
Collapse
|
6
|
Graaf A, Hennig C, Jaschniski KL, Koechling M, Stadler J, Boehmer J, Ripp U, Pohlmann A, Schwarz BA, Beer M, Harder T. Emergenceof swine influenza A virus, porcine respirovirus 1 and swine orthopneumovirus in porcine respiratory disease in Germany. Emerg Microbes Infect 2023:2239938. [PMID: 37470510 PMCID: PMC10402848 DOI: 10.1080/22221751.2023.2239938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Respiratory disease is a significant economic issue in pig farming, with a complex aetiology that includes swine influenza A viruses (swIAV), which are common in European domestic pig populations. The most recent human influenza pandemic in 2009 showed swIAV's zoonotic potential. Monitoring pathogens and disease control are critical from a preventive standpoint, and are based on quick, sensitive, and specific diagnostic assays capable of detecting and distinguishing currently circulating swIAV in clinical samples. For passive surveillance, a set of multiplex quantitative reverse transcription real-time PCRs (mRT-qPCR) and MinION-directed sequencing was updated and deployed. Several lineages and genotypes of swIAV were shown to be dynamically developing, including novel reassortants between human pandemic H1N1 and the avian-derived H1 lineage of swIAV. Despite this, nearly 70% (842/1216) of individual samples from pigs with respiratory symptoms were swIAV-negative, hinting to different aetiologies. The complex and synergistic interactions of swIAV infections with other viral and bacterial infectious agents contribute to the aggravation of pig respiratory diseases. Using a newly developed mRT-qPCR for the combined detection of swIAV and the recently described porcine respirovirus 1 (PRV1) and swine orthopneumovirus (SOV) widespread co-circulation of PRV1 (19.6%, 238/1216 samples) and SOV (14.2%, 173/1216 samples) was evident. Because of the high incidence of PRV1 and SOV infections in pigs with respiratory disease, these viruses may emerge as new allies in the porcine respiratory disease syndrome.
Collapse
Affiliation(s)
- Annika Graaf
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Christin Hennig
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | | | | - Julia Stadler
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleissheim, Germany
| | - Jan Boehmer
- IVD Society for Innovative Veterinary Diagnostics mbH, Seelze-Letter, Germany
| | - Ulrike Ripp
- Vaxxinova diagnostics GmbH, Leipzig, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
7
|
Koutsoumanis K, Allende A, Alvarez Ordoñez A, Bolton D, Bover‐Cid S, Chemaly M, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Skandamis P, Suffredini E, Fernandez Escamez P, Gonzales‐Barron U, Roberts H, Ru G, Simmons M, Cruz RB, Lourenço Martins J, Messens W, Ortiz‐Pelaez A, Simon AC, De Cesare A. Assessment on the efficacy of methods 2 to 5 and method 7 set out in Commission Regulation (EU) No 142/2011 to inactivate relevant pathogens when producing processed animal protein of porcine origin intended to feed poultry and aquaculture animals. EFSA J 2023; 21:e08093. [PMID: 37416785 PMCID: PMC10320699 DOI: 10.2903/j.efsa.2023.8093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Abstract
An assessment was conducted on the level of inactivation of relevant pathogens that could be present in processed animal protein of porcine origin intended to feed poultry and aquaculture animals when methods 2 to 5 and method 7, as detailed in Regulation (EU) No 142/2011, are applied. Five approved scenarios were selected for method 7. Salmonella Senftenberg, Enterococcus faecalis, spores of Clostridium perfringens and parvoviruses were shortlisted as target indicators. Inactivation parameters for these indicators were extracted from extensive literature search and a recent EFSA scientific opinion. An adapted Bigelow model was fitted to retrieved data to estimate the probability that methods 2 to 5, in coincidental and consecutive modes, and the five scenarios of method 7 are able to achieve a 5 log10 and a 3 log10 reduction of bacterial indicators and parvoviruses, respectively. Spores of C. perfringens were the indicator with the lowest probability of achieving the target reduction by methods 2 to 5, in coincidental and consecutive mode, and by the five considered scenarios of method 7. An expert knowledge elicitation was conducted to estimate the certainty of achieving a 5 log10 reduction of spores of C. perfringens considering the results of the model and additional evidence. A 5 log10 reduction of C. perfringens spores was judged: 99-100% certain for methods 2 and 3 in coincidental mode; 98-100% certain for method 7 scenario 3; 80-99% certain for method 5 in coincidental mode; 66-100% certain for method 4 in coincidental mode and for method 7 scenarios 4 and 5; 25-75% certain for method 7 scenario 2; and 0-5% certain for method 7 scenario 1. Higher certainty is expected for methods 2 to 5 in consecutive mode compared to coincidental mode.
Collapse
|
8
|
Li Y, Li C. Porcine Respirovirus 1 Suppresses Host Type I Interferon Production and the JAK-STAT Signaling Pathway. Viruses 2023; 15:v15051176. [PMID: 37243262 DOI: 10.3390/v15051176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Porcine respirovirus 1 (PRV1), first reported in Hong Kong, is currently widely spread in several countries. Our knowledge of the clinical significance and the pathogenicity of this virus is still limited. In this study, we studied the interactions between PRV1 and host innate immune responses. PRV1 exhibited strong inhibitory effects on the production of interferon (IFN), ISG15, and RIG-I induced by SeV infection. Our data generated in vitro suggest that multiple viral proteins can suppress host type I interferon production and signaling, including N, M, and P/C/V/W. The P gene products disrupt both IRF3 and NF-κB dependent type I IFN production and block type I IFN signaling pathway by sequestering STAT1 in the cytoplasm. The V protein disrupts both MDA5 signaling and RIG-I signaling through interaction with TRIM25 and RIG-I, V protein blocks RIG-I polyubiquitination, which is required for RIG-I activation. V protein also binds to MDA5, which may contribute to its inhibitory effect on MDA5 signaling. These findings indicate that PRV1 antagonizes host innate immune responses using various mechanisms, which provides important insights into the pathogenicity of PRV1.
Collapse
Affiliation(s)
- Yanhua Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Department of Diagnostic Medicine & Pathobiology, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Chenxi Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
9
|
Vereecke N, Zwickl S, Gumbert S, Graaf A, Harder T, Ritzmann M, Lillie-Jaschniski K, Theuns S, Stadler J. Viral and Bacterial Profiles in Endemic Influenza A Virus Infected Swine Herds Using Nanopore Metagenomic Sequencing on Tracheobronchial Swabs. Microbiol Spectr 2023; 11:e0009823. [PMID: 36853049 PMCID: PMC10100764 DOI: 10.1128/spectrum.00098-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
Swine influenza A virus (swIAV) plays an important role in porcine respiratory infections. In addition to its ability to cause severe disease by itself, it is important in the multietiological porcine respiratory disease complex. Still, to date, no comprehensive diagnostics with which to study polymicrobial infections in detail have been offered. Hence, veterinary practitioners rely on monospecific and costly diagnostics, such as Reverse Transcription quantitative PCR (RT-qPCR), antigen detection, and serology. This prevents the proper understanding of the entire disease context, thereby hampering effective preventive and therapeutic actions. A new, nanopore-based, metagenomic diagnostic platform was applied to study viral and bacterial profiles across 4 age groups on 25 endemic swIAV-infected German farms with respiratory distress in the nursery. Farms were screened for swIAV using RT-qPCR on nasal and tracheobronchial swabs (TBS). TBS samples were pooled per age, prior to metagenomic characterization. The resulting data showed a correlation between the swIAV loads and the normalized reads, supporting a (semi-)quantitative interpretation of the metagenomic data. Interestingly, an in-depth characterization using beta diversity and PERMANOVA analyses allowed for the observation of an age-dependent interplay of known microbial agents. Also, lesser-known microbes, such as porcine polyoma, parainfluenza, and hemagglutinating encephalomyelitis viruses, were observed. Analyses of swIAV incidence and clinical signs showed differing microbial communities, highlighting age-specific observations of various microbes in porcine respiratory disease. In conclusion, nanopore metagenomics were shown to enable a panoramic view on viral and bacterial profiles as well as putative pathogen dynamics in endemic swIAV-infected herds. The results also highlighted the need for better insights into lesser studied agents that are potentially associated with porcine respiratory disease. IMPORTANCE To date, no comprehensive diagnostics for the study of polymicrobial infections that are associated with porcine respiratory disease have been offered. This precludes the proper understanding of the entire disease landscape, thereby hampering effective preventive and therapeutic actions. Compared to the often-costly diagnostic procedures that are applied for the diagnostics of porcine respiratory disease nowadays, a third-generation nanopore sequencing diagnostics workflow presents a cost-efficient and informative tool. This approach offers a panoramic view of microbial agents and contributes to the in-depth observation and characterization of viral and bacterial profiles within the respiratory disease context. While these data allow for the study of age-associated, swIAV-associated, and clinical symptom-associated observations, it also suggests that more effort should be put toward the investigation of coinfections and lesser-known pathogens (e.g., PHEV and PPIV), along with their potential roles in porcine respiratory disease. Overall, this approach will allow veterinary practitioners to tailor treatment and/or management changes on farms in a quicker, more complete, and cost-efficient way.
Collapse
Affiliation(s)
- Nick Vereecke
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- PathoSense BV, Lier, Belgium
| | - Sophia Zwickl
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| | - Sophie Gumbert
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| | - Annika Graaf
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Germany
| | - Mathias Ritzmann
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| | | | - Sebastiaan Theuns
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- PathoSense BV, Lier, Belgium
| | - Julia Stadler
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| |
Collapse
|
10
|
Kim JM, Kim HR, Jeon GT, Baek JS, Kwon OD, Park CK. Molecular Detection of Porcine Parainfluenza Viruses 1 and 5 Using a Newly Developed Duplex Real-Time RT-PCR in South Korea. Animals (Basel) 2023; 13:ani13040598. [PMID: 36830385 PMCID: PMC9951646 DOI: 10.3390/ani13040598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Two species of porcine parainfluenza viruses (PPIV), PPIV1 and PPIV5, are globally distributed in pig herds and associated with porcine respiratory diseases, and a diagnostic tool for the simultaneous detection of the two viruses is required. In this study, a TaqMan probe-based duplex real-time reverse transcription polymerase chain reaction (dqRT-PCR) assay was first developed for the differential detection of PPIV1 and PPIV5 nucleocapsid protein (NP) genes in porcine clinical samples. The dqRT-PCR assay was highly sensitive, its limit of detection was approximately 10 RNA copies/reaction, it specifically amplified the targeted NP genes of PPIV1 and PPIV5 without cross-reacting with other porcine pathogens, and their clinical detection rates were 15.2% and 0.7%, respectively. The results from 441 clinical samples taken from 278 Korean domestic pig farms showed that the prevalence of PPIV1 and PPIV5 was 11.2% and 1.1%, respectively, and co-infection of both viruses was confirmed in a farm, suggesting that PPIV1 and PPIV5 are co-circulating in current Korean pig herds. Phylogenetic analysis based on the partial NP genes suggested that genetically diverse PPIV1 strains are circulating in Korean pig herds. The developed dqRT-PCR assay was found to be an accurate, reliable, and quantitative detection tool for PPIV1 and PPIV5 RNA in clinical pig samples and will be useful for etiological and epidemiological studies and the control of viral infections in the field.
Collapse
|
11
|
Characterization of Two Porcine Parainfluenza Virus 1 Isolates and Human Parainfluenza Virus 1 Infection in Weaned Nursery Pigs. Vet Sci 2022; 10:vetsci10010018. [PMID: 36669019 PMCID: PMC9863182 DOI: 10.3390/vetsci10010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Porcine parainfluenza virus 1 (PPIV1) is a newly characterized porcine respiratory virus. Recent experimental challenge studies in three-week-old nursery pigs failed to cause disease. However, it remains unclear how genetic differences contribute to viral pathogenesis. To characterize the pathogenesis of different PPIV1 isolates, three-week-old nursery pigs were challenged with either PPIV1 isolate USA/MN25890NS/2016 (MN16) or USA/IA84915LG/2017 (IA17). A human parainfluenza virus 1 (HPIV1) strain C35 ATCC® VR-94™ was included to evaluate swine as a model for human parainfluenza. All viruses were successfully re-isolated from bronchoalveolar lavage fluid and detected by RT-qPCR at necropsy. Microscopic lung lesions were more severe in the IA17 group compared to the non-challenged negative control (Ctrl) group whereas differences were not found between the MN16 and Ctrl groups. Immunohistochemistry staining in respiratory samples showed a consistent trend of higher levels of PPIV1 signal in the IA17 group followed by the MN16 group, and no PPIV1 signal observed in the HPIV1 or Ctrl groups. This study suggests potential pathogenesis differences between PPIV1 isolates. Additionally, these results indicate that HPIV1 is capable of replicating in nursery pigs after experimental inoculation. However, clinical disease or gross lung lesions were not observed in any of the challenge groups.
Collapse
|
12
|
Park J, Kim HR, Kim JM, Lee KK, Kim WI, Lyoo YS, Kwon OD, Park CK, Park SC. First report of Porcine respirovirus 1 in South Korea. Transbound Emerg Dis 2022; 69:4041-4047. [PMID: 36174972 DOI: 10.1111/tbed.14715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/30/2022] [Accepted: 09/24/2022] [Indexed: 02/04/2023]
Abstract
Porcine respirovirus 1 (PRV1) is a recently emerging porcine respiratory virus that belongs to the genus Respirovirus of the Paramyxoviridae family. Since its first detection in Hong Kong, China in 2009, PRV1 has been subsequently identified in several American and European countries, suggesting that the emerging virus may have been globally distributed. However, in Asia, the virus has been reported only in China. Here, we report that PRV1 was first detected in pigs from 16 farms located in seven provinces across Korea, with a prevalence of 71.4% based on the tested oral fluid samples, suggesting that the virus is already widespread in Korean pig herds. For further genetic characterization of the Korean PRV1 strains, a complete genome and two F gene sequences were obtained from PRV1-positive samples collected from three different pig farms. Phylogenetic analysis based on the complete genome and F gene sequences showed that all three Korean PRV1 strains were grouped into European lineage 1 and were closely related to strains from Hong Kong (China), Germany and Poland. We could not obtain evidence for the origin of Korean PRV1 because of the limited availability of PRV1 sequences. In conclusion, PRV1 was first identified in Korean pig herds and genetically characterized in the present study. These results contribute to a better understanding of the global geographical distribution and genetic characteristics of PRV1.
Collapse
Affiliation(s)
- Jonghyun Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, Republic of Korea.,DIVA Bio Incorporation, Daegu, Republic of Korea
| | - Hye-Ryung Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, Republic of Korea
| | - Jong-Min Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoung-Ki Lee
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea
| | - Young S Lyoo
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Oh-Deog Kwon
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, Republic of Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, Republic of Korea
| | - Seung-Chun Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, Republic of Korea.,Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine and Cardiovascular Research Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
13
|
Martín-Valls GE, Li Y, Díaz I, Cano E, Sosa-Portugal S, Mateu E. Diversity of respiratory viruses present in nasal swabs under influenza suspicion in respiratory disease cases of weaned pigs. Front Vet Sci 2022; 9:1014475. [PMID: 36337208 PMCID: PMC9627340 DOI: 10.3389/fvets.2022.1014475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/29/2022] [Indexed: 11/15/2022] Open
Abstract
Respiratory diseases in weaned pigs are a common problem, with a complex etiology involving both viruses and bacteria. In the present study, we investigated the presence of eleven viruses in nasal swabs, collected from nurseries (55 cases) under the suspicion of swine influenza A virus (swIAV) and submitted by swine veterinarians for diagnosis. The other ten viruses included in the study were influenza B (IBV) and D (IDV), Porcine reproductive and respiratory syndrome virus (PRRSV), Porcine respiratory coronavirus (PRCV), Porcine cytomegalovirus (PCMV), Porcine circovirus 2 (PCV2), 3 (PCV3) and 4 (PCV), Porcine parainfluenza 1 (PPIV1) and Swine orthopneumovirus (SOV). Twenty-six swIAV-positive cases and twenty-nine cases of swIAV-negative respiratory disease were primarily established. While IBV, IDV, PCV4 and PPIV1 were not found in any of the cases, PRCV, SOV, and PCMV were more likely to be found in swIAV-positive nurseries with respiratory disease (p < 0.05). Overall, PCV3, PRRSV, and PCMV were the most frequently detected agents at herd level. Taken individually, virus prevalence was: swIAV, 48.6%; PRCV, 48.0%; PRRSV, 31.6%; SOV, 33.8%; PCMV, 48.3%, PCV2, 36.0%; and PCV3, 33.0%. Moreover, low Ct values (<30) were common for all agents, except PCV2 and PCV3. When the correlation between pathogens was individually examined, the presence of PRRSV was negatively correlated with swIAV and PRCV, while was positively associated to PCMV (p < 0.05). Also, PRCV and SOV were positively correlated between them and negatively with PCMV. Besides, the analysis of suckling pig samples, collected in subclinically infected farrowing units under an influenza monitoring program, showed that circulation of PRCV, PCMV, SOV, and PCV3 started during the early weeks of life. Interestingly, in those subclinically infected units, none of the pathogens was found to be correlated to any other. Overall, our data may contribute to a better understanding of the complex etiology and epidemiology of respiratory diseases in weaners. This is the first report of SOV in Spain and shows, for the first time, the dynamics of this pathogen in swine farms.
Collapse
Affiliation(s)
- Gerard E. Martín-Valls
- Department de Sanitat i Anatomia Animals, Faculty of Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- *Correspondence: Gerard E. Martín-Valls
| | - Yanli Li
- Department de Sanitat i Anatomia Animals, Faculty of Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ivan Díaz
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Esmeralda Cano
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Silvana Sosa-Portugal
- Department de Sanitat i Anatomia Animals, Faculty of Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Enric Mateu
- Department de Sanitat i Anatomia Animals, Faculty of Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
14
|
Li Y, Yuan F, Yan X, Matta T, Cino-Ozuna GA, Fang Y. Characterization of an emerging porcine respirovirus 1 isolate in the US: A novel viral vector for expression of foreign antigens. Virology 2022; 570:107-116. [DOI: 10.1016/j.virol.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
|
15
|
Welch M, Krueger K, Zhang J, Piñeyro P, Magtoto R, Wang C, Giménez-Lirola L, Strait E, Mogler M, Gauger P. Detection of porcine parainfluenza virus type-1 antibody in swine serum using whole-virus ELISA, indirect fluorescence antibody and virus neutralizing assays. BMC Vet Res 2022; 18:110. [PMID: 35313864 PMCID: PMC8935814 DOI: 10.1186/s12917-022-03196-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Porcine parainfluenza virus 1 (PPIV-1) is a respiratory virus in the family Paramyxoviridae and genus Respirovirus. It is closely related to bovine parainfluenza virus 3, human parainfluenza virus 1, and Sendai virus. Recent reports suggest PPIV-1 is widespread in swine herds in the United States and abroad. However, seroprevalence studies and the ability to evaluate cross neutralization between heterologous strains is not possible without validated antibody assays. This study describes the development of an indirect fluorescence antibody (IFA) assay, a whole virus enzyme-linked immunosorbent assay (wv-ELISA) and a serum virus neutralization (SVN) assay for the detection of PPIV-1 antibodies using 521 serum samples collected from three longitudinal studies and two different challenge strains in swine. RESULTS The area under the curve (AUC) of the wv-ELISA (95% CI, 0.93-0.98) was significantly higher (p = 0.03) compared to the IFA (95% CI, 0.90-0.96). However, no significant difference was observed between the IFA and wv-ELISA when compared to the SVN (95% CI, 0.92-0.97). All three assays demonstrated relatively uniform results at a 99% true negative rate, with only 11 disagreements observed between the IFA, wv-ELISA and SVN. CONCLUSIONS All three serology assays detected PPIV-1 antibody in swine serum of known status that was collected from experimental studies. The SVN detected seroconversion earlier compared to the IFA and the wv-ELISA. Both the wv-ELISA and the SVN had similar diagnostic performance, while the IFA was not as sensitive as the wv-ELISA. All three assays are considered valid for routine diagnostic use. These assays will be important for future studies to screen seronegative swine for research, determine PPIV-1 seroprevalence, and to evaluate vaccine efficacy against PPIV-1 under experimental and field conditions.
Collapse
Affiliation(s)
- Michael Welch
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA, 50011, USA
| | - Karen Krueger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA, 50011, USA
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA, 50011, USA
| | - Pablo Piñeyro
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA, 50011, USA
| | - Ronaldo Magtoto
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA, 50011, USA
| | - Chong Wang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA, 50011, USA.,Department of Statistics, College of Liberal Arts and Sciences, Iowa State University, 2438 Osborn Drive, Ames, IA, 50011, USA
| | - Luis Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA, 50011, USA
| | - Erin Strait
- Merck Animal Health, Ames, IA, USA.,Ceva Animal Health, LLC, 8901 Rosehill Road, Lenexa, KS, 66215, USA
| | | | - Phillip Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA, 50011, USA.
| |
Collapse
|
16
|
Stadejek T, Cybulski P, Gauger PC, Woźniak A. European and American Strains of Porcine Parainfluenza Virus 1 (PPIV-1) Belong to Two Distinct Genetic Lineages. Pathogens 2022; 11:pathogens11030375. [PMID: 35335699 PMCID: PMC8948755 DOI: 10.3390/pathogens11030375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine parainfluenza virus 1 (PPIV-1) is a recently emerged respirovirus closely related to human parainfluenza virus 1 (HPIV-1) and Sendai virus (SenV). PPIV-1 has been detected in Asia, the Americas and Europe, but knowledge on its epidemiology and genetic diversity is very limited. In the present study, the complete nucleotide sequences of the fusion (F)-protein gene obtained from samples from 12 Polish and 11 US herds were analysed and compared to previously available genetic data from the Americas, Asia and Europe. The existence of two distinct clades was observed, grouping European sequences and one Hong Kong sequence (clade 1), or one American sequence and three Asian sequences (clade 2). The mean genetic distances measured with the p-distance were 0.04 (S.E., 0.000) within both clades, and 0.095 (S.E., 0.006) between the clades. Moreover, two distinct clusters of highly similar sequences were identified, which corresponded to the geographically distant nurseries and finishing units, from three pig flows within one Polish pig-production company. The obtained data indicate that the two PPIV-1 lineages may have evolved independently in Europe and America. More studies, particularly involving Asian viruses, are necessary to understand the virus’ emergence and epidemiology and the role of carriers in the spread of PPIV-1.
Collapse
Affiliation(s)
- Tomasz Stadejek
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
- Correspondence: (T.S.); (A.W.)
| | - Piotr Cybulski
- Goodvalley Agro S.A., Dworcowa 25, 77-320 Przechlewo, Poland;
| | - Phillip C. Gauger
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University College of Veterinary Medicine, 1800 Christensen Drive Ames, IA 50011-1134, USA;
| | - Aleksandra Woźniak
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
- Correspondence: (T.S.); (A.W.)
| |
Collapse
|
17
|
Detection of Porcine Respirovirus 1 (PRV1) in Poland: Incidence of Co-Infections with Influenza A Virus (IAV) and Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) in Herds with a Respiratory Disease. Viruses 2022; 14:v14010148. [PMID: 35062350 PMCID: PMC8781826 DOI: 10.3390/v14010148] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
Porcine respirovirus 1 (PRV1) is also known as porcine parainfluenza virus 1 (PPIV1). The prevalence and the role of PRV1 infections for pig health is largely unknown. In order to assess the PRV1 prevalence in Poland, nasal swabs and oral fluids collected from pigs from 30 farms were examined with RT real-time PCR. Additionally, IAV and PRRSV infection statuses of PRV1-positive samples were examined. The results showed that the virus is highly prevalent (76.7% farms positive) and different patterns of PRV1 circulation in herds with mild–moderate respiratory disease were observed. Co-infections with IAV and PRRSV were infrequent and detected in 8 (23.5%) and 4 (11.8%) out of 34 PRV1-positive nasal swab pools from diseased pens, respectively. In one pen PRV1, IAV, and PRRSV were detected at the same time. Interestingly, PRV1 mean Ct value in samples with co-infections was significantly lower (29.8 ± 3.1) than in samples with a single PRV1 infection (32.5 ± 3.6) (p < 0.05), which suggested higher virus replication in these populations. On the other hand, the virus detection in pig populations exhibiting respiratory clinical signs, negative for PRRSV and IAV, suggests that PRV1 should be involved in differential diagnosis of respiratory problems.
Collapse
|
18
|
Pathogenesis of a novel porcine parainfluenza virus type 1 isolate in conventional and colostrum deprived/caesarean derived pigs. Virology 2021; 563:88-97. [PMID: 34500147 DOI: 10.1016/j.virol.2021.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 11/19/2022]
Abstract
Two experimental challenge studies were conducted to evaluate the pathogenesis of a porcine parainfluenza virus type 1 (PPIV-1) isolate. Four-week-old conventional (CON) pigs were challenged in Study 1 and six-week-old caesarean derived/colostrum deprived (CDCD) pigs were challenged in Study 2. Results indicate that PPIV-1 shedding and replication occur in the upper and lower respiratory tracts of CON and CDCD pigs as detected by RT-qPCR and immunohistochemistry. Mild macroscopic lung lesions were observed in CON pigs but not in CDCD pigs. Microscopic lung lesions were mild and consisted of peribronchiolar lymphocytic cuffing and epithelial proliferation in CON and CDCD pigs. Serum neutralizing antibodies were detected in the CON and CDCD pigs by 14 and 7 days post inoculation, respectively. This study provides evidence that in spite of PPIV-1 infection and replication in challenged swine, significant clinical respiratory disease was not observed.
Collapse
|
19
|
Schuele L, Lizarazo-Forero E, Cassidy H, Strutzberg-Minder K, Boehmer J, Schuetze S, Loebert S, Lambrecht C, Harlizius J, Friedrich AW, Peter S, Rossen JWA, Couto N. First detection of porcine respirovirus 1 in Germany and the Netherlands. Transbound Emerg Dis 2021; 68:3120-3125. [PMID: 33837672 PMCID: PMC9292642 DOI: 10.1111/tbed.14100] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/10/2021] [Accepted: 04/06/2021] [Indexed: 01/10/2023]
Abstract
Porcine respirovirus 1, also referred to as porcine parainfluenza virus 1 (PPIV‐1), was first detected in deceased pigs from Hong Kong in 2013. It has since then been found in the USA, Chile and most recently in Hungary. Information on the pathogenicity and global spread is sparse. However, it has been speculated to play a role in the porcine respiratory disease complex. To investigate the porcine virome, we screened 53 pig samples from 26 farms within the Dutch–German border region using shotgun metagenomics sequencing (SMg). After detecting PPIV‐1 in five farms through SMg, a real‐time reverse transcriptase PCR (RT‐qPCR) assay was designed, which not only confirmed the presence of the virus in 1 of the 5 farms but found an additional 6 positive farms. Phylogenetic analysis found the closest match to be the first detected PPIV‐1 strain in Hong Kong. The Dutch‐German region represents a significant area of pig farming within Europe and could provide important information on the characterization and circulation of porcine viruses, such as PPIV‐1. With its recent detection in Hungary, these findings suggest widespread circulation of PPIV‐1 in Central Europe, highlighting the need for further research on persistence, pathogenicity and transmission in Europe.
Collapse
Affiliation(s)
- Leonard Schuele
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands.,Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Erley Lizarazo-Forero
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - Hayley Cassidy
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | | | - Jan Boehmer
- IVD Innovative Veterinary Diagnostics (IVD GmbH), Seelze, Germany
| | - Sabine Schuetze
- Animal Health Services, Chamber of Agriculture of North Rhine-Westphalia, Bad Sassendorf, Germany
| | - Sandra Loebert
- Animal Health Services, Chamber of Agriculture of North Rhine-Westphalia, Bad Sassendorf, Germany
| | - Claudia Lambrecht
- Animal Health Services, Chamber of Agriculture of North Rhine-Westphalia, Bad Sassendorf, Germany
| | - Juergen Harlizius
- Animal Health Services, Chamber of Agriculture of North Rhine-Westphalia, Bad Sassendorf, Germany
| | - Alex W Friedrich
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - Silke Peter
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - John W A Rossen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands.,Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Natacha Couto
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands.,The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| |
Collapse
|
20
|
Li Y, Sthal C, Bai J, Liu X, Anderson G, Fang Y. Development of a real-time RT-qPCR assay for the detection of porcine respirovirus 1. J Virol Methods 2020; 289:114040. [PMID: 33309757 DOI: 10.1016/j.jviromet.2020.114040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Porcine respirovirus 1 (PRV1) was first reported in the pig nasopharyngeal samples in Hong Kong in 2013. It has been widespread in US swine herds. Recently, PRV1 was also detected in South America and European countries. Currently, there is no validated diagnostic assay available for the detection of this virus. In this study, we developed a real-time reverse transcriptase quantitative PCR (RT-qPCR) assay targeting the hemagglutinin-neuraminidase (HN) gene for molecular diagnosis. The analytical sensitivity of this RT-qPCR assay was evaluated using in vitro transcribed RNA standard, and the limit of detection was 10 copies of viral RNA in a 20 μl reaction. No cross-reactivity was observed with nucleic acid prepared from common swine respiratory pathogens. The diagnostic performance of this assay was determined with 114 pig nasal swabs and 19 oral fluid samples with known PRV1 infection status. The RT-qPCR results were consistent with conventional RT-PCR and DNA sequencing of the HN gene, demonstrating a 100 % sensitivity and 100 % specificity. This assay was further applied to field samples. Among 310 nasal swab samples that were tested, 201 samples from 8 swine farms were PRV1 positive. No viremia was detected in PRV1 infected pigs using the available field samples. Nasal swab and oral fluid samples appear to be reliable for PRV1 detection with the RT-qPCR assay. Taken together, we developed and validated an RT-qPCR assay for accurate detection of PRV1 in nasal swab and oral fluid samples. It will be a useful tool for the rapid diagnosis of PRV1 infection and in aid of PRV1 epidemiological surveillance.
Collapse
Affiliation(s)
- Yanhua Li
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, United States.
| | - Chase Sthal
- Fairmont Veterinary Clinic, Fairmont, MN 56031, United States
| | - Jianfa Bai
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, United States; Kansas State Veterinary Diagnostic Laboratory, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, United States
| | - Xuming Liu
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, United States; Kansas State Veterinary Diagnostic Laboratory, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, United States
| | - Gary Anderson
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, United States; Kansas State Veterinary Diagnostic Laboratory, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, United States
| | - Ying Fang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, United States.
| |
Collapse
|
21
|
Henao-Diaz A, Giménez-Lirola L, Baum DH, Zimmerman J. Guidelines for oral fluid-based surveillance of viral pathogens in swine. Porcine Health Manag 2020; 6:28. [PMID: 33082999 PMCID: PMC7569198 DOI: 10.1186/s40813-020-00168-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
Recent decades have seen both rapid growth and extensive consolidation in swine production. As a collateral effect, these changes have exacerbated the circulation of viruses and challenged our ability to prevent, control, and/or eliminate impactful swine diseases. Recent pandemic events in human and animal health, e.g., SARS-CoV-2 and African swine fever virus, highlight the fact that clinical observations are too slow and inaccurate to form the basis for effective health management decisions: systematic processes that provide timely, reliable data are required. Oral fluid-based surveillance reflects the adaptation of conventional testing methods to an alternative diagnostic specimen. The routine use of oral fluids in commercial farms for PRRSV and PCV2 surveillance was first proposed in 2008 as an efficient and practical improvement on individual pig sampling. Subsequent research expanded on this initial report to include the detection of ≥23 swine viral pathogens and the implementation of oral fluid-based surveillance in large swine populations (> 12,000 pigs). Herein we compile the current information regarding oral fluid collection methods, testing, and surveillance applications in swine production.
Collapse
Affiliation(s)
- Alexandra Henao-Diaz
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Veterinary Medical Research Institute, Iowa State University, Ames, Iowa 50011 USA
| | - Luis Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Veterinary Medical Research Institute, Iowa State University, Ames, Iowa 50011 USA
| | - David H. Baum
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Veterinary Medical Research Institute, Iowa State University, Ames, Iowa 50011 USA
| | - Jeffrey Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Veterinary Medical Research Institute, Iowa State University, Ames, Iowa 50011 USA
| |
Collapse
|
22
|
Dénes L, Cságola A, Schönhardt K, Halas M, Solymosi N, Balka G. First report of porcine parainfluenza virus 1 (species Porcine respirovirus 1) in Europe. Transbound Emerg Dis 2020; 68:1731-1735. [PMID: 33006252 DOI: 10.1111/tbed.13869] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/14/2020] [Accepted: 09/27/2020] [Indexed: 01/15/2023]
Abstract
Porcine respirovirus 1, also known as Porcine parainfluenza virus 1 (PPIV-1) was first identified in Hong Kong in 2013, later in the USA and most recently in Chile. Here, we report the first detection of PPIV-1 outside these three regions. We screened 22 farms in Hungary by testing 15 nasal swab samples obtained from 3-week-old piglets (3 randomly chosen piglets from 5 litters in each farm). Only one farm was found to be positive. We subsequently sampled the positive farm by taking cross-sectional 20 nasal swab samples from 2-, 4-, 6- and 8-week-old piglets. Virus detection by qRT-PCR showed that although all investigated age groups were positive to PPIV-1, a higher number of infected animals and higher viral loads were found among 4-week-old animals. Based on the phylogenetic analyses of partial F and L genes, the 3 Hungarian strains are genetically closely related to the very first PPIV-1 strain identified in Hong Kong in 2013, whereas the overall genetic difference compared to the recently described North American isolates was around 10%.
Collapse
Affiliation(s)
- Lilla Dénes
- Department of Pathology, University of Veterinary Medicine, Budapest, Hungary
| | | | - Kitti Schönhardt
- Department of Pathology, University of Veterinary Medicine, Budapest, Hungary
| | | | - Norbert Solymosi
- Centre for Bioinformatics, University of Veterinary Medicine, Budapest, Hungary
| | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
23
|
Agüero B, Mena J, Berrios F, Tapia R, Salinas C, Dutta J, van Bakel H, Mor SK, Brito B, Medina RA, Neira V. First report of porcine respirovirus 1 in South America. Vet Microbiol 2020; 246:108726. [PMID: 32605754 PMCID: PMC10898806 DOI: 10.1016/j.vetmic.2020.108726] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 10/24/2022]
Abstract
Porcine respirovirus 1 (PRV1) is an emerging virus in pigs that has been previously described in the USA and China. There are no reports of its presence in the rest of the world. The objective of this study was to determine the occurrence of PRV1 in Chile and to determine its phylogeny. Thus, we collected samples (oral fluids, nasal swabs, and lungs) from a swine influenza A virus (IAV) surveillance program, most of which belonged to pigs with respiratory disease. The samples were analyzed by RT-PCR, and the viral sequencing was obtained using RNA whole-genome sequencing approach. Maximum likelihood phylogeny was constructed with the available references. Thirty-one of 164 samples (18.9 %) were RT-PCR positive for PRV1: 62.5 % oral fluids, 19.0 % nasal swabs, and 8.6 % lungs. All 6 farms in this study had at least one positive sample, with 6-40 % of positive results per farm, which suggests that PRV1 is disseminated in Chilean swine farms. Twenty-one of 31 (677%) PRV1-positive samples were also positive for IAV, so the role of PRV1 as secondary pathogen in respiratory disease needs to be further evaluated. Near to complete genome of two PRV1s were obtained from two farms. The phylogenies, in general, showed low bootstrap support, except the concatenated genome and the L gene trees which showed clustering of the Chilean PRV1 with Asian sequences, suggesting a close genetic relationship. This is the first report of PRV1 in the Southern Hemisphere. Further studies are necessary to determine the genetic diversity of this virus in Chile.
Collapse
Affiliation(s)
- B Agüero
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - J Mena
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - F Berrios
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - R Tapia
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - C Salinas
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - J Dutta
- Department of Genetics and Genomic Sciences, Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - H van Bakel
- Department of Genetics and Genomic Sciences, Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - S K Mor
- College of Veterinary Medicine, University of Minnesota, MN, USA
| | - B Brito
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW 2077, Australia
| | - R A Medina
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - V Neira
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|