1
|
Juarez-Estrada MA, Tellez-Isaias G, Petrone-Garcia VM, Gayosso-Vazquez A, Hernandez-Velasco X, Alonso-Morales RA. Influence of High Eimeria tenella Immunization Dosages on Total Oocyst Output and Specific Antibodies Recognition Response in Hybrid Pullets ( Gallus gallus)-A Pilot Study. Antibodies (Basel) 2025; 14:9. [PMID: 39982224 PMCID: PMC11843834 DOI: 10.3390/antib14010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/10/2024] [Accepted: 11/18/2024] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Two high primary-immunization doses of a wild-type E. tenella strain were assessed in healthy pullets (5K versus 10K sporulated oocysts/bird) to understand the effects of coccidia infection. METHODS Acquired immunity was evaluated following primary immunization and two booster doses with the homologous strain. Total oocyst shedding, clinical signs, and viability of every bird/group after each immunization/booster were recorded. Indirect ELISA measured the time course of humoral responses from each immunization group against sporozoite and second-generation merozoite of E. tenella. Antigen pattern recognition on these two asexual zoite stages of E. tenella was analyzed using Western blotting with antibodies from each immunization program. Afterwards, antigen recognition of specific life-cycle stages was performed using individual pullet serums from the best immunization program. RESULTS A primary-immunization dose of 1 × 104 oocysts/bird reduced the oocyst output; however, all pullets exhibited severe clinical signs and low specific antibodies titers, with decreased polypeptide recognition on both E. tenella asexual zoite stages. In contrast, immunization with 5 × 103 oocysts/bird yielded the best outcomes regarding increased oocyst collection and early development of sterilizing immunity. After the first booster dosage, this group's antisera revealed a strong pattern of specific antigen recognition on the two assayed E. tenella life-cycle stages. CONCLUSIONS The E. tenella-specific antibodies from the 5 × 103 oocysts/bird immunization program can aid in passive immunization trials and further research to identify B-cell immunoprotective antigens, which could help in the development of a genetically modified anticoccidial vaccine.
Collapse
Affiliation(s)
- Marco A. Juarez-Estrada
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Cd. Universitaria, Ciudad de Mexico 04510, Mexico;
- Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Cd. Universitaria, Ciudad de Mexico 04510, Mexico;
| | | | - Víctor M. Petrone-Garcia
- Centro de Educación Agropecuaria (CEA), Facultad de Estudios Superiores Cuautitlán (FESC), Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Mexico;
| | - Amanda Gayosso-Vazquez
- Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Cd. Universitaria, Ciudad de Mexico 04510, Mexico;
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Cd. Universitaria, Ciudad de Mexico 04510, Mexico;
| | - Rogelio A. Alonso-Morales
- Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Cd. Universitaria, Ciudad de Mexico 04510, Mexico;
| |
Collapse
|
2
|
Mi Y, Ding W, Xu L, Lu M, Yan R, Li X, Song X. Protective Efficacy Induced by the Common Eimeria Antigen Elongation Factor 2 against Challenge with Three Eimeria Species in Chickens. Vaccines (Basel) 2023; 12:18. [PMID: 38250831 PMCID: PMC10819859 DOI: 10.3390/vaccines12010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Avian coccidiosis arises from co-infection involving multiple Eimeria species, which could give rise to substantial economic losses in the global poultry industry. As a result, multivalent anticoccidial vaccines containing common Eimeria antigens offer considerable promise for controlling co-infection in clinical practice. In our previous study, Elongation factor 2 (EF2) was deemed as an immunogenic common antigen across various Eimeria species. This current investigation aimed to further assess the immunogenicity and protective efficacy of EF2 in recombinant subunit vaccine format against three Eimeria species. The EF2 gene cloned from Eimeria maxima (E. maxima) cDNA was designated as EF2 of E. maxima (EmEF2). The immunogenicity of the recombinant protein EmEF2 (rEmEF2) was assessed through Western blot analysis. The evaluation of the vaccine-induced immune response encompassed the determination of T lymphocyte subset proportions, cytokine mRNA transcription levels, and specific IgY concentrations in rEmEF2-vaccinated chickens using flow cytometry, quantitative real-time PCR (qPCR), and indirect enzyme-linked immunosorbent assay (ELISA). Subsequently, the protective efficacy of rEmEF2 was evaluated through vaccination and challenge experiments. The findings demonstrated that rEmEF2 was effectively recognized by the His-tag monoclonal antibody and E. maxima chicken antiserum. Vaccination with rEmEF2 increased the proportions of CD4+ and CD8+ T lymphocytes, elevated IL-4 and IFN-γ mRNA transcription levels, and enhanced IgY antibody levels compared to the control groups. Moreover, compared to the control groups, vaccination with rEmEF2 led to decreased weight loss, reduced oocyst outputs, and alleviated enteric lesions. Furthermore, in the rEmEF2-immunized groups, challenges with E. maxima and E. acervulina resulted in anticoccidial index (ACI) scores of 166.35 and 185.08, showing moderate-to-excellent protective efficacy. Nevertheless, challenges with E. tenella and mixed Eimeria resulted in ACI scores of 144.01 and 127.94, showing low protective efficacy. In conclusion, EmEF2, a common antigen across Eimeria species, demonstrated the capacity to induce a significant cellular and humoral immune response, as well as partial protection against E. maxima, E. acervulina, and E. tenella. These results highlight EmEF2 as a promising candidate antigen for the development of multivalent vaccines targeting mixed infections by Eimeria species.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.M.); (W.D.); (L.X.); (M.L.); (R.Y.); (X.L.)
| |
Collapse
|
3
|
Chen C, Su J, Lu M, Xu L, Yan R, Li X, Song X. Protective efficacy of multiepitope vaccines constructed from common antigens of Eimeria species in chickens. Vet Res 2023; 54:119. [PMID: 38093398 PMCID: PMC10720236 DOI: 10.1186/s13567-023-01253-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/27/2023] [Indexed: 12/17/2023] Open
Abstract
Clinical avian coccidiosis is typically caused by coinfection with several Eimeria species. Recombinant protein and DNA vaccines have shown promise in controlling coccidiosis. On this basis, DNA vaccines that encode multiple epitopes from different Eimeria species may provide broad protection against coinfections. In this study, we designed a fusion gene fragment, 14EGT, that contained concentrated T-cell epitopes from four common antigens of Eimeria species (14-3-3, elongation factor 2, glyceraldehyde-3-phosphate dehydrogenase, and transhydrogenase). The multiepitope DNA vaccine pVAX1-14EGT and recombinant protein vaccine pET-32a-14EGT (r14EGT) were then created based on the 14EGT fragment. Subsequently, cellular and humoral immune responses were measured in vaccinated chickens. Vaccination-challenge trials were also conducted, where the birds were vaccinated with the 14EGT preparations and later exposed to single or multiple Eimeria species to evaluate the protective efficacy of the vaccines. According to the results, vaccination with 14EGT preparations effectively increased the proportions of CD4+ and CD8+ T cells and the levels of Th1 and Th2 hallmark cytokines. The levels of serum IgG antibodies were also significantly increased. Animal vaccination trials revealed alleviated enteric lesions, weight loss, and oocyst output compared to those of the control groups. The preparations were found to be moderately effective against single Eimeria species, with the anticoccidial index (ACI) ranging from 160 to 180. However, after challenge with multiple Eimeria species, the protection provided by the 14EGT preparations was not satisfactory, with ACI values of 142.18 and 146.41. Collectively, the results suggest that a multiepitope vaccine that encodes the T-cell epitopes of common antigens derived from Eimeria parasites could be a potential and effective strategy to control avian coccidiosis.
Collapse
Affiliation(s)
- Chen Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junzhi Su
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
He W, Hao G, Xiong C, Xiao J, Pu J, Chen H, Xu L, Zhu Y, Yang G. Protection against Eimeria intestinalis infection in rabbits immunized with the recombinant elongation factors EF1α and EFG. Infect Immun 2023; 91:e0020823. [PMID: 37823630 PMCID: PMC10652966 DOI: 10.1128/iai.00208-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/25/2023] [Indexed: 10/13/2023] Open
Abstract
Eimeria intestinalis is the most pathogenic species of rabbit coccidiosis, causing weight loss, diarrhea, and even acute death. The currently used anticoccidial drugs against E. intestinalis in rabbits are associated with drug resistance and residues. Immunological control might be a potential alternative. We cloned and expressed the E. intestinalis recombinant EF1α and EFG (rEi-EF1α and rEi-EFG, respectively). Rabbits were immunized subcutaneously every 14 days with 100 µg of rEi-EF1α and rEi-EFG and followed by 5 × 104 E. intestinalis sporulated oocysts orally challenge. Serum samples were collected every 7 days to measure the levels of specific antibodies and cytokines. On post-challenge day 14, rabbits were sacrificed and the anticoccidial index was evaluated. The rabbits of PBS challenged groups exhibited anorexia, diarrhea, marked intestinal wall thickening, and white nodules that formed patches, while rabbits from the rEi-EF1α or rEi-EFG challenged group exhibited milder symptoms. The rEi-EF1α group showed a 75.18% oocyst reduction and 89.01%wt gain; the rEi-EFG group had a 60.58% oocyst reduction and 56.04%wt gain. After vaccination, specific IgG levels increased and stayed high (P < 0.05). The IL-4 and IL-2 levels of rEi-EF1α immunized groups showed a significant increase after immunization (P < 0.05). Both rEi-EF1α and rEi-EFG could induce humoral and cellular immune responses. In contrast, rabbits immunized with rEi-EF1α were better protected from challenge by E. intestinalis than rEi-EFG.
Collapse
Affiliation(s)
- Wei He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Ge Hao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Changming Xiong
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Jie Xiao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Jiayan Pu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Hao Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Liwen Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Yuhua Zhu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Sichuan, China
| |
Collapse
|
5
|
Juárez-Estrada MA, Tellez-Isaias G, Graham DM, Laverty L, Gayosso-Vázquez A, Alonso-Morales RA. Identification of Eimeria tenella sporozoite immunodominant mimotopes by random phage-display peptide libraries-a proof of concept study. Front Vet Sci 2023; 10:1223436. [PMID: 37554540 PMCID: PMC10405736 DOI: 10.3389/fvets.2023.1223436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
INTRODUCTION Coccidiosis, caused by parasites of numerous Eimeria species, has long been recognized as an economically significant disease in the chicken industry worldwide. The rise of anti-coccidian resistance has driven a search for other parasite management techniques. Recombinant antigen vaccination presents a highly feasible alternative. Properly identifying antigens that might trigger a potent immune response is one of the major obstacles to creating a viable genetically modified vaccine. METHODS This study evaluated a reverse immunology approach for the identification of B-cell epitopes. Antisera from rabbits and hens inoculated with whole-sporozoites of E. tenella were used to identify Western blot antigens. The rabbit IgG fraction from the anti-sporozoite serum exhibited the highest reactogenicity; consequently, it was purified and utilized to screen two random Phage-display peptide libraries (12 mer and c7c mer). After three panning rounds, 20 clones from each library were randomly selected, their nucleotide sequences acquired, and their reactivity to anti-sporozoite E. tenella serum assessed. The selected peptide clones inferred amino acid sequences matched numerous E. tenella proteins. RESULTS AND CONCLUSIONS The extracellular domain of the epidermal growth factor-like (EGF-like) repeats, and the thrombospondin type-I (TSP-1) repeats of E. tenella micronemal protein 4 (EtMIC4) matched with the c7c mer selected clones CNTGSPYEC (2/20) and CMSTGLSSC (1/20) respectively. The clone CSISSLTHC that matched with a conserved hypothetical protein of E. tenella was widely selected (3/20). Selected clones from the 12-mer phage display library AGHTTQFNSKTT (7/20), GPNSAFWAGSER (2/20) and HFAYWWNGVRGP (8/20) showed similarities with a cullin homolog, elongation factor-2 and beta-dynein chain a putative E. tenella protein, respectively. Four immunodominant clones were previously selected and used to immunize rabbits. By ELISA and Western blot, all rabbit anti-clone serums detected E. tenella native antigens. DISCUSSION Thus, selected phagotopes contained recombinant E. tenella antigen peptides. Using antibodies against E. tenella sporozoites, this study demonstrated the feasibility of screening Phage-display random peptide libraries for true immunotopes. In addition, this study looked at an approach for finding novel candidates that could be used as an E. tenella recombinant epitope-based vaccine.
Collapse
Affiliation(s)
- Marco A. Juárez-Estrada
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Danielle M. Graham
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Lauren Laverty
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Amanda Gayosso-Vázquez
- Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rogelio A. Alonso-Morales
- Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
6
|
Xiao J, He W, Xiong C, Hao G, Pu J, Chen H, Xu L, Zhu Y, Ren Y, Yang G. Protective efficacy of recombinant proteins AMA1 and IMP1 in rabbits infected with Eimeria intestinalis. Vet Parasitol 2023; 320:109985. [PMID: 37482016 DOI: 10.1016/j.vetpar.2023.109985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
Eimeria intestinalis is one of the most pathogenic rabbit coccidia species causing severe intestinal damage and increased risk of secondary infection from opportunistic pathogens, which results in huge economic losses to the rabbit industry. Anticoccidial drugs are currently the main method to control coccidiosis; however, increasing resistance and drug residues have fueled research on anticoccidial vaccines. Apical membrane antigen 1 (AMA1) and immune mapped protein 1 (IMP1), as surface proteins, are associated with host invasion and might have the potential as candidate vaccine antigens. In the present study, recombinant IMP1 (rEiIMP1) and AMA1 (rEiAMA1) from E. intestinalis were expressed using Escherichia coli BL21. The immunoreactivity and immunoprotective effects of rEiIMP1 and rEiAMA1 were then analyzed. Fifty rabbits were grouped randomly (n = 10 per group): The unimmunized-unchallenged control group (sterilized phosphate-buffered saline (PBS)), the unimmunized-challenged control group (sterilized PBS), the vector protein-challenged control group (100 μg of pET-32a vector protein per rabbit), the rEiIMP1 immunized group (100 μg of rEiIMP1 per rabbit), and the rEiAMA1 immunized group (100 μg of rEiAMA1 per rabbit). After two immunizations, the rabbits were challenged with homologous oocysts (except for the unimmunized-unchallenged group). Serum specific antibody levels were assessed weekly throughout the experimental period; and the levels of different cytokines in the serum before the challenge were detected. The clinical symptoms, oocysts output, weight gain, feed conversion ratio (FCR), and lesion scores were recorded after experimental infection, and the anticoccidial indexes (ACIs) were calculated. The results showed that both rEiIMP1 and rEiAMA1 had good immunoreactivity. Rabbits immunized with rEiIMP1 and rEiAMA1 displayed 66.74 % and 63.14 % oocyst reduction, respective land 81.79 % and 78.87 % body weight gain, respectively. The rEiIMP1 and rEiAMA1 groups had lower FCRs (3.77:1 and 4.06:1, respectively) and lesion scores (P = 0.00). The rEiIMP1 and rEiAMA1 showed moderate effects, with an ACI of 152.09 and 147.17, respectively. Immunization induced high levels of anti-rEiIMP1 and -rEiAMA1 antibodies. Rabbits immunized with rEiIMP1 and rEiAMA1 displayed significantly increased interleukin (IL)- 2 (P = 0.00), interferon gamma (IFN)- γ (P = 0.00), and IL- 4 (P = 0.00) levels. Therefore, this study provided potential candidate vaccine antigens for E. intestinalis.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| | - Wei He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| | - Changming Xiong
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| | - Ge Hao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| | - Jiayan Pu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| | - Hao Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| | - Liwen Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| | - Yuhua Zhu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| | - Yongjun Ren
- Sichuan Animal Science Academy, Chengdu 610066, China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China.
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China.
| |
Collapse
|
7
|
Zifan C, Chaojun Z, Qiaoli P, Qingfeng Z, Yunping D, Huihua Z. Construction of recombinant SAG22 Bacillus subtilis and its effect on immune protection of coccidia. Poult Sci 2023; 102:102780. [PMID: 37276704 PMCID: PMC10258495 DOI: 10.1016/j.psj.2023.102780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 06/07/2023] Open
Abstract
Avian coccidiosis causes huge economic losses to the global poultry industry. Vaccine is an important means to prevent and control coccidiosis. In this study, Bacillus subtilis was selected as the expression host strain to express anti Eimeria tenella surface protein SAG22. The synthesized surface protein SAG22 gene fragment of E. tenella was ligated with Escherichia coli-bacillus shuttle vector GJ148 to construct the recombinant vector SAG22-GJ148. And then the recombinant Bacillus strain SAG22-DH61 was obtained by electrotransfer. The results of SDS-PAGE and Western Blot showed that the recombinant protein SAG22 was successfully expressed intracellularly. The immunoprotective effect of recombinant Bacillus strain SAG22-DH61 on broiler chickens was evaluated in 3 identically designed animal experiments. The birds were infected with E. tenella on d 14, 21, and 28, respectively. Each batch of experiments was divided into 4 groups: blank control group (NC), blank control group + infected E. tenella (CON), addition of recombinant SAG22-DH61 strain + infected with E. tenella (SAG22-DH61), addition of recombinant empty vector GJ148-DH61 strain + infected with E. tenella (GJ148-DH61). The animal experiments results showed that the average weight gain of the SAG22-DH61 group was higher than that of the infected control group, and the difference was significant in the d 14 and 28 attack tests (P < 0.05); the oocyst reduction rate of the SAG22-DH61 group was much higher than that of the GJ148-DH61 group (P < 0.05); the intestinal lesion count score of the SAG22-DH61 group was much lower than that of the GJ148-DH61 group (P < 0.05). In addition, the SAG22-DH61 group achieved highly effective coccidia resistance in the d 14 attack test and moderately effective coccidia resistance in both the d 21 and 28 attack tests. In summary, recombinant SAG22 B. subtilis has the potential to become one of the technological reserves in the prevention and control of coccidiosis in chickens in production.
Collapse
Affiliation(s)
- Chen Zifan
- School of Life Science and Engineering, Foshan University, Foshan, 528000, China
| | - Zheng Chaojun
- School of Life Science and Engineering, Foshan University, Foshan, 528000, China
| | - Peng Qiaoli
- School of Life Science and Engineering, Foshan University, Foshan, 528000, China
| | - Zhou Qingfeng
- Guangdong Guangken Animal Husbandry Engineering Research Institute Co., Ltd., Guangzhou, 510000, China
| | - Du Yunping
- Guangdong Guangken Animal Husbandry Engineering Research Institute Co., Ltd., Guangzhou, 510000, China
| | - Zhang Huihua
- School of Life Science and Engineering, Foshan University, Foshan, 528000, China.
| |
Collapse
|
8
|
Chen H, Pu J, Xiao J, Bai X, Zheng R, Gu X, Xie Y, He R, Xu J, Jing B, Peng X, Ren Y, Yang G. Evaluation of the immune protective effects of rEmMIC2 and rEmMIC3 from Eimeria magna in rabbits. Parasitol Res 2023; 122:661-669. [PMID: 36572833 PMCID: PMC9792316 DOI: 10.1007/s00436-022-07774-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Eimeria magna is a common pathogen in rabbits, which results in lethargy, weight loss, diarrhea, and even death in severe cases after infection. The current method for preventing rabbit coccidiosis is to add anticoccidial drugs to the diet. However, there are many concerns about drug resistance and drug residues. In our study, the rEmMIC2 and rEmMIC3 proteins were cloned and expressed to evaluate potential as recombinant subunit vaccine candidate antigens. The protective effects of rEmMIC2 and rEmMIC3 were evaluated by the relative weight gain ratio, oocyst decrease rate, anticoccidial index, feed conversion ratio, pathological alterations, clinical symptoms, specific IgG antibody, and cytokine levels in rabbits. The molecular weights of rEmMIC2 and rEmMIC3 were 18.69 kDa and 17.47 kDa, respectively. After the coccidia challenge, the control groups showed anorexia and soft poop, whereas the experimental group showed few anorexia symptoms. Significantly different from the control group, the relative weight gain ratios of the immunized rEmMIC2 and rEmMIC3 groups were 78.37% and 75.29%, respectively, and the oocyst reduction was 77.95% and 76.09%, respectively, and the anticoccidial index was 171.12 and 169.29, respectively. IgG antibody, IFN-γ, IL-4, IL-10, and IL-17 levels were significantly increased in the experimental group. The results showed that rEmMIC2 and rEmMIC3 have potential as vaccine candidate antigens.
Collapse
Affiliation(s)
- Hao Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Jiayan Pu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Jie Xiao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Xin Bai
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Ruoyu Zheng
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Bo Jing
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Yongjun Ren
- Sichuan Animal Science Academy, Chengdu, 610066 China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, 610066 China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| |
Collapse
|
9
|
Chen C, Zhang Y, Liu J, Wang M, Lu M, Xu L, Yan R, Li X, Song X. An Eimeria maxima Antigen: Its Functions on Stimulating Th1 Cytokines and Protective Efficacy Against Coccidiosis. Front Immunol 2022; 13:872015. [PMID: 35669766 PMCID: PMC9163350 DOI: 10.3389/fimmu.2022.872015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
A consensus is that the Th1 immune response plays a predominant role against avian coccidiosis. Therefore, an antigen with the ability to induce Th1 cytokine responses is an ideal candidate for the development of coccidiosis vaccines. In our previous study, EmARM-β, a Th1 cytokines-stimulating antigen, was screened from the cDNA expression library of Eimeria maxima (E. maxima). Herein, we verified its stimulative effects on Th1 cytokine productions and evaluated its protective efficacy against E. maxima infection. Recombinant EmARM-β protein was expressed, and eukaryotic expression plasmid pVAX1-EmARM-β was also constructed for the immunization of birds. An immunofluorescence assay was performed to detect the native form of EmARM-β protein in the stage of sporozoites. Expressions of specific transcription factors and cytokines in immunized chickens were measured using qPCR and ELISA to verify its stimulating function on Th1 cytokines. Specific IgG antibody levels and T lymphocyte subpopulation in the immunized chickens were detected using ELISA and indirect flow cytometry to determine induced immune responses. The results showed that EmARM-β native protein is massively expressed in the sporozoites stage of E. maxima. Effective stimulation from the EmARM-β antigen to T-bet and Th1 cytokines (IL-2 and IFN-γ) was observed in vivo. After being immunized with rEmARM-β or pVAX1-EmARM-β, significant promotion to the proportion of CD4+ and CD8+ T cells and the level of antigen-specific IgG antibodies in immunized chickens was also observed. Furthermore, vaccination with rEmARM-β antigen or pVAX1-EmARM-β resulted in alleviated weight loss and enteric lesion, reduced oocyst output, and higher anticoccidial index (ACI) in challenged birds. These results indicate that EmARM-β antigen can effectively stimulate the expression of Th1 cytokines and initiate host immune responses, providing moderate protective efficacy against E. maxima. Notably, EmARM-β protein is a promising candidate for developing a novel anticoccidial vaccine.
Collapse
|
10
|
Identification and Protective Efficacy of Eimeria tenella Rhoptry Kinase Family Protein 17. Animals (Basel) 2022; 12:ani12050556. [PMID: 35268126 PMCID: PMC8908856 DOI: 10.3390/ani12050556] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Approximately 8000 genes of Eimeria tenella have been found by genome sequencing, whereas very few data are currently available regarding E. tenella rhoptry kinase family proteins. In this study, the coding sequence of the rhoptry kinase family protein 17 of E. tenella (EtROP17) was cloned and expressed in Escherichia coli, and then the protective efficacy of the recombinant EtROP17 (rEtROP17) was assessed in chickens. Sequence analysis showed that a single base difference at position 1901 of the ROP17 of the SD-01 strain was observed compared with that of the Houghton strain. EtROP17 was expressed in the merozoite stage of E. tenella and may be a potential vaccine candidate against coccidiosis. Abstract Eimeria tenella encodes a genome of approximately 8000 genes. To date, however, very few data are available regarding E. tenella rhoptry kinase family proteins. In the present study, the gene fragment encoding the mature peptide of the rhoptry kinase family protein 17 of E. tenella (EtROP17) was amplified by PCR and expressed in E. coli. Then, we generated polyclonal antibodies that recognize EtROP17 and investigated the expression of EtROP17 in the merozoite stage of E. tenella by immunofluorescent staining and Western blot analysis. Meanwhile, the protective efficacy of rEtROP17 against E. tenella was evaluated in chickens. Sequencing analysis showed that a single base difference at sequence position 1901 was observed between the SD-01 strain and the Houghton strain. EtROP17 was expressed in the merozoite stage of E. tenella. The results of the animal challenge experiments demonstrated that vaccination with rEtROP17 significantly reduced cecal lesions and oocyst outputs compared with the challenged control group. Our findings indicate that EtROP17 could serve as a potential candidate for developing a new vaccine against E. tenella.
Collapse
|
11
|
Juárez-Estrada MA, Tellez-Isaias G, Sánchez-Godoy FD, Alonso-Morales RA. Immunotherapy With Egg Yolk Eimeria sp.-Specific Immunoglobulins in SPF Leghorn Chicks Elicits Successful Protection Against Eimeria tenella Infection. Front Vet Sci 2021; 8:758379. [PMID: 34859090 PMCID: PMC8632257 DOI: 10.3389/fvets.2021.758379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/14/2021] [Indexed: 12/28/2022] Open
Abstract
Avian coccidiosis is the first to most economically important parasite disease affecting poultry industries worldwide. Current prevention measures are largely based upon prophylactic chemotherapy supplemented by the application of live attenuated or wild-type parasite vaccines. However, the rising appearance of drug resistance, consumer's concern for antibiotics use in poultry production and higher manufacturing cost of live vaccines has driven to adopt new technologies aimed at increasing animal health and production efficiency. Supplementing chickens with egg yolk Eimeria sp.-specific immunoglobulins can be a viable alternative to avoid severe outbreaks of the disease. Twelve-week-old SPF White Leghorn chickens were experimentally infected with a large dose of E. tenella. During the prepatent period, the birds were supplemented by oral gavage with 60 or 120 mg/bird of hyperimmune egg yolk Eimeria species-specific immunoglobulins Y (Supracox®, SC) on a daily basis. The animals were euthanized 7 days post-infection (PI) and their passive immune protection was evaluated. Birds treated with 120 mg/bird of SC showed more viability, increased body weight gain (BWG), a normal hematocrit level (HCT), reduced oocyst output per gram of feces (OPG) or cecal tissue (OPGC), and fewer cecal lesions compared to the untreated infected (UI) control group. Birds supplemented with 60 mg/bird of SC did not show any significant difference on BWG, HCT, OPG, OPGC, and cecal lesion score when compared with the UI group. An ELISA test of the SC showed a weak cross-reactivity of IgY toward two asexual zoite stages of E. tenella. Western blot analysis of the sporozoite with SC showed few antigens barely recognized, while more stained bands were detected in the merozoite (≈82, ≈60, ≈54, ≈40, ≈38, ≈27.5, and ≈13 kDa). Oral immunotherapy using egg yolk polyclonal IgYs against Eimeria sp. represents an effective and natural resource against severe E. tenella infection favoring the gradual withdrawal of the anticoccidial drugs and antibiotics.
Collapse
Affiliation(s)
- Marco A Juárez-Estrada
- Departamento de Medicina y Zootecnia de Aves, FMVZ, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Departamento de Genética y Bioestadística, FMVZ, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Félix D Sánchez-Godoy
- Departamento de Medicina y Zootecnia de Aves, FMVZ, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rogelio A Alonso-Morales
- Departamento de Genética y Bioestadística, FMVZ, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
12
|
Juárez-Estrada MA, Gayosso-Vázquez A, Tellez-Isaias G, Alonso-Morales RA. Protective Immunity Induced by an Eimeria tenella Whole Sporozoite Vaccine Elicits Specific B-Cell Antigens. ANIMALS : AN OPEN ACCESS JOURNAL FROM MDPI 2021; 11:ani11051344. [PMID: 34065041 PMCID: PMC8151427 DOI: 10.3390/ani11051344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary Coccidiosis caused by Eimeria tenella is a dreadful disease with a significant economic impact to the poultry industry. The disease has been controlled by routine medication of feed with synthetic chemicals or ionophore drugs. However, the rising appearance of drug resistance and public demands for reduced drug use in poultry production have driven a dramatic change, replacing anticoccidial drugs with alternative methods, such as vaccination with either virulent or attenuated Eimeria oocysts. Based on preliminary studies, the immune protection evaluating whole-sporozoites of E. tenella vaccine was verified. After this vaccine provided successful protection, the humoral response of a heterologous species like the rabbit was compared with the natural host immune response. Several B-cells antigens from the E. tenella sporozoite suitable for a genetically engineered vaccine were identified. Vaccination with newly identified recombinant antigens offers a feasible alternative for the control of avian coccidiosis into the broiler barns favoring the gradual withdrawal of the anticoccidial drugs. Abstract This study investigated protection against Eimeria tenella following the vaccination of chicks with 5.3 × 106E. tenella whole-sporozoites emulsified in the nanoparticle adjuvant IMS 1313 N VG Montanide™ (EtSz-IMS1313). One-day-old specific pathogen-free (SPF) chicks were subcutaneously injected in the neck with EtSz-IMS1313 on the 1st and 10th days of age. Acquired immunity was assayed through a challenge with 3 × 104 homologous sporulated oocysts at 21 days of age. The anticoccidial index (ACI) calculated for every group showed the effectiveness of EtSz-IMS1313 as a vaccine with an ACI of 186; the mock-injected control showed an ACI of 18 and the unimmunized, challenged control showed an ACI of −28. In a comparison assay, antibodies from rabbits and SPF birds immunized with EtSz-IMS1313 recognized almost the same polypeptides in the blotting of E. tenella sporozoites and merozoites. However, rabbit antisera showed the clearest recognition pattern. Polypeptides of 120, 105, 94, 70, 38, and 19 kDa from both E. tenella life cycle stages were the most strongly recognized by both animal species. The E. tenella zoite-specific IgG antibodies from the rabbits demonstrated the feasibility for successful B cell antigen identification.
Collapse
Affiliation(s)
- Marco A. Juárez-Estrada
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, Cd. De México 04510, Mexico
- Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, Cd. De México 04510, Mexico; (A.G.-V.); (R.A.A.-M.)
- Correspondence:
| | - Amanda Gayosso-Vázquez
- Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, Cd. De México 04510, Mexico; (A.G.-V.); (R.A.A.-M.)
| | | | - Rogelio A. Alonso-Morales
- Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, Cd. De México 04510, Mexico; (A.G.-V.); (R.A.A.-M.)
| |
Collapse
|
13
|
Chen C, Tian D, Su J, Liu X, Shah MAA, Li X, Xu L, Yan R, Song X. Protective Efficacy of Rhomboid-Like Protein 3 as a Candidate Antigen Against Eimeria maxima in Chickens. Front Microbiol 2021; 12:614229. [PMID: 34025594 PMCID: PMC8131851 DOI: 10.3389/fmicb.2021.614229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/15/2021] [Indexed: 12/03/2022] Open
Abstract
Avian coccidiosis brings tremendous economic loss to the poultry industry worldwide. The third generation vaccine, including subunit and DNA vaccines, exhibited promising developmental prospects. In a previous study, we found rhomboid-like protein 3 of Eimeria maxima (EmROM3) was involved in infections by Eimeria species. However, the protective efficacy of EmROM3 against Eimeria maxima (E. maxima) remains unknown. In this study, chickens were intramuscularly immunized with the recombinant protein EmROM3 (rEmROM3) or pVAX1-EmROM3 to determine the EmROM3-induced immune response. The induced humoral immune response was determined by measuring serum IgG antibody levels in immunized chickens. The induced cellular immune response was detected by measuring the transcription level of immune related cytokines and the proportion of T cell subsets of the immunized chickens. Finally, the protective efficacy of the EmROM3 vaccine against E. maxima was evaluated by immunization-challenge trials. Results revealed that the purified rEmROM3 reacted with chicken anti-E. maxima serum. The recombinant plasmid of pVAX1-EmROM3 was transcribed and translated in the injected muscle from the vaccinated chickens. In experimental groups, the IgG titers, proportions of CD4+ and CD8+ T cells, and transcription level of splenic cytokines were significantly increased compared with the control groups. The immunization-challenge trial revealed that immunization with rEmROM3 or pVAX1-EmROM3 led to restored weight gain, alleviated enteric lesion, decreased oocyst output as well as the higher anticoccidial index (ACI), indicating partial protection against E. maxima. These results indicate that EmROM3 is an effective candidate antigen for developing novel vaccines against infection by E. maxima.
Collapse
Affiliation(s)
- Chen Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Di Tian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Nanjing Ringpai Vet Hospital Co., Ltd., Nanjing, China
| | - Junzhi Su
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaoqian Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Ali A Shah
- Department of Pathobiology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Zhao H, Zhu S, Zhao Q, Huang B, Liu G, Li Z, Wang L, Dong H, Han H. Molecular characterization and protective efficacy of a new conserved hypothetical protein of Eimeria tenella. ACTA ACUST UNITED AC 2021; 28:40. [PMID: 33944773 PMCID: PMC8095096 DOI: 10.1051/parasite/2021037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/15/2021] [Indexed: 11/14/2022]
Abstract
Eimeria tenella is an obligate intracellular parasite that actively invades cecal epithelial cells of chickens. This parasite encodes a genome of more than 8000 genes. However, more than 70% of the gene models for this species are currently annotated as hypothetical proteins. In this study, a conserved hypothetical protein gene of E. tenella, designated EtCHP18905, was cloned and identified, and its immune protective effects were evaluated. The open reading frame of EtCHP18905 was 1053bp and encoded a protein of 350 amino acids with a molecular weight of 38.7kDa. The recombinant EtCHP18905 protein (rEtCHP18905) was expressed in E. coli. Using western blot, the recombinant protein was successfully recognized by anti GST-Tag monoclonal antibody and anti-sporozoites protein rabbit serum. Real-time quantitative PCR analysis revealed that the EtCHP18905 mRNA levels were higher in sporozoites than in unsporulated oocysts, sporulated oocysts and second-generation merozoites. Western blot analysis showed that EtCHP18905 protein expression levels were lower in sporozoites than in other stages. Immunofluorescence analysis indicated that the EtCHP18905 protein was located on the surface of sporozoites and second-generation merozoites. Inhibition experiments showed that the ability of sporozoites to invade host cells was significantly decreased after treatment with the anti-rEtCHP18905 polyclonal antibody. Vaccination with rEtCHP18905 protein was able to significantly decrease mean lesion scores and oocyst outputs as compared to non-vaccinated controls. The results suggest that the rEtCHP18905 protein can induce partial immune protection against infection with E. tenella and could be an effective candidate for the development of new vaccines.
Collapse
Affiliation(s)
- Huanzhi Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, 200241 Shanghai, PR China
| | - Shunhai Zhu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, 200241 Shanghai, PR China
| | - Qiping Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, 200241 Shanghai, PR China
| | - Bing Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, 200241 Shanghai, PR China
| | - Guiling Liu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, 200241 Shanghai, PR China - College of Life and Environment Sciences, Shanghai Normal University, 200234 Shanghai, PR China
| | - Zhihang Li
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, 200241 Shanghai, PR China - College of Life and Environment Sciences, Shanghai Normal University, 200234 Shanghai, PR China
| | - Lu Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, 200241 Shanghai, PR China
| | - Hui Dong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, 200241 Shanghai, PR China
| | - Hongyu Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, 200241 Shanghai, PR China
| |
Collapse
|
15
|
Rhomboid protein 2 of Eimeria maxima provided partial protection against infection by homologous species. Vet Res 2021; 52:29. [PMID: 33602319 PMCID: PMC7893758 DOI: 10.1186/s13567-020-00886-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/23/2020] [Indexed: 11/24/2022] Open
Abstract
Rhomboid-like proteases (ROMs) are considered as new candidate antigens for developing new-generation vaccines due to their important role involved in the invasion of apicomplexan protozoa. In prior works, we obtained a ROM2 sequence of Eimeria maxima (EmROM2). This study was conducted to evaluate the immunogenicity and protective efficacy of EmROM2 recombinant protein (rEmROM2) and EmROM2 DNA (pVAX1-EmROM2) against infection by Eimeria maxima (E. maxima). Firstly, Western blot assay was conducted to analyze the immunogenicity of rEmROM2. The result showed that rEmROM2 was recognized by chicken anti-E. maxima serum. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot assay revealed apparent transcription and expression of EmROM2 at the injection site. qRT-PCR (quantitative real-time PCR), flow cytometry and indirect ELISA indicated that vaccination with rEmROM2 or EmROM2 DNA significantly upregulated the transcription level of cytokines (IFN-γ, IL-2, IL-4, IL-10, IL-17, TGF-β and TNF SF15), the proportion of CD8+ and CD4+ T lymphocytes and serum IgG antibody response. Ultimately, a vaccination-challenge trial was performed to evaluate the protective efficacy of rEmROM2 and pVAX1-EmROM2 against E. maxima. The result revealed that vaccination with rEmROM2 or pVAX1-EmROM2 significantly alleviated enteric lesions, weight loss, and reduced oocyst output caused by challenge infection of E. maxima, and provided anticoccidial index (ACI) of more than 160, indicating partial protection against E. maxima. In summary, vaccination with rEmROM2 or pVAX1-EmROM2 activated notable humoral and cell-mediated immunity and provided partial protection against E. maxima. These results demonstrated that EmROM2 protein and DNA are promising vaccine candidates against E. maxima infection.
Collapse
|
16
|
Li X, Sun X, Zhao R, Shao D, Bi S. Study on the binding of sulfaclozine sodium monohydrate with bovine and human serum albumins using multi-spectroscopy and molecular docking. J Biomol Struct Dyn 2020; 39:4835-4844. [PMID: 32579083 DOI: 10.1080/07391102.2020.1780945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The interactions of sulfaclozine sodium monohydrate (SSM) with bovine and human serum albumins (BSA and HSA) were studied by multi-spectroscopy and molecular docking technique. Stern-Volmer analysis and fluorescence lifetime measurements suggested the quenching processes were static. According to the Fluorescence resonance energy transfer (FRET) theory, the binding distances were obtained indicating SSM interacted with BSA/HSA along with non-radiation energy conversion. Electrostatic attraction was the main force in keeping the stability of the compound based on thermodynamic parameters. Circular dichroism (CD), synchronous fluorescence and Fourier Transform infrared (FT-IR) spectra embodied the secondary structures of serum albumins were transformed by SSM. The site marker competitive and molecular docking measurements testified SSM bound to BSA/HSA at site I. In conclusion, the secondary structures of BSA/HSA were changed by SSM in the static fluorescence quenching processes with the non-radiation energy conversion. The binding sites were all located at site I and electrostatic attraction was the main force for the new compound. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xu Li
- College of Chemistry, Changchun Normal University, Changchun, China
| | - Xiaoyue Sun
- College of Chemistry, Changchun Normal University, Changchun, China
| | - Rui Zhao
- College of Chemistry, Changchun Normal University, Changchun, China
| | - Di Shao
- College of Chemistry, Changchun Normal University, Changchun, China
| | - Shuyun Bi
- College of Chemistry, Changchun Normal University, Changchun, China
| |
Collapse
|
17
|
Liu T, Huang J, Li Y, Ehsan M, Wang S, Zhou Z, Song X, Yan R, Xu L, Li X. Molecular characterisation and the protective immunity evaluation of Eimeria maxima surface antigen gene. Parasit Vectors 2018; 11:325. [PMID: 29848353 PMCID: PMC5977735 DOI: 10.1186/s13071-018-2906-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/20/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coccidiosis is recognised as a major parasitic disease in chickens. Eimeria maxima is considered as a highly immunoprotective species within the Eimeria spp. family that infects chickens. In the present research, the surface antigen gene of E. maxima (EmSAG) was cloned, and the ability of EmSAG to stimulate protection against E. maxima was evaluated. METHODS Prokaryotic and eukaryotic plasmids expressing EmSAG were constructed. The EmSAG transcription and expression in vivo was performed based on the RT-PCR and immunoblot analysis. The expression of EmSAG in sporozoites and merozoites was detected through immunofluorescence analyses. The immune protection was assessed based on challenge experiments. Flow cytometry assays were used to determine the T cell subpopulations. The serum antibody and cytokine levels were evaluated by ELISA. RESULTS The open reading frame (ORF) of EmSAG gene contained 645 bp encoding 214 amino acid residues. The immunoblot and RT-PCR analyses indicated that the EmSAG gene were transcribed and expressed in vivo. The EmSAG proteins were expressed in sporozoite and merozoite stages of E. maxima by the immunofluorescence assay. Challenge experiments showed that both pVAX1-SAG and the recombinant EmSAG (rEmSAG) proteins were successful in alleviating jejunal lesions, decreasing loss of body weight and the oocyst ratio. Additionally, these experiments possessed anticoccidial indices (ACI) of more than 170. Higher percentages of CD4+ and CD8+ T cells were detected in both EmSAG-inoculated birds than those of the negative control groups (P < 0.05). The EmSAG-specific antibody concentrations of both the rEmSAG and pVAX1-EmSAG groups were much higher than those of the negative controls (P < 0.05). Higher concentrations of IL-4, IFN-γ, TGF-β1 and IL-17 were observed more in both the rEmSAG protein and pVAX1-SAG inoculated groups than those of negative controls (P < 0.05). CONCLUSIONS Our findings suggest that EmSAG is capable of eliciting a moderate immune protection and could be used as an effective vaccine candidate against E. maxima.
Collapse
Affiliation(s)
- Tingqi Liu
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Jingwei Huang
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Yanlin Li
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Muhammad Ehsan
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Shuai Wang
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Zhouyang Zhou
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Ruofeng Yan
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Lixin Xu
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China.
| |
Collapse
|
18
|
Liu T, Huang J, Ehsan M, Wang S, Fei H, Zhou Z, Song X, Yan R, Xu L, Li X. Protective immunity against Eimeria maxima induced by vaccines of Em14-3-3 antigen. Vet Parasitol 2018; 253:79-86. [PMID: 29605008 DOI: 10.1016/j.vetpar.2018.02.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 11/26/2022]
Abstract
Eimeria maxima 14-3-3 (Em14-3-3) open reading frame (ORF) which consisted of 861 bp encoding a protein of 286 amino acids was successfully amplified and sequenced. Subsequently, the Em14-3-3 ORF was subcloned into pET-32a (+) and pVAX1, respectively. RT-PCR and immunoblot analyses confirmed that the target gene was successfully transcribed and expressed in vivo. Immunofluorescence analysis showed that Em14-3-3 was expressed in both the sporozoites and merozoites. The animal experiments demonstrated that both rEm14-3-3 and pVAX1-14-3-3 could clearly alleviate jejunum lesions and body weight loss. The Em14-3-3 vaccines could increase oocyst decrease ratio, as well as produce an anticoccidial index of more than 165. The percentages of CD4+ in both the Em14-3-3 immunized groups were much higher, when compared with those of PBS, pET32a (+), and pVAX1 controls (P < 0.05). Similarly, the anti-Em14-3-3 antibody titers of both rEm14-3-3 and pVAX1-14-3-3 immunized groups showed higher levels compared with those of PBS, pET32a (+), and pVAX1 controls (P < 0.05). The IFN-γ and tumor growth factor-β (TGF-β) levels showed significant increments in the rEm14-3-3 and pVAX1-14-3-3 immunized groups, when compared with those in the negative controls (P < 0.05). These results demonstrated that Em14-3-3 could be used as a promising antigen candidate for developing vaccines against E. maxima.
Collapse
Affiliation(s)
- Tingqi Liu
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Jingwei Huang
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Muhammad Ehsan
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Shuai Wang
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Hong Fei
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Zhouyang Zhou
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Ruofeng Yan
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Lixin Xu
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
19
|
Zhou BH, Liu LL, Liu J, Yuan FW, Tian EJ, Wang HW. Effect of Diclazuril on the Bursa of Fabricius Morphology and SIgA Expression in Chickens Infected with Eimeria tenella. THE KOREAN JOURNAL OF PARASITOLOGY 2015; 53:675-82. [PMID: 26797433 PMCID: PMC4725230 DOI: 10.3347/kjp.2015.53.6.675] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 10/07/2015] [Accepted: 10/17/2015] [Indexed: 02/01/2023]
Abstract
The effects of diclazuril on the bursa of Fabricius (BF) structure and secretory IgA (SIgA) expression in chickens infected with Eimeria tenella were examined. The morphology of the BF was observed by hematoxylin and eosin staining, while ultrastructural changes were monitored by transmission electron microscopy. E. tenella infection caused the BF cell volumes to decrease, irregularly arranged, as well as, enlargement of the intercellular space. Diclazuril treatment alleviated the physical signs of damages associated with E. tenella infection. The SIgA expression in BF was analyzed by immunohistochemistry technique. The SIgA expression increased significantly by 350.4% (P<0.01) after E. tenella infection compared to the normal control group. With the treatment of diclazuril, the SIgA was relatively fewer in the cortex, and the expression level was significantly decreased by 46.7% (P<0.01) compared with the infected and untreated group. In conclusion, E. tenella infection in chickens induced obvious harmful changes in BF morphological structure and stimulated the expression of SIgA in the BF. Diclazuril treatment effectively alleviated the morphological changes. This result demonstrates a method to develop an immunological strategy in coccidiosis control.
Collapse
Affiliation(s)
- Bian-Hua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Henan, Luoyang 471003, China
| | - Li-Li Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Henan, Luoyang 471003, China
| | - Jeffrey Liu
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Fu-Wei Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Henan, Luoyang 471003, China
| | - Er-Jie Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Henan, Luoyang 471003, China
| | - Hong-Wei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Henan, Luoyang 471003, China
| |
Collapse
|
20
|
Identification and immunogenicity of microneme protein 2 (EbMIC2) of Eimeria brunetti. Exp Parasitol 2015; 162:7-17. [PMID: 26743188 DOI: 10.1016/j.exppara.2015.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 12/08/2015] [Accepted: 12/22/2015] [Indexed: 11/20/2022]
Abstract
There have been only a few antigen genes of Eimeria brunetti reported up to now. In this study, the gene encoding the microneme protein 2 (EbMIC2) was isolated from oocysts of E. brunetti by RT-PCR and the immunogenicity of recombinant EbMIC2 was observed. The EbMIC2 was cloned into vector pMD19-T for sequencing. The sequence was compared with the published EbMIC2 gene from GenBank revealed homology of the nucleotide sequence and amino acids sequence were 99.43 and 98.63%, respectively. The correct recombinant pMD-EbMIC2 plasmid was inserted into the pET-28a (+) expressing vector and transformed into competent Escherichia coli BL21 cells for expression. The expressed product was analyzed using SDS-PAGE and Western-blot. The results indicated that the recombinant EbMIC2 protein was recognized strongly by serum from naturally infected chicken with E. brunetti. Rat rcEbMIC2 antisera bound to bands of about 36 kDa in the somatic extract of E. brunetti sporozoites. The recombinant plasmid pVAX1-EbMIC2 was constructed and then the efficacies of recombinant plasmid and recombinant protein were evaluated. The results of IgG antibody level and cytokines concentration suggested that recombinant EbMIC2 could increase the IgG antibody level and induce the expressions of cytokines. Animal challenge experiments demonstrated that the recombinant EbMIC2 protein and recombinant plasmid pVAX1-EbMIC2 could significantly increase the average body weight gains, decrease the mean lesion scores and the oocyst outputs of the immunized chickens and presented high anti-coccidial index. All results suggested that EbMIC2 could become an effective candidate for the development of new vaccine against E. brunetti infection.
Collapse
|
21
|
Huang J, Zhang Z, Li M, Song X, Yan R, Xu L, Li X. Immune protection of microneme 7 (EmMIC7) againstEimeria maximachallenge in chickens. Avian Pathol 2015; 44:392-400. [DOI: 10.1080/03079457.2015.1071780] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Huang J, Zhang Z, Li M, Song X, Yan R, Xu L, Li X. Eimeria maxima microneme protein 2 delivered as DNA vaccine and recombinant protein induces immunity against experimental homogenous challenge. Parasitol Int 2015; 64:408-16. [PMID: 26072304 DOI: 10.1016/j.parint.2015.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/29/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
Abstract
E. maxima is one of the seven species of Eimeria that infects chicken. Until now, only a few antigenic genes of E. maxima have been reported. In the present study, the immune protective effects against E. maxima challenge of recombinant protein and DNA vaccine encoding EmMIC2 were evaluated. Two-week-old chickens were randomly divided into five groups. The experimental group of chickens was immunized with 100 μg DNA vaccine pVAX1-MIC2 or 200 μg rEmMIC2 protein while the control group of chickens was injected with pVAX1 plasmid or sterile PBS. The results showed that the anti-EmMIC2 antibody titers of both rEmMIC2 protein and pVAX1-MIC2 groups were significantly higher as compared to PBS and pVAX1 control (P<0.05). The splenocytes from both vaccinated groups of chickens displayed significantly greater proliferation compared with the controls (P<0.05). Serum from chickens immunized with pVAX1-MIC2 and rEmMIC2 protein displayed significantly high levels of IL-2, IFN-γ, IL-10, IL-17, TGF-β and IL-4 (P<0.05) compared to those of negative controls. The challenge experiment results showed that both the recombinant protein and the DNA vaccine could obviously alleviate jejunum lesions, body weight loss, increase oocyst, decrease ratio and provide ACIs of more than 165. All the above results suggested that immunization with EmMIC2 was effective in imparting partial protection against E. maxima challenge and it could be an effective antigen candidate for the development of new vaccines against E. maxima.
Collapse
Affiliation(s)
- Jingwei Huang
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, Jiangsu 210095, PR China
| | - Zhenchao Zhang
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, Jiangsu 210095, PR China
| | - Menghui Li
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, Jiangsu 210095, PR China
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, Jiangsu 210095, PR China
| | - Ruofeng Yan
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, Jiangsu 210095, PR China
| | - Lixin Xu
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, Jiangsu 210095, PR China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
23
|
Liu Q, Chen Z, Shi W, Sun H, Zhang J, Li H, Xiao Y, Wang F, Zhao X. Preparation and initial application of monoclonal antibodies that recognize Eimeria tenella microneme proteins 1 and 2. Parasitol Res 2014; 113:4151-61. [DOI: 10.1007/s00436-014-4087-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 08/18/2014] [Indexed: 11/30/2022]
|
24
|
Saravanan S, Palanivel KM, Harikrishnan TJ, Srinivasan P, Selvaraju G. Assessment of humoral immunity to Eimeria tenella sporozoites in chickens by ELISA. Vet World 2014. [DOI: 10.14202/vetworld.2014.452-456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
25
|
Hoan TD, Thao DT, Gadahi JA, Song X, Xu L, Yan R, Li X. Analysis of humoral immune response and cytokines in chickens vaccinated with Eimeria brunetti apical membrane antigen-1 (EbAMA1) DNA vaccine. Exp Parasitol 2014; 144:65-72. [PMID: 24815774 DOI: 10.1016/j.exppara.2014.04.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/09/2014] [Accepted: 04/23/2014] [Indexed: 11/25/2022]
Abstract
This study aimed to determine the changes of cytokines, specific serum IgG and several parameters in chickens vaccinated with DNA vaccine encoding Eimeria brunetti apical membrane antigen-1 (EbAMA1) antigen. Two-week-old chickens were divided into five groups (four groups for experiment) randomly. Experimental groups of chickens were immunized with DNA vaccine while control group of chickens were injected with pVAX1 plasmid alone or TE buffer solution. All immunizations were boosted 2 weeks later. The EbAMA1 specific IgG antibody responses were measured at weeks 1-6 post-second immunizations and several parameters were also identified. The result showed that the antibody titers in chickens vaccinated with DNA vaccines were significantly different from those of the control groups 1 week after the second immunization and reached the maximum values 3 weeks post-second immunization. IFN-γ concentration was increased the highest level against EbAMA1 of all chickens vaccinated with vaccines up to 56-fold, follow by the specific IgG antibody levels were increased 10-17-fold compared with those of TE solution and plasmid (pVAX1) control chickens 1-6 weeks post-second immunization. In case of the levels of IL-10 and IL-17 was increased in experimental chickens with 4-5-fold. Even though it was statistically significant, TGF-β and IL-4 levels were higher in vaccinated than unvaccinated chickens. The results suggested that DNA vaccines encoding E. brunetti apical membrane antigen-1 (EbAMA1) could increase serum specific IgG antibody and cytokines concentration and could give protection against E. brunetti infection.
Collapse
Affiliation(s)
- Tran Duc Hoan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China; Faculty of Animal Husbandry and Veterinary Medicine, Bacgiang Agriculture and Forestry University, Vietyen District, Bacgiang Province, Viet Nam
| | - Doan Thi Thao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Javaid Ali Gadahi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Lixin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Ruofeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| |
Collapse
|
26
|
Zhang JJ, Wang LX, Ruan WK, An J. Investigation into the prevalence of coccidiosis and maduramycin drug resistance in chickens in China. Vet Parasitol 2013; 191:29-34. [DOI: 10.1016/j.vetpar.2012.07.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 06/05/2012] [Accepted: 07/27/2012] [Indexed: 11/25/2022]
|
27
|
Liu Y, Zheng J, Li J, Gong P, Zhang X. Protective immunity induced by a DNA vaccine encoding Eimeria tenella rhomboid against homologous challenge. Parasitol Res 2012; 112:251-7. [PMID: 23052765 DOI: 10.1007/s00436-012-3132-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/18/2012] [Indexed: 11/29/2022]
Abstract
Rhomboid protein in Apicomplexa was associated with the process of host cell invasion. To evaluate the potential of the protein in eliciting protective immunity against challenge, a DNA vaccine pVAX1-Rho encoding Eimeria tenella rhomboid was constructed. Recombinant protein was expressed in Hela cells and verified by indirect immunofluorescence and western blotting analysis. In vivo experiments, 1-week-old chickens were randomly divided into three groups. Experimental group of chickens were immunized with DNA vaccines while control group of chickens were injected with pVAX1 plasmid alone or sterile water. Two weeks following the booster dose, all chickens were inoculated orally with 5 × 10(4) sporulated oocysts of E. tenella. The host immunity and protective efficacy of this vaccine against E. tenella challenge in broilers were evaluated. Results showed that specific antibody, the levels of interleukin-2 (IL-2), interferon-γ (IFN-γ), and the percentages of CD4(+) and CD8(+) T lymphocyte cells were significantly increased in the pVAX1-Rho group. Challenge experiments demonstrated that pVAX1-Rho vaccination could reduce oocyst excretion, decrease cecal lesion, increase bodyweight gains and provide chickens with oocysts decrease ratio around 75.8 %. These results suggest that the pVAX1-Rho was able to induce humoral and cellular responses and generate protective immunity against E. tenella infection.
Collapse
Affiliation(s)
- Yingli Liu
- College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, People's Republic of China.
| | | | | | | | | |
Collapse
|
28
|
Li J, Zheng J, Gong P, Zhang X. Efficacy of Eimeria tenella rhomboid-like protein as a subunit vaccine in protective immunity against homologous challenge. Parasitol Res 2012; 110:1139-45. [PMID: 21845409 DOI: 10.1007/s00436-011-2603-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 08/04/2011] [Indexed: 11/25/2022]
Abstract
The immune responses and protective efficacy against homologous challenge in chickens elicited by recombinant proteins of a rhomboid-like gene (ETRHO1) from Eimeria tenella was investigated in the present study. When chickens were immunized with the recombinant rhomboid antigen, specific antibody was generated by ELISA assay. In comparison with the PBS group, the expression levels of interleukin-2, interferon-γ, as well as the percentages of CD4⁺ and CD8⁺ cells in the group immunized with the recombinant rhomboid proteins were significantly increased (p < 0.01, p < 0.05, and p < 0.05, respectively). These results suggest that rhomboid was capable of eliciting humoral and cell-mediated immunity response in birds. Challenge experiments demonstrated that the recombinant rhomboid protein could provide chickens with a protection rate around 77.3%. Numbers of oocysts and cecal lesion from chickens in the group immunized with recombinant rhomboid proteins decreased significantly, and the body weight increased significantly when compared with chickens in the PBS group (p < 0.05). These results suggested that the recombinant rhomboid antigen was able to impart partial protection against homologous challenge in chicken and could be a potential candidate for an E. tenella vaccine development.
Collapse
Affiliation(s)
- Jianhua Li
- College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xian Road, 130062 Changchun, Jilin, China
| | | | | | | |
Collapse
|
29
|
Chow YP, Wan KL, Blake DP, Tomley F, Nathan S. Immunogenic Eimeria tenella glycosylphosphatidylinositol-anchored surface antigens (SAGs) induce inflammatory responses in avian macrophages. PLoS One 2011; 6:e25233. [PMID: 21980402 PMCID: PMC3182191 DOI: 10.1371/journal.pone.0025233] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 08/30/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND At least 19 glycosylphosphatidylinositol (GPI)-anchored surface antigens (SAGs) are expressed specifically by second-generation merozoites of Eimeria tenella, but the ability of these proteins to stimulate immune responses in the chicken is unknown. METHODOLOGY/PRINCIPAL FINDINGS Ten SAGs, belonging to two previously defined multigene families (A and B), were expressed as soluble recombinant (r) fusion proteins in E. coli. Chicken macrophages were treated with purified rSAGs and changes in macrophage nitrite production, and in mRNA expression profiles of inducible nitric oxide synthase (iNOS) and of a panel of cytokines were measured. Treatment with rSAGs 4, 5, and 12 induced high levels of macrophage nitric oxide production and IL-1β mRNA transcription that may contribute to the inflammatory response observed during E. tenella infection. Concomitantly, treatment with rSAGs 4, 5 and 12 suppressed the expression of IL-12 and IFN-γ and elevated that of IL-10, suggesting that during infection these molecules may specifically impair the development of cellular mediated immunity. CONCLUSIONS/SIGNIFICANCE In summary, some E. tenella SAGs appear to differentially modulate chicken innate and humoral immune responses and those derived from multigene family A (especially rSAG 12) may be more strongly linked with E. tenella pathogenicity associated with the endogenous second generation stages.
Collapse
Affiliation(s)
- Yock-Ping Chow
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor D.E., Malaysia
| | - Kiew-Lian Wan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor D.E., Malaysia
- Malaysia Genome Institute, Kajang, Selangor D.E., Malaysia
| | - Damer P. Blake
- Pathology and Infectious Diseases, Royal Veterinary College, University of London, North Mymms, United Kingdom
| | - Fiona Tomley
- Pathology and Infectious Diseases, Royal Veterinary College, University of London, North Mymms, United Kingdom
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor D.E., Malaysia
- Malaysia Genome Institute, Kajang, Selangor D.E., Malaysia
- * E-mail:
| |
Collapse
|
30
|
Huang X, Zou J, Xu H, Ding Y, Yin G, Liu X, Suo X. Transgenic Eimeria tenella Expressing Enhanced Yellow Fluorescent Protein Targeted to Different Cellular Compartments Stimulated Dichotomic Immune Responses in Chickens. THE JOURNAL OF IMMUNOLOGY 2011; 187:3595-602. [DOI: 10.4049/jimmunol.1100043] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Vaccination of chickens with DNA vaccine expressing Eimeria tenella MZ5-7 against coccidiosis. Vet Parasitol 2010; 177:6-12. [PMID: 21183277 DOI: 10.1016/j.vetpar.2010.11.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 11/19/2010] [Accepted: 11/25/2010] [Indexed: 11/21/2022]
Abstract
A chimeric DNA vaccine co-expressing Eimeria tenella MZ5-7 and chicken IL-17 gene was constructed and its efficacy against E. tenella challenge was evaluated. The ORF of MZ5-7 from E. tenella's second generation merozoite and the mature interleukin 17 gene of chicken were cloned into the expression vector of pcDNA4.0 to construct DNA vaccine pcDNA4.0-MZ and pcDNA4.0-MZ-IL17. The expression of aim gene products in vivo was detected by western blotting. The expression of IL-2 and IFN-γ in chicken splenocytes was detected by RT-PCR 7 days post-immunization. The expression levels of the two cytokines in the pcDNA4.0-MZ-IL17 DNA vaccine immunized group were significantly higher than that in the pcDNA4.0-MZ immunized group (p<0.05). Either pcDNA4.0-MZ or pcDNA4.0-MZ-IL17 DNA vaccine could obviously alleviate cecal lesions, body weight loss and increase oocyst decrease ratio. The ACI of pcDNA4.0-MZ-IL17 group was 190, which is higher than that of pcDNA4.0-MZ group and all the three control groups. In short, MZ5-7 was an effective candidate antigen for vaccine and co-expression of cytokine with antigen was an alternative method to enhance the immunity DNA vaccine.
Collapse
|
32
|
Characterization of the antibody response in birds following infection with wild-type and attenuated strains of Eimeria tenella and Eimeria necatrix. Vet Parasitol 2010; 175:47-51. [PMID: 21035267 DOI: 10.1016/j.vetpar.2010.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 09/14/2010] [Accepted: 09/24/2010] [Indexed: 11/22/2022]
Abstract
Live vaccines containing attenuated parasite strains are increasingly used to control chicken coccidiosis. In this paper antibody responses elicited by infections with wild-type and attenuated strains of Eimeria tenella and Eimeria necatrix were characterized by immunoblotting and ELISA with homologous and heterologous antisera. Few differences between antisera from birds infected with wild and attenuated strains of E. tenella were evident in immunoblots conducted with merozoite antigen preparations from both E. tenella strains, however the reactivity of sera raised in birds infected with the wild-type strain was noticeably more intense. In ELISAs conducted with merozoite antigen preparations, antisera from birds infected with the wild-type strains of E. tenella and E. necatrix consistently produced a significantly higher (P<0.05) antibody response than antisera from birds infected with the attenuated strains. Likewise, avidity ELISAs conducted with the E. tenella strains demonstrated that antibodies in birds infected with the wild-type strain were of significantly higher avidity (P<0.05) than antibodies in birds infected with the attenuated strain. The differences in the antibody responses are probably due to changes in the attenuated strain as a result of selection for precocious development and the less severe tissue damage and inflammation of the intestine resulting from infection with the attenuated strain.
Collapse
|
33
|
Changes of cytokines and IgG antibody in chickens vaccinated with DNA vaccines encoding Eimeria acervulina lactate dehydrogenase. Vet Parasitol 2010; 173:219-27. [PMID: 20650568 DOI: 10.1016/j.vetpar.2010.06.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 06/12/2010] [Accepted: 06/16/2010] [Indexed: 11/21/2022]
Abstract
The aim of this study was to investigate the changes of cytokines and specific serum IgG in chickens following vaccination with DNA vaccines encoding either Eimeria acervulina (E. acervulina) lactate dehydrogenase (LDH) antigen or LDH and chicken IL-2 or IFN-γ. Two-week-old chickens were randomly divided into five groups. Experimental group of chickens were immunized with DNA vaccines while control group of chickens were injected with pVAX1 plasmid alone or sterile water. All immunizations were boosted 2 weeks later. The LDH-specific IgG antibody response was measured at weeks 1-6 post-second immunization. The result showed that the antibody titers in chickens vaccinated with DNA vaccines were significantly different from those of the control groups 1 week after the second immunization (P<0.05) and reached the maximum values 3 weeks post-second immunization. The systemic and local cytokine mRNA expression was determined by quantitative RT-PCR 7 days post-second immunization. The specific IgG antibody levels against LDH of all chickens vaccinated with vaccines were increased compared to those of sterile water (H(2)O) and plasmid (pVAX1) control chickens 1-6 weeks post-second immunization (P<0.05). The mRNA levels of IFN-γ, IL-2, TNFSF15, IL-17D as well as TGF-β4 in both spleen and cecal tonsil were also increased in experimental chickens. In contrast, the only significant change of IL-4 mRNA level was observed in spleen of chickens immunized with pVAX-LDH-IL-2 compared with pVAX-LDH and control groups (P<0.05). These results suggested that DNA vaccines could increase the IgG antibody level and induce the expressions of cytokines.
Collapse
|