1
|
Gomes de Oliveira FG, Ítavo CCBF, Ítavo LCV, Ayardes de Melo GK, de Melo Stradiotto Peres M, da Silva Heimbach N, Ribeiro ELM, de Andrade PB, da Silva Miguel AA, Farias de Souza Arco TF. Nitrogen additive with extruded urea with essential oils to control gastrointestinal worms in lambs. Trop Anim Health Prod 2025; 57:203. [PMID: 40304811 DOI: 10.1007/s11250-025-04461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/23/2025] [Indexed: 05/02/2025]
Abstract
Our objective was to evaluate the effect of a nitrogen additive with extruded urea with essential oils based on garlic and cinnamon on the resistance to gastrointestinal worms and on the performance of lambs in the finishing phase. Fourteen male sheep were used, with an average age of 18 months and an average initial body weight of 23.5 kg. The lambs were divided into two nutritional treatments: control and nitrogen additive. The control treatment was composed of a roughage: concentrate ratio of 60:40, with the roughage being whole plant corn silage and the concentrate being based on corn and soybean meal. The test treatment was prepared in the same manner as the control treatment, with the addition of a commercial nitrogen additive NFeed® (extruded urea plus essential oils derived from garlic-Allium sativum, and cinnamon-Cinnamomum sp). Each experimental group was allocated to its respective area, provided with stalls where collective feeders were located, and simultaneously had access to areas formed by Brachiaria brizantha cv. Marandu, which were previously contaminated by sheep with high FEC (> 1000). Fecal samples were collected directly from the rectal ampulla of each lamb, at 15-day intervals. The lambs were evaluated for productive performance and total diet consumption. In terms of FEC, there was a notable disparity between the treatments on day 60 of the experiment. The FEC results show that 88.57% of the lambs in the control group had a high count (> 1000), while 65.71% of the lambs in the nitrogen additive group had a high count (> 1000). The lambs in the control treatment showed a higher average daily gain (ADG) compared to the lambs in the nitrogen additive treatment, without any negative impact on total weight gain. Lambs fed a diet consisting of silage and concentrate based on corn and soybean meal, plus a nitrogen additive with essential oils derived from garlic and cinnamon showed a lower parasitic load compared to lambs that received only silage and concentrate based on corn and soybean meal in their diet. The nitrogen additive diet did not effectively improve the lambs' productive performance or the intake efficiency of the diet. Plant compounds derived from garlic and cinnamon have an anthelmintic effect, suggesting that these natural compounds associated with nitrogen additives (NFeed®) have the potential for phytotherapeutic use in managing gastrointestinal nematodes in small ruminants.
Collapse
Affiliation(s)
- Fernanda Grazielly Gomes de Oliveira
- College of Veterinary Medicine and Animal Science of the Federal University of Mato Grosso Do Sul, Av. Senador Filinto Muller, 2443. Vila Ipiranga, Campo Grande, MS, CEP 79070-900, Brazil
| | - Camila Celeste Brandão Ferreira Ítavo
- College of Veterinary Medicine and Animal Science of the Federal University of Mato Grosso Do Sul, Av. Senador Filinto Muller, 2443. Vila Ipiranga, Campo Grande, MS, CEP 79070-900, Brazil
| | - Luís Carlos Vinhas Ítavo
- College of Veterinary Medicine and Animal Science of the Federal University of Mato Grosso Do Sul, Av. Senador Filinto Muller, 2443. Vila Ipiranga, Campo Grande, MS, CEP 79070-900, Brazil.
| | - Gleice Kelli Ayardes de Melo
- College of Veterinary Medicine and Animal Science of the Federal University of Mato Grosso Do Sul, Av. Senador Filinto Muller, 2443. Vila Ipiranga, Campo Grande, MS, CEP 79070-900, Brazil
| | | | - Natália da Silva Heimbach
- Dom Bosco Catholic University, Av. Tamandaré, 6000. Jardim Seminário, Campo Grande, MS, 79117-900, Brazil
| | - Ester Lays Martins Ribeiro
- College of Veterinary Medicine and Animal Science of the Federal University of Mato Grosso Do Sul, Av. Senador Filinto Muller, 2443. Vila Ipiranga, Campo Grande, MS, CEP 79070-900, Brazil
| | - Priscila Bernardo de Andrade
- College of Veterinary Medicine and Animal Science of the Federal University of Mato Grosso Do Sul, Av. Senador Filinto Muller, 2443. Vila Ipiranga, Campo Grande, MS, CEP 79070-900, Brazil
| | - Aline Aparecida da Silva Miguel
- College of Veterinary Medicine and Animal Science of the Federal University of Mato Grosso Do Sul, Av. Senador Filinto Muller, 2443. Vila Ipiranga, Campo Grande, MS, CEP 79070-900, Brazil
| | - Thais Fernanda Farias de Souza Arco
- College of Veterinary Medicine and Animal Science of the Federal University of Mato Grosso Do Sul, Av. Senador Filinto Muller, 2443. Vila Ipiranga, Campo Grande, MS, CEP 79070-900, Brazil
| |
Collapse
|
2
|
Alibeigi Z, Rakhshandehroo E, Saharkhiz MJ, Alavi AM. The acaricidal and repellent activity of the essential and nano essential oil of Thymus vulgaris against the larval and engorged adult stages of the brown dog tick, Rhipicephalus sanguineus (Acari: Ixodidae). BMC Vet Res 2025; 21:135. [PMID: 40025483 PMCID: PMC11874103 DOI: 10.1186/s12917-025-04609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/19/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND The brown dog tick is globally distributed and harms the host in terms of blood feeding and pathogen transfer. Chemicals are traditionally used for the control, but herbal plants have been investigated mainly due to their natural components with killing and repellant effects. Previously, the role of thymol has been described for the biocontrol of ticks at different stages. Therefore, a study was conducted to evaluate the effects of a thymol-rich herbal plant, Thymus vulgaris L., and its major constituents on Rhipicephalus sanguineus. RESULTS In this work, we suggested performing the larval mortality test using 2 mL microtubes instead of previously described pocket and immersion methods. This method seems to be closer to the environmental condition. The results represented the great activity of the nano EO and thymol on live larva. The nano form caused 98.7% larval mortality at a low concentration of 0.25%. This effect reached 100% at 0.5% concentration, while the promising results for the EO was observed at 1 and 2% concentration showing 95.3 and 100% mortality, respectively. The nanoemulsion and thymol showed also a complete repellency effect against larva at the concentrations of 0.5% and 20 mg/mL, respectively. In adult tick bioassays, thymol was the only substance that accompanied by a statistically significant reduction in female oviposition rate (p < 0.05), however at its utmost concentrations of 20 and 40 mg/mL. CONCLUSION According to the results, the nano EO of T. vulgaris is recommended for the integrative control against R. sanguineus larva. In addition, further studies should be done on the nanomaterial to enhance its effect on adult female tick reproduction.
Collapse
Affiliation(s)
- Zohreh Alibeigi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, P.O. Box 71441-69155, Shiraz, Iran
| | - Ehsan Rakhshandehroo
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, P.O. Box 71441-69155, Shiraz, Iran.
| | - Mohmmad Jamal Saharkhiz
- Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran
| | - Amir Mootabi Alavi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, P.O. Box 71441-69155, Shiraz, Iran
| |
Collapse
|
3
|
Kamel AA, Aboelhadid SM, Abdel-Baki AAS, Ibrahium SM, Al-Quraishy S, Hassan AO, Abd El-Kareem SG, Gadelhaq SM. Benzoate Derivatives Toxicity to Musca domestica Results in Severe Muscle Relaxation and Body Distortion. NEOTROPICAL ENTOMOLOGY 2024; 53:972-983. [PMID: 38724884 DOI: 10.1007/s13744-024-01154-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/28/2024] [Indexed: 07/18/2024]
Abstract
The house fly, Musca domestica (Linnaeus) (Diptera: Muscidae), is a significant threat to human and animal health and is also resistant to a variety of insecticides. Plant-derived benzoates are known to have insecticidal activities against various insects. In this study, the larvicidal, pupicidal, and adulticidal activities of benzoate derivatives (benzyl alcohol BA, benzyl benzoate BB, and methyl benzoate MB) were assessed and investigated for their effects on larval structure and acetylcholinesterase activity. Six concentrations (2.5 to 100 mg/mL) of benzoate derivatives were applied to larvae and pupae through the residual film method and topical application, respectively. Meanwhile, concentrations from 0.625 to 50 mg/L air were applied to adult flies through a fumigation assay. BA and MB achieved promising results against larvae with LC50 values of 10.90 and 11.53 mg/mL, respectively. Moreover, BA killed 100% of the larvae at a concentration of 25 mg/mL, and MB achieved the same effect at a concentration of 50 mg/mL. Regarding the pupicidal activity, MB showed a percentage inhibition rate (PIR) of 100% at a concentration of 100 mg/mL, while the same effect was achieved by BA at a concentration of 50 mg/mL. Meanwhile, BB did not show any effect on the larvae or pupae at any of the tested concentrations. Moreover, the scanning microscopy observations on the treated larvae by BA and MB estimated flaccid and deformity in the larva body with a shrunken cuticle. Additionally, both BA and MB suppress nerve signal transmission by inhibiting acetylcholinesterase. In conclusion, the results of this study indicate that BA and MB may be useful in control housefly populations. These substances cause severe muscular relaxation and deformities in insects.
Collapse
Affiliation(s)
- Asmaa A Kamel
- Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Shawky M Aboelhadid
- Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | | | - Samar M Ibrahium
- Department of Parasitology, Animal Health Research Institute, Fayum Branch, Egypt
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed O Hassan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | | - Sahar M Gadelhaq
- Parasitology Department, Faculty of Veterinary Medicine, Minia University, Minia, Egypt
| |
Collapse
|
4
|
Aboelhadid SM, Ibrahium SM, Abdel-Tawab H, Hassan AO, Al-Quraishy S, Saleh FEZR, Abdel-Baki AAS. Toxicity and Repellency Efficacy of Benzyl Alcohol and Benzyl Benzoate as Eco-Friendly Choices to Control the Red Flour Beetle Tribolium castaneum (Herbst. 1797). Molecules 2023; 28:7731. [PMID: 38067462 PMCID: PMC10707955 DOI: 10.3390/molecules28237731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Tribolium castaneum is a damaging pest of stored grains, causing significant losses and secreting lethal quinones, which render the grains unfit for human consumption. Chemical insecticides are the most commonly used approach for control; however, they create insecticide resistance and affect the health of humans, animals, and the environment. As a result, it is critical to find an environmentally friendly pest-management strategy. In this study, two naturally occurring chemicals, benzyl alcohol (BA) and benzoyl benzoate (BB), were investigated for insecticidal activity against T. castaneum using different assays (impregnated-paper, contact toxicity, fumigant, and repellency assays). The results showed that BA had a significant insecticidal effect, with the LC50 achieved at a lower concentration in the direct-contact toxicity test (1.77%) than in the impregnated-paper assay (2.63%). BB showed significant effects in the direct-contact toxicity test, with an LC50 of 3.114%, and a lower toxicity in the impregnated-paper assay, with an LC50 of 11.75%. Furthermore, BA exhibited significant fumigant toxicity against T. castaneum, with an LC50 of 6.72 µL/L, whereas BB exhibited modest fumigant toxicity, with an LC50 of 464 µL/L. Additionally, at different concentrations (0.18, 0.09, 0.045, and 0.0225 µL/cm2), BA and BB both showed a notable and potent repelling effect. BA and BB significantly inhibited acetylcholinesterase, reduced glutathione (GSH), and increased malondialdehyde (MDA) in treated T. castaneum. This is the first report of BA insecticidal activity against the red flour beetle. Also, the outcomes of various assays demonstrated that the application of BA induces a potent bio-insecticidal effect. BA may be a promising eco-friendly alternative to control T. castaneum due to its safety and authorization by the EFSA (European Food Safety Authority).
Collapse
Affiliation(s)
- Shawky M. Aboelhadid
- Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Samar M. Ibrahium
- Parasitology Department, Animal Health Research Institute, Fayum Branch, Fayum 16101, Egypt;
| | - Heba Abdel-Tawab
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt (A.-A.S.A.-B.)
| | - Ahmed O. Hassan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
5
|
Salinas-Arellano ED, Castro-Dionicio IY, Jeyaraj JG, Mirtallo Ezzone NP, Carcache de Blanco EJ. Phytochemical Profiles and Biological Studies of Selected Botanical Dietary Supplements Used in the United States. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 122:1-162. [PMID: 37392311 DOI: 10.1007/978-3-031-26768-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Based on their current wide bioavailability, botanical dietary supplements have become an important component of the United States healthcare system, although most of these products have limited scientific evidence for their use. The most recent American Botanical Council Market Report estimated for 2020 a 17.3% increase in sales of these products when compared to 2019, for a total sales volume of $11,261 billion. The use of botanical dietary supplements products in the United States is guided by the Dietary Supplement Health and Education Act (DSHEA) from 1994, enacted by the U.S. Congress with the aim of providing more information to consumers and to facilitate access to a larger number of botanical dietary supplements available on the market than previously. Botanical dietary supplements may be formulated for and use only using crude plant samples (e.g., plant parts such as the bark, leaves, or roots) that can be processed by grinding into a dried powder. Plant parts can also be extracted with hot water to form an "herbal tea." Other preparations of botanical dietary supplements include capsules, essential oils, gummies, powders, tablets, and tinctures. Overall, botanical dietary supplements contain bioactive secondary metabolites with diverse chemotypes that typically are found at low concentration levels. These bioactive constituents usually occur in combination with inactive molecules that may induce synergy and potentiation of the effects observed when botanical dietary supplements are taken in their different forms. Most of the botanical dietary supplements available on the U.S. market have been used previously as herbal remedies or as part of traditional medicine systems from around the world. Their prior use in these systems also provides a certain level of assurance in regard to lower toxicity levels. This chapter will focus on the importance and diversity of the chemical features of bioactive secondary metabolites found in botanical dietary supplements that are responsible for their applications. Many of the active principles of botanical dietary substances are phenolics and isoprenoids, but glycosides and some alkaloids are also present. Biological studies on the active constituents of selected botanical dietary supplements will be discussed. Thus, the present chapter should be of interest for both members of the natural products scientific community, who may be performing development studies of the products available, as well as for healthcare professionals who are directly involved in the analysis of botanical interactions and evaluation of the suitability of botanical dietary supplements for human consumption.
Collapse
Affiliation(s)
- Eric D Salinas-Arellano
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Ines Y Castro-Dionicio
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Jonathan G Jeyaraj
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Nathan P Mirtallo Ezzone
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Esperanza J Carcache de Blanco
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
6
|
Singh IR, Pulikkal AK. Preparation, stability and biological activity of essential oil-based nano emulsions: A comprehensive review. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Xavier JKAM, Baia TGC, Alegria OVC, Figueiredo PLB, Carneiro AR, Moreira ECDO, Maia JGS, Setzer WN, da Silva JKR. Essential Oil Chemotypes and Genetic Variability of Cinnamomum verum Leaf Samples Commercialized and Cultivated in the Amazon. Molecules 2022; 27:7337. [PMID: 36364159 PMCID: PMC9655072 DOI: 10.3390/molecules27217337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/01/2023] Open
Abstract
Cinnamomum verum (Lauraceae), also known as "true cinnamon" or "Ceylon cinnamon" has been widely used in traditional folk medicine and cuisine for a long time. The systematics of C. verum presents some difficulties due to genetic variation and morphological similarity between other Cinnamomum species. The present work aimed to find chemical and molecular markers of C. verum samples from the Amazon region of Brazil. The leaf EOs and the genetic material (DNA) were extracted from samples cultivated and commercial samples. The chemical composition of the essential oils from samples of C. verum cultivated (Cve1-Cve5) and commercial (Cve6-c-Cv9-c) was grouped by multivariate statistical analysis of Principal Component Analysis (PCA). The major compounds were rich in benzenoids and phenylpropanoids, such as eugenol (0.7-91.0%), benzyl benzoate (0.28-76.51%), (E)-cinnamyl acetate (0.36-32.1%), and (E)-cinnamaldehyde (1.0-19.73%). DNA barcodes were developed for phylogenetic analysis using the chloroplastic regions of the matK and rbcL genes, and psbA-trnH intergenic spacer. The psbA-trnH sequences provided greater diversity of nucleotides, and matK confirmed the identity of C. verum. The combination of DNA barcode and volatile profile was found to be an important tool for the discrimination of C. verum varieties and to examine the authenticity of industrial sources.
Collapse
Affiliation(s)
| | - Talissa Gabriele C. Baia
- Programa Institucional de Bolsas de Iniciação Científica, Universidade Federal do Pará, Belém 66075-900, Brazil
| | - Oscar Victor C. Alegria
- Centro de Genômica e Biologia de Sistemas, Universidade Federal do Pará, Belém 66075-900, Brazil
| | - Pablo Luis B. Figueiredo
- Departamento de Ciências Naturais, Centro de Ciências Sociais e Educação, Universidade do Estado do Pará, Belém 66050-540, Brazil
| | - Adriana R. Carneiro
- Centro de Genômica e Biologia de Sistemas, Universidade Federal do Pará, Belém 66075-900, Brazil
| | - Edith Cibelle de O. Moreira
- Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá 68501-970, Brazil
| | - José Guilherme S. Maia
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-900, Brazil
- Programa de Pós-Graduação em Química, Universidade Federal do Maranhão, São Luís 65080-805, Brazil
| | - William N. Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
| | - Joyce Kelly R. da Silva
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-900, Brazil
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
| |
Collapse
|
8
|
Badr MM, Badawy MEI, Taktak NEM. Preparation, characterization, and antimicrobial activity of cinnamon essential oil and cinnamaldehyde nanoemulsions. JOURNAL OF ESSENTIAL OIL RESEARCH 2022. [DOI: 10.1080/10412905.2022.2107100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Mai M. Badr
- Department of Environmental Health, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Mohamad E. I. Badawy
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Nehad E. M. Taktak
- Department of Environmental Health, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Xin R, Wang G, Qiu Z, Ma Q, Ahmad S, Yang F, Wang H, He J, Jing X, Sun Y. Screening of essential oils with acaricidal activity against Haemaphysalis longicornis (Acari: Ixodidae) and analysis of active components. Vet Parasitol 2022; 307-308:109712. [DOI: 10.1016/j.vetpar.2022.109712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 10/18/2022]
|
10
|
Taktak NEM, Badawy MEI, Awad OM, Abou El-Ela NE. Nanoemulsions containing some plant essential oils as promising formulations against Culex pipiens (L.) larvae and their biochemical studies. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 185:105151. [PMID: 35772840 DOI: 10.1016/j.pestbp.2022.105151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
The chemical composition of cypress, lavender, lemon eucalyptus, and tea tree oils has been investigated using gas chromatography/mass spectrometry (GC/MS). These oils were tested for larvicidal activity against Culex pipiens alongside their nanoemulsions (NEs) and conventional emulsifiable concentrates (ECs). Oil-in-water (O/W) NEs preparation was based on a high-energy ultra-sonication technique. The effect of independent variables of preparation on the different outputs was studied using the response surface method to obtain the optimum preparation technique. The droplet sizes of prepared NEs were significantly different (71.67, 104.55, 211.07, and 70.67 for cypress, lavender, lemon eucalyptus, and Tea tree NEs, respectively). The zeta potentials of NEs were recorded to have a high negatively charge (-28.4, -22.2, -23.6, and - 22.3 mV for cypress, lavender, lemon eucalyptus, and tea tree NEs, respectively). The results showed that the tea tree oil has the most significant effect with LC50 = 60.02 and 57.10 mg/L after 24 and 48 h of exposure, respectively. In comparison, cypress oil proved the lowest toxicity with LC50 values of 202.24 and 180.70 mg/L after 24 and 48 h, respectively. However, lavender oil does not show any effect against larvae at tested concentrations. In addition, pure oil exhibited the lowest larvicidal activity. However, the EC of all tested insecticides slightly improved the toxic action against the larvae. While the NEs showed significantly high toxicity compared to the EO and EC. An in vivo assessment of acetylcholine esterase (AChE), adenosine triphosphatase (ATPase), and gamma-aminobutyric acid transaminase (GABA-T) revealed that the NEs exhibited higher activity than the pure oils and ECs. This work describes these oils with potential use against C. pipiens larvae as eco-friendly products.
Collapse
Affiliation(s)
- Nehad E M Taktak
- Department of Environmental Health, High Institute of Public Health, Alexandria University, 165 El-Horreya Ave., 21561-El-Hadara, Alexandria, Egypt.
| | - Mohamed E I Badawy
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, 21545-El-Shatby, Alexandria University, Alexandria, Egypt
| | - Osama M Awad
- Department of Environmental Health, High Institute of Public Health, Alexandria University, 165 El-Horreya Ave., 21561-El-Hadara, Alexandria, Egypt
| | - Nadia E Abou El-Ela
- Department of Environmental Health, High Institute of Public Health, Alexandria University, 165 El-Horreya Ave., 21561-El-Hadara, Alexandria, Egypt
| |
Collapse
|
11
|
Selles SMA, Kouidri M, González MG, González J, Sánchez M, González-Coloma A, Sanchis J, Elhachimi L, Olmeda AS, Tercero JM, Valcárcel F. Acaricidal and Repellent Effects of Essential Oils against Ticks: A Review. Pathogens 2021; 10:pathogens10111379. [PMID: 34832535 PMCID: PMC8617816 DOI: 10.3390/pathogens10111379] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022] Open
Abstract
Tick control is a priority in order to prevent the transmission of vector-borne diseases. Industrial chemical acaricides and repellents have been the most efficient tools against hard ticks for a long time. However, the appearance of resistances has meant the declining effectiveness of the chemicals available on the market. The trend today is to develop alternative control methods using natural products to replace nonefficient pesticides and to preserve the efficient ones, hoping to delay resistance development. Traditional in vitro evaluation of acaricidal activity or resistance to synthetic pesticides have been reviewed and they mainly focus on just one species, the one host tick (Rhipicephalus (Boophilus) microplus (Acari: Ixodidae)). Recent reports have called for the standardization of natural product components, extraction techniques, and experimental design to fully discover their acaricidal potential. This study reviews the main variables used in the bibliography about the efficiency of natural products against ticks, and it proposes a unification of variables relating to ticks, practical development of bioassays, and estimation of ixodicidal activity.
Collapse
Affiliation(s)
- Sidi Mohammed Ammar Selles
- Institute of Veterinary Sciences, University of Tiaret, Tiaret 14000, Algeria;
- Laboratory of Research on Local Animal Products, University of Tiaret, Tiaret 14000, Algeria
- Correspondence:
| | - Mokhtaria Kouidri
- Institute of Veterinary Sciences, University of Tiaret, Tiaret 14000, Algeria;
- Laboratory of Farm Animal Products, University of Tiaret, Tiaret 14000, Algeria
| | - Marta G. González
- Grupo de Parasitología Animal, Departamento de Reproducción Animal (INIA-CSIC), 28040 Madrid, Spain; (M.G.G.); (M.S.); (J.S.); (F.V.)
| | - Julia González
- Center for Vector Biology, Department of Entomology, Rutgers University, New Brunswick, NJ 08901, USA;
| | - María Sánchez
- Grupo de Parasitología Animal, Departamento de Reproducción Animal (INIA-CSIC), 28040 Madrid, Spain; (M.G.G.); (M.S.); (J.S.); (F.V.)
- Villamagna S.A., Finca “La Garganta”, 14440 Villanueva de Córdoba, Spain;
| | - Azucena González-Coloma
- Instituto de Ciencias Agrarias (ICA), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain;
| | - Jaime Sanchis
- Grupo de Parasitología Animal, Departamento de Reproducción Animal (INIA-CSIC), 28040 Madrid, Spain; (M.G.G.); (M.S.); (J.S.); (F.V.)
- Facultad de Veterinaria, CENUR Litoral Norte, Universidad de la República, Rivera, Salto 1350, Uruguay
| | - Latifa Elhachimi
- Département de parasitologie et de Santé Publique, Institut Agronomique et Vétérinaire Hassan II, Rabat B.P. 6202, Morocco;
| | - A. Sonia Olmeda
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - José Maria Tercero
- Villamagna S.A., Finca “La Garganta”, 14440 Villanueva de Córdoba, Spain;
| | - Félix Valcárcel
- Grupo de Parasitología Animal, Departamento de Reproducción Animal (INIA-CSIC), 28040 Madrid, Spain; (M.G.G.); (M.S.); (J.S.); (F.V.)
| |
Collapse
|
12
|
Marchesini P, Oliveira DRD, Gomes GA, Rodrigues THS, Maturano R, Fidelis QC, Catunda Júnior FEA, Carvalho MGD, Bittencourt VREP, Monteiro CMO. Acaricidal activity of essential oils of Cinnamomum zeylanicum and Eremanthus erythropappus, major compounds and cinnamyl acetate in Rhipicephalus microplus. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2021; 30:e009221. [PMID: 34495124 DOI: 10.1590/s1984-29612021070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to chemically characterize the essential oils (EOs) of Cinnamomum zeylanicum (cinnamon) and Eremanthus erythropappus (candeia) and evaluate their acaricidal activity, together with that of their major compounds and cinnamyl acetate derivative, against Rhipicephalus microplus. Essential oil compounds were identified through gas chromatography. The larval packet test (LPT) at concentrations ranging from 0.31 to 10.0 mg/mL and the adult immersion test (AIT) at concentrations between 2.5 and 60.0 mg/mL were performed. (E)-cinnamaldehyde and α-bisabolol were the major compounds in cinnamon (86.93%) and candeia (78.41%) EOs, respectively. In the LPT, the EOs of cinnamon and candeia and the compounds (E)-cinnamaldehyde, α-bisabolol and cinnamyl acetate resulted in 100% mortality at concentrations of 2.5, 2.5, 5.0, 10.0 and 10.0 mg/mL respectively. In the AIT, percentage control values > 95% were observed for cinnamon and candeia EOs, (E)-cinnamaldehyde and α-bisabolol at the concentrations of 5.0, 60.0, 20.0, and 20.0 mg/mL, respectively, whereas cinnamyl acetate showed low activity. We conclude that EOs and their compounds showed high acaricidal activity, whereas the acetylated derivative of (E)-cinnamaldehyde presented less acaricidal activity on R. microplus engorged females.
Collapse
Affiliation(s)
- Paula Marchesini
- Programa de Pós-graduação em Ciências Veterinárias, Universidade Federal Rural do Rio de Janeiro - UFRRJ, Seropédica, RJ, Brasil
| | - Débora Ramos de Oliveira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro - UFRRJ, Seropédica, RJ, Brasil
| | - Geovany Amorim Gomes
- Centro de Ciências Exatas e Tecnologia, Universidade Estadual do Vale do Acaraú - UVA, Sobral, CE, Brasil
| | | | - Ralph Maturano
- Programa de Pós-graduação em Ciências Biológicas, Universidade Federal de Juiz de Fora - UFJF, Juiz de Fora, MG, Brasil
| | - Queli Cristina Fidelis
- Departamento de Ciências e Tecnologia, Universidade Federal do Maranhão - UFMA, Balsas, MA, Brasil
| | | | - Mário Geraldo de Carvalho
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro - UFRRJ, Seropédica, RJ, Brasil
| | | | | |
Collapse
|
13
|
Fierascu RC, Fierascu IC, Dinu-Pirvu CE, Fierascu I, Paunescu A. The application of essential oils as a next-generation of pesticides: recent developments and future perspectives. ACTA ACUST UNITED AC 2021; 75:183-204. [PMID: 31785198 DOI: 10.1515/znc-2019-0160] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/05/2019] [Indexed: 01/08/2023]
Abstract
The overuse of synthetic pesticide, a consequence of the rush to increase crop production, led to tremendous adverse effects, as they constitute a major pollutant for both soils and water, with a high toxicity towards humans and animals and, at the same time, led to development of pest resistance. In the last period, the researches were directed towards finding new solutions with a lower toxicity, less damaging behaviour towards the environment, and a better specificity of action. In this context, the use of essential oils, a complex and unique mixture of compounds, can be considered for the next-generation pesticides. This review aims to present the main applications of the essential oils as insecticides, herbicides, acaricides, and nematicides, as they emerged from the scientific literature published in the last 5 years (2015 to present). From the identified articles within the time period, only those dealing with essential oils obtained by the authors (not commercially available) were selected to be inserted in the review, characterized using established analytical techniques and employed for the envisaged applications. The review is concluded with a chapter containing the main conclusions of the literature study and the future perspectives, regarding the application of essential oils as next-generation pesticides.
Collapse
Affiliation(s)
- Radu Claudiu Fierascu
- National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania.,University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Mărăști Blvd., 011464 Bucharest, Romania
| | - Ioana Catalina Fierascu
- University of Medicine and Pharmacy "Carol Davila", 37 Dionisie Lupu Str., 030167 Bucharest, Romania.,Zentiva Romania S.A., 50 Theodor Pallady Blvd., 032266 Bucharest, Romania
| | - Cristina Elena Dinu-Pirvu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Mărăști Blvd., 011464 Bucharest, Romania.,University of Medicine and Pharmacy "Carol Davila", 37 Dionisie Lupu Str., 030167 Bucharest, Romania
| | - Irina Fierascu
- National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania.,University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Mărăști Blvd., 011464 Bucharest, Romania
| | - Alina Paunescu
- Department of Ecology, Faculty of Science, University of Pitesti, 2 Targu din Vale Street, 110040 Pitesti, Romania
| |
Collapse
|
14
|
Marchesini P, Novato TP, Cardoso SJ, de Azevedo Prata MC, do Nascimento RM, Klafke G, Costa-Júnior LM, Maturano R, Lopes WDZ, Bittencourt VREP, Monteiro C. Acaricidal activity of (E)-cinnamaldehyde and α-bisabolol on populations of Rhipicephalus microplus (Acari: Ixodidae) with different resistance profiles. Vet Parasitol 2020; 286:109226. [PMID: 32979684 DOI: 10.1016/j.vetpar.2020.109226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 12/14/2022]
Abstract
This study aimed to investigate the acaricidal activity of (E)-cinnamaldehyde and α-bisabolol on populations of Rhipicephalus microplus with different resistance profiles. The adult immersion test (AIT) was used to characterize the susceptibility of tick populations (50 field populations) to synthetic acaricides: deltamethrin, amitraz, and chlorfenvinphos. The larval packet test (LPT) was used to determine the LC50 values for (E)-cinnamaldehyde (populations 1-25) and α-bisabolol (populations 26-50) at the concentrations of 0.31, 0.62, 1.25, 2.0, 2.5, 5.0 and 10.0 mg/mL. The susceptible strain Porto Alegre (POA) was used as a reference for calculating the resistance ratio (RR). In the AIT, deltamethrin did not show efficacy >95 % for any of the populations, whereas amitraz and chlorfenvinphos have presented efficacy >95 % for three (6 %) and 15 (30 %) populations, respectively. In the LPT, the LC50 values of (E)-cinnamaldehyde and α-bisabolol varied from 0.23 to 2.36 mg/mL and 1.57-3.01 mg/mL, respectively. The RR50 for (E)-cinnamaldehyde showed 20 (80 %) populations with values <1.0 and no population with values>1.5. As for α-bisabolol, only two (8%) populations have presented RR50 <1.0, whereas three (12 %) populations showed incipient resistance to this sesquiterpene (RR50 between 1.5 and 2.0). The results indicate that all studied tick populations showed low susceptibility to at least one of the commercial acaricides tested. In addition, comparison between the LC50 values of (E)-cinnamaldehyde and α-bisabolol for the field populations and the susceptible strain POA suggests that there is no cross-resistance of (E)-cinnamaldehyde and α-bisabolol for the tick populations evaluated, and that the differences in the LC50 values are due to population variations.
Collapse
Affiliation(s)
- Paula Marchesini
- Programa de Pós-graduação em Ciências Veterinárias da Universidade Federal Rural do, Rio de Janeiro, BR-465, Km 7 - Seropédica, RJ, 23897-000, Brazil.
| | - Tatiane Pinheiro Novato
- Programa de Pós-graduação em Ciências Veterinárias da Universidade Federal Rural do, Rio de Janeiro, BR-465, Km 7 - Seropédica, RJ, 23897-000, Brazil.
| | - Simone Jaqueline Cardoso
- Programa de Pós-graduação em Ecologia da Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n - Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| | | | - Rafael Moreira do Nascimento
- Programa de Pós-graduação em Ciências Biológicas, Comportamento e Biologia Animal da Universidade Federal de Juiz de For a, Rua José Lourenço Kelmer, s/n - Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| | - Guilherme Klafke
- Centro de Pesquisa em Saúde Animal (IPVDF), Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Governo do Estado do Rio Grande do Sul, Estrada Municipal do Conde, 6000, Eldorado do Sul, RS, Brazil.
| | - Lívio M Costa-Júnior
- Departamento de Patologia, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, Bacanga, São Luís, MA, CEP 65080-805, Brazil.
| | - Ralph Maturano
- Programa de Pós-graduação em Ciências Biológicas, Comportamento e Biologia Animal da Universidade Federal de Juiz de For a, Rua José Lourenço Kelmer, s/n - Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| | - Welber Daniel Zaneti Lopes
- Departamento de Imunologia, Microbiologia, Parasitologia e Patologia, Instituto de Patologia Tropical e Saúde Pública da Universidade Federal de Goiás, Avenida Esperança, s/n, Campus Samambaia, Goiânia, GO, 74.690-900, Brazil.
| | - Vânia Rita Elias Pinheiro Bittencourt
- Programa de Pós-graduação em Ciências Veterinárias da Universidade Federal Rural do, Rio de Janeiro, BR-465, Km 7 - Seropédica, RJ, 23897-000, Brazil.
| | - Caio Monteiro
- Departamento de Imunologia, Microbiologia, Parasitologia e Patologia, Instituto de Patologia Tropical e Saúde Pública da Universidade Federal de Goiás, Avenida Esperança, s/n, Campus Samambaia, Goiânia, GO, 74.690-900, Brazil.
| |
Collapse
|
15
|
Jain P, Satapathy T, Pandey RK. Rhipicephalus microplus: A parasite threatening cattle health and consequences of herbal acaricides for upliftment of livelihood of cattle rearing communities in Chhattisgarh. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101611] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Nwanade CF, Wang M, Wang T, Yu Z, Liu J. Botanical acaricides and repellents in tick control: current status and future directions. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 81:1-35. [PMID: 32291551 DOI: 10.1007/s10493-020-00489-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Ticks are obligate blood-sucking ectoparasites and notorious as vectors of a great diversity of, in many instances, zoonotic pathogens which can cause considerable damage to animal and human health. The most commonly used approach for the control of ticks is the application of synthetic acaricides. However, the negative impacts of synthetic acaricides on the treated animals and the environment, in addition to its documented role in the development of resistance has led to the search for safer and more environmentally friendly alternative methods without compromising efficacy. An emerging promising approach for the control of ticks which has attracted much attention in recent years is the use of botanicals. Indeed, botanicals have been widely reported to show diverse effects and great potential as tick repellent and control. Although several excellent reviews have previously focused on this topic, studies on the exploration and application of botanicals to control ticks have expanded rapidly. Herein, we provide an update on the current understanding and status of botanical acaricides and repellents in tick control using recently published articles between 2017 and 2019. We also discuss the challenges and future directions in the application of botanicals in tick control, with a view of providing important clues for designing new integrated tick control methods.
Collapse
Affiliation(s)
- Chuks F Nwanade
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Min Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Tianhong Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
17
|
Jyoti, Singh NK, Singh H, Mehta N, Rath SS. In vitro assessment of synergistic combinations of essential oils against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Exp Parasitol 2019; 201:42-48. [PMID: 31034814 DOI: 10.1016/j.exppara.2019.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/03/2019] [Accepted: 04/24/2019] [Indexed: 01/28/2023]
Abstract
Rhipicephalus (Boophilus) microplus (Acari: Ixodidae), is one of the most important ectoparasite of cattle, responsible for causing severe economic losses in the tropical and subtropical regions of the world. The development of resistance to most of the commonly used chemical acaricides has stimulated the search for new herbal products as an eco-friendly tick control alternative. The aim of the present study was to evaluate the in vitro acaricidal activity of essential oils (EOs) of cloves (Syzygium aromaticum), bark of cinnamon (Cinnamomum zeylanicum) and leaves of lemon grass (Cymbopogon citratus) against unfed larvae of R. (B.)microplus by larval packet test. Also, various combinations were prepared by mixing of equal concentrations of any two and all three EOs and used to study the effects of interactions of mixtures against larvae of R. (B.) microplus. The lethal concentrations at 50% (LC50), 90% (LC90) and 99% (LC99) with 95% confidence limits (CL) were estimated by Probit analysis using PoloPlus. The computer software, CompuSyn, was used for determining the effects of interactions (synergistic, additive or antagonistic) of EO mixtures by calculation of Combination index (CI) and Dose-reduction index (DRI). Among the individual and mixture of two EOs, cinnamon EO and cinnamon EO + lemon grass EO combination showed highest acaricidal activity against R. (B.) microplus larvae. Further, the combination of cinnamon EO + lemon grass EO showed high synergism with CI value of 0.381, followed by cinnamon EO + clove EO showing moderate synergism whereas, clove EO + lemon grass EO showed only additive effect, with favorable dose reduction for each constituent drug in all three combinations. The combination of all three EOs (1:1:1) showed high synergism (CI value of 0.376) and favorable dose reduction (DRI index of 8.19, 25.64 and 4.64 for clove, cinnamon and lemon grass EOs, respectively) against R. (B.) microplus larvae.
Collapse
Affiliation(s)
- Jyoti
- Department of Veterinary Parasitology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Nirbhay K Singh
- Department of Veterinary Parasitology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India.
| | - Harkirat Singh
- Department of Veterinary Parasitology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Nitin Mehta
- Department of Livestock Products and Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Shitanshu S Rath
- Department of Veterinary Parasitology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| |
Collapse
|
18
|
Nanoemulsions of Essential Oils: New Tool for Control of Vector-Borne Diseases and In Vitro Effects on Some Parasitic Agents. MEDICINES 2019; 6:medicines6020042. [PMID: 30934720 PMCID: PMC6630918 DOI: 10.3390/medicines6020042] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 01/08/2023]
Abstract
The control of infectious/parasitic diseases is a continuing challenge for global health, which in turn requires new methods of action and the development of innovative agents to be used in its prevention and/or treatment. In this context, the control of vectors and intermediate hosts of etiological agents is an efficient method in the prevention of human and veterinary diseases. In later stages, it is necessary to have bioactive compounds that act efficiently on the agents that produce the disease. However, several synthetic agents have strong residual effects in humans and other animals and cause environmental toxicity, affecting fauna, flora and unbalancing the local ecosystem. Many studies have reported the dual activity of the essential oils (EOs): (i) control of vectors that are important in the cycle of disease transmission, and (ii) relevant activity against pathogens. In general, EOs have an easier degradation and cause less extension of environmental contamination. However, problems related to solubility and stability lead to the development of efficient vehicles for formulations containing EOs, such as nanoemulsions. Therefore, this systematic review describes several studies performed with nanoemulsions as carriers of EOs that have larvicidal, insecticidal, repellent, acaricidal and antiparasitic activities, and thus can be considered as alternatives in the vector control of infectious and parasitic diseases, as well as in the combat against etiological agents of parasitic origin.
Collapse
|
19
|
Chen J, Rashid T, Feng G, Feng Y, Zhang A, Grodowitz MJ. Insecticidal Activity of Methyl Benzoate Analogs Against Red Imported Fire Ants, Solenopsis invicta (Hymenoptera: Formicidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:691-698. [PMID: 30534996 DOI: 10.1093/jee/toy360] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Indexed: 05/25/2023]
Abstract
Although insecticidal properties of certain benzoates have been investigated for pest insects and mites, toxicity of benzoates to the red imported fire ants, Solenopsis invicta Buren, has never been reported. In this study, 15 commercially available benzoates were assessed for their contact and fumigation toxicity to S. invicta workers and their chemical structure-activity relationships. Among tested benzoates, benzylbenzoate, n-pentybenzoate, and n-hexylbenzoate were three most potent contact toxins against S. invicta workers (mean LD50 value = 23.31, 35.26, 35.99 µg per ant, respectively) and methyl-3-methoxybenzoate, methyl-3-methylbenzoate, and methylbenzoate were the three most potent fumigants (mean LC50 value = 0.61, 0.62, 0.75 µg/ml, respectively). For nonsubstituted alkyl benzoates (esters of benzoic acid and C1-C6 linear alcohols), the contact toxicity was positively correlated to the alkyl chain length (r = 0.89), while the fumigation toxicity was negatively correlated (r = 0.90). Presence of a methoxyl group at either the ortho or meta position of methylbenzoate significantly increased its contact toxicity, so did a methyl group at meta position. However, presence of a methyl group at ortho position reduced the contact toxicity. Presence of methyl or methoxyl group at the meta position did not have significant effect on the fumigation toxicity; however, methyl, methoxyl, chloro, or nitro groups at the ortho position significantly reduced fumigation toxicity. Hexylbenzoate has neither known Occupational Safety and Health Administration hazards nor aquatic toxicity, and methyl 3-methoxybenzoate is not considered a hazardous substance, indicating a great potential for their application in fire ant management.
Collapse
Affiliation(s)
- Jian Chen
- US Department of Agriculture, Agricultural Research Service, National Biological Control Laboratory, Stoneville, MS
| | - Tahir Rashid
- Alcorn State University, Extension/Research Demonstration Farm & Technology Transfer Center, Mound Bayou, MS
| | - Guolei Feng
- Alcorn State University, Extension/Research Demonstration Farm & Technology Transfer Center, Mound Bayou, MS
| | - Yan Feng
- US Department of Agriculture, Agricultural Research Service, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD
| | - Aijun Zhang
- US Department of Agriculture, Agricultural Research Service, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD
| | - Michael J Grodowitz
- US Department of Agriculture, Agricultural Research Service, National Biological Control Laboratory, Stoneville, MS
| |
Collapse
|
20
|
Shang XF, Dai LX, Liu YQ, Zhao ZM, Li JC, Yang GZ, Yang CJ. Acaricidal activity and enzyme inhibitory activity of active compounds of essential oils against Psoroptes cuniculi. Vet Parasitol 2019; 267:54-59. [PMID: 30878086 DOI: 10.1016/j.vetpar.2019.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/19/2022]
Abstract
Plant essential oils and its chemical compositions are commonly applied in medicinal and other industries due to their broad advanced pharmacological activities. In the present study, we systematically evaluated the acaricidal activities of twelve compounds of essential oils against Psoroptes cuniculi in vitro and in vivo. In addition, to support the clinic uses, their toxicities against immortalized human keratinocytes (HaCaT) and human liver cells (HL-7702) and skin irritation were studied for evaluating the liver and skin safety. The possible mechanism of action of certain chemical were investigated by determining the inhibitory activities against cytochrome P450 (P450) acetylcholinesterase (AChE) and glutathione-S-transferase (GST). Among all tested compounds, eugenol exhibited the best acaricidal activity with LC50 value of 56.61 μg/ml in vitro. Meanwhile, after the treatment of eugenol for five times within 10 days, the P. cuniculi were eliminated in the naturally infested rabbits, no skin irritation was found in rabbits treated by eugenol. Moreover, eugenol presented no or weak cytotoxicity against HaCaT cells and HL-7702 cells with IC50 values of greater than 100 μg/ml. Furthermore, the moderate inhibitory activities of eugenol against mites P450 and AChE were demonstrated. Above results indicated that eugenol presented the promising acaricidal activity against P. cuniculi in vitro and in vivo, is safe for both humans and animals at the given doses. This work lays the foundation for the development of eugenol as an environmentally friendly acaricide agent.
Collapse
Affiliation(s)
- Xiao-Fei Shang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Li-Xia Dai
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China.
| | - Zhong-Min Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Jun-Cai Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Guan-Zhou Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Cheng-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
21
|
Chen S, Zheng T, Ye C, Huannixi W, Yakefu Z, Meng Y, Peng X, Tian Z, Wang J, Ma Y, Yang Y, Ma Z, Zuo Z. Algicidal properties of extracts from Cinnamomum camphora fresh leaves and their main compounds. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:594-603. [PMID: 30077157 DOI: 10.1016/j.ecoenv.2018.07.115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/17/2018] [Accepted: 07/28/2018] [Indexed: 05/23/2023]
Abstract
Plant allelochemicals are considered as the source of effective, economic and friendly-environmental algaecides. To uncover the anti-algal activities of Cinnamomum camphora fresh leaves and their main algicidal agents, we investigated the inhibitory effects of water and methanol extracts from C. camphora fresh leaves on Microcystis aeruginosa and Chlamydomonas reinhardtii cell growth, analyzed the composition of the water and methanol extracts, and determined the main compounds in extracts on the growth of the two algae and their anti-algal mechanism from photosynthetic abilities. Water and methanol extracts from C. camphora fresh leaves can inhibit M. aeruginosa and C. reinhardtii cell growth, and methanol extracts showed stronger inhibitory effects, due to their more compounds and higher molar concentration. There were 23 compounds in the water extracts, mainly including terpenoids, esters, alcohols, and ketones. Compared to the water extracts, 9 new compounds were detected in the methanol extracts, and the molar concentration of total compounds in methanol extracts increased by 1.3 folds. Camphor, α-terpineol and linalool were 3 main compounds in the water and methanol extracts. Their mixture (1: 3: 6) and individual compound showed remarkable inhibition on M. aeruginosa and C. reinhardtii cell growth. The degradation of photosynthetic pigments and the reduction of maximum quantum yield of photosystem II (PSII) photochemistry, coefficient of photochemical quenching as well as apparent electron transport rate in C. reinhardtii cells aggravated gradually with increasing the concentration of the mixture and individual compound, while the non-photochemical dissipation of absorbed light energy increased gradually, which led to the decline of photosynthetic abilities. This indicated that camphor, α-terpineol and linalool were 3 main algicidal agents in C. camphora fresh leaf extracts, and they inhibited algal growth by inducing photosynthetic pigment degradation and declining PSII efficiency. Therefore, C. camphora fresh leaf extracts and their main components have potential utilization values as algaecides.
Collapse
Affiliation(s)
- Silan Chen
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Tiefeng Zheng
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Chaolin Ye
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Wulan Huannixi
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Zumulati Yakefu
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Yiyu Meng
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Xin Peng
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Zhengfeng Tian
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Junhao Wang
- Key Laboratory of Wood Science and Technology of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China
| | - Yuandan Ma
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Youyou Yang
- Key Laboratory of Wood Science and Technology of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China
| | - Zhongqing Ma
- Key Laboratory of Wood Science and Technology of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China
| | - Zhaojiang Zuo
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China.
| |
Collapse
|
22
|
Jia M, He Q, Wang W, Dai J, Zhu L. Chemical composition and acaricidal activity of Arisaema anurans essential oil and its major constituents against Rhipicephalus microplus (Acari: Ixodidae). Vet Parasitol 2018; 261:59-66. [DOI: 10.1016/j.vetpar.2018.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 01/02/2023]
|
23
|
Sriramavaratharajan V, Murugan R. Chemical Profile of Leaf Essential Oil of Cinnamomum walaiwarense and Comparison of its Antioxidant and Hypoglycemic Activities with the Major Constituent Benzyl Benzoate. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Leaf essential oils of an unexplored wild cinnamon, Cinnamomum walaiwarense Kosterm. collected from seven different locations in the southern Western Ghats, India were characterized by GC-FID and GC-MS analyses. Benzyl benzoate was the principal constituent of the leaf essential oil present at a concentration from 65 to 89.8%. Another major constituent was phenylethyl benzoate. The results on antioxidant (ABTS and DPPH radical scavenging) and hypoglycemic (α-amylase and α-glucosidase inhibitory) activities show that the leaf essential oils exhibited better activities than benzyl benzoate. The very least antioxidant and inhibitory activities of benzyl benzoate show that these activities of the leaf essential oils were due to the synergistic action of minor constituents. The rich content of benzyl benzoate in the leaf essential oil makes C. walaiwarense a potential natural source of this compound. As benzyl benzoate is an excellent scabicide and pediculicide, the essential oil may be further investigated for industrial and other medicinal applications.
Collapse
Affiliation(s)
| | - Ramar Murugan
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| |
Collapse
|
24
|
Yakefu Z, Huannixi W, Ye C, Zheng T, Chen S, Peng X, Tian Z, Wang J, Yang Y, Ma Z, Zuo Z. Inhibitory effects of extracts from Cinnamomum camphora fallen leaves on algae. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 77:2545-2554. [PMID: 29944120 DOI: 10.2166/wst.2018.199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Natural allelochemicals are considered as a source of algaecides. To uncover the anti-algal activity of Cinnamomum camphora fallen leaves and promote their usage as algaecides, the composition of their water and methanol extracts was analyzed, and the inhibitory effects of extracts on the growth of Microcystis aeruginosa and Chlamydomonas reinhardtii, and chlorophyll (Chl) content and photosynthetic abilities in C. reinhardtii were investigated. Twenty-five compounds were detected in the water extracts, mainly including terpenoids, esters, alcohols, and ketones. Compared to water extracts, there were more compounds and higher concentration in methanol extracts. Both water and methanol extracts inhibited the growth of the two algae, and 15 mg·ml-1 methanol extracts killed the algal cells after 48 h. The levels of Chl a and Chl b, as well as maximum quantum yield of photosystem II photochemistry (Fv/Fm) in C. reinhardtii cells reduced gradually with increasing the concentration of extracts, while the maximum quantum yield of non-photochemical de-excitation (φDO) increased gradually. At the same concentration, methanol extracts showed stronger inhibitory effects than water extracts, due to their higher number of compounds and higher concentration. Therefore, C. camphora fallen leaves have a potential value as an algaecide.
Collapse
Affiliation(s)
- Zumulati Yakefu
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China E-mail:
| | - Wulan Huannixi
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China E-mail:
| | - Chaolin Ye
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China E-mail:
| | - Tiefeng Zheng
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China E-mail:
| | - Silan Chen
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China E-mail:
| | - Xin Peng
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China E-mail:
| | - Zhengfeng Tian
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China E-mail:
| | - Junhao Wang
- Key Laboratory of Wood Science and Technology of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China
| | - Youyou Yang
- Key Laboratory of Wood Science and Technology of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China
| | - Zhongqing Ma
- Key Laboratory of Wood Science and Technology of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China
| | - Zhaojiang Zuo
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China E-mail:
| |
Collapse
|
25
|
Feng Y, Chen J, Zhang A. Commercially Available Natural Benzyl Esters and Their Synthetic Analogs Exhibit Different Toxicities against Insect Pests. Sci Rep 2018; 8:7902. [PMID: 29784959 PMCID: PMC5962541 DOI: 10.1038/s41598-018-26242-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/04/2018] [Indexed: 12/19/2022] Open
Abstract
Benzyl methyl ester, also known as methyl benzoate (MB), is a volatile organic compound that exists naturally as a floral fragrance in many plants. Our behavioral bioassays show that MB and some of its naturally occurring and synthetic analogs kill insects at different life stages. Compared to commercial pesticides containing pyriproxyfen and acetamiprid, MB and some analogs are 1.3 to 3.4 times more toxic to gypsy moth larvae and brown marmorated stinkbug nymphs. The arthropod repellent DEET is also a benzyl ester, and shares the same chemical skeleton with MB. They differ by the diethylamide ester and a methyl group on the benzene ring in DEET. However, unlike MB, DEET does not kill insects; instead, it deters or repels them. Exactly how DEET causes the repellent effect in target organisms is still a mystery. Due to the MB's structural similarity to DEET, exploring the structure - activity relationship (SAR) of the MB analogs will provide useful information for the discovery of the mode and mechanistic actions of DEET as an insect repellent. In addition, the SAR will allow researchers to modify the chemical structure of the MB molecule, leading to the development of more efficient, safe, and environmentally - friendly green pesticides.
Collapse
Affiliation(s)
- Yan Feng
- US Department of Agriculture, Agricultural Research Service, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, Maryland, USA
| | - Jian Chen
- US Department of Agriculture, Agricultural Research Service, National Biological Control Laboratory, Stoneville, Mississippi, USA
| | - Aijun Zhang
- US Department of Agriculture, Agricultural Research Service, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, Maryland, USA.
| |
Collapse
|