1
|
Zhao F, Zhang Y, Zhang Z, Chen Z, Wang X, Wang S, Li R, Li Y, Zhang Z, Zheng W, Wang Y, Zhang Z, Wu S, Yang Y, Zhang J, Zai X, Xu J, Chen W. Epitope-focused vaccine immunogens design using tailored horseshoe-shaped scaffold. J Nanobiotechnology 2025; 23:119. [PMID: 39966941 PMCID: PMC11834273 DOI: 10.1186/s12951-025-03200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025] Open
Abstract
The continuous emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants highlights the need to update coronavirus 2019 disease (COVID-19) vaccine components. Epitope-based vaccine designs targeting conserved and immunorecessive regions of SARS-CoV-2 are critically needed. Here, we report an engineered epitope-focused immunogen design based on a novel horseshoe-shaped natural protein scaffold, named ribonuclease inhibitor 1 (RNH1), that can multiply display of conserved neutralizing epitopes from SARS-CoV-2 S2 stem helix. The designed immunogen RNH1-S1139 demonstrates high binding affinity to S2-specific neutralizing antibodies and elicits robust epitope-targeted antibody responses either through homologous or heterologous vaccination regimens. RNH1-S1139 immune serum has been proven to have similar binding ability against SARS-CoV, SARS-CoV-2 and its variants, providing broad-spectrum protection as a membrane fusion inhibitor. Further studies showed that RNH1 has the potential to serve as a versatile scaffold that displays other helical epitopes from various antigens, including respiratory syncytial virus (RSV) F glycoprotein. Our proposed immunogen engineering strategy via tailored horseshoe-shape nano-scaffold supports the continued development of epitope-focused vaccines as part of a next-generation vaccine design.
Collapse
Affiliation(s)
- Fangxin Zhao
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yue Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Zhiling Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Zhengshan Chen
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiaolin Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Shaoyan Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Ruihua Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yaohui Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Zhang Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Wanru Zheng
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yudong Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Zhe Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Shipo Wu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yilong Yang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Jun Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiaodong Zai
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Junjie Xu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Wei Chen
- School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China.
- Lead Contact, Beijing, China.
| |
Collapse
|
2
|
Zhang Z, Anang S, Nguyen HT, Fritschi C, Smith AB, Sodroski JG. Membrane HIV-1 envelope glycoproteins stabilized more strongly in a pretriggered conformation than natural virus Envs. iScience 2024; 27:110141. [PMID: 38979012 PMCID: PMC11228805 DOI: 10.1016/j.isci.2024.110141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 07/10/2024] Open
Abstract
The pretriggered conformation of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer ((gp120/gp41)3) is targeted by virus entry inhibitors and broadly neutralizing antibodies (bNAbs). The lability of pretriggered Env has hindered its characterization. Here, we produce membrane Env variants progressively stabilized in pretriggered conformations, in some cases to a degree beyond that found in natural HIV-1 strains. Pretriggered Env stability correlated with stronger trimer subunit association, increased virus sensitivity to bNAb neutralization, and decreased capacity to mediate cell-cell fusion and virus entry. For some highly stabilized Env mutants, after virus-host cell engagement, the normally inaccessible gp120 V3 region on an Env intermediate became targetable by otherwise poorly neutralizing antibodies. Thus, evolutionary pressure on HIV-1 Env to maintain trimer integrity, responsiveness to the CD4 receptor, and resistance to antibodies modulates pretriggered Env stability. The strongly stabilized pretriggered membrane Envs reported here will facilitate further characterization of this functionally important conformation.
Collapse
Affiliation(s)
- Zhiqing Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher Fritschi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph G. Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Characterization of SARS-CoV-2 Glycoprotein Using a Quantitative Cell-Cell Fusion System. Methods Mol Biol 2022; 2610:179-186. [PMID: 36534291 DOI: 10.1007/978-1-0716-2895-9_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Coronaviruses (CoVs) infect host cells through the fusion of viral and cellular membrane and may also spread to the neighboring uninfected cells from infected cells through cell-cell fusion. The viral spike (S) glycoproteins play an essential role in mediating membrane fusion. Here, we present a luciferase-based quantitative assay to measure the efficiency of cell-cell fusion mediated by the S protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This method applies to S proteins of the other coronaviruses and can be adapted to fusion proteins of other enveloped viruses.
Collapse
|
4
|
Nguyen HT, Zhang S, Wang Q, Anang S, Wang J, Ding H, Kappes JC, Sodroski J. Spike glycoprotein and host cell determinants of SARS-CoV-2 entry and cytopathic effects. J Virol 2021; 95:JVI.02304-20. [PMID: 33310888 PMCID: PMC8092844 DOI: 10.1128/jvi.02304-20] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 01/06/2023] Open
Abstract
SARS-CoV-2, a betacoronavirus, is the cause of the COVID-19 pandemic. The SARS-CoV-2 spike (S) glycoprotein trimer mediates virus entry into host cells and cytopathic effects (syncytium formation). We studied the contribution of several S glycoprotein features to these functions, focusing on those that differ among related coronaviruses. Acquisition of the furin cleavage site by the SARS-CoV-2 S glycoprotein decreased virus stability and infectivity, but greatly enhanced syncytium-forming ability. Notably, the D614G change found in globally predominant SARS-CoV-2 strains increased infectivity, modestly enhanced responsiveness to the ACE2 receptor and susceptibility to neutralizing sera, and tightened association of the S1 subunit with the trimer. Apparently, these two features of the SARS-CoV-2 S glycoprotein, the furin cleavage site and D614G, have evolved to balance virus infectivity, stability, cytopathicity and antibody vulnerability. Although the endodomain (cytoplasmic tail) of the S2 subunit was not absolutely required for virus entry or syncytium formation, alteration of palmitoylated cysteine residues in the cytoplasmic tail decreased the efficiency of these processes. As proteolytic cleavage contributes to the activation of the SARS-CoV-2 S glycoprotein, we evaluated the ability of protease inhibitors to suppress S glycoprotein function. Matrix metalloprotease inhibitors suppressed S-mediated cell-cell fusion, but not virus entry. Synergy between inhibitors of matrix metalloproteases and TMPRSS2 suggests that both host proteases can activate the S glycoprotein during the process of syncytium formation. These results provide insights into SARS-CoV-2 S glycoprotein-host cell interactions that likely contribute to the transmission and pathogenicity of this pandemic agent.IMPORTANCE The development of an effective and durable SARS-CoV-2 vaccine is essential for combating the growing COVID-19 pandemic. The SARS-CoV-2 spike (S) glycoprotein is the main target of neutralizing antibodies elicited during virus infection or following vaccination. Knowledge of the spike glycoprotein evolution, function and interactions with host factors will help researchers to develop effective vaccine immunogens and treatments. Here we identify key features of the spike glycoprotein, including the furin cleavage site and the D614G natural mutation, that modulate viral cytopathic effects, infectivity and sensitivity to inhibition. We also identify two inhibitors of host metalloproteases that block S-mediated cell-cell fusion, a process that contributes to the destruction of the virus-infected cell.
Collapse
Affiliation(s)
- Hanh T Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02215, USA
| | - Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02215, USA
| | - Qian Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02215, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02215, USA
| | - Jia Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02215, USA
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, AL 35294, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL 35233, USA
| | - John C Kappes
- Department of Medicine, University of Alabama at Birmingham, AL 35294, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL 35233, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
5
|
Quantitative assays reveal cell fusion at minimal levels of SARS-CoV-2 spike protein and fusion from without. iScience 2021; 24:102170. [PMID: 33585805 PMCID: PMC7871100 DOI: 10.1016/j.isci.2021.102170] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/12/2021] [Accepted: 02/05/2021] [Indexed: 12/14/2022] Open
Abstract
Cell entry of the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is mediated by its spike protein S. As a main antigenic determinant, S protein is in focus of various therapeutic strategies. Besides particle-cell fusion, S mediates fusion between infected and uninfected cells resulting in syncytia formation. Here, we present sensitive assay systems with a high dynamic range and high signal-to-noise ratios covering not only particle-cell and cell-cell fusion but also fusion from without (FFWO). In FFWO, S-containing viral particles induce syncytia independently of de novo synthesis of S. Neutralizing antibodies, as well as sera from convalescent patients, inhibited particle-cell fusion with high efficiency. Cell-cell fusion, in contrast, was only moderately inhibited despite requiring levels of S protein below the detection limit of flow cytometry and Western blot. The data indicate that syncytia formation as pathological consequence during coronavirus disease 2019 (COVID-19) can proceed at low levels of S protein and may not be effectively prevented by antibodies. Minimal levels of SARS-CoV-2 spike protein can cause cell fusion Spike protein displayed on virus-like particles induces fusion from without Particle-cell fusion is more sensitive toward neutralization than cell-cell fusion Highly sensitive and scalable membrane fusion assays are applicable at BSL-1
Collapse
|
6
|
Zhao C, Princiotto AM, Nguyen HT, Zou S, Zhao ML, Zhang S, Herschhorn A, Farrell M, Pahil K, Melillo B, Sambasivarao SV, Abrams C, Smith AB, Madani N, Sodroski J. Strain-Dependent Activation and Inhibition of Human Immunodeficiency Virus Entry by a Specific PF-68742 Stereoisomer. J Virol 2019; 93:e01197-19. [PMID: 31391272 PMCID: PMC6803283 DOI: 10.1128/jvi.01197-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/03/2019] [Indexed: 12/27/2022] Open
Abstract
Human immunodeficiency virus (HIV-1) entry into cells is mediated by the viral envelope glycoprotein (Env) trimer, which consists of three gp120 exterior glycoproteins and three gp41 transmembrane glycoproteins. When gp120 binds sequentially to the receptors CD4 and CCR5 on the target cell, the metastable Env trimer is triggered to undergo entry-related conformational changes. PF-68742 is a small molecule that inhibits the infection of a subset of HIV-1 strains by interfering with an Env function other than receptor binding. Determinants of HIV-1 resistance to PF-68742 map to the disulfide loop and fusion peptide of gp41. Of the four possible PF-68742 stereoisomers, only one, MF275, inhibited the infection of CD4-positive CCR5-positive cells by some HIV-1 strains. MF275 inhibition of these HIV-1 strains occurred after CD4 binding but before the formation of the gp41 six-helix bundle. Unexpectedly, MF275 activated the infection of CD4-negative CCR5-positive cells by several HIV-1 strains resistant to the inhibitory effects of the compound in CD4-positive target cells. In contrast to CD4 complementation by CD4-mimetic compounds, activation of CD4-independent infection by MF275 did not depend upon the availability of the gp120 Phe 43 cavity. Sensitivity to inhibitors indicates that MF275-activated virus entry requires formation/exposure of the gp41 heptad repeat (HR1) as well as CCR5 binding. MF275 apparently activates a virus entry pathway parallel to that triggered by CD4 and CD4-mimetic compounds. Strain-dependent divergence in Env conformational transitions allows different outcomes, inhibition or activation, in response to MF275. Understanding the mechanisms of MF275 activity should assist efforts to optimize its utility.IMPORTANCE Envelope glycoprotein (Env) spikes on the surface of human immunodeficiency virus (HIV-1) bind target cell receptors, triggering changes in the shape of Env. We studied a small molecule, MF275, that also induced shape changes in Env. The consequences of MF275 interaction with Env depended on the HIV-1 strain, with infection by some viruses inhibited and infection by other viruses enhanced. These studies reveal the strain-dependent diversity of HIV-1 Envs as they undergo shape changes in proceeding down the entry pathway. Appreciation of this diversity will assist attempts to develop broadly active inhibitors of HIV-1 entry.
Collapse
Affiliation(s)
- Connie Zhao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Amy M Princiotto
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Hanh T Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Shitao Zou
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Meiqing Lily Zhao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Alon Herschhorn
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark Farrell
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karanbir Pahil
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bruno Melillo
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Somisetti V Sambasivarao
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Cameron Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Navid Madani
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Effects of the SOS (A501C/T605C) and DS (I201C/A433C) Disulfide Bonds on HIV-1 Membrane Envelope Glycoprotein Conformation and Function. J Virol 2019; 93:JVI.00304-19. [PMID: 30944182 DOI: 10.1128/jvi.00304-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
Most broadly neutralizing antibodies and many entry inhibitors target the pretriggered (state 1) conformation of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env). Here we examine two previously reported Env mutants designed to be stabilized in this conformation by the introduction of artificial disulfide bonds: A501C/T605C (called SOS) and I201C/A433C (called DS). SOS Env supported virus entry and cell-cell fusion only after exposure to a reducing agent, dithiothreitol (DTT). Deletion of the Env cytoplasmic tail improved the efficiency with which the SOS Env supported virus infection in a reducing environment. The antigenicity of the SOS Env was similar to that of the unmodified Env, except for greater sensitivity to some state 1-preferring ligands. In contrast, viruses with the DS Env were not infectious, even after DTT treatment. The proteolytic maturation of the DS Env on both cell surfaces and virions was severely compromised compared with that of the unmodified Env. The DS Env exhibited detectable cell-fusing activity when DTT was present. However, the profiles of cell-surface Env recognition and cell-cell fusion inhibition by antibodies differed for the DS Env and the unmodified Env. Thus, the DS Env appears to be stabilized in an off-pathway conformation that is nonfunctional on the virus. The SOS change exerted more subtle, context-dependent effects on Env conformation and function.IMPORTANCE The human immunodeficiency virus type 1 (HIV-1) envelope proteins (Envs) bind receptors on the host cell and change shape to allow the virus to enter the cell. Most virus-inhibiting antibodies and drugs recognize a particular shape of Env called state 1. Disulfide bonds formed by cysteine residues have been introduced into soluble forms of the flexible envelope proteins in an attempt to lock them into state 1 for use in vaccines and as research tools. We evaluated the effect of these cysteine substitutions on the ability of the membrane Env to support virus entry and on susceptibility to inhibition by antibodies and small molecules. We found that the conformation of the envelope proteins with the cysteine substitutions differed from that of the unmodified membrane envelope proteins. Awareness of these effects can assist efforts to create stable HIV-1 Env complexes that more closely resemble the state 1 conformation.
Collapse
|
8
|
Conformational Differences between Functional Human Immunodeficiency Virus Envelope Glycoprotein Trimers and Stabilized Soluble Trimers. J Virol 2019; 93:JVI.01709-18. [PMID: 30429345 DOI: 10.1128/jvi.01709-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/07/2018] [Indexed: 01/11/2023] Open
Abstract
Binding to the receptor CD4 triggers entry-related conformational changes in the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer, (gp120/gp41)3 Soluble versions of HIV-1 Env trimers (sgp140 SOSIP.664) stabilized by a gp120-gp41 disulfide bond and a change (I559P) in gp41 have been structurally characterized. Here, we use cross-linking/mass spectrometry to evaluate the conformations of functional membrane Env and sgp140 SOSIP.664. Differences were detected in the gp120 trimer association domain and C terminus and in the gp41 heptad repeat 1 (HR1) region. Whereas the membrane Env trimer exposes the gp41 HR1 coiled coil only after CD4 binding, the sgp140 SOSIP.664 HR1 coiled coil was accessible to the gp41 HR2 peptide even in the absence of CD4. Our results delineate differences in both gp120 and gp41 subunits between functional membrane Env and the sgp140 SOSIP.664 trimer and provide distance constraints that can assist validation of candidate structural models of the native HIV-1 Env trimer.IMPORTANCE HIV-1 envelope glycoprotein spikes mediate the entry of the virus into host cells and are a major target for vaccine-induced antibodies. Soluble forms of the envelope glycoproteins that are stable and easily produced have been characterized extensively and are being considered as vaccines. Here, we present evidence that these stabilized soluble envelope glycoproteins differ in multiple respects from the natural HIV-1 envelope glycoproteins. By pinpointing these differences, our results can guide the improvement of envelope glycoprotein preparations to achieve greater similarity to the viral envelope glycoprotein spike, potentially increasing their effectiveness as a vaccine.
Collapse
|
9
|
Conformational Stability of the Hemagglutinin of H5N1 Influenza A Viruses Influences Susceptibility to Broadly Neutralizing Stem Antibodies. J Virol 2018; 92:JVI.00247-18. [PMID: 29593038 PMCID: PMC5974491 DOI: 10.1128/jvi.00247-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/14/2018] [Indexed: 12/29/2022] Open
Abstract
Vaccines that elicit broadly neutralizing antibodies to the conserved stem of hemagglutinin (HA) are being developed as universal influenza vaccines that protect against influenza across multiple years. However, different influenza virus strains, even those in the same subtype with identical stem sequences, can vary in susceptibility to broadly neutralizing stem antibodies, and the reasons are not understood. Here we studied potential mechanisms underlying the differing sensitivities of a panel of H5N1 HA pseudoviruses to broadly neutralizing stem antibodies. We found that greater HA conformational stability, as measured by thermal inactivation and pH triggering of conformational changes, correlates with reduced neutralization sensitivity and antibody binding to HA under neutral- and low-pH conditions. Our data indicate that the conformational stability of HA is an important attribute of susceptibility to broadly neutralizing stem antibodies and is influenced by residues outside the stem antibody epitopes. IMPORTANCE The influenza virus surface glycoprotein hemagglutinin (HA) mediates virus attachment and membrane fusion between virus and host cells, allowing the viral core to enter the host cell cytoplasm for replication. Fusion occurs when HA undergoes low-pH-induced-conformational changes during endocytosis. Broadly neutralizing antibodies targeted to the conserved stem region of HA interfere with conformational changes required for fusion. Vaccines that elicit such antibodies are being developed as novel universal influenza vaccines for multiyear protection. We investigated why H5N1 HAs from different strains differ in their sensitivity to broadly neutralizing stem antibodies despite having conserved epitopes. We report that HA conformational stability due to residues outside the antibody binding site accounted for much of the variation in susceptibility to neutralization by stem antibodies. These findings highlight the importance of nonepitope residues in influencing neutralization sensitivity to stem antibodies and the complexities in developing universal vaccines targeting conserved epitopes in the HA stem.
Collapse
|
10
|
A Cell Fusion-Based Screening Method Identifies Glycosylphosphatidylinositol-Anchored Protein Ly6e as the Receptor for Mouse Endogenous Retroviral Envelope Syncytin-A. J Virol 2017; 91:JVI.00832-17. [PMID: 28679758 DOI: 10.1128/jvi.00832-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/28/2017] [Indexed: 11/20/2022] Open
Abstract
Syncytin genes are envelope genes of retroviral origin that have been exapted for a role in placentation. They are involved in the formation of a syncytial structure (the syncytiotrophoblast) at the fetomaternal interface via their fusogenic activity. The mouse placenta is unique among placental mammals since the fetomaternal interface comprises two syncytiotrophoblast layers (ST-I and ST-II) instead of one, as observed in humans and all other hemochorial placentae. Each layer specifically expresses a distinct mouse syncytin, namely, syncytin-A (SynA) for ST-I and syncytin-B (SynB) for ST-II, which have been shown to be essential to placentogenesis and embryo survival. Their cognate cellular receptors, which are necessary to mediate cell-cell fusion and syncytiotrophoblast formation, are still unknown. By devising a sensitive method that combines a cell-cell fusion assay with the screening of a mouse cDNA library, we succeeded in identifying the glycosylphosphatidylinositol (GPI)-anchored membrane protein lymphocyte antigen 6E (Ly6e) as a candidate receptor for SynA. Transfection of cells with the cloned receptor led to their fusion to cells expressing SynA, with no cross-reactive fusion activity with SynB. Knocking down Ly6e greatly reduced SynA-induced cell fusion, thus suggesting that Ly6e is the sole receptor for SynA in vivo Interaction of SynA with Ly6e was further demonstrated by a competition assay using the soluble ectodomain of Ly6e. Finally, reverse transcription-quantitative PCR (RT-qPCR) analysis of Ly6e expression on a representative panel of mouse tissues shows that it is significantly expressed in the mouse placenta together with SynA.IMPORTANCE Syncytin genes are envelope genes of endogenous retroviruses, co-opted for a physiological function in placentation. Syncytins are fusogenic proteins that mediate cell-cell fusion by interacting with receptors present on the partner cells. Here, by devising a sensitive in vitro fusion assay that enables the high-throughput screening of normalized cDNA libraries, we identified the long-sought receptor for syncytin-A (SynA), a mouse syncytin responsible for syncytiotrophoblast formation at the maternofetal interface of the mouse placenta. This protein, Ly6e (lymphocyte antigen 6E), is a GPI-anchored membrane protein, and small interfering RNA (siRNA) experiments targeting its deletion as well as a decoy assay using a recombinant soluble receptor show that Ly6e is the necessary and sufficient partner of SynA. Its profile of expression is consistent with a role in both ancestral endogenization of a SynA founder retrovirus and present-day placenta formation. This study provides a powerful general method to identify genes involved in cell-cell fusion processes.
Collapse
|
11
|
Espy N, Pacheco B, Sodroski J. Adaptation of HIV-1 to cells with low expression of the CCR5 coreceptor. Virology 2017; 508:90-107. [PMID: 28521215 DOI: 10.1016/j.virol.2017.04.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 11/19/2022]
Abstract
The binding of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer ((gp120/gp41)3) to the receptors CD4 and CCR5 triggers virus entry into host cells. To identify Env regions that respond to CCR5 binding, HIV-1 was serially passaged on a CD4-positive canine cell line expressing progressively lower levels of CCR5. HIV-1 replication was observed in cells expressing ~1300 CCR5 molecules/cell. Env changes that conferred this low-CCR5 replication phenotype were located outside of the known CCR5-binding region of the gp120 Env subunit and did not apparently increase CCR5 binding affinity. The adaptation-associated changes, located in the gp120 α1 helix and in the gp41 HR1 heptad repeat and membrane-proximal external region (MPER), enhanced HIV-1 replication in cells at all levels of CCR5 expression. The adapted Envs exhibited a greater propensity to undergo conformational changes, as evidenced by increased exposure of conserved regions near the CD4- and CCR5-binding sites.
Collapse
Affiliation(s)
- Nicole Espy
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Beatriz Pacheco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Joseph Sodroski
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Activation and Inactivation of Primary Human Immunodeficiency Virus Envelope Glycoprotein Trimers by CD4-Mimetic Compounds. J Virol 2017; 91:JVI.01880-16. [PMID: 27881646 DOI: 10.1128/jvi.01880-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/15/2016] [Indexed: 12/22/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) entry into cells is mediated by the viral envelope glycoproteins (Env), a trimer of three gp120 exterior glycoproteins, and three gp41 transmembrane glycoproteins. The metastable Env is triggered to undergo entry-related conformational changes when gp120 binds sequentially to the receptors, CD4 and CCR5, on the target cell. Small-molecule CD4-mimetic compounds (CD4mc) bind gp120 and act as competitive inhibitors of gp120-CD4 engagement. Some CD4mc have been shown to trigger Env prematurely, initially activating Env function, followed by rapid and irreversible inactivation. Here, we study CD4mc with a wide range of anti-HIV-1 potencies and demonstrate that all tested CD4mc are capable of activating as well as inactivating Env function. Biphasic dose-response curves indicated that the occupancy of the protomers in the Env trimer governs viral activation versus inactivation. One CD4mc bound per Env trimer activated HIV-1 infection. Envs with two CD4mc bound were activated for infection of CD4-negative, CCR5-positive cells, but the infection of CD4-positive, CCR5-positive cells was inhibited. Virus was inactivated when all three Env protomers were occupied by the CD4mc, and gp120 shedding from the Env trimer was increased in the presence of some CD4mc. Env reactivity and the on rates of CD4mc binding to the Env trimer were found to be important determinants of the potency of activation and entry inhibition. Cross-sensitization of Env protomers that do not bind the CD4mc to neutralization by an anti-V3 antibody was not evident. These insights into the mechanism of antiviral activity of CD4mc should assist efforts to optimize their potency and utility. IMPORTANCE The trimeric envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) mediate virus entry into host cells. Binding to the host cell receptors, CD4 and CCR5, triggers changes in the conformation of the HIV-1 envelope glycoprotein trimer important for virus entry. Small-molecule CD4-mimetic compounds inhibit HIV-1 infection by multiple mechanisms: (i) direct blockade of the interaction between the gp120 exterior envelope glycoprotein and CD4; (ii) premature triggering of conformational changes in the envelope glycoproteins, leading to irreversible inactivation; and (iii) exposure of cryptic epitopes to antibodies, allowing virus neutralization. The consequences of the binding of the CD4-mimetic compound to the HIV-1 envelope glycoproteins depends upon how many of the three subunits of the trimer are bound and upon the propensity of the envelope glycoproteins to undergo conformational changes. Understanding the mechanistic factors that influence the activity of CD4-mimetic compounds can help to improve their potency and coverage of diverse HIV-1 strains.
Collapse
|
13
|
Li J, Das JR, Tang P, Han Z, Jaiswal JK, Ray PE. Transmembrane TNF- α Facilitates HIV-1 Infection of Podocytes Cultured from Children with HIV-Associated Nephropathy. J Am Soc Nephrol 2016; 28:862-875. [PMID: 27811066 DOI: 10.1681/asn.2016050564] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/02/2016] [Indexed: 12/11/2022] Open
Abstract
Studies have shown that podocytes and renal tubular epithelial cells from patients with HIV-associated nephropathy (HIVAN) express HIV-1 transcripts, suggesting that productive infection of renal epithelial cells precipitates development of HIVAN. However, podocytes and renal tubular epithelial cells do not express CD4 receptors, and it is unclear how these cells become productively infected in vivo We investigated the mechanisms underlying the infection by HIV-1 of podocytes cultured from the urine of children with HIVAN. We observed low-level productive infection on exposure of these cells to primary cell-free HIV-1 supernatants. However, envelope-defective recombinant HIV-1 did not infect the renal epithelial cell lines. Moreover, treatment of podocytes to inhibit endocytic transport or dynamin activity or remove cell surface heparan sulfate proteoglycans reduced infection efficiency. Transfection of CD4- 293T cells with a cDNA expression library developed from a podocyte cell line derived from a child with HIVAN led to the identification of TNF-α as a possible mediator of HIV-1 infection. Overexpression of transmembrane TNF-α in cultured CD4- renal tubular epithelial cells, 293T cells, and HeLa cells enabled the infection of these cells; exposure to soluble TNF-α did not. Immunohistochemistry showed TNF-α expression in podocytes of renal sections from children with HIVAN. Furthermore, we found that TNF-α enhanced NF-κB activation and integration of HIV-1 into the podocyte DNA. Finally, inhibition of dynamin activity blocked TNF-α-mediated infection. These data establish a role for transmembrane TNF-α in facilitating the viral entry and integration of HIV-1 into the DNA of renal epithelial cells.
Collapse
Affiliation(s)
- Jinliang Li
- Centers for *Genetic Medicine Research and.,Department of Pediatrics, and
| | - Jharna R Das
- Centers for *Genetic Medicine Research and.,Department of Pediatrics, and
| | - Pingtao Tang
- Centers for *Genetic Medicine Research and.,Department of Pediatrics, and
| | - Zhe Han
- Department of Pediatrics, and.,Cancer and Immunology
| | - Jyoti K Jaiswal
- Centers for *Genetic Medicine Research and.,Department of Pediatrics, and
| | - Patricio E Ray
- Centers for *Genetic Medicine Research and .,Department of Pediatrics, and.,Division of Nephrology, Children's National Health System, The George Washington University School of Medicine, Washington, DC
| |
Collapse
|
14
|
Dev J, Park D, Fu Q, Chen J, Ha HJ, Ghantous F, Herrmann T, Chang W, Liu Z, Frey G, Seaman MS, Chen B, Chou JJ. Structural basis for membrane anchoring of HIV-1 envelope spike. Science 2016; 353:172-175. [PMID: 27338706 DOI: 10.1126/science.aaf7066] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/13/2016] [Indexed: 12/11/2022]
Abstract
HIV-1 envelope spike (Env) is a type I membrane protein that mediates viral entry. We used nuclear magnetic resonance to determine an atomic structure of the transmembrane (TM) domain of HIV-1 Env reconstituted in bicelles that mimic a lipid bilayer. The TM forms a well-ordered trimer that protects a conserved membrane-embedded arginine. An amino-terminal coiled-coil and a carboxyl-terminal hydrophilic core stabilize the trimer. Individual mutations of conserved residues did not disrupt the TM trimer and minimally affected membrane fusion and infectivity. Major changes in the hydrophilic core, however, altered the antibody sensitivity of Env. These results show how a TM domain anchors, stabilizes, and modulates a viral envelope spike and suggest that its influence on Env conformation is an important consideration for HIV-1 immunogen design.
Collapse
Affiliation(s)
- Jyoti Dev
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115.,Virology Program, Harvard Medical School, 260 Longwood Avenue, Boston, MA 02115
| | - Donghyun Park
- Division of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Street, Boston, MA 02115
| | - Qingshan Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115
| | - Jia Chen
- Division of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Street, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115
| | - Heather Jiwon Ha
- Division of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Street, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115
| | - Fadi Ghantous
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215
| | - Tobias Herrmann
- Virology Program, Harvard Medical School, 260 Longwood Avenue, Boston, MA 02115
| | - Weiting Chang
- Division of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Street, Boston, MA 02115
| | - Zhijun Liu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Gary Frey
- Division of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Street, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Street, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115.,State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
15
|
Intermonomer Interactions in Hemagglutinin Subunits HA1 and HA2 Affecting Hemagglutinin Stability and Influenza Virus Infectivity. J Virol 2015; 89:10602-11. [PMID: 26269180 DOI: 10.1128/jvi.00939-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/04/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Influenza virus hemagglutinin (HA) mediates virus entry by binding to cell surface receptors and fusing the viral and endosomal membranes following uptake by endocytosis. The acidic environment of endosomes triggers a large-scale conformational change in the transmembrane subunit of HA (HA2) involving a loop (B loop)-to-helix transition, which releases the fusion peptide at the HA2 N terminus from an interior pocket within the HA trimer. Subsequent insertion of the fusion peptide into the endosomal membrane initiates fusion. The acid stability of HA is influenced by residues in the fusion peptide, fusion peptide pocket, coiled-coil regions of HA2, and interactions between the surface (HA1) and HA2 subunits, but details are not fully understood and vary among strains. Current evidence suggests that the HA from the circulating pandemic 2009 H1N1 influenza A virus [A(H1N1)pdm09] is less stable than the HAs from other seasonal influenza virus strains. Here we show that residue 205 in HA1 and residue 399 in the B loop of HA2 (residue 72, HA2 numbering) in different monomers of the trimeric A(H1N1)pdm09 HA are involved in functionally important intermolecular interactions and that a conserved histidine in this pair helps regulate HA stability. An arginine-lysine pair at this location destabilizes HA at acidic pH and mediates fusion at a higher pH, while a glutamate-lysine pair enhances HA stability and requires a lower pH to induce fusion. Our findings identify key residues in HA1 and HA2 that interact to help regulate H1N1 HA stability and virus infectivity. IMPORTANCE Influenza virus hemagglutinin (HA) is the principal antigen in inactivated influenza vaccines and the target of protective antibodies. However, the influenza A virus HA is highly variable, necessitating frequent vaccine changes to match circulating strains. Sequence changes in HA affect not only antigenicity but also HA stability, which has important implications for vaccine production, as well as viral adaptation to hosts. HA from the pandemic 2009 H1N1 influenza A virus is less stable than other recent seasonal influenza virus HAs, but the molecular interactions that contribute to HA stability are not fully understood. Here we identify molecular interactions between specific residues in the surface and transmembrane subunits of HA that help regulate the HA conformational changes needed for HA stability and virus entry. These findings contribute to our understanding of the molecular mechanisms controlling HA function and antigen stability.
Collapse
|
16
|
Influenza virus M2 protein ion channel activity helps to maintain pandemic 2009 H1N1 virus hemagglutinin fusion competence during transport to the cell surface. J Virol 2014; 89:1975-85. [PMID: 25473053 DOI: 10.1128/jvi.03253-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED The influenza virus hemagglutinin (HA) envelope protein mediates virus entry by first binding to cell surface receptors and then fusing viral and endosomal membranes during endocytosis. Cleavage of the HA precursor (HA0) into a surface receptor-binding subunit (HA1) and a fusion-inducing transmembrane subunit (HA2) by host cell enzymes primes HA for fusion competence by repositioning the fusion peptide to the newly created N terminus of HA2. We previously reported that the influenza virus M2 protein enhances pandemic 2009 influenza A virus [(H1N1)pdm09] HA-pseudovirus infectivity, but the mechanism was unclear. In this study, using cell-cell fusion and HA-pseudovirus infectivity assays, we found that the ion channel function of M2 was required for enhancement of HA fusion and HA-pseudovirus infectivity. The M2 activity was needed only during HA biosynthesis, and proteolysis experiments indicated that M2 proton channel activity helped to protect (H1N1)pdm09 HA from premature conformational changes as it traversed low-pH compartments during transport to the cell surface. While M2 has previously been shown to protect avian influenza virus HA proteins of the H5 and H7 subtypes that have polybasic cleavage motifs, this study demonstrates that M2 can protect HA proteins from human H1N1 strains that lack a polybasic cleavage motif. This finding suggests that M2 proton channel activity may play a wider role in preserving HA fusion competence among a variety of HA subtypes, including HA proteins from emerging strains that may have reduced HA stability. IMPORTANCE Influenza virus infects cells when the hemagglutinin (HA) surface protein undergoes irreversible pH-induced conformational changes after the virus is taken into the cell by endocytosis. HA fusion competence is primed when host cell enzymes cleave the HA precursor. The proton channel function of influenza virus M2 protein has previously been shown to protect avian influenza virus HA proteins that contain a polybasic cleavage site from pH-induced conformational changes during biosynthesis, but this effect is less well understood for human influenza virus HA proteins that lack polybasic cleavage sites. Using assays that focus on HA entry and fusion, we found that the M2 protein also protects (H1N1)pdm09 influenza A virus HA from premature conformational changes as it transits low-pH compartments during biosynthesis. This work suggests that M2 may play a wider role in preserving HA function in a variety of influenza virus subtypes that infect humans and may be especially important for HA proteins that are less stable.
Collapse
|
17
|
Contribution of human immunodeficiency virus type 1 minority variants to reduced drug susceptibility in patients on an integrase strand transfer inhibitor-based therapy. PLoS One 2014; 9:e104512. [PMID: 25110880 PMCID: PMC4128663 DOI: 10.1371/journal.pone.0104512] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/09/2014] [Indexed: 12/13/2022] Open
Abstract
The role of HIV-1 minority variants on transmission, pathogenesis, and virologic failure to antiretroviral regimens has been explored; however, most studies of low-level HIV-1 drug-resistant variants have focused in single target regions. Here we used a novel HIV-1 genotypic assay based on deep sequencing, DEEPGEN (Gibson et al 2014 Antimicrob Agents Chemother 58∶2167) to simultaneously analyze the presence of minority variants carrying mutations associated with reduced susceptibility to protease (PR), reverse transcriptase (RT), and integrase strand transfer integrase inhibitors (INSTIs), as well as HIV-1 coreceptor tropism. gag-p2/NCp7/p1/p6/pol-PR/RT/INT and env/C2V3 PCR products were obtained from twelve heavily treatment-experienced patients experiencing virologic failure while participating in a 48-week dose-ranging study of elvitegravir (GS-US-183-0105). Deep sequencing results were compared with (i) virological response to treatment, (ii) genotyping based on population sequencing, (iii) phenotyping data using PhenoSense and VIRALARTS, and (iv) HIV-1 coreceptor tropism based on the phenotypic test VERITROP. Most patients failed the antiretroviral regimen with numerous pre-existing mutations in the PR and RT, and additionally newly acquired INSTI-resistance mutations as determined by population sequencing (mean 9.4, 5.3, and 1.4 PI- RTI-, and INSTI-resistance mutations, respectively). Interestingly, since DEEPGEN allows the accurate detection of amino acid substitutions at frequencies as low as 1% of the population, a series of additional drug resistance mutations were detected by deep sequencing (mean 2.5, 1.5, and 0.9, respectively). The presence of these low-abundance HIV-1 variants was associated with drug susceptibility, replicative fitness, and coreceptor tropism determined using sensitive phenotypic assays, enhancing the overall burden of resistance to all four antiretroviral drug classes. Further longitudinal studies based on deep sequencing tests will help to clarify (i) the potential impact of minority HIV-1 drug resistant variants in response to antiretroviral therapy and (ii) the importance of the detection of HIV minority variants in the clinical practice.
Collapse
|
18
|
Next-Generation Sequencing to Help Monitor Patients Infected with HIV: Ready for Clinical Use? Curr Infect Dis Rep 2014; 16:401. [DOI: 10.1007/s11908-014-0401-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Sensitive deep-sequencing-based HIV-1 genotyping assay to simultaneously determine susceptibility to protease, reverse transcriptase, integrase, and maturation inhibitors, as well as HIV-1 coreceptor tropism. Antimicrob Agents Chemother 2014; 58:2167-85. [PMID: 24468782 DOI: 10.1128/aac.02710-13] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
With 29 individual antiretroviral drugs available from six classes that are approved for the treatment of HIV-1 infection, a combination of different phenotypic and genotypic tests is currently needed to monitor HIV-infected individuals. In this study, we developed a novel HIV-1 genotypic assay based on deep sequencing (DeepGen HIV) to simultaneously assess HIV-1 susceptibilities to all drugs targeting the three viral enzymes and to predict HIV-1 coreceptor tropism. Patient-derived gag-p2/NCp7/p1/p6/pol-PR/RT/IN- and env-C2V3 PCR products were sequenced using the Ion Torrent Personal Genome Machine. Reads spanning the 3' end of the Gag, protease (PR), reverse transcriptase (RT), integrase (IN), and V3 regions were extracted, truncated, translated, and assembled for genotype and HIV-1 coreceptor tropism determination. DeepGen HIV consistently detected both minority drug-resistant viruses and non-R5 HIV-1 variants from clinical specimens with viral loads of ≥1,000 copies/ml and from B and non-B subtypes. Additional mutations associated with resistance to PR, RT, and IN inhibitors, previously undetected by standard (Sanger) population sequencing, were reliably identified at frequencies as low as 1%. DeepGen HIV results correlated with phenotypic (original Trofile, 92%; enhanced-sensitivity Trofile assay [ESTA], 80%; TROCAI, 81%; and VeriTrop, 80%) and genotypic (population sequencing/Geno2Pheno with a 10% false-positive rate [FPR], 84%) HIV-1 tropism test results. DeepGen HIV (83%) and Trofile (85%) showed similar concordances with the clinical response following an 8-day course of maraviroc monotherapy (MCT). In summary, this novel all-inclusive HIV-1 genotypic and coreceptor tropism assay, based on deep sequencing of the PR, RT, IN, and V3 regions, permits simultaneous multiplex detection of low-level drug-resistant and/or non-R5 viruses in up to 96 clinical samples. This comprehensive test, the first of its class, will be instrumental in the development of new antiretroviral drugs and, more importantly, will aid in the treatment and management of HIV-infected individuals.
Collapse
|
20
|
Pérez-Olmeda M, Alcami J. Determination of HIV tropism and its use in the clinical practice. Expert Rev Anti Infect Ther 2014; 11:1291-302. [DOI: 10.1586/14787210.2013.852469] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Characterization of the Bas-Congo virus glycoprotein and its function in pseudotyped viruses. J Virol 2013; 87:9558-68. [PMID: 23785218 DOI: 10.1128/jvi.01183-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bas-Congo virus (BASV) is a novel rhabdovirus recently identified from a patient with acute hemorrhagic fever in the Bas-Congo province of the Democratic Republic of Congo (DRC). Here we show that the BASV glycoprotein (BASV-G) can be successfully used to pseudotype glycoprotein-deficient vesicular stomatitis virus (VSV), allowing studies of BASV-G-driven membrane fusion and viral entry into target cells without replication-competent virus. BASV-G displayed broad tissue and species tropism in vitro, and BASV-G-mediated membrane fusion was pH dependent. The conformational changes induced in BASV-G by acidification were fully reversible and did not lead to inactivation of the viral fusion protein. Our data combined with comparative sequence similarity analyses suggest that BASV-G shares structural and functional features with other rhabdovirus glycoproteins and falls into the group of class III viral fusion proteins. However, activation of BASV-G-driven fusion required a lower pH and higher temperatures than did VSV-G-mediated fusion. Moreover, in contrast to VSV-G, mature BASV-G in VSV pseudotypes consists of a mixture of high-mannose and complex glycans that enables it to bind to certain C-type lectins, thereby enhancing its attachment to target cells. Taken together, the results presented in this study will facilitate future investigations of BASV-G-mediated cell entry and its inhibition in the absence of an infectious cell culture assay for BASV and at lower biosafety levels. Moreover, serology testing based on BASV-G pseudotype neutralization can be used to uncover the prevalence and importance of BASV as a potential novel human pathogen in the DRC and throughout Central Africa.
Collapse
|
22
|
Prototype foamy virus Bet impairs the dimerization and cytosolic solubility of human APOBEC3G. J Virol 2013; 87:9030-40. [PMID: 23760237 DOI: 10.1128/jvi.03385-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular cytidine deaminases from the APOBEC3 family are potent restriction factors that are able to block the replication of retroviruses. Consequently, retroviruses have evolved a variety of different mechanisms to counteract inhibition by APOBEC3 proteins. Lentiviruses such as human immunodeficiency virus (HIV) express Vif, which interferes with APOBEC3 proteins by targeting these restriction factors for proteasomal degradation, hence blocking their ability to access the reverse transcriptase complex in the virions. Other retroviruses use less-well-characterized mechanisms to escape the APOBEC3-mediated cellular defense. Here we show that the prototype foamy virus Bet protein can protect foamy viruses and an unrelated simian immunodeficiency virus against human APOBEC3G (A3G). In our system, Bet binds to A3G and prevents its encapsidation without inducing its degradation. Bet failed to coimmunoprecipitate with A3G mutants unable to form homodimers and dramatically reduced the recovery of A3G proteins from soluble cytoplasmic cell fractions. The Bet-A3G interaction is probably a direct binding interaction and seems to be independent of RNA. Together, these data suggest a novel model whereby Bet uses two possibly complementary mechanisms to counteract A3G: (i) Bet prevents encapsidation of A3G by blocking A3G dimerization, and (ii) Bet sequesters A3G in immobile complexes, impairing its ability to interact with nascent virions.
Collapse
|
23
|
Sensitive cell-based assay for determination of human immunodeficiency virus type 1 coreceptor tropism. J Clin Microbiol 2013; 51:1517-27. [PMID: 23486708 DOI: 10.1128/jcm.00092-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CCR5 antagonists are a powerful new class of antiretroviral drugs that require a companion assay to evaluate the presence of CXCR4-tropic (non-R5) viruses prior to use in human immunodeficiency virus (HIV)-infected individuals. In this study, we have developed, characterized, verified, and prevalidated a novel phenotypic test to determine HIV-1 coreceptor tropism (VERITROP) based on a sensitive cell-to-cell fusion assay. A proprietary vector was constructed containing a near-full-length HIV-1 genome with the yeast uracil biosynthesis (URA3) gene replacing the HIV-1 env coding sequence. Patient-derived HIV-1 PCR products were introduced by homologous recombination using an innovative yeast-based cloning strategy. The env-expressing vectors were then used in a cell-to-cell fusion assay to determine the presence of R5 and/or non-R5 HIV-1 variants within the viral population. Results were compared with (i) the original version of Trofile (Monogram Biosciences, San Francisco, CA), (ii) population sequencing, and (iii) 454 pyrosequencing, with the genotypic data analyzed using several bioinformatics tools, i.e., the 11/24/25 rule, Geno2Pheno (2% to 5.75%, 3.5%, or 10% false-positive rate [FPR]), and webPSSM. VERITROP consistently detected minority non-R5 variants from clinical specimens, with an analytical sensitivity of 0.3%, with viral loads of ≥1,000 copies/ml, and from B and non-B subtypes. In a pilot study, a 73.7% (56/76) concordance was observed with the original Trofile assay, with 19 of the 20 discordant results corresponding to non-R5 variants detected using VERITROP and not by the original Trofile assay. The degree of concordance of VERITROP and Trofile with population and deep sequencing results depended on the algorithm used to determine HIV-1 coreceptor tropism. Overall, VERITROP showed better concordance with deep sequencing/Geno2Pheno at a 0.3% detection threshold (67%), whereas Trofile matched better with population sequencing (79%). However, 454 sequencing using Geno2Pheno at a 10% FPR and 0.3% threshold and VERITROP more accurately predicted the success of a maraviroc-based regimen. In conclusion, VERITROP may promote the development of new HIV coreceptor antagonists and aid in the treatment and management of HIV-infected individuals prior to and/or during treatment with this class of drugs.
Collapse
|
24
|
Xiang SH, Pacheco B, Bowder D, Yuan W, Sodroski J. Characterization of a dual-tropic human immunodeficiency virus (HIV-1) strain derived from the prototypical X4 isolate HXBc2. Virology 2013; 438:5-13. [PMID: 23369572 DOI: 10.1016/j.virol.2013.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/21/2012] [Accepted: 01/02/2013] [Indexed: 11/25/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) coreceptor usage and tropism can be modulated by the V3 loop sequence of the gp120 exterior envelope glycoprotein. For coreceptors, R5 viruses use CCR5, X4 viruses use CXCR4, and dual-tropic (R5X4) viruses use either CCR5 or CXCR4. To understand the requirements for dual tropism, we derived and analyzed a dual-tropic variant of an X4 virus. Changes in the V3 base, which allow gp120 to interact with the tyrosine-sulfated CCR5 N-terminus, and deletion of residues 310/311 in the V3 tip were necessary for efficient CCR5 binding and utilization. Thus, both sets of V3 changes allowed CCR5 utilization with retention of the ability to use CXCR4. We also found that the stable association of gp120 with the trimeric envelope glycoprotein complex in R5X4 viruses, as in X4 viruses, is less sensitive to V3 loop changes than gp120-trimer association in R5 viruses.
Collapse
Affiliation(s)
- Shi-hua Xiang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Department of Microbiology and Immunobiology, Division of AIDS, Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | |
Collapse
|
25
|
Ishikawa H, Meng F, Kondo N, Iwamoto A, Matsuda Z. Generation of a dual-functional split-reporter protein for monitoring membrane fusion using self-associating split GFP. Protein Eng Des Sel 2012; 25:813-20. [PMID: 22942393 DOI: 10.1093/protein/gzs051] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Split reporter proteins capable of self-association and reactivation have applications in biomedical research, but designing these proteins, especially the selection of appropriate split points, has been somewhat arbitrary. We describe a new methodology to facilitate generating split proteins using split GFP as a self-association module. We first inserted the entire GFP module at one of several candidate split points in the protein of interest, and chose clones that retained the GFP signal and high activity relative to the original protein. Once such chimeric clones were identified, a final pair of split proteins was generated by splitting the GFP-inserted chimera within the GFP domain. Applying this strategy to Renilla reniformis luciferase, we identified a new split point that gave 10 times more activity than the previous split point. The process of membrane fusion was monitored with high sensitivity using a new pair of split reporter proteins. We also successfully identified new split points for HaloTag protein and firefly luciferase, generating pairs of self-associating split proteins that recovered the functions of both GFP and the original protein. This simple method of screening will facilitate the designing of split proteins that are capable of self-association through the split GFP domains.
Collapse
Affiliation(s)
- Hirohito Ishikawa
- Research Center for Asian Infectious Diseases, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
26
|
Zhuang M, Wang W, De Feo CJ, Vassell R, Weiss CD. Trimeric, coiled-coil extension on peptide fusion inhibitor of HIV-1 influences selection of resistance pathways. J Biol Chem 2012; 287:8297-309. [PMID: 22235115 DOI: 10.1074/jbc.m111.324483] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peptides corresponding to N- and C-terminal heptad repeat regions (HR1 and HR2, respectively) of viral fusion proteins can block infection of viruses in a dominant negative manner by interfering with refolding of the viral HR1 and HR2 to form a six-helix bundle (6HB) that drives fusion between viral and host cell membranes. The 6HB of the HIV gp41 (endogenous bundle) consists of an HR1 coiled-coil trimer with grooves lined by antiparallel HR2 helices. HR1 peptides form coiled-coil oligomers that may bind to gp41 HR2 as trimers to form a heterologous 6HB (inhibitor bundle) or to gp41 HR1 as monomers or dimers to form a heterologous coiled coil. To gain insights into mechanisms of Env entry and inhibition by HR1 peptides, we compared resistance to a peptide corresponding to 36 residues in gp41 HR1 (N36) and the same peptide with a coiled-coil trimerization domain fused to its N terminus (IZN36) that stabilizes the trimer and increases inhibitor potency (Eckert, D. M., and Kim, P. S. (2001) Proc. Nat. Acad. Sci. U.S.A. 98, 11187-11192). Whereas N36 selected two genetic pathways with equal probability, each defined by an early mutation in either HR1 or HR2, IZN36 preferentially selected the HR1 pathway. Both pathways conferred cross-resistance to both peptides. Each HR mutation enhanced the thermostability of the endogenous 6HB, potentially allowing the virus to simultaneously escape inhibitors targeting either gp41 HR1 or HR2. These findings inform inhibitor design and identify regions of plasticity in the highly conserved gp41 that modulate virus entry and escape from HR1 peptide inhibitors.
Collapse
Affiliation(s)
- Min Zhuang
- Center for Biologics Evaluation and Research, United States Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
27
|
Selection with a peptide fusion inhibitor corresponding to the first heptad repeat of HIV-1 gp41 identifies two genetic pathways conferring cross-resistance to peptide fusion inhibitors corresponding to the first and second heptad repeats (HR1 and HR2) of gp41. J Virol 2011; 85:12929-38. [PMID: 21994458 DOI: 10.1128/jvi.05391-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We generated four HIV-1 cultures that are resistant to a peptide fusion inhibitor corresponding to the first heptad repeat of gp41 in order to study mechanisms of resistance and gain insights into envelope glycoprotein-mediated membrane fusion. Two genetic pathways emerged that were defined by acquisition of a specific mutation in either the first or second heptad repeat region of gp41 (HR1 or the HR2, respectively). Each pathway was enriched in mutations that clustered in either HR2 and V3 or in HR1 and residues in or near CD4 contact sites. The gp41 mutations in both pathways not only accounted for resistance to the selecting HR1 peptide but also conferred cross-resistance to HR2 peptide fusion inhibitors and enhanced the stability of the six-helix bundle formed by the self-assembly of HR1 and HR2. The gp120 mutations alone enhanced fusion but did not appear to directly contribute to resistance. The implications of these findings for resistance mechanisms and regulation of envelope-mediated fusion are discussed.
Collapse
|
28
|
Schneider IC, Eckhardt M, Brynza J, Collins MK, Cichutek K, Buchholz CJ. Escape from R-peptide deletion in a γ-retrovirus. Virology 2011; 418:85-92. [PMID: 21835422 DOI: 10.1016/j.virol.2011.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/17/2011] [Accepted: 07/15/2011] [Indexed: 11/15/2022]
Abstract
The R peptide in the cytoplasmic tail (C-tail) of γ-retroviral envelope proteins (Env) prevents membrane fusion before budding. To analyse its role in the formation of replication competent, infectious particles, we developed chimeric murine leukaemia viruses (MLV) with unmodified or R-peptide deleted Env proteins of the gibbon ape leukaemia virus (GaLV). While titres of these viruses were unaffected, R-peptide deficiency led to strongly impaired spreading. Most remarkably, we isolated an escape mutant which had restored an open reading frame for a C-terminal extension of the truncated C-tail. A reconstituted virus encoding this escape C-tail replicated in cell culture. In contrast to R-peptide deficient Env, particle incorporation of the escape Env was effective due to an enhanced protein expression and restored intracellular co-localisation with Gag proteins. Our data demonstrate that the R peptide not only regulates membrane fusion but also mediates efficient Env protein particle incorporation in γ-retrovirus infected cells.
Collapse
Affiliation(s)
- Irene C Schneider
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Simmons G, Bertram S, Glowacka I, Steffen I, Chaipan C, Agudelo J, Lu K, Rennekamp AJ, Hofmann H, Bates P, Pöhlmann S. Different host cell proteases activate the SARS-coronavirus spike-protein for cell-cell and virus-cell fusion. Virology 2011; 413:265-74. [PMID: 21435673 PMCID: PMC3086175 DOI: 10.1016/j.virol.2011.02.020] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 12/21/2010] [Accepted: 02/24/2011] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) poses a considerable threat to human health. Activation of the viral spike (S)-protein by host cell proteases is essential for viral infectivity. However, the cleavage sites in SARS-S and the protease(s) activating SARS-S are incompletely defined. We found that R667 was dispensable for SARS-S-driven virus-cell fusion and for SARS-S-activation by trypsin and cathepsin L in a virus-virus fusion assay. Mutation T760R, which optimizes the minimal furin consensus motif 758-RXXR-762, and furin overexpression augmented SARS-S activity, but did not result in detectable SARS-S cleavage. Finally, SARS-S-driven cell-cell fusion was independent of cathepsin L, a protease essential for virus-cell fusion. Instead, a so far unknown leupeptin-sensitive host cell protease activated cellular SARS-S for fusion with target cells expressing high levels of ACE2. Thus, different host cell proteases activate SARS-S for virus-cell and cell-cell fusion and SARS-S cleavage at R667 and 758-RXXR-762 can be dispensable for SARS-S activation.
Collapse
Affiliation(s)
- Graham Simmons
- Blood Systems Research Institute and Department of Laboratory Medicine, University of California, San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kondo N, Miyauchi K, Matsuda Z. Monitoring viral-mediated membrane fusion using fluorescent reporter methods. ACTA ACUST UNITED AC 2011; Chapter 26:Unit 26.9. [PMID: 21400700 DOI: 10.1002/0471143030.cb2609s50] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A simple and real-time cell-based assay of membrane fusion employing a pair of engineered novel reporter proteins is described. The reporter proteins are chimeras of split Renilla luciferase (RL) and split green fluorescent protein (GFP). This reporter allows us to perform both quantitative (RL mode) and visible (GFP mode) membrane fusion assays in live cells. The kinetic assay enabled by this method helps understand the mechanism of membrane fusion mediated by a viral envelope protein. This assay system is also suitable for the screening of potential inhibitors. The timing of inhibition by a particular inhibitor can be analyzed by time-dependent addition of the inhibitor. Although this unit demonstrates the application of the method for the analysis of HIV-1 envelope protein, the reporter can be applied to analyses of various other viral envelope proteins.
Collapse
Affiliation(s)
- Naoyuki Kondo
- Research Center for Asian Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
31
|
Kondo N, Miyauchi K, Meng F, Iwamoto A, Matsuda Z. Conformational changes of the HIV-1 envelope protein during membrane fusion are inhibited by the replacement of its membrane-spanning domain. J Biol Chem 2010; 285:14681-8. [PMID: 20197275 DOI: 10.1074/jbc.m109.067090] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To help understand the dynamic nature of membrane fusion induced by the human immunodeficiency virus-1 (HIV-1) envelope protein, we developed a new cell-based real-time assay system employing a pair of novel reporter proteins. The reporter proteins consist of a pair of split Renilla luciferase (spRL) fused to split green fluorescent protein (spGFP). The spGFP modules were chosen not only to compensate weak self-association of spRL but also to provide visual reporter signals during membrane fusion. Use of this reporter together with a membrane permeable substrate for Renilla luciferase achieved a simple real-time monitoring of membrane fusion using live cells. We analyzed the HIV-1 envelope mutants whose membrane-spanning domains were replaced with that of glycophorin A or vesicular stomatitis virus G-protein. These mutants showed a slower kinetics of membrane fusion. The analysis of membrane fusion in the presence of fusion inhibitors, soluble CD4 and C34, revealed that these replacements prolonged the period during which the mutants were sensitive to the inhibitors, as compared with the wild type. These results suggest that the mutations within the membrane-spanning domains exerted an allosteric effect on the HIV-1 envelope protein, probably affecting the receptor-induced conformational changes of the ectodomain of the protein.
Collapse
Affiliation(s)
- Naoyuki Kondo
- Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
32
|
A V3 loop-dependent gp120 element disrupted by CD4 binding stabilizes the human immunodeficiency virus envelope glycoprotein trimer. J Virol 2010; 84:3147-61. [PMID: 20089638 DOI: 10.1128/jvi.02587-09] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus (HIV-1) entry into cells is mediated by a trimeric complex consisting of noncovalently associated gp120 (exterior) and gp41 (transmembrane) envelope glycoproteins. The binding of gp120 to receptors on the target cell alters the gp120-gp41 relationship and activates the membrane-fusing capacity of gp41. Interaction of gp120 with the primary receptor, CD4, results in the exposure of the gp120 third variable (V3) loop, which contributes to binding the CCR5 or CXCR4 chemokine receptors. We show here that insertions in the V3 stem or polar substitutions in a conserved hydrophobic patch near the V3 tip result in decreased gp120-gp41 association (in the unliganded state) and decreased chemokine receptor binding (in the CD4-bound state). Subunit association and syncytium-forming ability of the envelope glycoproteins from primary HIV-1 isolates were disrupted more by V3 changes than those of laboratory-adapted HIV-1 envelope glycoproteins. Changes in the gp120 beta2, beta19, beta20, and beta21 strands, which evidence suggests are proximal to the V3 loop in unliganded gp120, also resulted in decreased gp120-gp41 association. Thus, a gp120 element composed of the V3 loop and adjacent beta strands contributes to quaternary interactions that stabilize the unliganded trimer. CD4 binding dismantles this element, altering the gp120-gp41 relationship and rendering the hydrophobic patch in the V3 tip available for chemokine receptor binding.
Collapse
|
33
|
Wang J, Kondo N, Long Y, Iwamoto A, Matsuda Z. Monitoring of HIV-1 envelope-mediated membrane fusion using modified split green fluorescent proteins. J Virol Methods 2009; 161:216-22. [PMID: 19559731 PMCID: PMC7112932 DOI: 10.1016/j.jviromet.2009.06.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 06/11/2009] [Accepted: 06/16/2009] [Indexed: 11/23/2022]
Abstract
A simple, cell-based, membrane fusion assay system that uses split green fluorescent proteins (spGFPs) as an indicator was developed. The attachment of the pleckstrin homology (PH) domain to the N-termini of each spGFP not only localized the reporter signal to the plasma membrane but also helped the stable expression of the smaller spGFP of seventeen amino acid residues. It was shown that this system allowed real-time monitoring of membrane fusion by HIV-1 envelope protein (Env) without the addition of external substrates. This method can be adapted to the analyses of other viral membrane fusion.
Collapse
Affiliation(s)
- Jianqi Wang
- China-Japan Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | | | | | | | | |
Collapse
|
34
|
Olson KR, Eglen RM. Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol 2007; 5:137-44. [PMID: 17355206 DOI: 10.1089/adt.2006.052] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Many cell-based assays interrogating cell pathway activation employ protocols that require microscopic imaging techniques. However, such assays are not in general widely adopted for primary screening. Protein complementation, particularly of enzymes, provides an alternative approach for cell pathway analysis, with a principal advantage that is amenable to high throughput screening using microtiter plate protocols. Notably, alpha complementation of the enzyme beta-galactosidase has been exploited as a technology in this regard, using substrates that generates luminescent signals. This review describes the various uses of this flexible technology to cell-based assay development.
Collapse
|
35
|
Fang L, Landau NR. Analysis of Vif-induced APOBEC3G degradation using an alpha-complementation assay. Virology 2007; 359:162-9. [PMID: 17049578 PMCID: PMC3708489 DOI: 10.1016/j.virol.2006.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 08/28/2006] [Accepted: 09/12/2006] [Indexed: 11/16/2022]
Abstract
Vif forms a complex with Elongin B/C, Cullin-5 and Rbx-1 to induce the polyubiquitination and proteasome-mediated degradation of human APOBEC3G (hA3G). These interactions serve as potential targets for anti-HIV-1 drug development. We have developed a cell culture-based assay to measure Vif-induced hA3G degradation. The assay is based on alpha-complementation, the ability of beta-galactosidase fragments to complement in trans. hA3G expressed with a fused alpha-peptide was enzymatically active, complemented a coexpressed omega-fragment and could be targeted for degradation by Vif. Vif reduced beta-galactosidase activity in the cell by 10-30-fold. The assay was validated by testing various hA3G and Vif point mutants. The assay accurately detected the effects of D128 in hA3G, and the BC box, Cul5 box and HCCH motifs of Vif. The results showed a strict association of Vif biological function with hA3G degradation. These findings support hA3G degradation as a requirement for Vif function. The Vif alpha-complementation assay may be a useful tool for the identification of Vif inhibitors.
Collapse
Affiliation(s)
- Lei Fang
- Infectious Disease Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd., La Jolla, California 92037-1099
| | - Nathaniel R. Landau
- Infectious Disease Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd., La Jolla, California 92037-1099
| |
Collapse
|
36
|
Perros M. CCR5 antagonists for the treatment of HIV infection and AIDS. ADVANCES IN ANTIVIRAL DRUG DESIGN 2007. [DOI: 10.1016/s1075-8593(06)05005-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
37
|
Filone CM, Heise M, Doms RW, Bertolotti-Ciarlet A. Development and characterization of a Rift Valley fever virus cell-cell fusion assay using alphavirus replicon vectors. Virology 2006; 356:155-64. [PMID: 16945399 PMCID: PMC7134558 DOI: 10.1016/j.virol.2006.07.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 06/13/2006] [Accepted: 07/21/2006] [Indexed: 11/25/2022]
Abstract
Rift Valley fever virus (RVFV), a member of the Phlebovirus genus in the Bunyaviridae family, is transmitted by mosquitoes and infects both humans and domestic animals, particularly cattle and sheep. Since primary RVFV strains must be handled in BSL-3+ or BSL-4 facilities, a RVFV cell–cell fusion assay will facilitate the investigation of RVFV glycoprotein function under BSL-2 conditions. As for other members of the Bunyaviridae family, RVFV glycoproteins are targeted to the Golgi, where the virus buds, and are not efficiently delivered to the cell surface. However, overexpression of RVFV glycoproteins using an alphavirus replicon vector resulted in the expression of the glycoproteins on the surface of multiple cell types. Brief treatment of RVFV glycoprotein expressing cells with mildly acidic media (pH 6.2 and below) resulted in rapid and efficient syncytia formation, which we quantified by β-galactosidase α-complementation. Fusion was observed with several cell types, suggesting that the receptor(s) for RVFV is widely expressed or that this acid-dependent virus does not require a specific receptor to mediate cell–cell fusion. Fusion occurred over a broad temperature range, as expected for a virus with both mosquito and mammalian hosts. In contrast to cell fusion mediated by the VSV-G glycoprotein, RVFV glycoprotein-dependent cell fusion could be prevented by treating target cells with trypsin, indicating that one or more proteins (or protein-associated carbohydrate) on the host cell surface are needed to support membrane fusion. The cell–cell fusion assay reported here will make it possible to study the membrane fusion activity of RVFV glycoproteins in a high-throughput format and to screen small molecule inhibitors for the ability to block virus-specific membrane fusion.
Collapse
Affiliation(s)
- Claire Marie Filone
- Department of Microbiology, University of Pennsylvania, 301 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Mark Heise
- Departments of Genetics and Microbiology and Immunology, The Carolina Vaccine Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert W. Doms
- Department of Microbiology, University of Pennsylvania, 301 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
- Corresponding authors. Fax: +1 215 573 2883.
| | - Andrea Bertolotti-Ciarlet
- Department of Microbiology, University of Pennsylvania, 301 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
- Corresponding authors. Fax: +1 215 573 2883.
| |
Collapse
|
38
|
Basmaciogullari S, Pacheco B, Bour S, Sodroski J. Specific interaction of CXCR4 with CD4 and CD8alpha: functional analysis of the CD4/CXCR4 interaction in the context of HIV-1 envelope glycoprotein-mediated membrane fusion. Virology 2006; 353:52-67. [PMID: 16808956 DOI: 10.1016/j.virol.2006.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 03/23/2006] [Accepted: 05/24/2006] [Indexed: 11/18/2022]
Abstract
We investigated possible interactions between HIV-1 receptor (CD4) and the main coreceptors CXCR4 and CCR5. We found that CD4 and CXCR4 coexpressed in 293T cells form a complex that can be immunoprecipitated with antibodies directed against the extracellular domain of either protein. Mutagenesis revealed that the CD4/CXCR4 interaction maps to two previously uncharacterized basic motifs in the cytoplasmic domain of CD4. HIV-1 envelope glycoprotein-mediated membrane fusion was found to be independent of the ability of CD4 and CXCR4 to interact, whether fusion was studied in a virus-cell or a cell-cell model. However, this interaction might explain the adaptation of HIV-1 to CXCR4 as an alternative to CCR5. We found that CXCR4 also interacts with the cytoplasmic domain of CD8alpha in a way that is similar to the CD4/CXCR4 interaction. The CD4/CXCR4 and CD8alpha/CXCR4 interactions may thus be involved in cellular signaling pathways shared by the CD4 and CD8alpha molecules.
Collapse
|
39
|
Chai N, Bates P. Na+/H+ exchanger type 1 is a receptor for pathogenic subgroup J avian leukosis virus. Proc Natl Acad Sci U S A 2006; 103:5531-6. [PMID: 16567631 PMCID: PMC1459389 DOI: 10.1073/pnas.0509785103] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Subgroup J avian leukosis virus (ALV-J) is a recently identified avian oncogenic retrovirus responsible for severe economic losses worldwide. In contrast with the other ALV subgroups, ALV-J predominantly induces myeloid leukosis in meat-type chickens. Despite significant homology with the other ALV subgroups across most of the genome, the envelope protein of ALV-J (EnvJ) shares low homology with the others. Pathogenicity and myeloid leukosis induction map to the env gene of ALV-J. A chimeric protein composed of the surface domain of EnvJ fused to the constant region of a rabbit IgG and mass spectrometry were used to identify the chicken Na(+)/H(+) exchanger type 1 (chNHE1) as a binding protein for ALV-J. Flow cytometry analysis and coprecipitation experiments demonstrated a specific interaction between EnvJ and chNHE1. When introduced into nonpermissive human 293T cells and quail QT6 cells, chNHE1 conferred susceptibility to EnvJ-mediated infection. Furthermore, 293T cells expressing chNHE1 fused with 293T cells expressing EnvJ in a low-pH-dependent manner. Together, these data identify chNHE1 as a cellular receptor for the highly pathogenic ALV-J.
Collapse
Affiliation(s)
- Ning Chai
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Paul Bates
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- *To whom correspondence should be addressed at:
Department of Microbiology, University of Pennsylvania, 225 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076. E-mail:
| |
Collapse
|
40
|
Merten CA, Stitz J, Braun G, Medvedovska J, Cichutek K, Buchholz CJ. Fusoselect: cell-cell fusion activity engineered by directed evolution of a retroviral glycoprotein. Nucleic Acids Res 2006; 34:e41. [PMID: 16540592 PMCID: PMC1408311 DOI: 10.1093/nar/gkl053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Membrane fusion plays a key role in many biological processes including vesicle trafficking, synaptic transmission, fertilization or cell entry of enveloped viruses. As a common feature the fusion process is mediated by distinct membrane proteins. We describe here 'Fusoselect', a universal procedure allowing the identification and engineering of molecular determinants for cell-cell fusion-activity by directed evolution. The system couples cell-cell fusion with the release of retroviral particles, but can principally be applied to membrane proteins of non-viral origin as well. As a model system, we chose a gamma-retroviral envelope protein, which naturally becomes fusion-active through proteolytic processing by the viral protease. The selection process evolved variants that, in contrast to the parental protein, mediated cell-cell fusion in absence of the viral protease. Detailed analysis of the variants revealed molecular determinants for fusion competence in the cytoplasmic tail (CT) of retroviral Env proteins and demonstrated the power of Fusoselect.
Collapse
Affiliation(s)
| | - Jörn Stitz
- Biotechnology and Bioengineering Group, Institute for Chemical and Bio-Engineering, Swiss Federal Institute of TechnologyCH-8093 Zurich, Switzerland
| | | | | | | | - Christian J. Buchholz
- To whom correspondence should be addressed. Tel: ++49 6103 77 4011; Fax: ++49 6103 771255;
| |
Collapse
|
41
|
Coskun AK, Sutton RE. Expression of glucose transporter 1 confers susceptibility to human T-cell leukemia virus envelope-mediated fusion. J Virol 2005; 79:4150-8. [PMID: 15767416 PMCID: PMC1061550 DOI: 10.1128/jvi.79.7.4150-4158.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) was the first human retrovirus identified and causes both adult T-cell leukemia/lymphoma and tropical spastic paraparesis/HTLV-1-associated myelopathy, among other disorders. In vitro, HTLV-1 has an extremely broad host cell tropism in that it is capable of infecting most mammalian cell types, although at the same time viral titers remain relatively low. Despite years of study, only recently has a bona fide candidate cellular receptor, glucose transporter 1 (glut-1), been identified. Although glut-1 was shown to bind specifically to the ectodomain of HTLV-1 and HTLV-2 envelope glycoproteins, which was reversible with small interfering RNA directed against glut-1, cellular susceptibility to HTLV upon expression of glut-1 was not established. Here we show that expression of glut-1 in relatively resistant MDBK cells conferred increased susceptibility to both HTLV-1- and HTLV-2-pseudotyped particles. glut-1 also markedly increased syncytium formation in MDBK cells after exposure to HTLV-1. Another assay also demonstrated HTLV-1 envelope-cell fusion in the presence of glut-1. Taken together, these results provide additional evidence that glut-1 is a receptor for HTLV.
Collapse
Affiliation(s)
- Ayse Kubra Coskun
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
42
|
Zhao Q, He Y, Alespeiti G, Debnath AK. A novel assay to identify entry inhibitors that block binding of HIV-1 gp120 to CCR5. Virology 2004; 326:299-309. [PMID: 15321703 DOI: 10.1016/j.virol.2004.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Revised: 05/28/2004] [Accepted: 06/14/2004] [Indexed: 10/26/2022]
Abstract
HIV-1 infection is initiated by the interaction of the envelope glycoprotein gp120 with the cellular receptor CD4 that triggers conformational changes in gp120 necessary for subsequent interaction with a coreceptor CCR5 (or CXCR4). The CD4-induced (CD4i) conformation of gp120 can be mimicked by a full-length single chain (FLSC) protein consisting of gp120 linked with the D1D2 domains of CD4 by a 20-amino-acid linker. We have used this protein to establish a flow cytometry-based assay and an ELISA-based assay to identify inhibitors that block the binding of gp120 to CCR5. Both assays are specific for detecting the known CCR5 antagonist TAK-779, but the ELISA-based assay was more sensitive, simple, inexpensive, and rapid; thus, it can be adapted to high throughput screening (HTS). The ELISA-based method was validated with a diverse set of known antagonists, for example, TAK-779, AOP-RANTES, PSC-RANTES, and several mAbs.
Collapse
Affiliation(s)
- Qian Zhao
- Laboratory of Molecular Modeling and Drug Design, Lindsley F. Kimball Research Institute of The New York Blood Center, New York, NY 10021, USA
| | | | | | | |
Collapse
|