1
|
Fan YZ, Duan YL, Zhang AN, Wang Y. Beneficial effects and possible mechanism of intake coffee for COVID-19: A meta-analysis and molecular docking. Medicine (Baltimore) 2025; 104:e41550. [PMID: 39960901 PMCID: PMC11835096 DOI: 10.1097/md.0000000000041550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND To systematically evaluate the effectiveness of regular coffee intake in the prevention or treatment of COVID-19 infection, and to explore its possible mechanism of action using computer molecular docking technology. METHODS We searched for relevant ClinicalTrials.gov, Cochrane Library, PubMed, Web of Science, Embase, and China Biomedicine, Wanfang, CNKI, VIP databases to summarize studies on the effectiveness of coffee in preventing or treating COVID-19. The search period lasted until August 1, 2024. The 2 researchers screened the literature and data using Rev Man 5.4 software (the Cochrane Collaboration, 2020) for data analysis and used Schrodinger 2018-1 software to explore possible mechanisms of action. RESULTS A total 5 studies with 39,290 participants were included. The results showed that compared with the control group that drank less or no coffee, the experimental group that drank more than 1 cup of coffee per day had significantly higher benefit rates (RD = 0.17, 95% confidence intervals [CI] = 0.08-0.27, P = .0005), including lower infection rates and improved recovery rates from COVID-19 (RD = 0.24, 95% CI = 0.13-0.35), P < .0001). Molecular docking showed that CGA and caffeine present in coffee could combine with key amino acid residues of ACE2 or 3CL proteins to form hydrogen bonds. CONCLUSIONS Regular consumption of coffee may have certain preventive or therapeutic effects on COVID-19, and the mechanism of action may be that CGA or/caffeine in coffee may be related to the formation of hydrogen bonds by key amino acid residues such as ARG273/HIE345 of ACE2 and CYS145 of 3CL. Owing to the limited number and quality of the included studies, the effect evaluation needs to be further confirmed using clinical randomized controlled trials. The exact mechanism of action requires further verification at the molecular level, both inside and outside cells.
Collapse
Affiliation(s)
- Yong-Zheng Fan
- Pharmacy Department, The 991st Hospital of Joint Logistic Support Force of People’s Liberation Army, Xiangyang, Hubei, China
| | - Yun-Li Duan
- Teaching Department, Xiangyang No. 4 Middle School Compulsory Education Department, Xiangyang, Hubei, China
| | - An-Na Zhang
- Pharmacy Department, The 991st Hospital of Joint Logistic Support Force of People’s Liberation Army, Xiangyang, Hubei, China
| | - Yu Wang
- Pharmacy Department, The 991st Hospital of Joint Logistic Support Force of People’s Liberation Army, Xiangyang, Hubei, China
| |
Collapse
|
2
|
Saladino N, Leavitt E, Wong HT, Ji JH, Ebrahimi D, Salamango DJ. HIV-1 Vpr drives epigenetic remodeling to enhance virus transcription and latency reactivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635859. [PMID: 39975144 PMCID: PMC11838372 DOI: 10.1101/2025.01.31.635859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Despite decades of research, the primary proviral function of the HIV-1 Vpr accessory protein remains enigmatic. Vpr is essential for pathogenesis in vivo and for virus replication in myeloid cells, but the underlying cause-and-effect mechanism(s) driving these phenomena are poorly understood. Canonically, Vpr hijacks a cellular ubiquitin ligase complex to target several dozen host proteins for proteasomal degradation. Many of these substrates were recently revealed to be involved in DNA damage repair (DDR), which rationalizes the longstanding observation that Vpr induces constitutive activation of DDR signaling. Here, we use a combination of functional, biochemical, and genetic approaches establish a clear mechanistic link between Vpr-induced DDR signaling and remodeling of the epigenetic landscape to enhance HIV-1 promoter activity during acute infection and virus reactivation from latency. Functional, genetic, and bimolecular fluorescence complementation experiments reveal that Vpr utilizes degradation-dependent and -independent mechanisms to induce epigenetic remodeling and that Vpr segregates into two discrete pools with dedicated activities-A multimeric pool in the nucleus that is associated with chromatin and a monomeric pool associated with DCAF1 in the cytoplasm. Vpr function in remodeling the nuclear environment is present in common HIV-1 subtypes worldwide and provides a mechanistic rationale for its essentiality in virus replication.
Collapse
Affiliation(s)
- Nicholas Saladino
- Department of Microbiology, Immunology, and Molecular Genetics, UT Health Science Center, San Antonio, Texas, USA, 78229
| | - Emily Leavitt
- Department of Microbiology, Immunology, and Molecular Genetics, UT Health Science Center, San Antonio, Texas, USA, 78229
| | - Hoi Tong Wong
- Department of Microbiology, Mt. Sinai Icahn School of Medicine, New York, New York, USA, 10029
| | - Jae-Hoon Ji
- Department of Biochemistry and Structural Biology and Greehey Children’s Cancer Research Institute, UT Health Science Center, San Antonio, Texas, USA, 78229
| | - Diako Ebrahimi
- Texas Biomedical Research Institute, San Antonio, Texas, USA, 78227
| | - Daniel J Salamango
- Department of Microbiology, Immunology, and Molecular Genetics, UT Health Science Center, San Antonio, Texas, USA, 78229
| |
Collapse
|
3
|
Díaz-Maneh A, Pérez-Rubio P, Granes CR, Bosch-Molist L, Lavado-García J, Gòdia F, Cervera L. Targeted knockdown of ATM, ATR, and PDEδ increases Gag HIV-1 VLP production in HEK293 cells. Appl Microbiol Biotechnol 2025; 109:1. [PMID: 39747723 PMCID: PMC11695449 DOI: 10.1007/s00253-024-13389-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025]
Abstract
Several strategies have been developed in recent years to improve virus-like particle (VLP)-based vaccine production processes. Among these, the metabolic engineering of cell lines has been one of the most promising approaches. Based on previous work and a proteomic analysis of HEK293 cells producing Human Immunodeficiency Virus-1 (HIV-1) Gag VLPs under transient transfection, four proteins susceptible of enhancing VLP production were identified: ataxia telangiectasia mutated (ATM), ataxia telangiectasia and rad3-related (ATR), DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit delta (PDEδ). The knockdown of ATM, ATR, and PDEδ in HEK293 cells increased HIV-1 VLP titers in the supernatant by 3.4-, 2.1-, and 2.2-fold, respectively. Also, possible metabolic synergies between plasmids were investigated by statistical design of experiments (DoE), enabling us to identify the optimal production strategy, that was further demonstrated at lab-scale stirred tank bioreactor operated in perfusion, significantly increasing both VLPs specific and volumetric productivities to 8.3 × 103 VLPs/cellxday and 7.5 × 1012 VLPs/Lxday, respectively. KEY POINTS: • ATM, ATR, and PDEδ knockdowns increased VLP production in HEK293 cells. • Knockdown of ATM increased budding efficiency and extracellular vesicle concentration. • ATM knockdown could be intensified to bioreactor scale operated in perfusion.
Collapse
Affiliation(s)
- Andy Díaz-Maneh
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, ENG4BIO, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Aglaris Cell, C/ Santiago Grisolía, 2, Tres Cantos, 28760, Madrid, Spain.
| | - Pol Pérez-Rubio
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, ENG4BIO, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Cristina Rigau Granes
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, ENG4BIO, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Asklepios Biopharmaceutical, Inc, 20 TW Alexander Dr #110, Research Triangle Park, Chapel Hill, NC, 27709, USA
| | - Laia Bosch-Molist
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, ENG4BIO, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Jesús Lavado-García
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, ENG4BIO, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Francesc Gòdia
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, ENG4BIO, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Laura Cervera
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, ENG4BIO, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Serra Hunter, Catalonia, Barcelona, Spain
| |
Collapse
|
4
|
Gao L, Sun W, Zhang L, Liang C, Zhang D. Caffeine upregulates SIRT3 expression to ameliorate astrocytes-mediated HIV-1 Tat neurotoxicity via suppression of EGR1 signaling pathway. J Neurovirol 2024; 30:286-302. [PMID: 38926255 DOI: 10.1007/s13365-024-01222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Caffeine is one of the most popular consumed psychostimulants that mitigates several neurodegenerative diseases. Nevertheless, the roles and molecular mechanisms of caffeine in HIV-associated neurocognitive disorders (HAND) remain largely unclear. Transactivator of transcription (Tat) is a major contributor to the neuropathogenesis of HAND in the central nervous system. In the present study, we determined that caffeine (100 µM) treatment significantly ameliorated Tat-induced decreased astrocytic viability, oxidative stress, inflammatory response and excessive glutamate and ATP release, thereby protecting neurons from apoptosis. Subsequently, SIRT3 was demonstrated to display neuroprotective effects against Tat during caffeine treatment. In addition, Tat downregulated SIRT3 expression via activation of EGR1 signaling, which was reversed by caffeine treatment in astrocytes. Overexpression of EGR1 entirely abolished the neuroprotective effects of caffeine against Tat. Furthermore, counteracting Tat or caffeine-induced differential expression of SIRT3 abrogated the neuroprotection of caffeine against Tat-triggered astrocytic dysfunction and neuronal apoptosis. Taken together, our study establishes that caffeine ameliorates astrocytes-mediated Tat neurotoxicity by targeting EGR1/SIRT3 signaling pathway. Our findings highlight the beneficial effects of caffeine on Tat-induced astrocytic dysfunction and neuronal death and propose that caffeine might be a novel therapeutic drug for relief of HAND.
Collapse
Affiliation(s)
- Lin Gao
- Medical Research Center, Affiliated Hospital 2 of Nantong University, No. 666, Shengli Road, Nantong, 226001, Jiangsu, People's Republic of China.
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China.
- Nantong Municipal Medical Key Laboratory of Molecular Immunology, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China.
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease Microenvironment, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China.
| | - Weixi Sun
- Disease Prevention and Control Center of Chongchuan District, Nantong, 226000, People's Republic of China
- Health Commission of Chongchuan District, Nantong, 226000, People's Republic of China
| | - Lei Zhang
- Nantong Health College of Jiangsu Province, Nantong, 226001, People's Republic of China
| | - Caixia Liang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, No. 666, Shengli Road, Nantong, 226001, Jiangsu, People's Republic of China
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
- Nantong Municipal Medical Key Laboratory of Molecular Immunology, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease Microenvironment, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, No. 666, Shengli Road, Nantong, 226001, Jiangsu, People's Republic of China.
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China.
- Nantong Municipal Medical Key Laboratory of Molecular Immunology, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China.
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease Microenvironment, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China.
| |
Collapse
|
5
|
Mock MB, Summers RM. Microbial metabolism of caffeine and potential applications in bioremediation. J Appl Microbiol 2024; 135:lxae080. [PMID: 38549434 DOI: 10.1093/jambio/lxae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/28/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
With increasing global consumption of caffeine-rich products, such as coffee, tea, and energy drinks, there is also an increase in urban and processing waste full of residual caffeine with limited disposal options. This waste caffeine has been found to leach into the surrounding environment where it poses a threat to microorganisms, insects, small animals, and entire ecosystems. Growing interest in harnessing this environmental contaminant has led to the discovery of 79 bacterial strains, eight yeast strains, and 32 fungal strains capable of metabolizing caffeine by N-demethylation and/or C-8 oxidation. Recently observed promiscuity of caffeine-degrading enzymes in vivo has opened up the possibility of engineering bacterial strains capable of producing a wide variety of caffeine derivatives from a renewable resource. These engineered strains can be used to reduce the negative environmental impact of leached caffeine-rich waste through bioremediation efforts supplemented by our increasing understanding of new techniques such as cell immobilization. Here, we compile all of the known caffeine-degrading microbial strains, discuss their metabolism and related enzymology, and investigate their potential application in bioremediation.
Collapse
Affiliation(s)
- Meredith B Mock
- Department of Chemical and Biological Engineering, The University of Alabama, Box 870203, Tuscaloosa, AL 35487, United States
| | - Ryan M Summers
- Department of Chemical and Biological Engineering, The University of Alabama, Box 870203, Tuscaloosa, AL 35487, United States
| |
Collapse
|
6
|
de Jesús López Medina Y, Tamayo-Molina YS, Valdés-López JF, Urcuqui-Inchima S. Protective Effects of Caffeine on Chikungunya and Zika Virus Infections: An in Vitro and in Silico Study. Chem Biodivers 2023; 20:e202300192. [PMID: 37489706 DOI: 10.1002/cbdv.202300192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
Infection by viruses Chikungunya (CHIKV) and Zika (ZIKV) continue to be serious problems in tropical and subtropical areas of the world. Here, we evaluated the antiviral and virucidal activity of caffeine against CHIKV and ZIKV in Vero, A549, and Huh-7 cell lines. Results showed that caffeine displays antiviral properties against both viruses. By pre-and post-infection treatment, caffeine significantly inhibited CHIKV and ZIKV replication in a dose-dependent manner. Furthermore, caffeine showed a virucidal effect against ZIKV. Molecular docking suggests the possible binding of caffeine with envelope protein and RNA-dependent RNA polymerase of CHIKV and ZIKV. This is the first study that showed an antiviral effect of caffeine against CHIKV and ZIKV. Although further studies are needed to better understand the mechanism of caffeine-mediated repression of viral replication, caffeine appears to be a promising compound that could be used for in vivo studies, perhaps in synergy with other compounds present in daily beverages.
Collapse
Affiliation(s)
| | | | - Juan Felipe Valdés-López
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| |
Collapse
|
7
|
Mock MB, Mills SB, Cyrus A, Campo H, Dreischarf T, Strock S, Summers RM. Biocatalytic Production and Purification of the High-value Biochemical Paraxanthine. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0301-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Rolta R, Salaria D, Sharma B, Awofisayo O, Fadare OA, Sharma S, Patel CN, Kumar V, Sourirajan A, Baumler DJ, Dev K. Methylxanthines as Potential Inhibitor of SARS-CoV-2: an In Silico Approach. CURRENT PHARMACOLOGY REPORTS 2022; 8:149-170. [PMID: 35281252 PMCID: PMC8901432 DOI: 10.1007/s40495-021-00276-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 04/15/2023]
Abstract
The aim of the present study was to test the binding affinity of methylxanthines (caffeine/theine, methylxanthine, theobromine, theophylline and xanthine) to three potential target proteins namely Spike protein (6LZG), main protease (6LU7) and nucleocapsid protein N-terminal RNA binding domain (6M3M) of SARS-CoV-2. Proteins and ligand were generated using AutoDock 1.5.6 software. Binding affinity of methylxanthines with SARS-CoV-2 target proteins was determined using Autodock Vina. MD simulation of the best interacting complexes was performed using GROMACS 2018.3 (in duplicate) and Desmond program version 2.0 (academic version) (in triplicate) to study the stabile interaction of protein-ligand complexes. Among the selected methylxanthines, theophylline showed the best binding affinity with all the three targets of SARS-CoV-2 (6LZG - 5.7 kcal mol-1, 6LU7 - 6.5 kcal mol-1, 6M3M - 5.8 kcal mol-1). MD simulation results of 100 ns (in triplicate) showed that theophylline is stable in the binding pockets of all the selected SARS-CoV-2 proteins. Moreover, methylxanthines are safer and less toxic as shown by high LD50 value with Protox II software as compared to drug chloroquine. This research supports the use of methylxanthines as a SARS-CoV-2 inhibitor. It also lays the groundwork for future studies and could aid in the development of a treatment for SARS-CoV-2 and related viral infections. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40495-021-00276-3.
Collapse
Affiliation(s)
- Rajan Rolta
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh India
| | - Deeksha Salaria
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh India
| | - Bhanu Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh India
| | - Oladoja Awofisayo
- Department of Pharmaceutical and Medical Chemistry, University of Uyo, Uyo, Nigeria
| | - Olatomide A. Fadare
- Organic Chemistry Research Lab, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Sonum Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh India
| | - Chirag N. Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, University School of Science, Gujarat University, Ahmedabad, India
| | - Vikas Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab India
| | - Anuradha Sourirajan
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh India
| | - David J. Baumler
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN USA
| | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh India
| |
Collapse
|
9
|
Khan F, Khanam R, Wasim Qasim M, Wang Y, Jiang Z. Improved Synthesis of D‐Isoglutamine: Rapid Access to Desmuramyl Analogues of Muramyl Dipeptide for the Activation of Intracellular NOD2 Receptor and Vaccine Adjuvant Applications. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Farooq‐Ahmad Khan
- Third World Center (TWC) for Chemical Sciences International Center for Chemical & Biological Sciences University of Karachi-75270 Pakistan
- H.E.J. Research Institute of Chemistry International Center for Chemical & Biological Sciences University of Karachi-75270 Pakistan
| | - Rahila Khanam
- Third World Center (TWC) for Chemical Sciences International Center for Chemical & Biological Sciences University of Karachi-75270 Pakistan
- H.E.J. Research Institute of Chemistry International Center for Chemical & Biological Sciences University of Karachi-75270 Pakistan
| | - Muhammad Wasim Qasim
- Third World Center (TWC) for Chemical Sciences International Center for Chemical & Biological Sciences University of Karachi-75270 Pakistan
- H.E.J. Research Institute of Chemistry International Center for Chemical & Biological Sciences University of Karachi-75270 Pakistan
| | - Yan Wang
- H.E.J. Research Institute of Chemistry International Center for Chemical & Biological Sciences University of Karachi-75270 Pakistan
| | - Zi‐Hua Jiang
- Department of Chemistry Lakehead University 955 Oliver Rd Thunder Bay Ontario P7B 5E1 Canada
| |
Collapse
|
10
|
Enderle AG, Bosso M, Groß R, Heiland M, Bollini M, Culzoni MJ, Kirchhoff F, Münch J, Streb C. Increased in vitro Anti-HIV Activity of Caffeinium-Functionalized Polyoxometalates. ChemMedChem 2021; 16:2727-2730. [PMID: 33908695 PMCID: PMC8518980 DOI: 10.1002/cmdc.202100281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 11/10/2022]
Abstract
Polyoxometalates (POMs), molecular metal oxide anions, are inorganic clusters with promising antiviral activity. Herein we report increased anti-HIV-1 activity of a POM when electrostatically combined with organic counter-cations. To this end, Keggin-type cerium tungstate POMs have been combined with organic methyl-caffeinium (Caf) cations, and their cytotoxicity, antiviral activity and mode of action have been studied. The novel compound, Caf4 K[β2 -CeSiW11 O39 ]×H2 O, exhibits sub-nanomolar antiviral activity and inhibits HIV-1 infectivity by acting on an early step of the viral infection cycle. This work demonstrates that combination of POM anions and organic bioactive cations can be a powerful new strategy to increase antiviral activity of these inorganic compounds.
Collapse
Affiliation(s)
- Ana G. Enderle
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- Medicinal Chemistry LabCentro de Investigaciones en Bionanociencias (CIBION), CONICETGodoy Cruz, 2390C1425FQDCiudad de Buenos AiresArgentina
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ)Universidad Nacional del Litoral – CONICETCiudad UniversitariaParaje El Pozo, CC242S3000Santa FeArgentina
| | - Matteo Bosso
- Institute of Molecular VirologyUlm University Medical CenterMeyerhofstraße 189081UlmGermany
| | - Rüdiger Groß
- Institute of Molecular VirologyUlm University Medical CenterMeyerhofstraße 189081UlmGermany
| | - Magdalena Heiland
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Mariela Bollini
- Medicinal Chemistry LabCentro de Investigaciones en Bionanociencias (CIBION), CONICETGodoy Cruz, 2390C1425FQDCiudad de Buenos AiresArgentina
| | - María J. Culzoni
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ)Universidad Nacional del Litoral – CONICETCiudad UniversitariaParaje El Pozo, CC242S3000Santa FeArgentina
| | - Frank Kirchhoff
- Institute of Molecular VirologyUlm University Medical CenterMeyerhofstraße 189081UlmGermany
| | - Jan Münch
- Institute of Molecular VirologyUlm University Medical CenterMeyerhofstraße 189081UlmGermany
| | - Carsten Streb
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
11
|
Rezaei H, Rahimpour E, Zhao H, Martinez F, Jouyban A. Solubility measurement and thermodynamic modeling of caffeine in N-methyl-2-pyrrolidone + isopropanol mixtures at different temperatures. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116519] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Syahputra G, Gustini N, Bustanussalam B, Hapsari Y, Sari M, Ardiansyah A, Bayu A, Putra MY. Molecular docking of secondary metabolites from Indonesian marine and terrestrial organisms targeting SARS-CoV-2 ACE-2, M pro, and PL pro receptors. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e68432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
With the uncontrolled spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), development and distribution of antiviral drugs and vaccines have gained tremendous importance. This study focused on two viral proteases namely main protease (Mpro) and papain-like protease (PLpro) and human angiotensin-converting enzyme (ACE-2) to identify which of these are essential for viral replication. We screened 102 secondary metabolites against SARS-CoV-2 isolated from 36 terrestrial plants and 36 marine organisms from Indonesian biodiversity. These organisms are typically presumed to have antiviral effects, and some of them have been used as an immunomodulatory activity in traditional medicine. For the molecular docking procedure to obtain Gibbs free energy value (∆G), toxicity, ADME and Lipinski, AutoDock Vina was used. In this study, five secondary metabolites, namely corilagin, dieckol, phlorofucofuroeckol A, proanthocyanidins, and isovitexin, were found to inhibit ACE-2, Mpro, and PLpro receptors in SARS-CoV-2, with a high affinity to the same sites of ptilidepsin, remdesivir, and chloroquine as the control molecules. This study was delimited to molecular docking without any validation by simulations concerned with molecular dynamics. The interactions with two viral proteases and human ACE-2 may play a key role in developing antiviral drugs for five active compounds. In future, we intend to investigate antiviral drugs and the mechanisms of action by in vitro study.
Collapse
|
13
|
Noor N, Gani A, Gani A, Shah A, Ashraf ZU. Exploitation of polyphenols and proteins using nanoencapsulation for anti-viral and brain boosting properties - Evoking a synergistic strategy to combat COVID-19 pandemic. Int J Biol Macromol 2021; 180:375-384. [PMID: 33716131 PMCID: PMC7946821 DOI: 10.1016/j.ijbiomac.2021.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/31/2021] [Accepted: 03/04/2021] [Indexed: 12/16/2022]
Abstract
The world is currently under the threat of COVID pandemic and has focused every dimension of research in finding a cure to this novel disease. In this current situation, people are facing mental stress, agony, fear, depression and other associated symptoms which are taking a toll on their overall mental health. Nanoencapsulation of certain brain boosting polyphenols including quercetin, caffeine, cocoa flavanols and proteins like lectins can become new area of interest in the present scenario. Besides the brain boosting benefits, we have also highlighted the anti- viral activities of these compounds which we assume can play a possible role in combating COVID-19 given to their previous history of action against certain viruses. This review outlines the nanoencapsulation approaches of such synergistic compounds as a novel strategy to take the ongoing research a step ahead and also provides a new insight in bringing the role of nanotechnology in addressing the issues related to COVID pandemic.
Collapse
Affiliation(s)
- Nairah Noor
- Laboratory of Functional Food and Nutraceuticals, Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Adil Gani
- Laboratory of Functional Food and Nutraceuticals, Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India; Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, United States.
| | - Asir Gani
- Laboratory of Functional Food and Nutraceuticals, Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Asima Shah
- Laboratory of Functional Food and Nutraceuticals, Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Zanoor Ul Ashraf
- Laboratory of Functional Food and Nutraceuticals, Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
14
|
Khan DA, Hamdani SDA, Iftikhar S, Malik SZ, Zaidi NUSS, Gul A, Babar MM, Ozturk M, Turkyilmaz Unal B, Gonenc T. Pharmacoinformatics approaches in the discovery of drug-like antimicrobials of plant origin. J Biomol Struct Dyn 2021; 40:7612-7628. [PMID: 33663347 DOI: 10.1080/07391102.2021.1894982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Medicinal plants have served as an important source for addressing the ailments of humans and animals alike. The emergence of advanced technologies in the field of drug discovery and development has helped in isolating various bioactive phytochemicals and developing them as drugs. Owing to their significant pharmacological benefits and minimum adverse effects, they not only serve as good candidates for therapeutics themselves but also help in the identification and development of related drug like molecules against various metabolic and infectious diseases. The ever-increasing diversity, severity and incidence of infectious diseases has resulted in an exaggerated mortality and morbidity levels. Geno-proteomic mutations in microbes, irrational prescribing of antibiotics, antimicrobial resistance and human population explosion, all call for continuous efforts to discover and develop alternated therapeutic options against the microbes. This review article describes the pharmacoinformatics tools and methods which are currently used in the discovery of bioactive phytochemicals, thus making the process more efficient and effective. The pharmacological aspects of the drug discovery and development process have also been reviewed with reference to the in silico activities. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Duaa Ahmad Khan
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Syed Damin Abbas Hamdani
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan.,Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Sahar Iftikhar
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Sohaib Zafar Malik
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Najam-Us-Sahar Sadaf Zaidi
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan
| | - Mustafeez Mujtaba Babar
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Munir Ozturk
- Botany Department and Centre for Environmental Studies, Ege University, Izmir, Turkey
| | - Bengu Turkyilmaz Unal
- Biotechnology Department, Arts & Sciences Faculty, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Tuba Gonenc
- Department of Pharmacognosy, Faculty of Pharmacy, Izmir Katip Çelebi University, Izmir, Turkey
| |
Collapse
|
15
|
Majodina S, Ndima L, Abosede OO, Hosten EC, Lorentino CMA, Frota HF, Sangenito LS, Branquinha MH, Santos ALS, Ogunlaja AS. Physical stability enhancement and antimicrobial properties of a sodium ionic cocrystal with theophylline. CrystEngComm 2021. [DOI: 10.1039/d0ce01387k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present study, we have described the synthesis and characterisation of the theophylline hydrate (Theo hydrate), cocrystal (Theo–Phen·2H2O) and hydrated sodium co-crystal of theophylline (Na–(Theo)2ClO·2H2O), where Theo = theophylline and Phen = 1,10-phenathroline.
Collapse
Affiliation(s)
| | - Lubabalo Ndima
- Department of Chemistry
- Nelson Mandela University
- Port Elizabeth 6031
- South Africa
| | - Olufunso O. Abosede
- Department of Chemistry
- Nelson Mandela University
- Port Elizabeth 6031
- South Africa
| | - Eric C. Hosten
- Department of Chemistry
- Nelson Mandela University
- Port Elizabeth 6031
- South Africa
| | - Carolline M. A. Lorentino
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes
- Departamento de Microbiologia Geral
- Instituto de Microbiologia Paulo de Góes
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
| | - Heloísa F. Frota
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes
- Departamento de Microbiologia Geral
- Instituto de Microbiologia Paulo de Góes
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
| | - Leandro S. Sangenito
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes
- Departamento de Microbiologia Geral
- Instituto de Microbiologia Paulo de Góes
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
| | - Marta H. Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes
- Departamento de Microbiologia Geral
- Instituto de Microbiologia Paulo de Góes
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
| | - André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes
- Departamento de Microbiologia Geral
- Instituto de Microbiologia Paulo de Góes
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
| | - Adeniyi S. Ogunlaja
- Department of Chemistry
- Nelson Mandela University
- Port Elizabeth 6031
- South Africa
| |
Collapse
|
16
|
Unique Role of Caffeine Compared to Other Methylxanthines (Theobromine, Theophylline, Pentoxifylline, Propentofylline) in Regulation of AD Relevant Genes in Neuroblastoma SH-SY5Y Wild Type Cells. Int J Mol Sci 2020; 21:ijms21239015. [PMID: 33260941 PMCID: PMC7730563 DOI: 10.3390/ijms21239015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Methylxanthines are a group of substances derived from the purine base xanthine with a methyl group at the nitrogen on position 3 and different residues at the nitrogen on position 1 and 7. They are widely consumed in nutrition and used as pharmaceuticals. Here we investigate the transcriptional regulation of 83 genes linked to Alzheimer’s disease in the presence of five methylxanthines, including the most prominent naturally occurring methylxanthines—caffeine, theophylline and theobromine—and the synthetic methylxanthines pentoxifylline and propentofylline. Methylxanthine-regulated genes were found in pathways involved in processes including oxidative stress, lipid homeostasis, signal transduction, transcriptional regulation, as well as pathways involved in neuronal function. Interestingly, multivariate analysis revealed different or inverse effects on gene regulation for caffeine compared to the other methylxanthines, which was further substantiated by multiple comparison analysis, pointing out a distinct role for caffeine in gene regulation. Our results not only underline the beneficial effects of methylxanthines in the regulation of genes in neuroblastoma wild-type cells linked to neurodegenerative diseases in general, but also demonstrate that individual methylxanthines like caffeine mediate unique or inverse expression patterns. This suggests that the replacement of single methylxanthines by others could result in unexpected effects, which could not be anticipated by the comparison to other substances in this substance class.
Collapse
|
17
|
Singh S, Fatima Z, Ahmad K, Hameed S. Repurposing of respiratory drug theophylline against Candida albicans: mechanistic insights unveil alterations in membrane properties and metabolic fitness. J Appl Microbiol 2020; 129:860-875. [PMID: 32320111 DOI: 10.1111/jam.14669] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/01/2020] [Accepted: 04/16/2020] [Indexed: 01/01/2023]
Abstract
AIMS Drug repurposing is an attractive chemotherapeutic strategy that serves to make up for the inadequacy of current antifungal drugs. The present study aims to repurpose theophylline (THP) against Candida albicans. THP is a methylxanthine derived from cocoa beans and tea extracts, generally used as the first-line drug for asthma and other respiratory disorders. METHODS AND RESULTS We investigated the antifungal activity of THP against C. albicans and non-albicans species. Mechanistic insights revealed that THP induces membrane damage. Enhanced ionic disturbances and depleted ergosterol levels with the concomitant rise in membrane fluidity due to elevated flippase activity confirmed the membrane damaging effect. THP impeded the metabolic adaptability of C. albicans by inhibiting malate synthase and isocitrate lyase enzymes of the glyoxylate cycle. In vivo efficacy of THP was depicted by increased survival of C. albicans infected Caenorhabditis elegans model. CONCLUSIONS This study elucidates the antifungal potential of THP with mechanistic insights. SIGNIFICANCE AND IMPACT OF THE STUDY This study unveils the antifungal potential of THP, a known respiratory drug that can be further utilized for a wider range of applications such as combating fungal infections. The effect of THP with the known antifungal drugs can be exploited in the combinatorial drug approach for treating candidiasis.
Collapse
Affiliation(s)
- S Singh
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), India
| | - Z Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), India
| | - K Ahmad
- Department of Pharmaceutical Chemistry, Jamia Hamdard, New Delhi, India
| | - S Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), India
| |
Collapse
|
18
|
Characterizing the antiviral effect of an ATR inhibitor on human immunodeficiency virus type 1 replication. Arch Virol 2020; 165:683-690. [PMID: 32002668 DOI: 10.1007/s00705-020-04531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/18/2020] [Indexed: 10/25/2022]
Abstract
In the search for new antiviral therapies against human immunodeficiency virus type 1 (HIV-1), several cellular targets are being investigated. Ataxia telangiectasia and Rad3-related protein (ATR) has been implicated in HIV-1 replication, namely during retroviral DNA integration. We studied the effect of the ATR inhibitor ETP-46464 on HIV-1 replication in peripheral blood mononuclear cells (PBMCs) and in the persistently HIV-1-infected cell line H61-D. After treatment with ETP-46464, a significant decrease in virus production was observed in both cell systems. Quantification of viral DNA forms in the acutely infected PBMCs suggests that inhibition could take place in the early phase of the viral life cycle before viral DNA integration. Moreover, after treatment of H61-D cells with 3'-azido-3'-deoxythymidine (AZT), which blocks new reverse transcription events, ETP-46464 decreased viral production, suggesting that inhibition of viral replication occurred in the late phase of the life cycle after viral DNA integration. A decrease in virus production after transfection of 293T cells with an HIV-1 infectious molecular clone also suggested that the effect of ETP-46464 is exerted at a post-integration step. We propose that ETP-46464 produces its inhibitory effect on HIV-1 replication by acting in both the early and late phases of the retroviral replication cycle. Thus, ATR could represent a new target for inhibition of HIV-1 replication.
Collapse
|
19
|
Ramamoorthy V, Campa A, Rubens M, Martinez SS, Fleetwood C, Stewart T, Liuzzi JP, George F, Khan H, Li Y, Baum MK. The Relationship Between Caffeine Intake and Immunological and Virological Markers of HIV Disease Progression in Miami Adult Studies on HIV Cohort. Viral Immunol 2017; 30:271-277. [PMID: 28409659 PMCID: PMC5421588 DOI: 10.1089/vim.2016.0148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although there are many studies on adverse health effects of substance use and HIV disease progression, similar studies about caffeine consumption are few. In this study, we investigated the effects of caffeine on immunological and virological markers of HIV disease progression. A convenience sample of 130 clinically stable people living with HIV/AIDS on antiretroviral therapy (65 consuming ≤250 mg/day and 65 consuming >250 mg/day of caffeine) were recruited from the Miami Adult Studies on HIV (MASH) cohort. This study included a baseline and 3-month follow-up visit. Demographics, body composition measures, substance use, Modified Caffeine Consumption Questionnaire (MCCQ), and CD4 count and HIV viral load were obtained for all participants. Multivariable linear regression and Linear Mixed Models (LMMs) were used to understand the effect of caffeine consumption on CD4 count and HIV viral load. The mean age of the cohort was 47.9 ± 6.4 years, 60.8% were men and 75.4% were African Americans. All participants were on ART during both the visits. Mean caffeine intake at baseline was 337.6 ± 305.0 mg/day and did not change significantly at the 3-month follow-up visit. Multivariable linear regressions after adjustment for covariates showed significant association between caffeine consumption and higher CD4 count (β = 1.532, p = 0.049) and lower HIV viral load (β = -1.067, p = 0.048). LMM after adjustment for covariates showed that the relationship between caffeine and CD4 count (β = 1.720, p = 0.042) and HIV viral load (β = -1.389, p = 0.033) continued over time in a dose-response manner. Higher caffeine consumption was associated with higher CD4 cell counts and lower HIV viral loads indicating beneficial effects on HIV disease progression. Further studies examining biochemical effects of caffeine on CD4 cell counts and viral replication need to be done in the future.
Collapse
Affiliation(s)
| | - Adriana Campa
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida
| | - Muni Rubens
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida
| | - Sabrina S. Martinez
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida
| | | | - Tiffanie Stewart
- Center for Nanoscience and Technology, University of Notre Dame, Notre Dame, Indiana
| | - Juan P. Liuzzi
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida
| | - Florence George
- Department of Mathematics & Statistics, School of Integrated Science and Humanity, Florida International University, Miami, Florida
| | - Hafiz Khan
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Yinghui Li
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida
| | - Marianna K. Baum
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida
| |
Collapse
|
20
|
Soliman ML, Geiger JD, Chen X. Caffeine Blocks HIV-1 Tat-Induced Amyloid Beta Production and Tau Phosphorylation. J Neuroimmune Pharmacol 2016; 12:163-170. [PMID: 27629410 DOI: 10.1007/s11481-016-9707-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/02/2016] [Indexed: 12/31/2022]
Abstract
The increased life expectancy of people living with HIV-1 who are taking effective anti-retroviral therapeutics is now accompanied by increased Alzheimer's disease (AD)-like neurocognitive problems and neuropathological features such as increased levels of amyloid beta (Aβ) and phosphorylated tau proteins. Others and we have shown that HIV-1 Tat promotes the development of AD-like pathology. Indeed, HIV-1 Tat once endocytosed into neurons can alter morphological features and functions of endolysosomes as well as increase Aβ generation. Caffeine has been shown to have protective actions against AD and based on our recent findings that caffeine can inhibit endocytosis in neurons and can prevent neuronal Aβ generation, we tested the hypothesis that caffeine blocks HIV-1 Tat-induced Aβ generation and tau phosphorylation. In SH-SY5Y cells over-expressing wild-type amyloid beta precursor protein (AβPP), we demonstrated that HIV-1 Tat significantly increased secreted levels and intracellular levels of Aβ as well as cellular protein levels of phosphorylated tau. Caffeine significantly decreased levels of secreted and cellular levels of Aβ, and significantly blocked HIV-1 Tat-induced increases in secreted and cellular levels of Aβ. Caffeine also blocked HIV-1 Tat-induced increases in cellular levels of phosphorylated tau. Furthermore, caffeine blocked HIV-1 Tat-induced endolysosome dysfunction as indicated by decreased protein levels of vacuolar-ATPase and increased protein levels of cathepsin D. These results further implicate endolysosome dysfunction in the pathogenesis of AD and HAND, and by virtue of its ability to prevent and/or block neuropathological features associated with AD and HAND caffeine might find use as an effective adjunctive therapeutic agent.
Collapse
Affiliation(s)
- Mahmoud L Soliman
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 504 Hamline St., Grand Forks, ND, 58203, USA
| | - Jonathan D Geiger
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 504 Hamline St., Grand Forks, ND, 58203, USA.
| | - Xuesong Chen
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 504 Hamline St., Grand Forks, ND, 58203, USA
| |
Collapse
|
21
|
Bragança M, Marinho M, Marques J, Moreira R, Palha A, Marques-Teixeira J, Esteves M. The influence of espresso coffee on neurocognitive function in HIV-infected patients. AIDS Care 2016; 28:1149-53. [PMID: 26932511 DOI: 10.1080/09540121.2016.1153589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The aim of our study was to evaluate the impact of coffee intake on cognitive function in persons living with HIV (PLWH). 130 PLWH with CD4 > 200 cells/mm(3), undetectable viral load, treated with HAART were included. A structured interview was applied and relevant clinical and laboratory data were assessed, including coffee intake. For neuropsychological assessment, the HIV Neurobehavioral Research Center Battery was chosen. Univariate nonparametric statistics and multivariate regression model were used. A significant association between espresso coffee use and a better cognitive function was verified in five of the eight psychometric measurements. In the multivariate analysis, after variable adjustment, linear regression analysis showed that coffee intake was a positive predictor for attention/working memory, executive functions and Global Deficit Score. Although the mechanisms behind the influence of caffeine on cognitive functioning are controversial, regular espresso coffee intake may have favourable effects on cognitive deterioration caused by HIV.
Collapse
Affiliation(s)
- M Bragança
- a Department of Clinical Neurosciences and Mental Health, Faculty of Medicine , University of Porto , Porto , Portugal
| | - M Marinho
- a Department of Clinical Neurosciences and Mental Health, Faculty of Medicine , University of Porto , Porto , Portugal
| | - J Marques
- a Department of Clinical Neurosciences and Mental Health, Faculty of Medicine , University of Porto , Porto , Portugal
| | - R Moreira
- a Department of Clinical Neurosciences and Mental Health, Faculty of Medicine , University of Porto , Porto , Portugal
| | - A Palha
- a Department of Clinical Neurosciences and Mental Health, Faculty of Medicine , University of Porto , Porto , Portugal
| | - J Marques-Teixeira
- a Department of Clinical Neurosciences and Mental Health, Faculty of Medicine , University of Porto , Porto , Portugal
| | - M Esteves
- a Department of Clinical Neurosciences and Mental Health, Faculty of Medicine , University of Porto , Porto , Portugal
| |
Collapse
|
22
|
The DNA damage response and immune signaling alliance: Is it good or bad? Nature decides when and where. Pharmacol Ther 2015; 154:36-56. [PMID: 26145166 DOI: 10.1016/j.pharmthera.2015.06.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/10/2015] [Indexed: 12/15/2022]
Abstract
The characteristic feature of healthy living organisms is the preservation of homeostasis. Compelling evidence highlight that the DNA damage response and repair (DDR/R) and immune response (ImmR) signaling networks work together favoring the harmonized function of (multi)cellular organisms. DNA and RNA viruses activate the DDR/R machinery in the host cells both directly and indirectly. Activation of DDR/R in turn favors the immunogenicity of the incipient cell. Hence, stimulation of DDR/R by exogenous or endogenous insults triggers innate and adaptive ImmR. The immunogenic properties of ionizing radiation, a prototypic DDR/R inducer, serve as suitable examples of how DDR/R stimulation alerts host immunity. Thus, critical cellular danger signals stimulate defense at the systemic level and vice versa. Disruption of DDR/R-ImmR cross talk compromises (multi)cellular integrity, leading to cell-cycle-related and immune defects. The emerging DDR/R-ImmR concept opens up a new avenue of therapeutic options, recalling the Hippocrates quote "everything in excess is opposed by nature."
Collapse
|
23
|
Guendel I, Meltzer BW, Baer A, Dever SM, Valerie K, Guo J, Wu Y, Kehn-Hall K. BRCA1 functions as a novel transcriptional cofactor in HIV-1 infection. Virol J 2015; 12:40. [PMID: 25879655 PMCID: PMC4359766 DOI: 10.1186/s12985-015-0266-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/14/2015] [Indexed: 01/20/2023] Open
Abstract
Background Viruses have naturally evolved elegant strategies to manipulate the host’s cellular machinery, including ways to hijack cellular DNA repair proteins to aid in their own replication. Retroviruses induce DNA damage through integration of their genome into host DNA. DNA damage signaling proteins including ATR, ATM and BRCA1 contribute to multiple steps in the HIV-1 life cycle, including integration and Vpr-induced G2/M arrest. However, there have been no studies to date regarding the role of BRCA1 in HIV-1 transcription. Methods Here we performed various transcriptional analyses to assess the role of BRCA1 in HIV-1 transcription by overexpression, selective depletion, and treatment with small molecule inhibitors. We examined association of Tat and BRCA1 through in vitro binding assays, as well as BRCA1-LTR association by chromatin immunoprecipitation. Results BRCA1 was found to be important for viral transcription as cells that lack BRCA1 displayed severely reduced HIV-1 Tat-dependent transcription, and gain or loss-of-function studies resulted in enhanced or decreased transcription. Moreover, Tat was detected in complex with BRCA1 aa504-802. Small molecule inhibition of BRCA1 phosphorylation effector kinases, ATR and ATM, decreased Tat-dependent transcription, whereas a Chk2 inhibitor showed no effect. Furthermore, BRCA1 was found at the viral promoter and treatment with curcumin and ATM inhibitors decreased BRCA1 LTR occupancy. Importantly, these findings were validated in a highly relevant model of HIV infection and are indicative of BRCA1 phosphorylation affecting Tat-dependent transcription. Conclusions BRCA1 presence at the HIV-1 promoter highlights a novel function of the multifaceted protein in HIV-1 infection. The BRCA1 pathway or enzymes that phosphorylate BRCA1 could potentially be used as complementary host-based treatment for combined antiretroviral therapy, as there are multiple potent ATM inhibitors in development as chemotherapeutics.
Collapse
Affiliation(s)
- Irene Guendel
- National Center for Biodefense & Infectious Diseases, School of Systems Biology, George Mason University, Biomedical Research Lab, 10650 Pyramid Place, MS 1J5, Manassas, VA, 20110, USA.
| | - Beatrix W Meltzer
- National Center for Biodefense & Infectious Diseases, School of Systems Biology, George Mason University, Biomedical Research Lab, 10650 Pyramid Place, MS 1J5, Manassas, VA, 20110, USA.
| | - Alan Baer
- National Center for Biodefense & Infectious Diseases, School of Systems Biology, George Mason University, Biomedical Research Lab, 10650 Pyramid Place, MS 1J5, Manassas, VA, 20110, USA.
| | - Seth M Dever
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298, USA. .,Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| | - Kristoffer Valerie
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| | - Jia Guo
- National Center for Biodefense & Infectious Diseases, School of Systems Biology, George Mason University, Biomedical Research Lab, 10650 Pyramid Place, MS 1J5, Manassas, VA, 20110, USA.
| | - Yuntao Wu
- National Center for Biodefense & Infectious Diseases, School of Systems Biology, George Mason University, Biomedical Research Lab, 10650 Pyramid Place, MS 1J5, Manassas, VA, 20110, USA.
| | - Kylene Kehn-Hall
- National Center for Biodefense & Infectious Diseases, School of Systems Biology, George Mason University, Biomedical Research Lab, 10650 Pyramid Place, MS 1J5, Manassas, VA, 20110, USA.
| |
Collapse
|
24
|
Advances in detection and monitoring of plasma viremia in HIV-infected individuals receiving antiretroviral therapy. Curr Opin HIV AIDS 2013; 8:87-92. [PMID: 23314906 DOI: 10.1097/coh.0b013e32835d80af] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW This review will describe advances in detection and results of monitoring persistent viremia in patients on long-term suppressive therapy. In addition, the review explores the usefulness of these methods in determining the effectiveness of new HIV-1 eradication strategies in purging persistent HIV-1 reservoirs. RECENT FINDINGS Quantification of plasma HIV-1 RNA levels remains essential for determining the success of combination antiretroviral therapy (cART) in treated patients. Recently, several new platforms with improved sensitivity for quantifying HIV-1 RNA have been developed and the application of these assays has revealed that low-level viremia persists in patients on suppressive therapy. In addition, new technological advances such as digital PCR have been proposed to increase the sensitivity of measuring and characterizing persistent HIV-1 viremia. The application of these assays will be important in determining the effectiveness of future HIV-1 eradication strategies. SUMMARY The level of HIV-1 RNA in patient plasma remains an important marker for determining the success of cART. New sensitive assays have found that HIV-1 persists in the plasma of patients on suppressive therapy that may have implications for the clinical management of this disease and strategies for eliminating HIV-1 infection.
Collapse
|
25
|
Johnson IM, Prakash H, Prathiba J, Raghunathan R, Malathi R. Spectral analysis of naturally occurring methylxanthines (theophylline, theobromine and caffeine) binding with DNA. PLoS One 2012; 7:e50019. [PMID: 23236361 PMCID: PMC3517612 DOI: 10.1371/journal.pone.0050019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/17/2012] [Indexed: 12/13/2022] Open
Abstract
Nucleic acids exist in a dynamic equilibrium with a number of molecules that constantly interact with them and regulate the cellular activities. The inherent nature of the structure and conformational integrity of these macromolecules can lead to altered biological activity through proper targeting of nucleic acids binding ligands or drug molecules. We studied the interaction of naturally occurring methylxanthines such as theophylline, theobromine and caffeine with DNA, using UV absorption and Fourier transform infrared (FTIR) spectroscopic methods, and especially monitored their binding affinity in the presence of Mg(2+) and during helix-coil transitions of DNA by temperature (T(m)) or pH melting profiles. The study indicates that all these molecules effectively bind to DNA in a dose dependent manner. The overall binding constants of DNA-theophylline = 3.5×10(3) M(-1), DNA-theobromine = 1.1×10(3) M(-1), and DNA-Caffeine = 3.8×10(3) M(-1). On the other hand T(m)/pH melting profiles showed 24-35% of enhanced binding activity of methylxanthines during helix-coil transitions of DNA rather than to its native double helical structure. The FTIR analysis divulged that theophylline, theobromine and caffeine interact with all the base pairs of DNA (A-T; G-C) and phosphate group through hydrogen bond (H-bond) interaction. In the presence of Mg(2+), methylxanthines altered the structure of DNA from B to A-family. However, the B-family structure of DNA remained unaltered in DNA-methylxanthines complexes or in the absence of Mg(2+). The spectral analyses indicated the order of binding affinity as "caffeine≥theophylline>theobromine" to the native double helical DNA, and "theophylline≥theobromine>caffeine to the denatured form of DNA and in the presence of divalent metal ions.
Collapse
Affiliation(s)
- Irudayam Maria Johnson
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Genetics, Taramani Campus, University of Madras, Chennai, India
- * E-mail: (IMJ); (RM)
| | - Halan Prakash
- National Centre for Ultrafast Processes, Taramani Campus, University of Madras, Chennai, India
| | - Jeyaguru Prathiba
- Department of Genetics, Taramani Campus, University of Madras, Chennai, India
| | | | - Raghunathan Malathi
- Department of Genetics, Taramani Campus, University of Madras, Chennai, India
- * E-mail: (IMJ); (RM)
| |
Collapse
|
26
|
Taneichi D, Iijima K, Doi A, Koyama T, Minemoto Y, Tokunaga K, Shimura M, Kano S, Ishizaka Y. Identification of SNF2h, a chromatin-remodeling factor, as a novel binding protein of Vpr of human immunodeficiency virus type 1. J Neuroimmune Pharmacol 2011; 6:177-87. [PMID: 21519849 DOI: 10.1007/s11481-011-9276-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 03/16/2011] [Indexed: 12/24/2022]
Abstract
Vpr, an accessory gene of human immunodeficiency virus type 1, encodes a virion-associated nuclear protein that plays an important role in the primary viral infection of resting macrophages. It has a variety of biological functions, including roles in a cell cycle abnormality at G(2)/M phase, apoptosis, nuclear transfer of preintegration complex, and DNA double-strand breaks (DSBs), some of which depend on its association with the chromatin of the host cells. Given that DSB signals are postulated to be a positive factor in the viral infection, understanding the mode of chromatin recruitment of Vpr is important. Here, we identified SNF2h, a chromatin-remodeling factor, as a novel binding partner of Vpr involved in its chromatin recruitment. When endogenous SNF2h protein was extensively downregulated by SNF2h small interfering RNA (siRNA), the amount of Vpr loaded on chromatin decreased to about 30% of the control level. Biochemical analysis using a mutant Vpr suggested that Vpr binds SNF2h via HFRIG (amino acids 71-75 depicted by single letters) and the Vpr mutant lacking this motif lost the activity to induce DSB-dependent signals. Consistently, Vpr-induced DSBs were attenuated by extensive downregulaion of endogenous SNF2h. Based on these data, we discuss the role of DSB and DSB signals in the viral infection.
Collapse
Affiliation(s)
- Daiki Taneichi
- Department of Intractable Diseases, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tyagi S, Ochem A, Tyagi M. DNA-dependent protein kinase interacts functionally with the RNA polymerase II complex recruited at the human immunodeficiency virus (HIV) long terminal repeat and plays an important role in HIV gene expression. J Gen Virol 2011; 92:1710-1720. [PMID: 21450944 DOI: 10.1099/vir.0.029587-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
DNA-dependent protein kinase (DNA-PK), a nuclear protein kinase that specifically requires association with DNA for its kinase activity, plays important roles in the regulation of different DNA transactions, including transcription, replication and DNA repair, as well as in the maintenance of telomeres. Due to its large size, DNA-PK is also known to facilitate the activities of other factors by providing the docking platform at their site of action. In this study, by running several chromatin immunoprecipitation assays, we demonstrate the parallel distribution of DNA-PK with RNA polymerase II (RNAP II) along the human immunodeficiency virus (HIV) provirus before and after activation with tumour necrosis factor alpha. The association between DNA-PK and RNAP II is also long-lasting, at least for up to 4 h (the duration analysed in this study). Knockdown of endogenous DNA-PK using specific small hairpin RNAs expressed from lentiviral vectors resulted in significant reduction in HIV gene expression and replication, demonstrating the importance of DNA-PK for HIV gene expression. Sequence analysis of the HIV-1 Tat protein revealed three potential target sites for phosphorylation by DNA-PK and, by using kinase assays, we confirmed that Tat is an effective substrate of DNA-PK. Through peptide mapping, we found that two of these three potential phosphorylation sites are recognized and phosphorylated by DNA-PK. Mutational studies on the DNA-PK target sites of Tat further demonstrated the functional significance of the Tat-DNA-PK interaction. Thus, overall our results clearly demonstrate the functional interaction between DNA-PK and RNAP II during HIV transcription.
Collapse
Affiliation(s)
- Shilpi Tyagi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Wernher and Beit Building (South), Anzio Road, Observatory 7925, Cape Town, South Africa.,National Center for Biodefense and Infectious Diseases, George Mason University, Biomedical Research Laboratory, 10650 Pyramid Place, MS 1J5, Manassas, VA 20110, USA
| | - Alex Ochem
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Wernher and Beit Building (South), Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Mudit Tyagi
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Adelbert Road, Cleveland, OH 44106, USA.,National Center for Biodefense and Infectious Diseases, George Mason University, Biomedical Research Laboratory, 10650 Pyramid Place, MS 1J5, Manassas, VA 20110, USA
| |
Collapse
|
28
|
Yang YX, Guen V, Richard J, Cohen EA, Berthoux L. Cell context-dependent involvement of ATR in early stages of retroviral replication. Virology 2009; 396:272-9. [PMID: 19913868 DOI: 10.1016/j.virol.2009.10.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 09/12/2009] [Accepted: 10/20/2009] [Indexed: 11/19/2022]
Abstract
Retroviral DNA integration leaves behind a single-strand DNA discontinuity at each virus:host DNA junction. It has long been proposed that cellular proteins detect and repair the integrated DNA and that failure to do so might lead to apoptotic cell death, but their identity remains unknown. PIKK family members ATM, DNA-PKcs and ATR have all been proposed to be important for HIV-1 replication, but these findings turned out to be very controversial. In order to clarify their role in retroviral replication, we analyzed the effect of pharmacological inhibitors and of a dominant-negative version of ATR on the replication of retroviruses in cell lines relevant to HIV-1 infection. Our data show that ATR and probably other PIKKs as well are involved in retroviral replication in some but not all cell lines and that ATR increases the frequency of retroviral transduction by a mechanism other than the enhancement of infected cell survival.
Collapse
Affiliation(s)
- Yi-Xin Yang
- Laboratory of retrovirology, University of Québec, 3351 boulevard des Forges, CP500, Trois-Rivières, QC, Canada.
| | | | | | | | | |
Collapse
|
29
|
Abstract
Recognition and repair of DNA damage is critical for maintaining genomic integrity and suppressing tumorigenesis. In eukaryotic cells, the sensing and repair of DNA damage are coordinated with cell cycle progression and checkpoints, in order to prevent the propagation of damaged DNA. The carefully maintained cellular response to DNA damage is challenged by viruses, which produce a large amount of exogenous DNA during infection. Viruses also express proteins that perturb cellular DNA repair and cell cycle pathways, promoting tumorigenesis in their quest for cellular domination. This review presents an overview of strategies employed by viruses to manipulate DNA damage responses and cell cycle checkpoints as they commandeer the cell to maximize their own viral replication. Studies of viruses have identified key cellular regulators and revealed insights into molecular mechanisms governing DNA repair, cell cycle checkpoints, and transformation.
Collapse
Affiliation(s)
- Mira S. Chaurushiya
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Graduate Program, Division of Biology, University of California, San Diego, CA 92093, USA
| | - Matthew D. Weitzman
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
30
|
Interactions of Transposons with the Cellular DNA Repair Machinery. TRANSPOSONS AND THE DYNAMIC GENOME 2009. [DOI: 10.1007/7050_2008_043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
31
|
Zhao F, Hou NB, Yang XL, He X, Liu Y, Zhang YH, Wei CW, Song T, Li L, Ma QJ, Zhong H. Ataxia telangiectasia-mutated-Rad3-related DNA damage checkpoint signaling pathway triggered by hepatitis B virus infection. World J Gastroenterol 2008; 14:6163-70. [PMID: 18985806 PMCID: PMC2761577 DOI: 10.3748/wjg.14.6163] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To explore whether acute cellular DNA damage response is induced upon hepatitis B virus (HBV) infection and the effects of the HBV infection.
METHODS: We incubated HL7702 hepatocytes with HBV-positive serum, mimicking a natural HBV infection process. We used immunoblotting to evaluate protein expression levels in HBV-infected cells or in non-infected cells; immunofluorescence to show ATR foci ands Chk1 phosphorylation foci formation; flow cytometry to analyze the cell cycle and apoptosis; ultraviolet (UV) radiation and ionizing radiation (IR)-treated cells to mimic DNA damage; and Trypan blue staining to count the viable cells.
RESULTS: We found that HBV infection induced an increased steady state of ATR protein and increased phosphorylation of multiple downstream targets including Chk1, p53 and H2AX. In contrast to ATR and its target, the phosphorylated form of ATM at Ser-1981 and its downstream substrate Chk2 phosphorylation at Thr-68 did not visibly increase upon infection. However, the level of Mre11 and p21 were reduced beginning at 0.5 h after HBV-positive serum addition. Also, HBV infection led to transient cell cycle arrest in the S and the G2 phases without accompanying increased apoptosis. Research on cell survival changes upon radiation following HBV infection showed that survival of UV-treated host cells was greatly increased by HBV infection, owing to the reduced apoptosis. Meanwhile, survival of IR-treated host cells was reduced by HBV infection.
CONCLUSION: HBV infection activates ATR DNA damage response to replication stress and abrogates the checkpoint signaling controlled by DNA damage response.
Collapse
|
32
|
Zhao F, Hou NB, Song T, He X, Zheng ZR, Ma QJ, Li L, Zhang YH, Zhong H. Cellular DNA repair cofactors affecting hepatitis B virus infection and replication. World J Gastroenterol 2008; 14:5059-65. [PMID: 18763290 PMCID: PMC2742935 DOI: 10.3748/wjg.14.5059] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether hepatitis B virus (HBV) infection activates DNA damage response and DNA repair cofactors inhibit HBV infection and replication.
METHODS: Human hepatocyte cell line HL7702 was studied. Immunoblotting was performed to test the expression of ataxia telangiectasia-mutated (ATM)-Rad3-related protein (ATR), p21 and the level of phosphorylation of Chk1, p53, H2AX, ATM in HBV-infected or non-infected-cells. Special short RNAi oligos was transfected to induce transient ATR knockdown in HL7702. ATR-ATM chemical inhibitors caffeine (CF) and theophylline (TP), or Chk1 inhibitor 7-hydroxystaurosporine (UCN01) was studied to determine whether they suppress cellular DNA damage response and MG132 inhibits proteasome.
RESULTS: The ATR checkpoint pathway, responding to single-strand breaks in DNA, was activated in response to HBV infection. ATR knockdown cells decreased the HBV DNA yields, implying that HBV infection and replication could activate and exploit the activated DNA damage response. CF/TP or UCN01 reduced the HBV DNA yield by 70% and 80%, respectively. HBV abrogated the ATR-dependent DNA damage signaling pathway by degrading p21, and introduction of the p21 protein before HBV infection reduced the HBV DNA yield. Consistent with this result, p21 accumulation after MG132 treatment also sharply decreased the HBV DNA yield.
CONCLUSION: HBV infection can be treated with therapeutic approaches targeting host cell proteins by inhibiting a cellular gene required for HBV replication or by restoring a response abrogated by HBV, thus providing a potential approach to the prevention and treatment of HBV infection.
Collapse
|
33
|
Perfettini JL, Nardacci R, Bourouba M, Subra F, Gros L, Séror C, Manic G, Rosselli F, Amendola A, Masdehors P, Chessa L, Novelli G, Ojcius DM, Siwicki JK, Chechlinska M, Auclair C, Regueiro JR, de Thé H, Gougeon ML, Piacentini M, Kroemer G. Critical involvement of the ATM-dependent DNA damage response in the apoptotic demise of HIV-1-elicited syncytia. PLoS One 2008; 3:e2458. [PMID: 18560558 PMCID: PMC2423469 DOI: 10.1371/journal.pone.0002458] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 04/29/2008] [Indexed: 11/19/2022] Open
Abstract
DNA damage can activate the oncosuppressor protein ataxia telangiectasia mutated (ATM), which phosphorylates the histone H2AX within characteristic DNA damage foci. Here, we show that ATM undergoes an activating phosphorylation in syncytia elicited by the envelope glycoprotein complex (Env) of human immunodeficiency virus-1 (HIV-1) in vitro. This was accompanied by aggregation of ATM in discrete nuclear foci that also contained phospho-histone H2AX. DNA damage foci containing phosphorylated ATM and H2AX were detectable in syncytia present in the brain or lymph nodes from patients with HIV-1 infection, as well as in a fraction of blood leukocytes, correlating with viral status. Knockdown of ATM or of its obligate activating factor NBS1 (Nijmegen breakage syndrome 1 protein), as well as pharmacological inhibition of ATM with KU-55933, inhibited H2AX phosphorylation and prevented Env-elicited syncytia from undergoing apoptosis. ATM was found indispensable for the activation of MAP kinase p38, which catalyzes the activating phosphorylation of p53 on serine 46, thereby causing p53 dependent apoptosis. Both wild type HIV-1 and an HIV-1 mutant lacking integrase activity induced syncytial apoptosis, which could be suppressed by inhibiting ATM. HIV-1-infected T lymphoblasts from patients with inactivating ATM or NBS1 mutations also exhibited reduced syncytial apoptosis. Altogether these results indicate that apoptosis induced by a fusogenic HIV-1 Env follows a pro-apoptotic pathway involving the sequential activation of ATM, p38MAPK and p53.
Collapse
Affiliation(s)
| | - Roberta Nardacci
- National Institute for Infectious Diseases “Lazzaro Spallanzani”, Rome, Italy
| | | | - Frédéric Subra
- CNRS UMR 8113 LBPA, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Laurent Gros
- CNRS UMR 8113 LBPA, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Claire Séror
- INSERM U848, Institut Gustave Roussy, Villejuif, France
| | - Gwenola Manic
- INSERM U848, Institut Gustave Roussy, Villejuif, France
| | | | - Alessandra Amendola
- National Institute for Infectious Diseases “Lazzaro Spallanzani”, Rome, Italy
| | - Peggy Masdehors
- Antiviral Immunity, Biotherapy and Vaccine Unit, Department of Infection and Epidemiology, Institut Pasteur, Paris, France
| | - Luciana Chessa
- II Faculty of Medicine, University of Rome “La Sapienza”, Rome, Italy
| | - Giuseppe Novelli
- Department of Biopathology and Diagnosing Imaging, University of Rome “Tor Vergata”, Rome, Italy
| | - David M. Ojcius
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Jan Konrad Siwicki
- Department of Immunology, M. Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Magdalena Chechlinska
- Department of Immunology, M. Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Christian Auclair
- CNRS UMR 8113 LBPA, Ecole Normale Supérieure de Cachan, Cachan, France
| | - José R. Regueiro
- Imunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Hugues de Thé
- CNRS UPR 9051, Université de Paris VII, Hôpital St. Louis, Paris, France
| | - Marie-Lise Gougeon
- Antiviral Immunity, Biotherapy and Vaccine Unit, Department of Infection and Epidemiology, Institut Pasteur, Paris, France
| | - Mauro Piacentini
- National Institute for Infectious Diseases “Lazzaro Spallanzani”, Rome, Italy
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Guido Kroemer
- INSERM U848, Institut Gustave Roussy, Villejuif, France
- * E-mail:
| |
Collapse
|
34
|
Smith JA, Nunnari G, Preuss M, Pomerantz RJ, Daniel R. Pentoxifylline suppresses transduction by HIV-1-based vectors. Intervirology 2007; 50:377-86. [PMID: 17938572 DOI: 10.1159/000109752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 08/02/2007] [Indexed: 12/24/2022] Open
Abstract
Pentoxifylline, a caffeine-related compound, was shown to suppress human immunodeficiency virus type 1 (HIV-1) replication. This effect is thought to be mediated by inhibition of tumor necrosis factor-alpha (TNFalpha)-mediated long-terminal repeat (LTR)-driven expression. We now demonstrate that pentoxifylline efficiently inhibits transduction by HIV-1-based vectors. This latter effect is independent of LTR-driven expression, and correlates with a reduced efficiency of the completion of the integration process in infected cells. Finally, the effect of pentoxifylline is dramatically reduced in cells expressing a dominant negative ATR protein, and in primary human cells that exhibit low level of ATR activity, suggesting that the effect of pentoxifylline on HIV-1 transduction and replication is at least partly mediated by suppression of the ATR kinase.
Collapse
Affiliation(s)
- Johanna A Smith
- Division of Infectious Diseases, Center for Human Virology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
35
|
S-phase checkpoint pathways stimulate the mobility of the retrovirus-like transposon Ty1. Mol Cell Biol 2007; 27:8874-85. [PMID: 17923678 DOI: 10.1128/mcb.01095-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mobility of the Ty1 retrotransposon in the yeast Saccharomyces cerevisiae is restricted by a large collection of proteins that preserve the integrity of the genome during replication. Several of these repressors of Ty1 transposition (Rtt)/genome caretakers are orthologs of mammalian retroviral restriction factors. In rtt/genome caretaker mutants, levels of Ty1 cDNA and mobility are increased; however, the mechanisms underlying Ty1 hypermobility in most rtt mutants are poorly characterized. Here, we show that either or both of two S-phase checkpoint pathways, the replication stress pathway and the DNA damage pathway, partially or strongly stimulate Ty1 mobility in 19 rtt/genome caretaker mutants. In contrast, neither checkpoint pathway is required for Ty1 hypermobility in two rtt mutants that are competent for genome maintenance. In rtt101delta mutants, hypermobility is stimulated through the DNA damage pathway components Rad9, Rad24, Mec1, Rad53, and Dun1 but not Chk1. We provide evidence that Ty1 cDNA is not the direct target of the DNA damage pathway in rtt101delta mutants; instead, levels of Ty1 integrase and reverse transcriptase proteins, as well as reverse transcriptase activity, are significantly elevated. We propose that DNA lesions created in the absence of Rtt/genome caretakers trigger S-phase checkpoint pathways to stimulate Ty1 reverse transcriptase activity.
Collapse
|
36
|
Maxwell PH, Curcio MJ. Host factors that control long terminal repeat retrotransposons in Saccharomyces cerevisiae: implications for regulation of mammalian retroviruses. EUKARYOTIC CELL 2007; 6:1069-80. [PMID: 17496126 PMCID: PMC1951103 DOI: 10.1128/ec.00092-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Patrick H Maxwell
- Center for Medical Sciences, Wadsworth Center, PO Box 2002, Albany, NY 12201-2002, USA
| | | |
Collapse
|
37
|
Bagley J, Singh G, Iacomini J. Regulation of Oxidative Stress Responses by Ataxia-Telangiectasia Mutated Is Required for T Cell Proliferation. THE JOURNAL OF IMMUNOLOGY 2007; 178:4757-63. [PMID: 17404255 DOI: 10.4049/jimmunol.178.8.4757] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mutations in the gene encoding ataxia-telangiectasia (A-T) mutated (Atm) cause the disease A-T, characterized by immunodeficiency, the molecular basis of which is not known. Following stimulation through the TCR, Atm-deficient T cells and normal T cells in which Atm is inhibited undergo apoptosis rather than proliferation. Apoptosis is prevented by scavenging reactive oxygen species (ROS) during activation. Atm therefore plays a critical role in T cell proliferation by regulating responses to ROS generated following T cell activation. The inability of Atm-deficient T cells to control responses to ROS is therefore the molecular basis of immunodeficiency associated with A-T.
Collapse
Affiliation(s)
- Jessamyn Bagley
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
38
|
Lilley CE, Schwartz RA, Weitzman MD. Using or abusing: viruses and the cellular DNA damage response. Trends Microbiol 2007; 15:119-26. [PMID: 17275307 DOI: 10.1016/j.tim.2007.01.003] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 01/04/2007] [Accepted: 01/23/2007] [Indexed: 11/29/2022]
Abstract
During infection, viruses attempt to hijack the cell while the host responds with various defense systems. Traditional defenses include the interferon response and apoptosis, but recent work suggests that this antiviral arsenal also includes the cellular DNA damage response machinery. The observation of interactions between viruses and cellular DNA repair proteins has not only uncovered new complexities of the virus-host interaction but is also reinforcing the view that viruses can reveal key regulators of cellular pathways through the proteins they target.
Collapse
Affiliation(s)
- Caroline E Lilley
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
39
|
Abstract
HIV-1 integrase, which catalyzes the joining of viral DNA to the host cell DNA, has attracted considerable attention as a target for the design and screening of novel anti-HIV drugs as it is essential for virus replication and the establishment of persistent infection. Progress in the identification of different classes of compounds that block integrase activity has been summarized recently in several excellent reviews. Here, we present a brief overview of integrase inhibition, highlighting some of the unusual properties of this protein and important considerations in searching for potential new inhibitors and their evaluation.
Collapse
Affiliation(s)
- Joseph Ramcharan
- Locus Pharmaceuticals Inc., 4 Valley Square, 512 East Township Line Road, Blue Bell, PA 19422, USA
| | - Anna Marie Skalka
- Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, PA 19111, USA
| |
Collapse
|
40
|
Nakai-Murakami C, Shimura M, Kinomoto M, Takizawa Y, Tokunaga K, Taguchi T, Hoshino S, Miyagawa K, Sata T, Kurumizaka H, Yuo A, Ishizaka Y. HIV-1 Vpr induces ATM-dependent cellular signal with enhanced homologous recombination. Oncogene 2006; 26:477-86. [PMID: 16983346 DOI: 10.1038/sj.onc.1209831] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An ATM-dependent cellular signal, a DNA-damage response, has been shown to be involved during infection of human immunodeficiency virus type-1 (HIV-1), and a high incidence of malignant tumor development has been observed in HIV-1-positive patients. Vpr, an accessory gene product of HIV-1, delays the progression of the cell cycle at the G2/M phase, and ATR-Chk1-Wee-1, another DNA-damage signal, is a proposed cellular pathway responsible for the Vpr-induced cell cycle arrest. In this study, we present evidence that Vpr also activates ATM, and induces expression of gamma-H2AX and phosphorylation of Chk2. Strikingly, Vpr was found to stimulate the focus formation of Rad51 and BRCA1, which are involved in repair of DNA double-strand breaks (DSBs) by homologous recombination (HR), and biochemical analysis revealed that Vpr dissociates the interaction of p53 and Rad51 in the chromatin fraction, as observed under irradiation-induced DSBs. Vpr was consistently found to increase the rate of HR in the locus of I-SceI, a rare cutting-enzyme site that had been introduced into the genome. An increase of the HR rate enhanced by Vpr was attenuated by an ATM inhibitor, KU55933, suggesting that Vpr-induced DSBs activate ATM-dependent cellular signal that enhances the intracellular recombination potential. In context with a recent report that KU55933 attenuated the integration of HIV-1 into host genomes, we discuss the possible role of Vpr-induced DSBs in viral integration and also in HIV-1 associated malignancy.
Collapse
Affiliation(s)
- C Nakai-Murakami
- Department of Intractable Diseases, International Medical Center of Japan, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Currently, there are three distinct mechanistic classes of antiretrovirals: inhibitors of the HIV- 1 reverse transcriptase and protease enzymes and inhibitors of HIV entry, including receptor and coreceptor binding and cell fusion. A new drug class that inhibits the HIV-1 integrase enzyme (IN) is in development and may soon be available in the clinic. IN is an attractive drug target because it is essential for a stable and productive HIV-1 infection and there is no mammalian homologue of IN. Inhibitors of integrase enzyme (INI) block the integration of viral double-stranded DNA into the host cell's chromosomal DNA. HIV-1 integration has many potential steps that can be inhibited and several new compounds that target specific integration steps have been identified by drug developers. Recently, two INIs, GS-9137 and MK-0518, demonstrated promising early clinical trial results and have been advanced into later stage trials. In this review, we describe how IN facilitates HIV-1 integration, the needed enzyme cofactors, and the resultant byproducts created during integration. Furthermore, we review the different INIs under development, their mechanism of actions, site of IN inhibition, potency, resistance patterns, and discuss the early clinical trial results.
Collapse
Affiliation(s)
- Max Lataillade
- Division of Infectious Diseases, Yale University School of Medicine, LLCI 100D, 300 Cedar Street, Suite 169, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
42
|
Smith JA, Daniel R. Following the path of the virus: the exploitation of host DNA repair mechanisms by retroviruses. ACS Chem Biol 2006; 1:217-26. [PMID: 17163676 DOI: 10.1021/cb600131q] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Numerous host cellular cofactors are involved in the life cycle of retroviruses. Importantly, DNA repair machinery of infected cells is activated by retroviruses and retroviral vectors during the process of integration and host cell DNA repair proteins are employed to create a fully integrated provirus. The full delineation of these repair mechanisms that are triggered by retroviruses also has implications outside of the field of retrovirology. It will undoubtedly be of interest to developers of gene therapy and will also further facilitate our understanding of DNA repair and cancer. This review gives a brief summary of the accomplishments in the field of DNA repair and retroviral integration and the opportunities that this area of science provides with regards to the elucidation of repair mechanisms, in the context of retroviral infection.
Collapse
Affiliation(s)
- Johanna A Smith
- Division of Infectious Diseases--Center for Human Virology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
43
|
Gasior SL, Wakeman TP, Xu B, Deininger PL. The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol 2006; 357:1383-93. [PMID: 16490214 PMCID: PMC4136747 DOI: 10.1016/j.jmb.2006.01.089] [Citation(s) in RCA: 368] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 01/25/2006] [Accepted: 01/26/2006] [Indexed: 11/28/2022]
Abstract
Long interspersed element-1 (L1) is an autonomous retroelement that is active in the human genome. The proposed mechanism of insertion for L1 suggests that cleavage of both strands of genomic DNA is required. We demonstrate that L1 expression leads to a high level of double-strand break (DSB) formation in DNA using immunolocalization of gamma-H2AX foci and the COMET assay. Similar to its role in mediating DSB repair in response to radiation, ATM is required for L1-induced gamma-H2AX foci and for L1 retrotransposition. This is the first characterization of a DNA repair response from expression of a non-long terminal repeat (non-LTR) retrotransposon in mammalian cells as well as the first demonstration that a host DNA repair gene is required for successful integration. Notably, the number of L1-induced DSBs is greater than the predicted numbers of successful insertions, suggesting a significant degree of inefficiency during the integration process. This result suggests that the endonuclease activity of endogenously expressed L1 elements could contribute to DSB formation in germ-line and somatic tissues.
Collapse
Affiliation(s)
- Stephen L. Gasior
- Tulane Cancer Center and Department of Epidemiology Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112 USA
| | - Timothy P. Wakeman
- Stanley S. Scott Cancer Center and Department of Genetics Louisiana State University Health Sciences Center, 533 Bolivar Street, Room 406 New Orleans, LA 70112, USA
| | - Bo Xu
- Stanley S. Scott Cancer Center and Department of Genetics Louisiana State University Health Sciences Center, 533 Bolivar Street, Room 406 New Orleans, LA 70112, USA
| | - Prescott L. Deininger
- Tulane Cancer Center and Department of Epidemiology Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112 USA
| |
Collapse
|
44
|
Abstract
Many viruses, with distinct replication strategies, activate DNA-damage response pathways, including the lentivirus human immunodeficiency virus (HIV) and the DNA viruses Epstein-Barr virus (EBV), herpes simplex virus 1, adenovirus and SV40. DNA-damage response pathways involving DNA-dependent protein kinase, ataxia-telengiectasia mutated (ATM) and 'ataxia-telengiectasia and Rad3-related' (ATR) have all been implicated. This review focuses on the effects of HIV and EBV replication on DNA repair pathways. It has been suggested that activation of cellular DNA repair and recombination enzymes is beneficial for viral replication, as illustrated by the ability of suppressors of the ATM and ATR family to inhibit HIV replication. However, activation of DNA-damage response pathways can also promote apoptosis. Viruses can tailor the cellular response by suppressing downstream signalling from DNA-damage sensors, as exemplified by EBV. New small-molecule inhibitors of the DNA-damage response pathways could therefore be of value to treat viral infections.
Collapse
Affiliation(s)
- Alison Sinclair
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Sarah Yarranton
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK. Tel: +44 (0)1273 678 194; Fax: +44 1273 678 433;
| | - Celine Schelcher
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK. Tel: +44 (0)1273 678 194; Fax +44 1273 678 433;
| |
Collapse
|