1
|
Marinho LDSS, Andrade MCR, Lopes CADA, Coelho da Silva KVG, Gama E Souza KDM, Machado-Santos C. Immunohistochemical identification of ACE-2 (SARS-COV II entry mechanism) in the gastrointestinal tract, kidney and lung of rhesus monkeys (Macaca mulatta) and squirrel monkeys (Saimiri sciureus). Tissue Cell 2025; 93:102711. [PMID: 39787940 DOI: 10.1016/j.tice.2024.102711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/15/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
SARS-Cov-2 is a corona virus that causes COVID-19 disease, a viral infection responsible for the pandemic decreed by the World Health Organization in March 2020. Angiotensin-converting enzyme 2 (ACE-2) functions as the main receptor for SARS-Cov-2. The study aimed to detect the expression of ACE-2 in the gastrointestinal tract, kidney, and lung in the rhesus monkeys and squirrel monkeys. The sections from 18 rhesus monkey and 17 squirrel monkeys were incubated with rabbit polyclonal antibody to ACE2 (ab65863). In the lung of the rhesus monkeys, the presence of ACE-2 was noted in the bronchial mucosa of the respiratory epithelium. In the kidney, there was irregular in the proximal convoluted tubules. In the pyloric stomach, duodenum and in the large intestine it was observed on the surface of the lining epithelium. In the lung of the squirrel monkeys, this marking was present in both the ciliated cylindrical and goblet cell sof the bronchi. In the kidney light marking was observed along the surfasse of the cubic epithelium of the proximal convoluted tubules and in the renal glomerulus. No markings were observed throughout the stomach and intense staining was observed along the surfasse of the intestinal epithelium of the duodenum, jejunum and ileum, as well as in the intestinal glands. In our study, we can observe not able differences in the distribution of ACE2 between the two species of primates analysed. These differences must be considered in experimental studies on this disease, which continues to be a topic of notable importance for Public Health.
Collapse
Affiliation(s)
- Larissa Dos Santos Sebould Marinho
- Laboratory of Teaching and Research in Histology and Comparative Embryology (LEPHEC), Biomedical Institute, Fluminense Federal University, Niterói, RJ CEP 24210-130, Brazil
| | | | | | - Kassia Valéria Gomes Coelho da Silva
- Department of Pathology and Veterinary Clinic, Faculty of Veterinary, Fluminense Federal University, Vital Brazil/Santa Rosa, Niterói, RJ 24230-340, Brazil
| | - Kauet de Matos Gama E Souza
- Laboratory of Teaching and Research in Histology and Comparative Embryology (LEPHEC), Biomedical Institute, Fluminense Federal University, Niterói, RJ CEP 24210-130, Brazil
| | - Clarice Machado-Santos
- Laboratory of Teaching and Research in Histology and Comparative Embryology (LEPHEC), Biomedical Institute, Fluminense Federal University, Niterói, RJ CEP 24210-130, Brazil.
| |
Collapse
|
2
|
Jha SK, Imran M, Jha LA, Hasan N, Panthi VK, Paudel KR, Almalki WH, Mohammed Y, Kesharwani P. A Comprehensive review on Pharmacokinetic Studies of Vaccines: Impact of delivery route, carrier-and its modulation on immune response. ENVIRONMENTAL RESEARCH 2023; 236:116823. [PMID: 37543130 DOI: 10.1016/j.envres.2023.116823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
The lack of knowledge about the absorption, distribution, metabolism, and excretion (ADME) of vaccines makes former biopharmaceutical optimization difficult. This was shown during the COVID-19 immunization campaign, where gradual booster doses were introduced.. Thus, understanding vaccine ADME and its effects on immunization effectiveness could result in a more logical vaccine design in terms of formulation, method of administration, and dosing regimens. Herein, we will cover the information available on vaccine pharmacokinetics, impacts of delivery routes and carriers on ADME, utilization and efficiency of nanoparticulate delivery vehicles, impact of dose level and dosing schedule on the therapeutic efficacy of vaccines, intracellular and endosomal trafficking and in vivo fate, perspective on DNA and mRNA vaccines, new generation sequencing and mathematical models to improve cancer vaccination and pharmacology, and the reported toxicological study of COVID-19 vaccines. Altogether, this review will enhance the reader's understanding of the pharmacokinetics of vaccines and methods that can be implied in delivery vehicle design to improve the absorption and distribution of immunizing agents and estimate the appropriate dose to achieve better immunogenic responses and prevent toxicities.
Collapse
Affiliation(s)
- Saurav Kumar Jha
- Department of Biomedicine, Health & Life Convergence Sciences, Mokpo National University, Muan-gun, Jeonnam, 58554, Republic of Korea; Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India.
| | - Mohammad Imran
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Laxmi Akhileshwar Jha
- H. K. College of Pharmacy, Mumbai University, Pratiksha Nagar, Jogeshwari, West Mumbai, 400102, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Vijay Kumar Panthi
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Science, Centenary Institute and University of Technology Sydney, Sydney, 2007, Australia
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 24381, Saudi Arabia
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
3
|
de Luca BG, Bastos AL, da S Souza ASF, Abidu-Figueiredo M, Machado-Santos C. 5HT expression in the stomach and duodenum of the Rhesus Monkey (Macaca mulatta). Tissue Cell 2020; 65:101350. [PMID: 32746994 DOI: 10.1016/j.tice.2020.101350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 10/24/2022]
Abstract
This study aims to provide a histological description of different regions of the gastric and duodenal mucosa in Rhesus monkey, as well as to analyze the distribution and the relative frequency of 5-HT. The cardia region mucosa consists of simple columnar epithelium PAS + and AB + and the 5-HT cells were observed at the base of the gland (QA [5-HT cells]/mm²) = 8.72 ± 4.98). The body region, has a smaller number of glands. The 5-HT cells were found predominant in the base of the gastric glands. QA= 6.96 ± 3.81. When compared to body region, the stomach fundus has smaller gastric pits. The 5-HT cells are found at the base of the glands near the main cells. QA = 5.29 ± 2.09. The pylorus region was found to have deep pits and well-developed gastric glands. The 5-HT cells are scarce, at the base of the pyloric gland. QA = 1.18 ± 1.36. The duodenum presented goblet cells strong PAS + and AB +. 5-HT cells were found both in the lining epithelium and in the intestinal glands. QA = 8.16 ± 2.59.
Collapse
Affiliation(s)
- B G de Luca
- Laboratory of Teaching and Research in Histology and Comparative Embryology (LEPHEC), Federal Fluminense University, Niterói, RJ, Brazil
| | - A L Bastos
- Laboratory of Teaching and Research in Histology and Comparative Embryology (LEPHEC), Federal Fluminense University, Niterói, RJ, Brazil
| | - A S F da S Souza
- Postgraduate Program in Animal Science - CCTA, North Fluminense State University, Campos, RJ, Brazil
| | - M Abidu-Figueiredo
- Postgraduate in Animal Biology, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - C Machado-Santos
- Laboratory of Teaching and Research in Histology and Comparative Embryology (LEPHEC), Federal Fluminense University, Niterói, RJ, Brazil.
| |
Collapse
|
4
|
|
5
|
Koday MT, Leonard JA, Munson P, Forero A, Koday M, Bratt DL, Fuller JT, Murnane R, Qin S, Reinhart TA, Duus K, Messaoudi I, Hartman AL, Stefano-Cole K, Morrison J, Katze MG, Fuller DH. Multigenic DNA vaccine induces protective cross-reactive T cell responses against heterologous influenza virus in nonhuman primates. PLoS One 2017; 12:e0189780. [PMID: 29267331 PMCID: PMC5739435 DOI: 10.1371/journal.pone.0189780] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 12/01/2017] [Indexed: 01/19/2023] Open
Abstract
Recent avian and swine-origin influenza virus outbreaks illustrate the ongoing threat of influenza pandemics. We investigated immunogenicity and protective efficacy of a multi-antigen (MA) universal influenza DNA vaccine consisting of HA, M2, and NP antigens in cynomolgus macaques. Following challenge with a heterologous pandemic H1N1 strain, vaccinated animals exhibited significantly lower viral loads and more rapid viral clearance when compared to unvaccinated controls. The MA DNA vaccine induced robust serum and mucosal antibody responses but these high antibody titers were not broadly neutralizing. In contrast, the vaccine induced broadly-reactive NP specific T cell responses that cross-reacted with the challenge virus and inversely correlated with lower viral loads and inflammation. These results demonstrate that a MA DNA vaccine that induces strong cross-reactive T cell responses can, independent of neutralizing antibody, mediate significant cross-protection in a nonhuman primate model and further supports development as an effective approach to induce broad protection against circulating and emerging influenza strains.
Collapse
Affiliation(s)
- Merika T. Koday
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Jolie A. Leonard
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Paul Munson
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Adriana Forero
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Michael Koday
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States of America
| | - Debra L. Bratt
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States of America
| | - James T. Fuller
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Robert Murnane
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States of America
| | - Shulin Qin
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Todd A. Reinhart
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Karen Duus
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States of America
- Basic Sciences Department, College of Osteopathic Medicine, Touro University Nevada, Henderson, NV, United States of America
| | - Ilhem Messaoudi
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Amy L. Hartman
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Kelly Stefano-Cole
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Juliet Morrison
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Michael G. Katze
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States of America
| | - Deborah Heydenburg Fuller
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States of America
- * E-mail:
| |
Collapse
|
6
|
Deressa T, Stoecklinger A, Wallner M, Himly M, Kofler S, Hainz K, Brandstetter H, Thalhamer J, Hammerl P. Structural integrity of the antigen is a determinant for the induction of T-helper type-1 immunity in mice by gene gun vaccines against E. coli beta-galactosidase. PLoS One 2014; 9:e102280. [PMID: 25025197 PMCID: PMC4099185 DOI: 10.1371/journal.pone.0102280] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/17/2014] [Indexed: 12/14/2022] Open
Abstract
The type of immune response is critical for successful protection and typically determined by pathogen-associated danger molecules. In contrast, protein antigens are usually regarded as passive target structures. Here, we provide evidence that the structure of the antigen can profoundly influence the type of response that is elicited under else identical conditions. In mice, gene gun vaccines induce predominantly Th2-biased immune reactions against most antigens. One exception is E. coli beta-galactosidase (βGal) that induces a balanced Th1/Th2 response. Because both, the delivered material (plasmid DNA-coated gold particles) as well as the procedure (biolistic delivery to the skin surface) is the same as for other antigens we hypothesized that Th1 induction could be a function of βGal protein expressed in transfected cells. To test this we examined gene gun vaccines encoding structural or functional variants of the antigen. Employing a series of gene gun vaccines encoding individual structural domains of βGal, we found that neither of them induced IgG2a antibodies. Even disruption of the homo-tetramer association of the native protein by deletion of a few N-terminal amino acids was sufficient to abrogate IgG2a production. However, enzymatically inactive βGal with only one point mutation in the catalytic center retained the ability to induce Th1 reactions. Thus, structural but not functional integrity of the antigen must be retained for Th1 induction. βGal is not a Th1 adjuvant in the classical sense because neither were βGal-transgenic ROSA26 mice particularly Th1-biased nor did co-administration of a βGal-encoding plasmid induce IgG2a against other antigens. Despite this, gene gun vaccines elicited Th1 reactions to antigens fused to the open reading frame of βGal. We interpret these findings as evidence that different skin-borne antigens may be differentially handled by the immune system and that the three-dimensional structure of an antigen is an important determinant for this.
Collapse
Affiliation(s)
- Tekalign Deressa
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | - Michael Wallner
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Martin Himly
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Stefan Kofler
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Katrina Hainz
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Hans Brandstetter
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Josef Thalhamer
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Peter Hammerl
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
7
|
|
8
|
Almeida RR, Rosa DS, Ribeiro SP, Santana VC, Kallás EG, Sidney J, Sette A, Kalil J, Cunha-Neto E. Broad and cross-clade CD4+ T-cell responses elicited by a DNA vaccine encoding highly conserved and promiscuous HIV-1 M-group consensus peptides. PLoS One 2012; 7:e45267. [PMID: 23028895 PMCID: PMC3445454 DOI: 10.1371/journal.pone.0045267] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/15/2012] [Indexed: 11/19/2022] Open
Abstract
T-cell based vaccine approaches have emerged to counteract HIV-1/AIDS. Broad, polyfunctional and cytotoxic CD4+ T-cell responses have been associated with control of HIV-1 replication, which supports the inclusion of CD4+ T-cell epitopes in vaccines. A successful HIV-1 vaccine should also be designed to overcome viral genetic diversity and be able to confer immunity in a high proportion of immunized individuals from a diverse HLA-bearing population. In this study, we rationally designed a multiepitopic DNA vaccine in order to elicit broad and cross-clade CD4+ T-cell responses against highly conserved and promiscuous peptides from the HIV-1 M-group consensus sequence. We identified 27 conserved, multiple HLA-DR-binding peptides in the HIV-1 M-group consensus sequences of Gag, Pol, Nef, Vif, Vpr, Rev and Vpu using the TEPITOPE algorithm. The peptides bound in vitro to an average of 12 out of the 17 tested HLA-DR molecules and also to several molecules such as HLA-DP, -DQ and murine IAb and IAd. Sixteen out of the 27 peptides were recognized by PBMC from patients infected with different HIV-1 variants and 72% of such patients recognized at least 1 peptide. Immunization with a DNA vaccine (HIVBr27) encoding the identified peptides elicited IFN-γ secretion against 11 out of the 27 peptides in BALB/c mice; CD4+ and CD8+ T-cell proliferation was observed against 8 and 6 peptides, respectively. HIVBr27 immunization elicited cross-clade T-cell responses against several HIV-1 peptide variants. Polyfunctional CD4+ and CD8+ T cells, able to simultaneously proliferate and produce IFN-γ and TNF-α, were also observed. This vaccine concept may cope with HIV-1 genetic diversity as well as provide increased population coverage, which are desirable features for an efficacious strategy against HIV-1/AIDS.
Collapse
Affiliation(s)
- Rafael Ribeiro Almeida
- Laboratory of Clinical Immunology and Allergy-LIM60, Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Daniela Santoro Rosa
- Laboratory of Clinical Immunology and Allergy-LIM60, Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
- Division of Immunology-Federal University of São Paulo-UNIFESP, São Paulo, Brazil
| | - Susan Pereira Ribeiro
- Laboratory of Clinical Immunology and Allergy-LIM60, Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
| | - Vinicius Canato Santana
- Laboratory of Clinical Immunology and Allergy-LIM60, Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Esper Georges Kallás
- Laboratory of Clinical Immunology and Allergy-LIM60, Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - John Sidney
- Center for Infectious Disease, Allergy and Asthma Research, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Alessandro Sette
- Center for Infectious Disease, Allergy and Asthma Research, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Jorge Kalil
- Laboratory of Clinical Immunology and Allergy-LIM60, Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Clinical Immunology and Allergy-LIM60, Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
9
|
Induction of mucosal HIV-specific B and T cell responses after oral immunization with live coxsackievirus B4 recombinants. Vaccine 2012; 30:3666-74. [PMID: 22464964 DOI: 10.1016/j.vaccine.2012.03.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 03/02/2012] [Accepted: 03/16/2012] [Indexed: 11/22/2022]
Abstract
Given the limited success of clinical HIV vaccine trials, new vaccine strategies are needed for the HIV pipeline. The present study explored the novel concept that a live enteric virus, with limited disease potential, is a suitable vaccine vector to elicit HIV-specific immune responses in the gut mucosa of immunized mice. Two coxsackievirus B4 (CVB4) vaccine vectors were designed to induce HIV-specific B or T cell responses. A B cell immunogen, CVB4/gp41(2F5), was constructed by expressing an epitope from the membrane proximal external region (MPER) of gp41 as a structural peptide within a surface loop of a capsid protein of CVB4. The T cell immunogen, CVB4/p24(73(3)), was constructed previously by expressing a gag p24 sequence as a non-structural peptide at the amino-terminus of the CVB4 polyprotein. The CVB4/gp41(2F5) recombinant was antigenic in mice and elicited anti-gp41 antibodies in both the mucosal and systemic compartments. The route of immunization affected the antibody response since oral delivery of CVB4/gp41(2F5) induced anti-gp41 antibodies in the mucosal but not in the systemic compartment while parenteral delivery induced anti-gp41 antibodies in both compartments. In contrast, oral immunization with CVB4/p24(73(3)) elicited both mucosal and systemic gag p24-specific T cell responses. Since coxsackieviruses are ubiquitous in the human population, a key question is whether pre-existing vector immunity will inhibit the ability of a CVB4-based vaccine to induce HIV-specific immune responses. We show that pre-existing vector immunity did not preclude the development of mucosal anti-gp41 antibodies or gag p24-specific T cell responses after oral immunization with the CVB4/HIV recombinants. We suggest that the CVB4/HIV recombinants have the potential to be a viable vaccine product because of ease of delivery, safety, immunogenicity, ease of large-scale production, and storage conditions requiring cold-chain temperatures provided by refrigeration.
Collapse
|
10
|
Fuller DH, Rajakumar P, Che JW, Narendran A, Nyaundi J, Michael H, Yager EJ, Stagnar C, Wahlberg B, Taber R, Haynes JR, Cook FC, Ertl P, Tite J, Amedee AM, Murphey-Corb M. Therapeutic DNA vaccine induces broad T cell responses in the gut and sustained protection from viral rebound and AIDS in SIV-infected rhesus macaques. PLoS One 2012; 7:e33715. [PMID: 22442716 PMCID: PMC3307760 DOI: 10.1371/journal.pone.0033715] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/15/2012] [Indexed: 11/18/2022] Open
Abstract
Immunotherapies that induce durable immune control of chronic HIV infection may eliminate the need for life-long dependence on drugs. We investigated a DNA vaccine formulated with a novel genetic adjuvant that stimulates immune responses in the blood and gut for the ability to improve therapy in rhesus macaques chronically infected with SIV. Using the SIV-macaque model for AIDS, we show that epidermal co-delivery of plasmids expressing SIV Gag, RT, Nef and Env, and the mucosal adjuvant, heat-labile E. coli enterotoxin (LT), during antiretroviral therapy (ART) induced a substantial 2-4-log fold reduction in mean virus burden in both the gut and blood when compared to unvaccinated controls and provided durable protection from viral rebound and disease progression after the drug was discontinued. This effect was associated with significant increases in IFN-γ T cell responses in both the blood and gut and SIV-specific CD8+ T cells with dual TNF-α and cytolytic effector functions in the blood. Importantly, a broader specificity in the T cell response seen in the gut, but not the blood, significantly correlated with a reduction in virus production in mucosal tissues and a lower virus burden in plasma. We conclude that immunizing with vaccines that induce immune responses in mucosal gut tissue could reduce residual viral reservoirs during drug therapy and improve long-term treatment of HIV infection in humans.
Collapse
Affiliation(s)
- Deborah Heydenburg Fuller
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Albany Medical College, Albany, New York, United States of America
- PowderJect Vaccines, Inc., Madison, Wisconsin, United States of America
| | - Premeela Rajakumar
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jenny W. Che
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- PowderJect Vaccines, Inc., Madison, Wisconsin, United States of America
| | - Amithi Narendran
- Albany Medical College, Albany, New York, United States of America
| | - Julia Nyaundi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Heather Michael
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Eric J. Yager
- Albany Medical College, Albany, New York, United States of America
| | - Cristy Stagnar
- Albany Medical College, Albany, New York, United States of America
| | - Brendon Wahlberg
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rachel Taber
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joel R. Haynes
- PowderJect Vaccines, Inc., Madison, Wisconsin, United States of America
| | | | - Peter Ertl
- GlaxoSmithKline, Stevenage, United Kingdom
| | - John Tite
- GlaxoSmithKline, Stevenage, United Kingdom
| | - Angela M. Amedee
- Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Michael Murphey-Corb
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
11
|
Seyed N, Zahedifard F, Safaiyan S, Gholami E, Doustdari F, Azadmanesh K, Mirzaei M, Saeedi Eslami N, Khadem Sadegh A, Eslami far A, Sharifi I, Rafati S. In silico analysis of six known Leishmania major antigens and in vitro evaluation of specific epitopes eliciting HLA-A2 restricted CD8 T cell response. PLoS Negl Trop Dis 2011; 5:e1295. [PMID: 21909442 PMCID: PMC3167772 DOI: 10.1371/journal.pntd.0001295] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 07/19/2011] [Indexed: 11/18/2022] Open
Abstract
Background As a potent CD8+ T cell activator, peptide vaccine has found its way in vaccine development against intracellular infections and cancer, but not against leishmaniasis. The first step toward a peptide vaccine is epitope mapping of different proteins according to the most frequent HLA types in a population. Methods and Findings Six Leishmania (L.) major-related candidate antigens (CPB,CPC,LmsTI-1,TSA,LeIF and LPG-3) were screened for potential CD8+ T cell activating 9-mer epitopes presented by HLA-A*0201 (the most frequent HLA-A allele). Online software including SYFPEITHI, BIMAS, EpiJen, Rankpep, nHLApred, NetCTL and Multipred were used. Peptides were selected only if predicted by almost all programs, according to their predictive scores. Pan-A2 presentation of selected peptides was confirmed by NetMHCPan1.1. Selected peptides were pooled in four peptide groups and the immunogenicity was evaluated by in vitro stimulation and intracellular cytokine assay of PBMCs from HLA-A2+ individuals recovered from L. major. HLA-A2− individuals recovered from L. major and HLA-A2+ healthy donors were included as control groups. Individual response of HLA-A2+ recovered volunteers as percent of CD8+/IFN-γ+ T cells after in vitro stimulation against peptide pools II and IV was notably higher than that of HLA-A2− recovered individuals. Based on cutoff scores calculated from the response of HLA-A2− recovered individuals, 31.6% and 13.3% of HLA-A2+ recovered persons responded above cutoff in pools II and IV, respectively. ELISpot and ELISA results confirmed flow cytometry analysis. The response of HLA-A2− recovered individuals against peptide pools I and III was detected similar and even higher than HLA-A2+ recovered individuals. Conclusion Using in silico prediction we demonstrated specific response to LmsTI-1 (pool II) and LPG-3- (pool IV) related peptides specifically presented in HLA-A*0201 context. This is among the very few reports mapping L. major epitopes for human HLA types. Studies like this will speed up polytope vaccine idea towards leishmaniasis. Leishmaniasis is currently a serious health as well as economic problem in underdeveloped and developing countries in Africa, Asia, the Near and Middle East, Central and South America and the Mediterranean region. Cutaneous leishmaniasis is highly endemic in Iran, remarkably in Isfahan, Fars, Khorasan, Khozestan and Kerman provinces. Since effective prevention is not available and current curative therapy is expensive, often poorly tolerated and not always effective, alternative therapies including vaccination against leishmaniasis are of priority to overcome the problem. Although Th1 dominant response is so far considered as a pre-requisite for the immune system to overcome the infection, CD8+ T cell response could also be considered as a potent arm of immune system fighting against intracellular Leishmania. Polytope vaccine strategy may open up a new way in vaccine design against leishmaniasis, since they act as a potent tool to stimulate multi-CD8 T cell responses. Clearly there is a substantial need to evaluate the promising epitopes from different proteins of Leishmania parasite species. Some new immunoinformatic tools are now available to speed up this process, and we have shown here that in silico prediction can effectively evaluate HLA class I-restricted epitopes out of Leishmania proteins.
Collapse
Affiliation(s)
- Negar Seyed
- Molecular Immunology and Vaccine Research Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Farnaz Zahedifard
- Molecular Immunology and Vaccine Research Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Shima Safaiyan
- Molecular Immunology and Vaccine Research Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Gholami
- Molecular Immunology and Vaccine Research Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Doustdari
- Molecular Immunology and Vaccine Research Lab, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | | - Akbar Khadem Sadegh
- Department of Electron Microscopy and Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Eslami far
- Department of Electron Microscopy and Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | - Iraj Sharifi
- School of Medicine, Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sima Rafati
- Molecular Immunology and Vaccine Research Lab, Pasteur Institute of Iran, Tehran, Iran
- * E-mail:
| |
Collapse
|
12
|
Vojnov L, Bean AT, Peterson EJ, Chiuchiolo MJ, Sacha JB, Denes FS, Sandor M, Fuller DH, Fuller JT, Parks CL, McDermott AB, Wilson NA, Watkins DI. DNA/Ad5 vaccination with SIV epitopes induced epitope-specific CD4⁺ T cells, but few subdominant epitope-specific CD8⁺ T cells. Vaccine 2011; 29:7483-90. [PMID: 21839132 DOI: 10.1016/j.vaccine.2011.07.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 07/14/2011] [Accepted: 07/16/2011] [Indexed: 02/07/2023]
Abstract
The goals of a T cell-based vaccine for HIV are to reduce viral peak and setpoint and prevent transmission. While it has been relatively straightforward to induce CD8(+) T cell responses against immunodominant T cell epitopes, it has been more difficult to broaden the vaccine-induced CD8(+) T cell response against subdominant T cell epitopes. Additionally, vaccine regimens to induce CD4(+) T cell responses have been studied only in limited settings. In this study, we sought to elicit CD8(+) T cells against subdominant epitopes and CD4(+) T cells using various novel and well-established vaccine strategies. We vaccinated three Mamu-A*01(+) animals with five Mamu-A*01-restricted subdominant SIV-specific CD8(+) T cell epitopes. All three vaccinated animals made high frequency responses against the Mamu-A*01-restricted Env TL9 epitope with one animal making a low frequency CD8(+) T cell response against the Pol LV10 epitope. We also induced SIV-specific CD4(+) T cells against several MHC class II DRBw*606-restricted epitopes. Electroporated DNA with pIL-12 followed by a rAd5 boost was the most immunogenic vaccine strategy. We induced responses against all three Mamu-DRB*w606-restricted CD4 epitopes in the vaccine after the DNA prime. Ad5 vaccination further boosted these responses. Although we successfully elicited several robust epitope-specific CD4(+) T cell responses, vaccination with subdominant MHC class I epitopes elicited few detectable CD8(+) T cell responses. Broadening the CD8(+) T cell response against subdominant MHC class I epitopes was, therefore, more difficult than we initially anticipated.
Collapse
Affiliation(s)
- Lara Vojnov
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI 53711, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ribeiro SP, Rosa DS, Fonseca SG, Mairena EC, Postól E, Oliveira SC, Guilherme L, Kalil J, Cunha-Neto E. A vaccine encoding conserved promiscuous HIV CD4 epitopes induces broad T cell responses in mice transgenic to multiple common HLA class II molecules. PLoS One 2010; 5:e11072. [PMID: 20552033 PMCID: PMC2884037 DOI: 10.1371/journal.pone.0011072] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 05/19/2010] [Indexed: 11/19/2022] Open
Abstract
Current HIV vaccine approaches are focused on immunogens encoding whole HIV antigenic proteins that mainly elicit cytotoxic CD8+ responses. Mounting evidence points toward a critical role for CD4+ T cells in the control of immunodeficiency virus replication, probably due to cognate help. Vaccine-induced CD4+ T cell responses might, therefore, have a protective effect in HIV replication. In addition, successful vaccines may have to elicit responses to multiple epitopes in a high proportion of vaccinees, to match the highly variable circulating strains of HIV. Using rational vaccine design, we developed a DNA vaccine encoding 18 algorithm-selected conserved, “promiscuous” (multiple HLA-DR-binding) B-subtype HIV CD4 epitopes - previously found to be frequently recognized by HIV-infected patients. We assessed the ability of the vaccine to induce broad T cell responses in the context of multiple HLA class II molecules using different strains of HLA class II- transgenic mice (-DR2, -DR4, -DQ6 and -DQ8). Mice displayed CD4+ and CD8+ T cell responses of significant breadth and magnitude, and 16 out of the 18 encoded epitopes were recognized. By virtue of inducing broad responses against conserved CD4+ T cell epitopes that can be recognized in the context of widely diverse, common HLA class II alleles, this vaccine concept may cope both with HIV genetic variability and increased population coverage. The vaccine may thus be a source of cognate help for HIV-specific CD8+ T cells elicited by conventional immunogens, in a wide proportion of vaccinees.
Collapse
Affiliation(s)
- Susan Pereira Ribeiro
- Laboratory of Clinical Immunology and Allergy-LIM60, Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
| | - Daniela Santoro Rosa
- Laboratory of Clinical Immunology and Allergy-LIM60, Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
| | - Simone Gonçalves Fonseca
- Laboratory of Clinical Immunology and Allergy-LIM60, Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Eliane Conti Mairena
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
| | - Edilberto Postól
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
| | - Sergio Costa Oliveira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luiza Guilherme
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
| | - Jorge Kalil
- Laboratory of Clinical Immunology and Allergy-LIM60, Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Clinical Immunology and Allergy-LIM60, Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
14
|
Yager EJ, Dean HJ, Fuller DH. Prospects for developing an effective particle-mediated DNA vaccine against influenza. Expert Rev Vaccines 2009; 8:1205-20. [PMID: 19722894 DOI: 10.1586/erv.09.82] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vaccine strategies capable of conferring broad protection against both seasonal and pandemic strains of influenza are urgently needed. DNA vaccines are an attractive choice owing to their capacity to induce robust humoral and cellular immune responses at low doses and because they can be developed and manufactured rapidly to more effectively meet the threat of an influenza epidemic or pandemic. Particle-mediated epidermal delivery (PMED), or the gene gun, is a DNA vaccine delivery technology shown to induce protective levels of antibody and T-cell responses in animals and humans against a wide variety of diseases, including influenza. This review focuses on current advances toward the development of an effective PMED DNA vaccine against influenza, including strategies to enhance vaccine immunogenicity, the potential for PMED-based DNA vaccines to improve protection in the vulnerable elderly population, and the prospects for a vaccine capable of providing cross-protection against both seasonal and pandemic strains of influenza.
Collapse
Affiliation(s)
- Eric J Yager
- Center for Immunology & Microbial Disease, Albany Medical College, Albany, NY 12208, USA.
| | | | | |
Collapse
|
15
|
Yap WB, Tey BT, Ng MYT, Ong ST, Tan WS. N-terminally His-tagged hepatitis B core antigens: construction, expression, purification and antigenicity. J Virol Methods 2009; 160:125-31. [PMID: 19433111 DOI: 10.1016/j.jviromet.2009.04.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 04/28/2009] [Accepted: 04/30/2009] [Indexed: 11/16/2022]
Abstract
The core antigen of the hepatitis B virus (HBcAg) has been used widely as a diagnostic reagent for the identification of the viral infection. However, purification using the conventional sucrose density gradient ultracentrifugation is time consuming and costly. To overcome this, HBcAg particles displaying His-tag on their surface were constructed and produced in Escherichia coli. The recombinant His-tagged HBcAgs were purified using immobilized metal affinity chromatography. Transmission electron microscopy and enzyme-linked immunosorbent assay (ELISA) revealed that the displayed His-tag did not impair the formation of the core particles and the antigenicity of HBcAg.
Collapse
Affiliation(s)
- Wei Boon Yap
- Department of Microbiology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | | | | | | |
Collapse
|