1
|
Bokun V, Strang BL, Pantazi P, Liu Y, Holder B. Nano-Flow Cytometry-Guided Discrimination and Separation of Human Cytomegalovirus Virions and Extracellular Vesicles. J Extracell Vesicles 2025; 14:e70060. [PMID: 40314077 PMCID: PMC12046292 DOI: 10.1002/jev2.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 12/20/2024] [Accepted: 02/12/2025] [Indexed: 05/03/2025] Open
Abstract
Accurate quantification and physical separation of viral particles and extracellular vesicles (EVs) produced by virus-infected cells presents a significant challenge due to their overlapping physical and biochemical properties. Most analytical methods provide information on a particle mixture as a whole, without distinguishing viral particles from EVs. By utilising nano-flow cytometry (nFC), a specialised form of flow cytometry adapted for the investigation of nanoparticles, we developed a simple, nucleic acid staining-based method for discrimination and simultaneous quantification of the human cytomegalovirus (HCMV) virions, dense bodies and EVs, within extracellular particle mixtures produced by HCMV-infected cells. We show that nucleic acid staining allows for discrimination of the individual particle types based on their distinct fluorescence/side scatter profiles, assessed at single-particle level by nFC. Following this, we optimised a method for physical separation of EVs from viral particles, based on high-speed centrifugation through density cushions, using nFC as a tool to evaluate the purity of the isolated EVs. The methods introduced here have the capacity to circumvent common difficulties associated with the co-investigation of EVs and viruses.
Collapse
Affiliation(s)
- Vladimir Bokun
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Faculty of MedicineImperial College LondonLondonUK
| | - Blair L. Strang
- Institute for Infection and ImmunityCity St George's, University of LondonLondonUK
| | - Paschalia Pantazi
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Faculty of MedicineImperial College LondonLondonUK
| | - Yan Liu
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Faculty of MedicineImperial College LondonLondonUK
| | - Beth Holder
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Faculty of MedicineImperial College LondonLondonUK
| |
Collapse
|
2
|
Kostas JC, Brainard CS, Cristea IM. A Primer on Proteomic Characterization of Intercellular Communication in a Virus Microenvironment. Mol Cell Proteomics 2025; 24:100913. [PMID: 39862905 PMCID: PMC11889360 DOI: 10.1016/j.mcpro.2025.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Intercellular communication is fundamental to multicellular life and a core determinant of outcomes during viral infection, where the common goals of virus and host for persistence and replication are generally at odds. Hosts rely on encoded innate and adaptive immune responses to detect and clear viral pathogens, while viruses can exploit or disrupt these pathways and other intercellular communication processes to enhance their spread and promote pathogenesis. While virus-induced signaling can result in systemic changes to the host, striking alterations are observed within the cellular microenvironment directly surrounding a site of infection, termed the virus microenvironment (VME). Mechanisms employed by viruses to condition their VMEs are emerging and are critical for understanding the biology and pathologies of viral infections. Recent advances in experimental approaches, including proteomic methods, have enabled study of the VME in unprecedented detail. In this review article, we provide a primer on proteomic approaches used to study how viral infections alter intercellular communication, highlighting the ways in which these approaches have been implemented and the exciting biology they have uncovered. First, we consider the different molecules secreted by an infected cell, including proteins, either soluble or contained within extracellular vesicles, and metabolites. We further discuss the modalities of interactions facilitated by alteration at the cell surface of infected cells, including immunopeptide presentation and interactions with the extracellular matrix. Finally, we review spatial profiling approaches that have allowed distinguishing how specific subpopulations of cells within a VME respond to infection and alter their protein composition, discussing valuable insights these methods have offered.
Collapse
Affiliation(s)
- James C Kostas
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Colter S Brainard
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.
| |
Collapse
|
3
|
Wu J, Mao K, Zhang R, Fu Y. Extracellular vesicles in the pathogenesis of neurotropic viruses. Microb Pathog 2024; 195:106901. [PMID: 39218378 DOI: 10.1016/j.micpath.2024.106901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Neurotropic viruses, characterized by their capacity to invade the central nervous system, present a considerable challenge to public health and are responsible for a diverse range of neurological disorders. This group includes a diverse array of viruses, such as herpes simplex virus, varicella zoster virus, poliovirus, enterovirus and Japanese encephalitis virus, among others. Some of these viruses exhibit high neuroinvasiveness and neurovirulence, while others demonstrate weaker neuroinvasive and neurovirulent properties. The clinical manifestations of infections caused by neurotropic viruses can vary significantly, ranging from mild symptoms to severe life-threatening conditions. Extracellular vesicles (EVs) have garnered considerable attention due to their pivotal role in intracellular communication, which modulates the biological activity of target cells via the transport of biomolecules in both health and disease. Investigating EVs in the context of virus infection is crucial for elucidating their potential role contribution to viral pathogenesis. This is because EVs derived from virus-infected cells frequently transfer viral components to uninfected cells. Importantly, EVs released by virus-infected cells have the capacity to traverse the blood-brain barrier (BBB), thereby impacting neuronal activity and inducing neuroinflammation. In this review, we explore the roles of EVs during neurotropic virus infections in either enhancing or inhibiting viral pathogenesis. We will delve into our current comprehension of the molecular mechanisms that underpin these roles, the potential implications for the infected host, and the prospective diagnostic applications that could arise from this understanding.
Collapse
Affiliation(s)
- Junyi Wu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Kedan Mao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Rui Zhang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, PR China.
| | - Yuxuan Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
4
|
De Luca M, Musio B, Balestra F, Arrè V, Negro R, Depalo N, Rizzi F, Mastrogiacomo R, Panzetta G, Donghia R, Pesole PL, Coletta S, Piccinno E, Scalavino V, Serino G, Maqoud F, Russo F, Orlando A, Todisco S, Mastrorilli P, Curri ML, Gallo V, Giannelli G, Scavo MP. Role of Extracellular Vesicles in Crohn's Patients on Adalimumab Who Received COVID-19 Vaccination. Int J Mol Sci 2024; 25:8853. [PMID: 39201543 PMCID: PMC11355036 DOI: 10.3390/ijms25168853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Crohn's disease (CD) is a type of inflammatory bowel disease (IBD) affecting the gastrointestinal tract that can also cause extra-intestinal complications. Following exposure to the mRNA vaccine BNT162b2 (Pfizer-BioNTech) encoding the SARS-CoV-2 Spike (S) protein, some patients experienced a lack of response to the biological drug Adalimumab and a recrudescence of the disease. In CD patients in progression, resistant to considered biological therapy, an abnormal increase in intestinal permeability was observed, more often with a modulated expression of different proteins such as Aquaporin 8 (AQP8) and in tight junctions (e.g., ZO-1, Claudin1, Claudin2, Occludin), especially during disease flares. The aim of this study is to investigate how the SARS-CoV-2 vaccine could interfere with IBD therapy and contribute to disease exacerbation. We investigated the role of the SARS-CoV-2 Spike protein, transported by extracellular vesicles (EVs), and the impact of various EVs components, namely, exosomes (EXOs) and microvesicles (MVs), in modulating the expression of molecules involved in the exacerbation of CD, which remains unknown.
Collapse
Affiliation(s)
- Maria De Luca
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (M.D.L.); (F.B.); (V.A.); (R.N.); (G.P.)
| | - Biagia Musio
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Via Orabona 4, 70126 Bari, Italy; (B.M.); (S.T.); (P.M.); (V.G.)
| | - Francesco Balestra
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (M.D.L.); (F.B.); (V.A.); (R.N.); (G.P.)
| | - Valentina Arrè
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (M.D.L.); (F.B.); (V.A.); (R.N.); (G.P.)
| | - Roberto Negro
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (M.D.L.); (F.B.); (V.A.); (R.N.); (G.P.)
| | - Nicoletta Depalo
- Institute for Chemical-Physical Processes, Italian National Research Council (IPCF)—CNR SS Bari, Via Orabona 4, 70126 Bari, Italy; (N.D.); (F.R.); (R.M.); (M.L.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM) Research Unit, Via Orabona 4, 70126 Bari, Italy
| | - Federica Rizzi
- Institute for Chemical-Physical Processes, Italian National Research Council (IPCF)—CNR SS Bari, Via Orabona 4, 70126 Bari, Italy; (N.D.); (F.R.); (R.M.); (M.L.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM) Research Unit, Via Orabona 4, 70126 Bari, Italy
| | - Rita Mastrogiacomo
- Institute for Chemical-Physical Processes, Italian National Research Council (IPCF)—CNR SS Bari, Via Orabona 4, 70126 Bari, Italy; (N.D.); (F.R.); (R.M.); (M.L.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM) Research Unit, Via Orabona 4, 70126 Bari, Italy
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Giorgia Panzetta
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (M.D.L.); (F.B.); (V.A.); (R.N.); (G.P.)
| | - Rossella Donghia
- National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy;
| | - Pasqua Letizia Pesole
- Department of Pathology, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (P.L.P.); (S.C.)
| | - Sergio Coletta
- Department of Pathology, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (P.L.P.); (S.C.)
| | - Emanuele Piccinno
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (E.P.); (V.S.); (G.S.)
| | - Viviana Scalavino
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (E.P.); (V.S.); (G.S.)
| | - Grazia Serino
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (E.P.); (V.S.); (G.S.)
| | - Fatima Maqoud
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (F.M.); (F.R.); (A.O.)
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (F.M.); (F.R.); (A.O.)
| | - Antonella Orlando
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (F.M.); (F.R.); (A.O.)
| | - Stefano Todisco
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Via Orabona 4, 70126 Bari, Italy; (B.M.); (S.T.); (P.M.); (V.G.)
| | - Pietro Mastrorilli
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Via Orabona 4, 70126 Bari, Italy; (B.M.); (S.T.); (P.M.); (V.G.)
| | - Maria Lucia Curri
- Institute for Chemical-Physical Processes, Italian National Research Council (IPCF)—CNR SS Bari, Via Orabona 4, 70126 Bari, Italy; (N.D.); (F.R.); (R.M.); (M.L.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM) Research Unit, Via Orabona 4, 70126 Bari, Italy
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Vito Gallo
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Via Orabona 4, 70126 Bari, Italy; (B.M.); (S.T.); (P.M.); (V.G.)
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy;
| | - Maria Principia Scavo
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy; (M.D.L.); (F.B.); (V.A.); (R.N.); (G.P.)
| |
Collapse
|
5
|
Mobarak H, Javid F, Narmi MT, Mardi N, Sadeghsoltani F, Khanicheragh P, Narimani S, Mahdipour M, Sokullu E, Valioglu F, Rahbarghazi R. Prokaryotic microvesicles Ortholog of eukaryotic extracellular vesicles in biomedical fields. Cell Commun Signal 2024; 22:80. [PMID: 38291458 PMCID: PMC10826215 DOI: 10.1186/s12964-023-01414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2024] Open
Abstract
Every single cell can communicate with other cells in a paracrine manner via the production of nano-sized extracellular vesicles. This phenomenon is conserved between prokaryotic and eukaryotic cells. In eukaryotic cells, exosomes (Exos) are the main inter-cellular bioshuttles with the potential to carry different signaling molecules. Likewise, bacteria can produce and release Exo-like particles, namely microvesicles (MVs) into the extracellular matrix. Bacterial MVs function with diverse biological properties and are at the center of attention due to their inherent therapeutic properties. Here, in this review article, the comparable biological properties between the eukaryotic Exos and bacterial MVs were highlighted in terms of biomedical application. Video Abstract.
Collapse
Affiliation(s)
- Halimeh Mobarak
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzin Javid
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Taghavi Narmi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Mardi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadeghsoltani
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Khanicheragh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Narimani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emel Sokullu
- Biophysics Department, Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey
| | - Ferzane Valioglu
- Technology Development Zones Management CO, Sakarya University, Sakarya, Turkey
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Simon F, Thoma-Kress AK. Intercellular Transport of Viral Proteins. Results Probl Cell Differ 2024; 73:435-474. [PMID: 39242389 DOI: 10.1007/978-3-031-62036-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Viruses are vehicles to exchange genetic information and proteins between cells and organisms by infecting their target cells either cell-free, or depending on cell-cell contacts. Several viruses like certain retroviruses or herpesviruses transmit by both mechanisms. However, viruses have also evolved the properties to exchange proteins between cells independent of viral particle formation. This exchange of viral proteins can be directed to target cells prior to infection to interfere with restriction factors and intrinsic immunity, thus, making the target cell prone to infection. However, also bystander cells, e.g. immune cell populations, can be targeted by viral proteins to dampen antiviral responses. Mechanistically, viruses exploit several routes of cell-cell communication to exchange viral proteins like the formation of extracellular vesicles or the formation of long-distance connections like tunneling nanotubes. Although it is known that viral nucleic acids can be transferred between cells as well, this chapter concentrates on viral proteins of human pathogenic viruses covering all Baltimore classes and summarizes our current knowledge on intercellular transport of viral proteins between cells.
Collapse
Affiliation(s)
- Florian Simon
- Institute of Clinical and Molecular Virology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andrea K Thoma-Kress
- Institute of Clinical and Molecular Virology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
7
|
Abstract
Extracellular vesicles (EVs) are membrane-bound structures released by cells and have become significant players in immune system functioning, primarily by facilitating cell-to-cell communication. Immune cells like neutrophils and dendritic cells release EVs containing bioactive molecules that modulate chemotaxis, activate immune cells, and induce inflammation. EVs also contribute to antigen presentation, lymphocyte activation, and immune tolerance. Moreover, EVs play pivotal roles in antimicrobial host defense. They deliver microbial antigens to antigen-presenting cells (APCs), triggering immune responses, or act as decoys to neutralize virulence factors and toxins. This review discusses host and microbial EVs' multifaceted roles in innate and adaptive immunity, highlighting their involvement in immune cell development, antigen presentation, and antimicrobial responses.
Collapse
Affiliation(s)
- Puja Kumari
- Department of Immunology, University of Connecticut Health School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Skylar S. Wright
- Department of Immunology, University of Connecticut Health School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Vijay A. Rathinam
- Department of Immunology, University of Connecticut Health School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| |
Collapse
|
8
|
Singh RK, Santos MF, Herndon C, Gieler BA, Lee I, Chen J, Lorico A. Detection by super-resolution microscopy of viral proteins inside bloodborne extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:557-567. [PMID: 39697804 PMCID: PMC11648398 DOI: 10.20517/evcna.2023.46] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 12/20/2024]
Abstract
Aim Extracellular vesicles (EVs) are small particles released by all cells, including virally infected cells, into the extracellular space. They play a role in various cellular processes, including intercellular communication, signaling, and immunity, and carry several biomolecules like proteins, lipids, and nucleic acids that can modulate cellular functions mostly by releasing their cargo inside the target cells via the endocytic pathway. One of the most exciting aspects of EV physiology is its potential in liquid biopsy as a diagnostic and prognostic marker. However, due to their extremely small size and lack of a molecular approach to examine intravesicular content or cargo, we cannot fully utilize their potential in healthcare. Methods Here, we present a novel approach that allows examining bloodborne EVs at a single-particle level with the ability to examine their cargo without disrupting structural integrity. Our technique utilizes super-resolution microscopy and a unique permeabilization process that maintains structural integrity while facilitating the examination of EV cargo. We used a mild-detergent-based permeabilization buffer that protects the integrity of EVs, minimizes background, and improves detection. Results Utilizing this approach, we were able to recognize viral proteins of SARS-CoV-2 virus in COVID-19 patients, including spike and nucleocapsid. Surprisingly, we found an almost equal amount of spike protein inside and on the surface of bloodborne EVs. This would have proven difficult to determine using other conventional methods. Conclusion To summarize, we have developed an easy-to-perform, sensitive, and highly efficient method that offers a mechanism to examine bloodborne EV cargo without disrupting their structural integrity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aurelio Lorico
- Correspondence to: Dr. Aurelio Lorico, Department of Basic Sciences, Touro University Nevada, 874 American Pacific Drive, Henderson, NV 89014, USA. E-mail:
| |
Collapse
|
9
|
Bebelman MP, Setiawan IM, Bergkamp ND, van Senten JR, Crudden C, Bebelman JPM, Verweij FJ, van Niel G, Siderius M, Pegtel DM, Smit MJ. Exosomal release of the virus-encoded chemokine receptor US28 contributes to chemokine scavenging. iScience 2023; 26:107412. [PMID: 37575190 PMCID: PMC10415803 DOI: 10.1016/j.isci.2023.107412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/22/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
The human cytomegalovirus (HCMV)-encoded chemokine receptor US28 contributes to various aspects of the viral life cycle and promotes immune evasion by scavenging chemokines from the microenvironment of HCMV-infected cells. In contrast to the plasma membrane localization of most human chemokine receptors, US28 has a predominant intracellular localization. In this study, we used immunofluorescence and electron microscopy to determine the localization of US28 upon exogenous expression, as well as in HCMV-infected cells. We observed that US28 localizes to late endosomal compartments called multivesicular bodies (MVBs), where it is sorted in intraluminal vesicles. Live-cell total internal reflection fluorescence (TIRF) microscopy revealed that US28-containing MVBs can fuse with the plasma membrane, resulting in the secretion of US28 on exosomes. Exosomal US28 binds the chemokines CX3CL1 and CCL5, and US28-containing exosomes inhibited the CX3CL1-CX3CR1 signaling axis. These findings suggest that exosomal release of US28 contributes to chemokine scavenging and immune evasion by HCMV.
Collapse
Affiliation(s)
- Maarten P. Bebelman
- Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
- Department Pathology, Cancer Center Amsterdam, VU University Medical Center, de Boelelaan 1118, Amsterdam 1081 HZ, the Netherlands
| | - Irfan M. Setiawan
- Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Nick D. Bergkamp
- Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Jeffrey R. van Senten
- Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Caitrin Crudden
- Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
- Department Pathology, Cancer Center Amsterdam, VU University Medical Center, de Boelelaan 1118, Amsterdam 1081 HZ, the Netherlands
| | - Jan Paul M. Bebelman
- Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Frederik J. Verweij
- Division of Cell Biology, Neurobiology and Biophysics, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Guillaume van Niel
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266 Université de Paris, Paris, France
| | - Marco Siderius
- Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - D. Michiel Pegtel
- Department Pathology, Cancer Center Amsterdam, VU University Medical Center, de Boelelaan 1118, Amsterdam 1081 HZ, the Netherlands
| | - Martine J. Smit
- Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| |
Collapse
|
10
|
Song B, Sheng X, Justice JL, Lum KK, Metzger PJ, Cook KC, Kostas JC, Cristea IM. Intercellular communication within the virus microenvironment affects the susceptibility of cells to secondary viral infections. SCIENCE ADVANCES 2023; 9:eadg3433. [PMID: 37163594 PMCID: PMC10171814 DOI: 10.1126/sciadv.adg3433] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/07/2023] [Indexed: 05/12/2023]
Abstract
Communication between infected cells and cells in the surrounding tissue is a determinant of viral spread. However, it remains unclear how cells in close or distant proximity to an infected cell respond to primary or secondary infections. We establish a cell-based system to characterize a virus microenvironment, distinguishing infected, neighboring, and distal cells. Cell sorting, microscopy, proteomics, and cell cycle assays allow resolving cellular features and functional consequences of proximity to infection. We show that human cytomegalovirus (HCMV) infection primes neighboring cells for both subsequent HCMV infections and secondary infections with herpes simplex virus 1 and influenza A. Neighboring cells exhibit mitotic arrest, dampened innate immunity, and altered extracellular matrix. Conversely, distal cells are poised to slow viral spread due to enhanced antiviral responses. These findings demonstrate how infection reshapes the microenvironment through intercellular signaling to facilitate spread and how spatial proximity to an infection guides cell fate.
Collapse
Affiliation(s)
| | | | - Joshua L. Justice
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | | | - Peter J. Metzger
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | | | - James C. Kostas
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | | |
Collapse
|
11
|
Kumar R, Aktay-Cetin Ö, Craddock V, Morales-Cano D, Kosanovic D, Cogolludo A, Perez-Vizcaino F, Avdeev S, Kumar A, Ram AK, Agarwal S, Chakraborty A, Savai R, de Jesus Perez V, Graham BB, Butrous G, Dhillon NK. Potential long-term effects of SARS-CoV-2 infection on the pulmonary vasculature: Multilayered cross-talks in the setting of coinfections and comorbidities. PLoS Pathog 2023; 19:e1011063. [PMID: 36634048 PMCID: PMC9836319 DOI: 10.1371/journal.ppat.1011063] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and its sublineages pose a new challenge to healthcare systems worldwide due to its ability to efficiently spread in immunized populations and its resistance to currently available therapies. COVID-19, although targeting primarily the respiratory system, is also now well established that later affects every organ in the body. Most importantly, despite the available therapy and vaccine-elicited protection, the long-term consequences of viral infection in breakthrough and asymptomatic individuals are areas of concern. In the past two years, investigators accumulated evidence on how the virus triggers our immune system and the molecular signals involved in the cross-talk between immune cells and structural cells in the pulmonary vasculature to drive pathological lung complications such as endothelial dysfunction and thrombosis. In the review, we emphasize recent updates on the pathophysiological inflammatory and immune responses associated with SARS-CoV-2 infection and their potential long-term consequences that may consequently lead to the development of pulmonary vascular diseases.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, United States of America
| | - Öznur Aktay-Cetin
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Vaughn Craddock
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Daniel Morales-Cano
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Djuro Kosanovic
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Sergey Avdeev
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Ashok Kumar
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Anil Kumar Ram
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Stuti Agarwal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University Medical Center, California, United States of America
| | - Ananya Chakraborty
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University Medical Center, California, United States of America
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus Liebig University Giessen, Member of the DZL, Member of CPI, Giessen, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
| | - Vinicio de Jesus Perez
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University Medical Center, California, United States of America
| | - Brian B. Graham
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, United States of America
| | - Ghazwan Butrous
- Cardiopulmonary Sciences, University of Kent, Canterbury, United Kingdom
| | - Navneet K. Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
12
|
Turner DL, Mathias RA. The human cytomegalovirus decathlon: Ten critical replication events provide opportunities for restriction. Front Cell Dev Biol 2022; 10:1053139. [PMID: 36506089 PMCID: PMC9732275 DOI: 10.3389/fcell.2022.1053139] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous human pathogen that can cause severe disease in immunocompromised individuals, transplant recipients, and to the developing foetus during pregnancy. There is no protective vaccine currently available, and with only a limited number of antiviral drug options, resistant strains are constantly emerging. Successful completion of HCMV replication is an elegant feat from a molecular perspective, with both host and viral processes required at various stages. Remarkably, HCMV and other herpesviruses have protracted replication cycles, large genomes, complex virion structure and complicated nuclear and cytoplasmic replication events. In this review, we outline the 10 essential stages the virus must navigate to successfully complete replication. As each individual event along the replication continuum poses as a potential barrier for restriction, these essential checkpoints represent potential targets for antiviral development.
Collapse
Affiliation(s)
- Declan L. Turner
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Rommel A. Mathias
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Vinogradskaya GR, Ivanov AV, Kushch AA. Mechanisms of Survival of Cytomegalovirus-Infected Tumor Cells. Mol Biol 2022; 56:668-683. [PMID: 36217337 PMCID: PMC9534468 DOI: 10.1134/s0026893322050132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/04/2022]
Abstract
Human cytomegalovirus (HCMV) DNA and proteins are often detected in malignant tumors, warranting studies of the role that HCMV plays in carcinogenesis and tumor progression. HCMV proteins were shown to regulate the key processes involved in tumorigenesis. While HCMV as an oncogenic factor just came into focus, its ability to promote tumor progression is generally recognized. The review discusses the viral factors and cell molecular pathways that affect the resistance of cancer cells to therapy. CMV inhibits apoptosis of tumor cells, that not only promotes tumor progression, but also reduces the sensitivity of cells to antitumor therapy. Autophagy was found to facilitate either cell survival or cell death in different tumor cells. In leukemia cells, HCMV induces a "protective" autophagy that suppresses apoptosis. Viral factors that mediate drug resistance and their interactions with key cell death pathways are necessary to further investigate in order to develop agents that can restore the tumor sensitivity to anticancer drugs.
Collapse
Affiliation(s)
- G. R. Vinogradskaya
- Konstantinov St. Petersburg Institute of Nuclear Physics, National Research Center “Kurchatov Institute”, 188300 Gatchina, Leningrad oblast Russia
| | - A. V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - A. A Kushch
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| |
Collapse
|
14
|
Mustajab T, Kwamboka MS, Choi DA, Kang DW, Kim J, Han KR, Han Y, Lee S, Song D, Chwae YJ. Update on Extracellular Vesicle-Based Vaccines and Therapeutics to Combat COVID-19. Int J Mol Sci 2022; 23:ijms231911247. [PMID: 36232549 PMCID: PMC9569487 DOI: 10.3390/ijms231911247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
The COVID-19 pandemic has had a deep impact on people worldwide since late 2019 when SARS-CoV-2 was first identified in Wuhan, China. In addition to its effect on public health, it has affected humans in various aspects of life, including social, economic, cultural, and political. It is also true that researchers have made vigorous efforts to overcome COVID-19 throughout the world, but they still have a long way to go. Accordingly, innumerable therapeutics and vaccine candidates have been studied for their efficacies and have been tried clinically in a very short span of time. For example, the versatility of extracellular vesicles, which are membrane-bound particles released from all types of cells, have recently been highlighted in terms of their effectiveness, biocompatibility, and safety in the fight against COVID-19. Thus, here, we tried to explain the use of extracellular vesicles as therapeutics and for the development of vaccines against COVID-19. Along with the mechanisms and a comprehensive background of their application in trapping the coronavirus or controlling the cytokine storm, we also discuss the obstacles to the clinical use of extracellular vesicles and how these could be resolved in the future.
Collapse
Affiliation(s)
- Tamanna Mustajab
- Department of Microbiology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Moriasi Sheba Kwamboka
- Department of Microbiology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Da Ae Choi
- Department of Microbiology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Dae Wook Kang
- Department of Microbiology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Junho Kim
- Department of Microbiology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Kyu Ri Han
- Department of Microbiology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Yujin Han
- Department of Microbiology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Sorim Lee
- Department of Microbiology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Dajung Song
- Department of Microbiology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Yong-Joon Chwae
- Department of Microbiology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
- Correspondence: ; Tel.: +82-031-219-5073
| |
Collapse
|
15
|
Bergamelli M, Martin H, Aubert Y, Mansuy JM, Marcellin M, Burlet-Schiltz O, Hurbain I, Raposo G, Izopet J, Fournier T, Benchoua A, Bénard M, Groussolles M, Cartron G, Tanguy Le Gac Y, Moinard N, D’Angelo G, Malnou CE. Human Cytomegalovirus Modifies Placental Small Extracellular Vesicle Composition to Enhance Infection of Fetal Neural Cells In Vitro. Viruses 2022; 14:v14092030. [PMID: 36146834 PMCID: PMC9501265 DOI: 10.3390/v14092030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Although placental small extracellular vesicles (sEVs) are extensively studied in the context of pregnancy, little is known about their role during viral congenital infection, especially at the beginning of pregnancy. In this study, we examined the consequences of human cytomegalovirus (hCMV) infection on sEVs production, composition, and function using an immortalized human cytotrophoblast cell line derived from first trimester placenta. By combining complementary approaches of biochemistry, electron microscopy, and quantitative proteomic analysis, we showed that hCMV infection increases the yield of sEVs produced by cytotrophoblasts and modifies their protein content towards a potential proviral phenotype. We further demonstrate that sEVs secreted by hCMV-infected cytotrophoblasts potentiate infection in naive recipient cells of fetal origin, including human neural stem cells. Importantly, these functional consequences are also observed with sEVs prepared from an ex vivo model of infected histocultures from early placenta. Based on these findings, we propose that placental sEVs could be important actors favoring viral dissemination to the fetal brain during hCMV congenital infection.
Collapse
Affiliation(s)
- Mathilde Bergamelli
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Hélène Martin
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Yann Aubert
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Jean-Michel Mansuy
- CHU Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, France
| | - Marlène Marcellin
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Infrastructure nationale de protéomique, ProFI, FR 2048, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Infrastructure nationale de protéomique, ProFI, FR 2048, Toulouse, France
| | - Ilse Hurbain
- Institut Curie, CNRS UMR144, Structure et Compartiments Membranaires, Université Paris Sciences et Lettres, Paris, France
- Institut Curie, CNRS UMR144, Plateforme d’imagerie cellulaire et tissulaire (PICT-IBiSA), Université Paris Sciences et Lettres, Paris, France
| | - Graça Raposo
- Institut Curie, CNRS UMR144, Structure et Compartiments Membranaires, Université Paris Sciences et Lettres, Paris, France
- Institut Curie, CNRS UMR144, Plateforme d’imagerie cellulaire et tissulaire (PICT-IBiSA), Université Paris Sciences et Lettres, Paris, France
| | - Jacques Izopet
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, France
| | | | - Alexandra Benchoua
- Neuroplasticity and Therapeutics, CECS, I-STEM, AFM- Téléthon, Corbeil-Essonnes, France
| | - Mélinda Bénard
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
- CHU Toulouse, Hôpital des Enfants, Service de Néonatalogie, Toulouse, France
| | - Marion Groussolles
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
- CHU Toulouse, Hôpital Paule de Viguier, Service de Diagnostic Prénatal, Toulouse, France
- Equipe SPHERE Epidémiologie et Analyses en Santé Publique: Risques, Maladies chroniques et handicaps, Université de Toulouse, INSERM UMR1027, UPS, Toulouse, France
| | - Géraldine Cartron
- CHU Toulouse, Hôpital Paule de Viguier, Service de Gynécologie Obstétrique, Toulouse, France
| | - Yann Tanguy Le Gac
- CHU Toulouse, Hôpital Paule de Viguier, Service de Gynécologie Obstétrique, Toulouse, France
| | - Nathalie Moinard
- Développement Embryonnaire, Fertilité, Environnement (DEFE), INSERM UMR 1203, Université de Toulouse et Université de Montpellier, France
- CECOS, Service médecine de la reproduction, CHU Toulouse, Hôpital Paule de Viguier, Toulouse, France
| | - Gisela D’Angelo
- Institut Curie, CNRS UMR144, Structure et Compartiments Membranaires, Université Paris Sciences et Lettres, Paris, France
| | - Cécile E. Malnou
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
- Correspondence:
| |
Collapse
|
16
|
Galisova A, Zahradnik J, Allouche-Arnon H, Morandi MI, Abou Karam P, Fisler M, Avinoam O, Regev-Rudzki N, Schreiber G, Bar-Shir A. Genetically Engineered MRI-Trackable Extracellular Vesicles as SARS-CoV-2 Mimetics for Mapping ACE2 Binding In Vivo. ACS NANO 2022; 16:12276-12289. [PMID: 35921522 PMCID: PMC9364977 DOI: 10.1021/acsnano.2c03119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The elucidation of viral-receptor interactions and an understanding of virus-spreading mechanisms are of great importance, particularly in the era of a pandemic. Indeed, advances in computational chemistry, synthetic biology, and protein engineering have allowed precise prediction and characterization of such interactions. Nevertheless, the hazards of the infectiousness of viruses, their rapid mutagenesis, and the need to study viral-receptor interactions in a complex in vivo setup call for further developments. Here, we show the development of biocompatible genetically engineered extracellular vesicles (EVs) that display the receptor binding domain (RBD) of SARS-CoV-2 on their surface as coronavirus mimetics (EVsRBD). Loading EVsRBD with iron oxide nanoparticles makes them MRI-visible and, thus, allows mapping of the binding of RBD to ACE2 receptors noninvasively in live subjects. Moreover, we show that EVsRBD can be modified to display mutants of the RBD of SARS-CoV-2, allowing rapid screening of currently raised or predicted variants of the virus. The proposed platform thus shows relevance and cruciality in the examination of quickly evolving pathogenic viruses in an adjustable, fast, and safe manner. Relying on MRI for visualization, the presented approach could be considered in the future to map ligand-receptor binding events in deep tissues, which are not accessible to luminescence-based imaging.
Collapse
Affiliation(s)
- Andrea Galisova
- Department
of Molecular Chemistry and Materials Science and Department of
Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Jiri Zahradnik
- Department
of Molecular Chemistry and Materials Science and Department of
Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Hyla Allouche-Arnon
- Department
of Molecular Chemistry and Materials Science and Department of
Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Mattia I. Morandi
- Department
of Molecular Chemistry and Materials Science and Department of
Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Paula Abou Karam
- Department
of Molecular Chemistry and Materials Science and Department of
Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Michal Fisler
- Department
of Molecular Chemistry and Materials Science and Department of
Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Ori Avinoam
- Department
of Molecular Chemistry and Materials Science and Department of
Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Neta Regev-Rudzki
- Department
of Molecular Chemistry and Materials Science and Department of
Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Gideon Schreiber
- Department
of Molecular Chemistry and Materials Science and Department of
Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Amnon Bar-Shir
- Department
of Molecular Chemistry and Materials Science and Department of
Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7610001, Israel
| |
Collapse
|
17
|
Flomm FJ, Soh TK, Schneider C, Wedemann L, Britt HM, Thalassinos K, Pfitzner S, Reimer R, Grünewald K, Bosse JB. Intermittent bulk release of human cytomegalovirus. PLoS Pathog 2022; 18:e1010575. [PMID: 35925870 PMCID: PMC9352052 DOI: 10.1371/journal.ppat.1010575] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/06/2022] [Indexed: 01/24/2023] Open
Abstract
Human Cytomegalovirus (HCMV) can infect a variety of cell types by using virions of varying glycoprotein compositions. It is still unclear how this diversity is generated, but spatio-temporally separated envelopment and egress pathways might play a role. So far, one egress pathway has been described in which HCMV particles are individually enveloped into small vesicles and are subsequently exocytosed continuously. However, some studies have also found enveloped virus particles inside multivesicular structures but could not link them to productive egress or degradation pathways. We used a novel 3D-CLEM workflow allowing us to investigate these structures in HCMV morphogenesis and egress at high spatio-temporal resolution. We found that multiple envelopment events occurred at individual vesicles leading to multiviral bodies (MViBs), which subsequently traversed the cytoplasm to release virions as intermittent bulk pulses at the plasma membrane to form extracellular virus accumulations (EVAs). Our data support the existence of a novel bona fide HCMV egress pathway, which opens the gate to evaluate divergent egress pathways in generating virion diversity.
Collapse
Affiliation(s)
- Felix J. Flomm
- Centre for Structural Systems Biology, Hamburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Leibniz-Institute of Virology (LIV), Hamburg, Germany
| | - Timothy K. Soh
- Centre for Structural Systems Biology, Hamburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Leibniz-Institute of Virology (LIV), Hamburg, Germany
| | | | - Linda Wedemann
- Centre for Structural Systems Biology, Hamburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Leibniz-Institute of Virology (LIV), Hamburg, Germany
| | - Hannah M. Britt
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | | | | | - Kay Grünewald
- Centre for Structural Systems Biology, Hamburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Leibniz-Institute of Virology (LIV), Hamburg, Germany
- University of Hamburg, Department of Chemistry, Hamburg, Germany
| | - Jens B. Bosse
- Centre for Structural Systems Biology, Hamburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Leibniz-Institute of Virology (LIV), Hamburg, Germany
| |
Collapse
|
18
|
Craddock VD, Cook CM, Dhillon NK. Exploring extracellular vesicles as mediators of clinical disease and vehicles for viral therapeutics: Insights from the COVID-19 pandemic. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:172-188. [PMID: 35929616 PMCID: PMC9348627 DOI: 10.20517/evcna.2022.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The COVID-19 pandemic has challenged researchers to rapidly understand the capabilities of the SARS-CoV-2 virus and investigate potential therapeutics for SARS-CoV-2 infection. COVID-19 has been associated with devastating lung and cardiac injury, profound inflammation, and a heightened coagulopathic state, which may, in part, be driven by cellular crosstalk facilitated by extracellular vesicles (EVs). In recent years, EVs have emerged as important biomarkers of disease, and while extracellular vesicles may contribute to the spread of COVID-19 infection from one cell to the next, they also may be engineered to play a protective or therapeutic role as decoys or "delivery drivers" for therapeutic agents. This review explores these roles and areas for future study.
Collapse
Affiliation(s)
- Vaughn D Craddock
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, KS 66160, USA
| | - Christine M Cook
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, KS 66160, USA
| | - Navneet K Dhillon
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, KS 66160, USA
| |
Collapse
|
19
|
Production- and Purification-Relevant Properties of Human and Murine Cytomegalovirus. Viruses 2021; 13:v13122481. [PMID: 34960750 PMCID: PMC8706497 DOI: 10.3390/v13122481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
There is a large unmet need for a prophylactic vaccine against human cytomegalovirus (HCMV) to combat the ubiquitous infection that is ongoing with this pathogen. A vaccination against HCMV could protect immunocompromised patients and prevent birth defects caused by congenital HCMV infections. Moreover, cytomegalovirus (CMV) has a number of features that make it a very interesting vector platform for gene therapy. In both cases, preparation of a highly purified virus is a prerequisite for safe and effective application. Murine CMV (MCMV) is by far the most studied model for HCMV infections with regard to the principles that govern the immune surveillance of CMVs. Knowledge transfer from MCMV and mice to HCMV and humans could be facilitated by better understanding and characterization of the biological and biophysical properties of both viruses. We carried out a detailed investigation of HCMV and MCMV growth kinetics as well as stability under the influence of clarification and different storage conditions. Further, we investigated the possibilities to concentrate and purify both viruses by ultracentrifugation and ion-exchange chromatography. Defective enveloped particles were not separately analyzed; however, the behavior of exosomes was examined during all experiments. The effectiveness of procedures was monitored using CCID50 assay, Nanoparticle tracking analysis, ELISA for host cell proteins, and quantitative PCR for host cell DNA. MCMV generally proved to be more robust in handling. Despite its greater sensitivity, HCMV was efficiently (100% recovery) purified and concentrated by anion-exchange chromatography using QA monolithic support. The majority of the host genomic DNA as well as most of the host cell proteins were removed by this procedure.
Collapse
|
20
|
Hancock TJ, Hetzel ML, Ramirez A, Sparer TE. MCMV Centrifugal Enhancement: A New Spin on an Old Topic. Pathogens 2021; 10:1577. [PMID: 34959531 PMCID: PMC8705575 DOI: 10.3390/pathogens10121577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen infecting a majority of people worldwide, with diseases ranging from mild to life-threatening. Its clinical relevance in immunocompromised people and congenital infections have made treatment and vaccine development a top priority. Because of cytomegaloviruses' species specificity, murine cytomegalovirus (MCMV) models have historically informed and advanced translational CMV therapies. Using the phenomenon of centrifugal enhancement, we explored differences between MCMVs derived in vitro and in vivo. We found centrifugal enhancement on tissue culture-derived virus (TCV) was ~3× greater compared with salivary gland derived virus (SGV). Using novel "flow virometry", we found that TCV contained a distinct submicron particle composition compared to SGV. Using an inhibitor of exosome production, we show these submicron particles are not extracellular vesicles that contribute to centrifugal enhancement. We examined how these differences in submicron particles potentially contribute to differing centrifugal enhancement phenotypes, as well as broader in vivo vs. in vitro MCMV differences.
Collapse
Affiliation(s)
| | | | | | - Tim E. Sparer
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA; (T.J.H.); (M.L.H.); (A.R.)
| |
Collapse
|
21
|
Goetzl L, Stephens AJ, Schlesinger Y, Darbinian N, Merabova N, Hillel M, Hirsch AJ, Streblow DN, Frias AE, Roberts VHJ, Haese NN, Mani A, Eldar-Yedidia Y. Fetal Central Nervous System Derived Extracellular Vesicles: Potential for Non-invasive Tracking of Viral Mediated Fetal Brain Injury. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2021; 1:782863. [PMID: 40012720 PMCID: PMC11864790 DOI: 10.3389/fviro.2021.782863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Introduction Extracellular vesicles derived from the fetal central nervous system (FCNSEs) can be purified from maternal serum or plasma using the protein Contactin-2/TAG1that is expressed almost exclusively by developing neurons in the hippocampus, cerebral cortex and cerebellum. We hypothesized that fetal CNSEs could be used to non-invasively detect and quantify viral mediated in-utero brain injury in the first trimester. Materials and Methods First trimester maternal samples were collected from a human clinical population infected with primary cytomegalovirus (CMV) and a non-human primate model of Zika (ZIKV) infection. In the CMV cohort, a nested case control study was performed comparing pregnancies with and without fetal infection. Cases of fetal infection were further subdivided into those with and without adverse neurologic outcome. ZIKV samples were collected serially following maternal inoculation or saline. All ZIKV cases had histopathologic findings on necropsy. Serum was precipitated with ExoQuick solution and FCEs were isolated with biotinylated anti-Contactin-2/TAG1 antibody-streptavidin matrix immunoabsorption. FCE Synaptopodin (SYNPO) and Neurogranin (NG) protein levels were measured using standard ELISA kits and normalized to the exosome marker CD81. Results Fetal CNSE SYNPO and NG were significantly reduced in cases of first trimester fetal CMV infection compared to those with infection limited to the mother but could not discriminate between fetal infection with and without adverse neurologic outcome. Following ZIKV inoculation, fetal CNSE SYNPO was reduced by 48 h and significantly reduced by day 4. Discussion These data are the first to suggest that first trimester non-invasive diagnosis of fetal viral infection is possible. Fetal CNSEs have the potential to augment clinical and pre-clinical studies of perinatal viral infection. Serial sampling may be needed to discriminate between fetuses that are responding to treatment and/or recovering due to innate defenses and those that have ongoing neuronal injury. If confirmed, this technology may advance the paradigm of first trimester prenatal diagnosis and change the calculus for the cost benefit of CMV surveillance programs in pregnancy.
Collapse
Affiliation(s)
- Laura Goetzl
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Angela J. Stephens
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | - Nune Darbinian
- Center for Neural Repair and Rehabilitation, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Nana Merabova
- Department of Family Medicine, Medical College of Wisconsin-Prevea Health, Green Bay, WI, United States
| | | | - Alec J. Hirsch
- The Vaccine and Gene Institute, Oregon Health and Science University, Beaverton, OR, United States
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Daniel N. Streblow
- The Vaccine and Gene Institute, Oregon Health and Science University, Beaverton, OR, United States
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Antonio E. Frias
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, United States
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Victoria H. J. Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Nicole N. Haese
- The Vaccine and Gene Institute, Oregon Health and Science University, Beaverton, OR, United States
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Arunmani Mani
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | | |
Collapse
|
22
|
Bergamelli M, Martin H, Bénard M, Ausseil J, Mansuy JM, Hurbain I, Mouysset M, Groussolles M, Cartron G, Tanguy le Gac Y, Moinard N, Suberbielle E, Izopet J, Tscherning C, Raposo G, Gonzalez-Dunia D, D'Angelo G, Malnou CE. Human Cytomegalovirus Infection Changes the Pattern of Surface Markers of Small Extracellular Vesicles Isolated From First Trimester Placental Long-Term Histocultures. Front Cell Dev Biol 2021; 9:689122. [PMID: 34568315 PMCID: PMC8461063 DOI: 10.3389/fcell.2021.689122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) have increasingly been recognized as key players in a wide variety of physiological and pathological contexts, including during pregnancy. Notably, EVs appear both as possible biomarkers and as mediators involved in the communication of the placenta with the maternal and fetal sides. A better understanding of the physiological and pathological roles of EVs strongly depends on the development of adequate and reliable study models, specifically at the beginning of pregnancy where many adverse pregnancy outcomes have their origin. In this study, we describe the isolation of small EVs from a histoculture model of first trimester placental explants in normal conditions as well as upon infection by human cytomegalovirus. Using bead-based multiplex cytometry and electron microscopy combined with biochemical approaches, we characterized these small EVs and defined their associated markers and ultrastructure. We observed that infection led to changes in the expression level of several surface markers, without affecting the secretion and integrity of small EVs. Our findings lay the foundation for studying the functional role of EVs during early pregnancy, along with the identification of new predictive biomarkers for the severity and outcome of this congenital infection, which are still sorely lacking.
Collapse
Affiliation(s)
- Mathilde Bergamelli
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), INSERM, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Hélène Martin
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), INSERM, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Mélinda Bénard
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), INSERM, CNRS, UPS, Université de Toulouse, Toulouse, France.,Service de Néonatalogie, CHU Toulouse, Hôpital des Enfants, Toulouse, France
| | - Jérôme Ausseil
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), INSERM, CNRS, UPS, Université de Toulouse, Toulouse, France.,Laboratoire de Biochimie, CHU Toulouse, Hôpital Rangueil, Toulouse, France
| | - Jean-Michel Mansuy
- Laboratoire de Virologie, CHU Toulouse, Hôpital Purpan, Toulouse, France
| | - Ilse Hurbain
- CNRS UMR 144, Structure et Compartiments Membranaires, Institut Curie, Université Paris Sciences et Lettres, Paris, France.,CNRS UMR 144, Plateforme d'Imagerie Cellulaire et Tissulaire (PICT-IBiSA), Institut Curie, Université Paris Sciences et Lettres, Paris, France
| | - Maïlys Mouysset
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), INSERM, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Marion Groussolles
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), INSERM, CNRS, UPS, Université de Toulouse, Toulouse, France.,Service de Diagnostic Prénatal, CHU Toulouse, Hôpital Paule de Viguier, Toulouse, France.,INSERM UMR 1027, UPS, Equipe SPHERE Epidémiologie et Analyses en Santé Publique: Risques, Maladies Chroniques et Handicaps, Université de Toulouse, Toulouse, France
| | - Géraldine Cartron
- Service de Gynécologie Obstétrique, CHU Toulouse, Hôpital Paule de Viguier, Toulouse, France
| | - Yann Tanguy le Gac
- Service de Gynécologie Obstétrique, CHU Toulouse, Hôpital Paule de Viguier, Toulouse, France
| | - Nathalie Moinard
- Développement Embryonnaire, Fertilité, Environnement (DEFE), INSERM UMR 1203, Université de Toulouse et Université de Montpellier, Montpellier, France.,CECOS, Groupe d'Activité de Médecine de la Reproduction, CHU Toulouse, Hôpital Paule de Viguier, Toulouse, France
| | - Elsa Suberbielle
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), INSERM, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Jacques Izopet
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), INSERM, CNRS, UPS, Université de Toulouse, Toulouse, France.,Laboratoire de Virologie, CHU Toulouse, Hôpital Purpan, Toulouse, France
| | - Charlotte Tscherning
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), INSERM, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Graça Raposo
- CNRS UMR 144, Structure et Compartiments Membranaires, Institut Curie, Université Paris Sciences et Lettres, Paris, France.,CNRS UMR 144, Plateforme d'Imagerie Cellulaire et Tissulaire (PICT-IBiSA), Institut Curie, Université Paris Sciences et Lettres, Paris, France
| | - Daniel Gonzalez-Dunia
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), INSERM, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Gisela D'Angelo
- CNRS UMR 144, Structure et Compartiments Membranaires, Institut Curie, Université Paris Sciences et Lettres, Paris, France
| | - Cécile E Malnou
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), INSERM, CNRS, UPS, Université de Toulouse, Toulouse, France
| |
Collapse
|
23
|
Troyer Z, Alhusaini N, Tabler CO, Sweet T, de Carvalho KIL, Schlatzer DM, Carias L, King CL, Matreyek K, Tilton JC. Extracellular vesicles carry SARS-CoV-2 spike protein and serve as decoys for neutralizing antibodies. J Extracell Vesicles 2021; 10:e12112. [PMID: 34188786 PMCID: PMC8213968 DOI: 10.1002/jev2.12112] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 01/05/2023] Open
Abstract
In late 2019, a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China. SARS-CoV-2 and the disease it causes, coronavirus disease 2019 (COVID-19), spread rapidly and became a global pandemic in early 2020. SARS-CoV-2 spike protein is responsible for viral entry and binds to angiotensin converting enzyme 2 (ACE2) on host cells, making it a major target of the immune system - particularly neutralizing antibodies (nAbs) that are induced by infection or vaccines. Extracellular vesicles (EVs) are small membraned particles constitutively released by cells, including virally-infected cells. EVs and viruses enclosed within lipid membranes share some characteristics: they are small, sub-micron particles and they overlap in cellular biogenesis and egress routes. Given their shared characteristics, we hypothesized that EVs released from spike-expressing cells could carry spike and serve as decoys for anti-spike nAbs, promoting viral infection. Here, using mass spectrometry and nanoscale flow cytometry (NFC) approaches, we demonstrate that SARS-CoV-2 spike protein can be incorporated into EVs. Furthermore, we show that spike-carrying EVs act as decoy targets for convalescent patient serum-derived nAbs, reducing their effectiveness in blocking viral entry. These findings have important implications for the pathogenesis of SARS-CoV-2 infection in vivo and highlight the complex interplay between viruses, extracellular vesicles, and the immune system that occurs during viral infections.
Collapse
Affiliation(s)
- Zach Troyer
- Center for Proteomics and BioinformaticsDepartment of NutritionSchool of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Najwa Alhusaini
- Center for Proteomics and BioinformaticsDepartment of NutritionSchool of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Caroline O. Tabler
- Center for Proteomics and BioinformaticsDepartment of NutritionSchool of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Thomas Sweet
- Center for Proteomics and BioinformaticsDepartment of NutritionSchool of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | | | - Daniela M. Schlatzer
- Center for Proteomics and BioinformaticsDepartment of NutritionSchool of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Lenore Carias
- Division of General Medical SciencesSchool of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Christopher L. King
- Division of General Medical SciencesSchool of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Kenneth Matreyek
- Department of PathologySchool of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - John C. Tilton
- Center for Proteomics and BioinformaticsDepartment of NutritionSchool of MedicineCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
24
|
Sabanovic B, Piva F, Cecati M, Giulietti M. Promising Extracellular Vesicle-Based Vaccines against Viruses, Including SARS-CoV-2. BIOLOGY 2021; 10:94. [PMID: 33513850 PMCID: PMC7912280 DOI: 10.3390/biology10020094] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/07/2021] [Accepted: 01/24/2021] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs) are secreted from almost all human cells and mediate intercellular communication by transferring heterogeneous molecules (i.e., DNA, RNAs, proteins, and lipids). In this way, EVs participate in various biological processes, including immune responses. Viruses can hijack EV biogenesis systems for their dissemination, while EVs from infected cells can transfer viral proteins to uninfected cells and to immune cells in order to mask the infection or to trigger a response. Several studies have highlighted the role of native or engineered EVs in the induction of B cell and CD8(+) T cell reactions against viral proteins, strongly suggesting these antigen-presenting EVs as a novel strategy for vaccine design, including the emerging COVID-19. EV-based vaccines overcome some limitations of conventional vaccines and introduce novel unique characteristics useful in vaccine design, including higher bio-safety and efficiency as antigen-presenting systems and as adjuvants. Here, we review the state-of-the-art for antiviral EV-based vaccines, including the ongoing projects of some biotech companies in the development of EV-based vaccines for SARS-CoV-2. Finally, we discuss the limits for further development of this promising class of therapeutic agents.
Collapse
Affiliation(s)
| | | | | | - Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (B.S.); (F.P.); (M.C.)
| |
Collapse
|
25
|
McNamara RP, Dittmer DP. Extracellular vesicles in virus infection and pathogenesis. Curr Opin Virol 2020; 44:129-138. [PMID: 32846272 PMCID: PMC7755726 DOI: 10.1016/j.coviro.2020.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
Viruses are obligate intracellular parasites that usurp cellular signaling networks to promote pathogen spread and disease progression. Signaling through extracellular vesicles (EVs) is an emerging field of study in the virus-host interaction network. EVs relay information both locally and distally through incorporated contents, typically without tripping innate immune sensors. Therefore, this extracellular signaling axis presents itself as a tantalizing target for promoting a favorable niche for the pathogen(s) takeover of the host, particularly for chronic infections. From the incorporation of virus-encoded molecules such as micro RNAs and proteins/enzymes to the envelopment of entire infectious particles, evolutionary distinct viruses have shown a remarkable ability to converge on this means of communication. In this review, we will cover the recent advances in this field and explore how EV can be used as potential biomarkers for chronic, persistent, or latent virus infections.
Collapse
Affiliation(s)
- Ryan P McNamara
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States.
| |
Collapse
|
26
|
Vasilieva E, Gianella S, Freeman ML. Novel Strategies to Combat CMV-Related Cardiovascular Disease. Pathog Immun 2020; 5:240-274. [PMID: 33089035 PMCID: PMC7556413 DOI: 10.20411/pai.v5i1.382] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Cytomegalovirus (CMV), a ubiquitous human pathogen that is never cleared from the host, has long been thought to be relatively innocuous in immunocompetent adults, but causes severe complications including blindness, end-organ disease, and death in newborns and in immuno-compromised individuals, such as organ transplant recipients and those suffering from AIDS. Yet even in persons with intact immunity, CMV infection is associated with profound stimulation of immune and inflammatory pathways. Carriers of CMV infection also have an elevated risk of developing cardiovascular complications. In this review, we define the proposed mechanisms of how CMV contributes to cardiovascular disease (CVD), describe current approaches to target CMV, and discuss how these strategies may or may not alleviate cardiovascular complications in those with CMV infection. In addition, we discuss the special situation of CMV coinfection in people with HIV infection receiving antiretroviral therapy, and describe how these 2 viral infections may interact to potentiate CVD in this especially vulnerable population.
Collapse
Affiliation(s)
- Elena Vasilieva
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Sara Gianella
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael L. Freeman
- Division of Infectious Diseases and HIV Medicine; Department of Medicine; Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
27
|
Turner DL, Korneev DV, Purdy JG, de Marco A, Mathias RA. The host exosome pathway underpins biogenesis of the human cytomegalovirus virion. eLife 2020; 9:e58288. [PMID: 32910773 PMCID: PMC7556872 DOI: 10.7554/elife.58288] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Human Cytomegalovirus (HCMV) infects over half the world's population, is a leading cause of congenital birth defects, and poses serious risks for immuno-compromised individuals. To expand the molecular knowledge governing virion maturation, we analysed HCMV virions using proteomics, and identified a significant proportion of host exosome constituents. To validate this acquisition, we characterized exosomes released from uninfected cells, and demonstrated that over 99% of the protein cargo was subsequently incorporated into HCMV virions during infection. This suggested a common membrane origin, and utilization of host exosome machinery for virion assembly and egress. Thus, we selected a panel of exosome proteins for knock down, and confirmed that loss of 7/9 caused significantly less HCMV production. Saliently, we report that VAMP3 is essential for viral trafficking and release of infectious progeny, in various HCMV strains and cell types. Therefore, we establish that the host exosome pathway is intrinsic for HCMV maturation, and reveal new host regulators involved in viral trafficking, virion envelopment, and release. Our findings underpin future investigation of host exosome proteins as important modulators of HCMV replication with antiviral potential.
Collapse
Affiliation(s)
- Declan L Turner
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash UniversityVictoriaAustralia
| | - Denis V Korneev
- School of Biological Sciences, Monash UniversityVictoriaAustralia
| | - John G Purdy
- Department of Immunobiology and BIO5 Institute, University of ArizonaTucsonUnited States
| | - Alex de Marco
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash UniversityVictoriaAustralia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash UniversityVictoriaAustralia
- University of WarwickCoventryUnited Kingdom
| | - Rommel A Mathias
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash UniversityVictoriaAustralia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash UniversityVictoriaAustralia
| |
Collapse
|
28
|
Streck NT, Zhao Y, Sundstrom JM, Buchkovich NJ. Human Cytomegalovirus Utilizes Extracellular Vesicles To Enhance Virus Spread. J Virol 2020; 94:e00609-20. [PMID: 32522858 PMCID: PMC7394901 DOI: 10.1128/jvi.00609-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) manipulates cellular processes associated with secretory pathways within an infected cell to facilitate efficient viral replication. However, little is known about how HCMV infection alters the surrounding cellular environment to promote virus spread to uninfected cells. Extracellular vesicles (EVs) are key signaling molecules that are commonly altered in numerous disease states. Previous reports have shown that viruses commonly alter EVs, which can significantly impact infection. This study finds that HCMV modulates EV biogenesis machinery through upregulation of the endosomal sorting complex required for transport (ESCRT) proteins. This regulation appears to increase the activity of EV biogenesis, since HCMV-infected fibroblasts have increased vesicle release and altered vesicle size compared to EVs from uninfected cells. EVs generated through ESCRT-independent pathways are also beneficial to virus spread in fibroblasts, as treatment with the EV inhibitor GW4869 slowed the efficiency of HCMV spread. Importantly, the transfer of EVs purified from HCMV-infected cells enhanced virus spread. This suggests that HCMV modulates the EV pathway to transfer proviral signals to uninfected cells that prime the cellular environment for incoming infection and enhance the efficiency of virus spread.IMPORTANCE Human cytomegalovirus (HCMV) is a herpesvirus that leads to serious health consequences in neonatal or immunocompromised patients. Clinical management of infection in these at-risk groups remains a serious concern even with approved antiviral therapies available. It is necessary to increase our understanding of the cellular changes that occur during infection and their importance to virus spread. This may help to identify new targets during infection that will lead to the development of novel treatment strategies. Extracellular vesicles (EVs) represent an important method of intercellular communication in the human host. This study finds that HCMV manipulates this pathway to increase the efficiency of virus spread to uninfected cells. This finding defines a new layer of host manipulation induced by HCMV infection that leads to enhanced virus spread.
Collapse
Affiliation(s)
- Nicholas T Streck
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Yuanjun Zhao
- Department of Ophthalmology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Jeffrey M Sundstrom
- Department of Ophthalmology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Nicholas J Buchkovich
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
29
|
Extracellular Vesicles in Viral Infections of the Nervous System. Viruses 2020; 12:v12070700. [PMID: 32605316 PMCID: PMC7411781 DOI: 10.3390/v12070700] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
Almost all types of cells release extracellular vesicles (EVs) into the extracellular space. EVs such as exosomes and microvesicles are membrane-bound vesicles ranging in size from 30 to 1000 nm in diameter. Under normal conditions, EVs mediate cell to cell as well as inter-organ communication via the shuttling of their cargoes which include RNA, DNA and proteins. Under pathological conditions, however, the number, size and content of EVs are found to be altered and have been shown to play crucial roles in disease progression. Emerging studies have demonstrated that EVs are involved in many aspects of viral infection-mediated neurodegenerative diseases. In the current review, we will describe the interactions between EV biogenesis and the release of virus particles while also reviewing the role of EVs in various viral infections, such as HIV-1, HTLV, Zika, CMV, EBV, Hepatitis B and C, JCV, and HSV-1. We will also discuss the potential uses of EVs and their cargoes as biomarkers and therapeutic vehicles for viral infections.
Collapse
|
30
|
Bello-Morales R, Ripa I, López-Guerrero JA. Extracellular Vesicles in Viral Spread and Antiviral Response. Viruses 2020; 12:E623. [PMID: 32521696 PMCID: PMC7354624 DOI: 10.3390/v12060623] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Viral spread by both enveloped and non-enveloped viruses may be mediated by extracellular vesicles (EVs), including microvesicles (MVs) and exosomes. These secreted vesicles have been demonstrated to be an efficient mechanism that viruses can use to enter host cells, enhance spread or evade the host immune response. However, the complex interplay between viruses and EVs gives rise to antagonistic biological tasks-to benefit the viruses, enhancing infection and interfering with the immune system or to benefit the host, by mediating anti-viral responses. Exosomes from cells infected with herpes simplex type 1 (HSV-1) may transport viral and host transcripts, proteins and innate immune components. This virus may also use MVs to expand its tropism and evade the host immune response. This review aims to describe the current knowledge about EVs and their participation in viral infection, with a specific focus on the role of exosomes and MVs in herpesvirus infections, particularly that of HSV-1.
Collapse
Affiliation(s)
- Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - Inés Ripa
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
31
|
Dogrammatzis C, Waisner H, Kalamvoki M. Cloaked Viruses and Viral Factors in Cutting Edge Exosome-Based Therapies. Front Cell Dev Biol 2020; 8:376. [PMID: 32528954 PMCID: PMC7264115 DOI: 10.3389/fcell.2020.00376] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) constitute a heterogeneous group of vesicles released by all types of cells that play a major role in intercellular communication. The field of EVs started gaining attention since it was realized that these vesicles are not waste bags, but they carry specific cargo and they communicate specific messages to recipient cells. EVs can deliver different types of RNAs, proteins, and lipids from donor to recipient cells and they can influence recipient cell functions, despite their limited capacity for cargo. EVs have been compared to viruses because of their size, cell entry pathways, and biogenesis and to viral vectors because they can be loaded with desired cargo, modified, and re-targeted. These properties along with the fact that EVs are stable in body fluids, they can be produced and purified in large quantities, they can cross the blood-brain barrier, and autologous EVs do not appear to cause major adverse effects, have rendered them attractive for therapeutic use. Here, we discuss the potential for therapeutic use of EVs derived from virus infected cells or EVs carrying viral factors. We have focused on six major concepts: (i) the role of EVs in virus-based oncolytic therapy or virus-based gene delivery approaches; (ii) the potential use of EVs for developing viral vaccines or optimizing already existing vaccines; (iii) the role of EVs in delivering RNAs and proteins in the context of viral infections and modulating the microenvironment of infection; (iv) how to take advantage of viral features to design effective means of EV targeting, uptake, and cargo packaging; (v) the potential of EVs in antiviral drug delivery; and (vi) identification of novel antiviral targets based on EV biogenesis factors hijacked by viruses for assembly and egress. It has been less than a decade since more attention was given to EV research and some interesting concepts have already been developed. In the coming years, additional information on EV biogenesis, how they are hijacked and utilized by pathogens, and their impact on the microenvironment of infection is expected to indicate avenues to optimize existing therapeutic tools and develop novel approaches.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
32
|
Grabowska K, Wąchalska M, Graul M, Rychłowski M, Bieńkowska-Szewczyk K, Lipińska AD. Alphaherpesvirus gB Homologs Are Targeted to Extracellular Vesicles, but They Differentially Affect MHC Class II Molecules. Viruses 2020; 12:v12040429. [PMID: 32290097 PMCID: PMC7232241 DOI: 10.3390/v12040429] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/24/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
Herpesvirus envelope glycoprotein B (gB) is one of the best-documented extracellular vesicle (EVs)-incorporated viral proteins. Regarding the sequence and structure conservation between gB homologs, we asked whether bovine herpesvirus-1 (BoHV-1) and pseudorabies virus (PRV)-encoded gB share the property of herpes simplex-1 (HSV-1) gB to be trafficked to EVs and affect major histocompatibility complex (MHC) class II. Our data highlight some conserved and differential features of the three gBs. We demonstrate that mature, fully processed BoHV-1 and PRV gBs localize to EVs isolated from constructed stable cell lines and EVs-enriched fractions from virus-infected cells. gB also shares the ability to co-localize with CD63 and MHC II in late endosomes. However, we report here a differential effect of the HSV-1, BoHV-1, and PRV glycoprotein on the surface MHC II levels, and MHC II loading to EVs in stable cell lines, which may result from their adverse ability to bind HLA-DR, with PRV gB being the most divergent. BoHV-1 and HSV-1 gB could retard HLA-DR exports to the plasma membrane. Our results confirm that the differential effect of gB on MHC II may require various mechanisms, either dependent on its complex formation or on inducing general alterations to the vesicular transport. EVs from virus-infected cells also contained other viral glycoproteins, like gD or gE, and they were enriched in MHC II. As shown for BoHV-1 gB- or BoHV-1-infected cell-derived vesicles, those EVs could bind anti-virus antibodies in ELISA, which supports the immunoregulatory potential of alphaherpesvirus gB.
Collapse
|
33
|
Temporal dynamics of protein complex formation and dissociation during human cytomegalovirus infection. Nat Commun 2020; 11:806. [PMID: 32041945 PMCID: PMC7010728 DOI: 10.1038/s41467-020-14586-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/10/2020] [Indexed: 12/23/2022] Open
Abstract
The co-evolution and co-existence of viral pathogens with their hosts for millions of years is reflected in dynamic virus-host protein-protein interactions (PPIs) that are intrinsic to the spread of infections. Here, we investigate the system-wide dynamics of protein complexes throughout infection with the herpesvirus, human cytomegalovirus (HCMV). Integrating thermal shift assays and mass spectrometry quantification with virology and microscopy, we monitor the temporal formation and dissociation of hundreds of functional protein complexes and the dynamics of host-host, virus-host, and virus-virus PPIs. We establish pro-viral roles for cellular protein complexes and translocating proteins. We show the HCMV receptor integrin beta 1 dissociates from extracellular matrix proteins, becoming internalized with CD63, which is necessary for virus production. Moreover, this approach facilitates characterization of essential viral proteins, such as pUL52. This study of temporal protein complex dynamics provides insights into mechanisms of HCMV infection and a resource for biological and therapeutic studies. Here, Hashimoto et al. apply mass spectrometry-based thermal proximity coaggregation to characterize the temporal dynamics of virus-host protein-protein interactions during human cytomegalovirus (HCMV) infection, uncovering proviral functions including the internalization of the HCMV receptor integrin beta 1 with CD63.
Collapse
|
34
|
Abstract
The human betaherpesviruses, human cytomegalovirus (HCMV; species Human betaherpesvirus 5) and human herpesviruses 6A, 6B, and 7 (HHV-6A, -6B, and -7; species Human betaherpesviruses 6A, 6B, and 7) are highly prevalent and can cause severe disease in immune-compromised and immune-naive populations in well- and under-developed communities. Herpesvirus virion assembly is an intricate process that requires viral orchestration of host systems. In this review, we describe recent advances in some of the many cellular events relevant to assembly and egress of betaherpesvirus virions. These include modifications of host metabolic, immune, and autophagic/recycling systems. In addition, we discuss unique aspects of betaherpesvirus virion structure, virion assembly, and the cellular pathways employed during virion egress.
Collapse
|
35
|
Margolis L, Sadovsky Y. The biology of extracellular vesicles: The known unknowns. PLoS Biol 2019; 17:e3000363. [PMID: 31318874 PMCID: PMC6667152 DOI: 10.1371/journal.pbio.3000363] [Citation(s) in RCA: 344] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/30/2019] [Indexed: 12/14/2022] Open
Abstract
For many years, double-layer phospholipid membrane vesicles, released by most cells, were not considered to be of biological significance. This stance has dramatically changed with the recognition of extracellular vesicles (EVs) as carriers of biologically active molecules that can traffic to local or distant targets and execute defined biological functions. The dimensionality of the field has expanded with the appreciation of diverse types of EVs and the complexity of vesicle biogenesis, cargo loading, release pathways, targeting mechanisms, and vesicle processing. With the expanded interest in the field and the accelerated rate of publications on EV structure and function in diverse biomedical fields, it has become difficult to distinguish between well-established biological features of EV and the untested hypotheses or speculative assumptions that await experimental proof. With the growing interest despite the limited evidence, we sought in this essay to formulate a set of unsolved mysteries in the field, sort out established data from fascinating hypotheses, and formulate several challenging questions that must be answered for the field to advance.
Collapse
Affiliation(s)
- Leonid Margolis
- Section for Intercellular Interactions, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, United States of America
| | - Yoel Sadovsky
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.,Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|