1
|
Long B, Koyfman A. Incidental neutropenia: An emergency medicine focused approach. Am J Emerg Med 2025; 89:190-194. [PMID: 39733655 DOI: 10.1016/j.ajem.2024.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 12/31/2024] Open
Abstract
INTRODUCTION Neutropenia is defined as an absolute neutrophil count (ANC) < 1500 cells/microL and may be discovered incidentally in an asymptomatic, afebrile patient. OBJECTIVE This narrative review provides an approach to the afebrile emergency department patient with incidental neutropenia. DISCUSSION Neutropenia is an ANC < 1500 cells/microL, with mild neutropenia defined as an ANC ≥ 1000 to <1500 cells/microL, moderate ≥500 to <1000 cells/microL, severe <500 cells/microL, and agranulocytosis <200 cells/microL. Incidental or isolated neutropenia is an ANC < 1500 cells/microL discovered on laboratory testing unrelated to the patient's chief complaint (e.g., chest pain, abdominal pain, shortness of breath, etc.) and not associated with fever or infectious signs and symptoms. There are a variety of etiologies, with inherited forms, dose-dependent drug-induced neutropenia, and infections the most common causes. Testing includes complete blood count with differential and peripheral smear. Management is based on the patient's hemodynamic status, presence of fever, severity of neutropenia, and the peripheral smear. Patients who are critically ill, febrile, have severe neutropenia, or have a concerning peripheral smear (schistocytes, atypical lymphocytes) should undergo hematology consultation. Those with critical illness or fever with neutropenia should receive broad-spectrum antibiotics. Patients who are afebrile, hemodynamically stable, and non-toxic appearing with mild or moderate neutropenia can likely be discharged for repeat testing in one to two weeks. CONCLUSION Understanding the approach to incidental neutropenia can improve patient care. Critically ill or febrile patients should be admitted, but select patients may be discharged.
Collapse
Affiliation(s)
- Brit Long
- Brooke Army Medical Center, Department of Emergency Medicine, 3841 Roger Brooke Dr, Fort Sam Houston, TX 78234, United States.
| | - Alex Koyfman
- The University of Texas Southwestern Medical Center, Department of Emergency Medicine, 5323 Harry Hines Boulevard, Dallas, TX 75390, United States
| |
Collapse
|
2
|
Djuidje Chatue IA, Nyegue MA, Kamdem SD, Maloba F, Taliy Junaid I, Malhotra P, Masumbe Netongo P. Association between Epstein-Barr virus reactivation and severe malaria in pregnant women living in a malaria-endemic region of Cameroon. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003556. [PMID: 39133703 PMCID: PMC11318859 DOI: 10.1371/journal.pgph.0003556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 07/10/2024] [Indexed: 08/15/2024]
Abstract
Malaria kills nearly 619,000 people each year. Despite the natural immunity acquired to malaria, pregnant women and children under five die from severe forms of the disease in sub-Saharan Africa. Co-infection with acute Epstein-Barr Virus (EBV) infection has been shown to suppress the anti-malarial humoral responses, but little is known about the impact of EBV reactivation on malaria-associated morbidity. This study investigated the association between EBV reactivation and malaria severity in pregnant women living in a malaria-endemic region in Cameroon. A cross-sectional study was conducted on 220 pregnant women attending antenatal consultations in three health facilities in the West region of Cameroon. Malaria was diagnosed by microscopy, and Plasmodium species were identified by Nested PCR. Plasma samples were analyzed by ELISA for the presence of EBV nuclear antigen, EBV viral capsid antigen, and EBV early antigen to determine EBV reactivation. All statistics were performed using GraphPad Prism and SPSS software. The prevalence of malaria among pregnant women was 23.2%, of which 18.6% were P. falciparum mono-infections and 4.5% mixed infections (3.6% P. falciparum and P. malariae; 0.9% P. falciparum and P. ovale). 99.5% of the women were EBV seropositive, and 13.2% had EBV reactivation. Pregnant women with reactivated EBV were more likely to develop severe malaria than pregnant women with latent EBV (OR 4.33, 95% CI 1.08-17.25, p = 0.03). The median parasitemia in pregnant women with latent EBV was lower than in those with EBV reactivation (2816 vs. 19002 parasites/μL, p = 0.02). Our study revealed that lytic reactivation of EBV may be associated with the severity of malaria in pregnant women. Suggesting that, like acute infection, EBV reactivation should be considered a risk factor for severe malaria in pregnant women in malaria-endemic regions or could serve as a hallmark of malaria severity during pregnancy. Further detailed studies are needed.
Collapse
Affiliation(s)
- Ide Armelle Djuidje Chatue
- Department of Microbiology, University of Yaounde I, Yaounde, Centre, Cameroon
- Molecular Diagnostics Research Group, Biotechnology Centre-University of Yaounde I (BTC-UYI), Yaounde, Centre, Cameroon
- Malaria Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, Delhi, India
| | | | - Severin Donald Kamdem
- Molecular Diagnostics Research Group, Biotechnology Centre-University of Yaounde I (BTC-UYI), Yaounde, Centre, Cameroon
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Franklin Maloba
- Molecular Diagnostics Research Group, Biotechnology Centre-University of Yaounde I (BTC-UYI), Yaounde, Centre, Cameroon
- Department of Microbiology and Parasitology, University of Buea, Buea, Southwest Cameroon
- Biology Program, School of Science, Navajo Technical University, Crownpoint, New Mexico, United States of America
| | - Iqbal Taliy Junaid
- Malaria Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, Delhi, India
| | - Pawan Malhotra
- Malaria Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, Delhi, India
| | - Palmer Masumbe Netongo
- Molecular Diagnostics Research Group, Biotechnology Centre-University of Yaounde I (BTC-UYI), Yaounde, Centre, Cameroon
- Biology Program, School of Science, Navajo Technical University, Crownpoint, New Mexico, United States of America
- Department of Biochemistry, University of Yaounde I, Yaounde, Centre, Cameroon
| |
Collapse
|
3
|
Bhagchandani T, Haque MMU, Sharma S, Malik MZ, Ray AK, Kaur US, Rai A, Verma A, Sawlani KK, Chaturvedi R, Dandu H, Kumar A, Tandon R. Plasma Virome of HIV-infected Subjects on Suppressive Antiretroviral Therapy Reveals Association of Differentially Abundant Viruses with Distinct T-cell Phenotypes and Inflammation. Curr Genomics 2024; 25:105-119. [PMID: 38751600 PMCID: PMC11092910 DOI: 10.2174/0113892029279786240111052824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/16/2023] [Accepted: 12/29/2023] [Indexed: 05/18/2024] Open
Abstract
Background The plasma virome represents the overall composition of viral sequences present in it. Alteration in plasma virome has been reported in treatment naïve and immunocompromised (CD4 count < 200) people with HIV (PWH). However, the effect of ART on virome composition in PWH on ART with preserved CD4 counts is poorly understood. Objectives We aimed to assess the alterations in plasma virome in PWH on ART in comparison to HIV-negative uninfected controls and to further investigate possible associations of plasma viruses with inflammation and immune dysfunction, namely, immunosenescence and immune exhaustion. Methods Plasma viral DNA from PWH on ART and controls was used for sequencing on the Illumina Nextseq500 platform, followed by the identification of viral sequences using an automated pipeline, VIROMATCH. Multiplex cytokine assay was performed to measure the concentrations of various cytokines in plasma. Immunophenotyping was performed on PBMCs to identify T cell markers of immunosenescence and immune exhaustion. Results In our observational, cross-sectional pilot study, chronically infected PWH on ART had significantly different viral species compositions compared to controls. The plasma virome of PWH showed a significantly high relative abundance of species Human gammaherpesvirus 4, also known as Epstein-Barr virus (EBV). Moreover, EBV emerged as a significant viral taxon differentially enriched in PWH on ART, which further correlated positively with the exhaustion phenotype of T cells and significantly increased TNF-α in PWH on ART. Additionally, a significantly increased proportion of senescent T cells and IL-8 cytokine was detected in PWH on ART. Conclusion Altered plasma virome influenced the inflammatory response and T-cell phenotype in PWH on ART.
Collapse
Affiliation(s)
- Tannu Bhagchandani
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Mohammad M. Ul Haque
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shilpa Sharma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Md Zubbair Malik
- Host-Pathogen Interaction Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ashwini K. Ray
- Laboratory of Metabolic Disorder and Environmental Biotechnology, Department of Environmental Studies, Faculty of Science, University of Delhi, New Delhi, India
| | - Urvinder S. Kaur
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ankita Rai
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Anjali Verma
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Kamal K. Sawlani
- Department of Medicine, King George’s Medical University, Lucknow, India
| | - Rupesh Chaturvedi
- Host-Pathogen Interaction Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Special Centre for System Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Himanshu Dandu
- Department of Medicine, King George’s Medical University, Lucknow, India
| | - Abhishek Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore; India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
4
|
Jiang Y, Zhang H, Wang J, Chen J, Guo Z, Liu Y, Hua H. Exploiting RIG-I-like receptor pathway for cancer immunotherapy. J Hematol Oncol 2023; 16:8. [PMID: 36755342 PMCID: PMC9906624 DOI: 10.1186/s13045-023-01405-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
RIG-I-like receptors (RLRs) are intracellular pattern recognition receptors that detect viral or bacterial infection and induce host innate immune responses. The RLRs family comprises retinoic acid-inducible gene 1 (RIG-I), melanoma differentiation-associated gene 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2) that have distinctive features. These receptors not only recognize RNA intermediates from viruses and bacteria, but also interact with endogenous RNA such as the mislocalized mitochondrial RNA, the aberrantly reactivated repetitive or transposable elements in the human genome. Evasion of RLRs-mediated immune response may lead to sustained infection, defective host immunity and carcinogenesis. Therapeutic targeting RLRs may not only provoke anti-infection effects, but also induce anticancer immunity or sensitize "immune-cold" tumors to immune checkpoint blockade. In this review, we summarize the current knowledge of RLRs signaling and discuss the rationale for therapeutic targeting RLRs in cancer. We describe how RLRs can be activated by synthetic RNA, oncolytic viruses, viral mimicry and radio-chemotherapy, and how the RNA agonists of RLRs can be systemically delivered in vivo. The integration of RLRs agonism with RNA interference or CAR-T cells provides new dimensions that complement cancer immunotherapy. Moreover, we update the progress of recent clinical trials for cancer therapy involving RLRs activation and immune modulation. Further studies of the mechanisms underlying RLRs signaling will shed new light on the development of cancer therapeutics. Manipulation of RLRs signaling represents an opportunity for clinically relevant cancer therapy. Addressing the challenges in this field will help develop future generations of cancer immunotherapy.
Collapse
Affiliation(s)
- Yangfu Jiang
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hongying Zhang
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jinzhu Chen
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zeyu Guo
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongliang Liu
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Xia W, Chen H, Feng Y, Shi N, Huang Z, Feng Q, Jiang X, He G, Xie M, Lai Y, Wang Z, Yi X, Tang A. Tree Shrew Is a Suitable Animal Model for the Study of Epstein Barr Virus. Front Immunol 2022; 12:789604. [PMID: 35111158 PMCID: PMC8801525 DOI: 10.3389/fimmu.2021.789604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Epstein-Barr virus (EBV) is a human herpesvirus that latently infects approximately 95% of adults and is associated with a spectrum of human diseases including Infectious Mononucleosis and a variety of malignancies. However, understanding the pathogenesis, vaccines and antiviral drugs for EBV-associated disease has been hampered by the lack of suitable animal models. Tree shrew is a novel laboratory animal with a close phylogenetic relationship to primates, which is a critical advantage for many animal models for human disease, especially viral infections. Herein, we first identified the key residues in the CR2 receptor that bind the gp350 protein and facilitate viral entry. We found that tree shrew shares 100% sequence identity with humans in these residues, which is much higher than rabbits (50%) and rats (25%). In vitro analysis showed that B lymphocytes of tree shrews are susceptible to EBV infection and replication, as well as EBV-enhanced cell proliferation. Moreover, results of in vivo experiments show that EBV infection in tree shrews resembles EBV infection in humans. The infected animals exhibited transient fever and loss of weight accompanied by neutropenia and high viremia levels during the acute phase of the viral infection. Thereafter, tree shrews acted as asymptomatic carriers of the virus in most cases that EBV-related protein could be detected in blood and tissues. However, a resurgence of EBV infection occurred at 49 dpi. Nanopore transcriptomic sequencing of peripheral blood in EBV-infected animals revealed the dynamic changes in biological processes occurring during EBV primary infection. Importantly, we find that neutrophil function was impaired in tree shrew model as well as human Infectious Mononucleosis datasets (GSE85599 and GSE45918). In addition, retrospective case reviews suggested that neutropenia may play an important role in EBV escaping host innate immune response, leading to long-term latent infection. Our findings demonstrated that tree shrew is a suitable animal model to evaluate the mechanisms of EBV infection, and for developing vaccines and therapeutic drugs against EBV.
Collapse
Affiliation(s)
- Wei Xia
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Gaungxi Medical University), Ministry of Education, Nanning, China
| | - Honglin Chen
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Gaungxi Medical University), Ministry of Education, Nanning, China
| | - Yiwei Feng
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Gaungxi Medical University), Ministry of Education, Nanning, China
| | - Nan Shi
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Gaungxi Medical University), Ministry of Education, Nanning, China
| | - Zongjian Huang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Gaungxi Medical University), Ministry of Education, Nanning, China
| | - Qingyuan Feng
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Gaungxi Medical University), Ministry of Education, Nanning, China
| | - Xu Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Gaungxi Medical University), Ministry of Education, Nanning, China
| | - Guangyao He
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Gaungxi Medical University), Ministry of Education, Nanning, China
| | - Mao Xie
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Gaungxi Medical University), Ministry of Education, Nanning, China
| | - Yongjin Lai
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Gaungxi Medical University), Ministry of Education, Nanning, China
| | - Zhi Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Gaungxi Medical University), Ministry of Education, Nanning, China
| | - Xiang Yi
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Gaungxi Medical University), Ministry of Education, Nanning, China
| | - Anzhou Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Gaungxi Medical University), Ministry of Education, Nanning, China
| |
Collapse
|
6
|
Chan L, Karimi N, Morovati S, Alizadeh K, Kakish JE, Vanderkamp S, Fazel F, Napoleoni C, Alizadeh K, Mehrani Y, Minott JA, Bridle BW, Karimi K. The Roles of Neutrophils in Cytokine Storms. Viruses 2021; 13:v13112318. [PMID: 34835125 PMCID: PMC8624379 DOI: 10.3390/v13112318] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 12/16/2022] Open
Abstract
A cytokine storm is an abnormal discharge of soluble mediators following an inappropriate inflammatory response that leads to immunopathological events. Cytokine storms can occur after severe infections as well as in non-infectious situations where inflammatory cytokine responses are initiated, then exaggerated, but fail to return to homeostasis. Neutrophils, macrophages, mast cells, and natural killer cells are among the innate leukocytes that contribute to the pathogenesis of cytokine storms. Neutrophils participate as mediators of inflammation and have roles in promoting homeostatic conditions following pathological inflammation. This review highlights the advances in understanding the mechanisms governing neutrophilic inflammation against viral and bacterial pathogens, in cancers, and in autoimmune diseases, and how neutrophils could influence the development of cytokine storm syndromes. Evidence for the destructive potential of neutrophils in their capacity to contribute to the onset of cytokine storm syndromes is presented across a multitude of clinical scenarios. Further, a variety of potential therapeutic strategies that target neutrophils are discussed in the context of suppressing multiple inflammatory conditions.
Collapse
Affiliation(s)
- Lily Chan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.E.K.); (S.V.); (F.F.); (C.N.); (Y.M.); (J.A.M.)
| | - Negar Karimi
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 91779-4897, Iran;
| | - Solmaz Morovati
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz 71557-13876, Iran;
| | - Kasra Alizadeh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Julia E. Kakish
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.E.K.); (S.V.); (F.F.); (C.N.); (Y.M.); (J.A.M.)
| | - Sierra Vanderkamp
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.E.K.); (S.V.); (F.F.); (C.N.); (Y.M.); (J.A.M.)
| | - Fatemeh Fazel
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.E.K.); (S.V.); (F.F.); (C.N.); (Y.M.); (J.A.M.)
| | - Christina Napoleoni
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.E.K.); (S.V.); (F.F.); (C.N.); (Y.M.); (J.A.M.)
| | - Kimia Alizadeh
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA;
| | - Yeganeh Mehrani
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.E.K.); (S.V.); (F.F.); (C.N.); (Y.M.); (J.A.M.)
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 91779-4897, Iran;
| | - Jessica A. Minott
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.E.K.); (S.V.); (F.F.); (C.N.); (Y.M.); (J.A.M.)
| | - Byram W. Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.E.K.); (S.V.); (F.F.); (C.N.); (Y.M.); (J.A.M.)
- Correspondence: (B.W.B.); (K.K.); Tel.: +1-519-824-4120 (ext. 54657) (B.W.B.); +1-519-824-4120 (ext. 54668) (K.K.)
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.E.K.); (S.V.); (F.F.); (C.N.); (Y.M.); (J.A.M.)
- Correspondence: (B.W.B.); (K.K.); Tel.: +1-519-824-4120 (ext. 54657) (B.W.B.); +1-519-824-4120 (ext. 54668) (K.K.)
| |
Collapse
|
7
|
Nonmalignant leukocyte disorders. RODAK'S HEMATOLOGY 2020. [PMCID: PMC7151933 DOI: 10.1016/b978-0-323-53045-3.00035-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Abstract
Neutrophils are a critical part of the body’s defense system to prevent serious bacterial and fungal infections. Neutropenia is a term which is defined by the absolute neutrophil counts (ANC) < 1,500 cells/µL, and it becomes clinically significant when the level falls below 500 cells/µL. The risk of morbidity and mortality increases considerably when the levels fall below 200. In some ethnicities, the neutropenia is chronic and is frequently seen on routine outpatient visits. On the other hand, transient neutropenia is associated with a transient drop in the neutrophil count and many of the underlying causes are reversible. Patients and their families, as well as some clinicians, express great concern for neutropenia, leading to a multitude of tests and emergency room visits. In this review, we discuss the causes of both chronic and transient neutropenia. Also, we have given special emphasis on the mechanism of neutropenia and management of transient neutropenia.
Collapse
Affiliation(s)
- Navdeep Singh
- Hospice and Palliative Care Medicine, North Shore Long Island Jewish Hospital, Brooklyn, USA
| | - Sandeep Singh Lubana
- Hematology and Medical Oncology, State University of New York Downstate Medical Center, Brooklyn, USA
| | - Lech Dabrowski
- Hematology and Medical Oncology, State University of New York Downstate Medical Center, Brooklyn, USA
| |
Collapse
|
9
|
Marcelis L, Tousseyn T. The Tumor Microenvironment in Post-Transplant Lymphoproliferative Disorders. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2019; 12:3-16. [PMID: 30680693 PMCID: PMC6529504 DOI: 10.1007/s12307-018-00219-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023]
Abstract
Post-transplant lymphoproliferative disorders (PTLDs) cover a broad spectrum of lymphoproliferative lesions arising after solid organ or allogeneic hematopoietic stem cell transplantation. The composition and function of the tumor microenvironment (TME), consisting of all non-malignant constituents of a tumor, is greatly impacted in PTLD through a complex interplay between 4 factors: 1) the graft organ causes immune stimulation through chronic antigen presentation; 2) the therapy to prevent organ rejection interferes with the immune system; 3) the oncogenic Epstein-Barr virus (EBV), present in 80% of PTLDs, has a causative role in the oncogenic transformation of lymphocytes and influences immune responses; 4) interaction with the donor-derived immune cells accompanying the graft. These factors make PTLDs an interesting model to look at cancer-microenvironment interactions and current findings can be of interest for other malignancies including solid tumors. Here we will review the current knowledge of the TME composition in PTLD with a focus on the different factors involved in PTLD development.
Collapse
Affiliation(s)
- Lukas Marcelis
- Department of Imaging and Pathology, Translational Cell and Tissue Research Lab, KU Leuven, Herestraat 49 - O&N IV, 3000, Leuven, Belgium
| | - Thomas Tousseyn
- Department of Imaging and Pathology, Translational Cell and Tissue Research Lab, KU Leuven, Herestraat 49 - O&N IV, 3000, Leuven, Belgium.
- Department of Pathology, University Hospitals UZ Leuven, 7003 24, Herestraat 49, Leuven, 3000, Belgium.
| |
Collapse
|
10
|
Naumenko V, Turk M, Jenne CN, Kim SJ. Neutrophils in viral infection. Cell Tissue Res 2018; 371:505-516. [PMID: 29327081 DOI: 10.1007/s00441-017-2763-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022]
Abstract
Neutrophils are the first wave of recruited immune cells to sites of injury or infection and are crucial players in controlling bacterial and fungal infections. Although the role of neutrophils during bacterial or fungal infections is well understood, their impact on antiviral immunity is much less studied. Furthermore, neutrophil function in tumor pathogenesis and cancer treatment has recently received much attention, particularly within the context of oncolytic virus infection where neutrophils produce antitumor cytokines and enhance oncolysis. In this review, multiple functions of neutrophils in viral infections and immunity are discussed. Understanding the role of neutrophils during viral infection may provide insight into the pathogenesis of virus infections and the outcome of virus-based therapies.
Collapse
Affiliation(s)
- Victor Naumenko
- Department of Microbiology, Immunology and Infectious Diseases, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, HRIC 3330 Hospital Drive N.W, Calgary, Alberta, T2N 4N1, Canada.,National University of Science and Technology "MISIS", Leninskiy prospect 4, 119991, Moscow, Russia
| | - Madison Turk
- Department of Microbiology, Immunology and Infectious Diseases, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, HRIC 3330 Hospital Drive N.W, Calgary, Alberta, T2N 4N1, Canada
| | - Craig N Jenne
- Department of Microbiology, Immunology and Infectious Diseases, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, HRIC 3330 Hospital Drive N.W, Calgary, Alberta, T2N 4N1, Canada. .,Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, HRIC 2C26, 3280 Hospital Drive N.W., Calgary, Alberta, T2N 4N1, Canada.
| | - Seok-Joo Kim
- Department of Microbiology, Immunology and Infectious Diseases, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, HRIC 3330 Hospital Drive N.W, Calgary, Alberta, T2N 4N1, Canada. .,Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, HRIC 4C49, 3280 Hospital Drive N.W., Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
11
|
|
12
|
Farina A, Peruzzi G, Lacconi V, Lenna S, Quarta S, Rosato E, Vestri AR, York M, Dreyfus DH, Faggioni A, Morrone S, Trojanowska M, Farina GA. Epstein-Barr virus lytic infection promotes activation of Toll-like receptor 8 innate immune response in systemic sclerosis monocytes. Arthritis Res Ther 2017; 19:39. [PMID: 28245863 PMCID: PMC5331713 DOI: 10.1186/s13075-017-1237-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/16/2017] [Indexed: 01/15/2023] Open
Abstract
Background Monocytes/macrophages are activated in several autoimmune diseases, including systemic sclerosis (scleroderma; SSc), with increased expression of interferon (IFN)-regulatory genes and inflammatory cytokines, suggesting dysregulation of the innate immune response in autoimmunity. In this study, we investigated whether the lytic form of Epstein-Barr virus (EBV) infection (infectious EBV) is present in scleroderma monocytes and contributes to their activation in SSc. Methods Monocytes were isolated from peripheral blood mononuclear cells (PBMCs) depleted of the CD19+ cell fraction, using CD14/CD16 negative-depletion. Circulating monocytes from SSc and healthy donors (HDs) were infected with EBV. Gene expression of innate immune mediators were evaluated in EBV-infected monocytes from SSc and HDs. Involvement of Toll-like receptor (TLR)8 in viral-mediated TLR8 response was investigated by comparing the TLR8 expression induced by infectious EBV to the expression stimulated by CL075/TLR8/agonist-ligand in the presence of TLR8 inhibitor in THP-1 cells. Results Infectious EBV strongly induced TLR8 expression in infected SSc and HD monocytes in vitro. Markers of activated monocytes, such as IFN-regulated genes and chemokines, were upregulated in SSc- and HD-EBV-infected monocytes. Inhibiting TLR8 expression reduced virally induced TLR8 in THP-1 infected cells, demonstrating that innate immune activation by infectious EBV is partially dependent on TLR8. Viral mRNA and proteins were detected in freshly isolated SSc monocytes. Microarray analysis substantiated the evidence of an increased IFN signature and altered level of TLR8 expression in SSc monocytes carrying infectious EBV compared to HD monocytes. Conclusion This study provides the first evidence of infectious EBV in monocytes from patients with SSc and links EBV to the activation of TLR8 and IFN innate immune response in freshly isolated SSc monocytes. This study provides the first evidence of EBV replication activating the TLR8 molecular pathway in primary monocytes. Immunogenicity of infectious EBV suggests a novel mechanism mediating monocyte inflammation in SSc, by which EBV triggers the innate immune response in infected cells. Electronic supplementary material The online version of this article (doi:10.1186/s13075-017-1237-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antonella Farina
- Rheumatology, Boston University School of Medicine, Arthritis Center, 72 E. Concord Street, E-5, Boston, MA, 02118, USA.,Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | - Valentina Lacconi
- Rheumatology, Boston University School of Medicine, Arthritis Center, 72 E. Concord Street, E-5, Boston, MA, 02118, USA
| | - Stefania Lenna
- Rheumatology, Boston University School of Medicine, Arthritis Center, 72 E. Concord Street, E-5, Boston, MA, 02118, USA
| | - Silvia Quarta
- Department of Clinical Medicine, Sapienza University, Rome, Italy
| | - Edoardo Rosato
- Department of Clinical Medicine, Sapienza University, Rome, Italy
| | | | - Michael York
- Rheumatology, Boston University School of Medicine, Arthritis Center, 72 E. Concord Street, E-5, Boston, MA, 02118, USA
| | | | - Alberto Faggioni
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Stefania Morrone
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Maria Trojanowska
- Rheumatology, Boston University School of Medicine, Arthritis Center, 72 E. Concord Street, E-5, Boston, MA, 02118, USA
| | - G Alessandra Farina
- Rheumatology, Boston University School of Medicine, Arthritis Center, 72 E. Concord Street, E-5, Boston, MA, 02118, USA.
| |
Collapse
|
13
|
Agraz-Cibrian JM, Giraldo DM, Mary FM, Urcuqui-Inchima S. Understanding the molecular mechanisms of NETs and their role in antiviral innate immunity. Virus Res 2016; 228:124-133. [PMID: 27923601 DOI: 10.1016/j.virusres.2016.11.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 01/09/2023]
Abstract
Polymorphonuclear neutrophils (PMNs) are the most abundant cells in the context of innate immunity; they are one of the first cells to arrive at the site of viral infection constituting the first line of defense in response to invading pathogens. Indeed, neutrophils are provided with several defense mechanisms including release of cytokines, cytotoxic granules and the last recently described neutrophil extracellular traps (NETs). The main components of NETs are DNA, granular antimicrobial peptides, and nuclear and cytoplasmic proteins, that together play an important role in the innate immune response. While NETs were first described as a mechanism against bacteria and fungi, recently, several studies are beginning to elucidate how NETs are involved in the host antiviral response and the prominent characteristics of this new mechanism are discussed in the present review.
Collapse
Affiliation(s)
- Juan Manuel Agraz-Cibrian
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico.
| | - Diana M Giraldo
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Fafutis-Morris Mary
- Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
14
|
Newburger PE. Autoimmune and other acquired neutropenias. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:38-42. [PMID: 27913460 PMCID: PMC5380382 DOI: 10.1182/asheducation-2016.1.38] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This educational review addresses the diagnostic evaluation of patients for autoimmune and other forms of acquired neutropenia, including the futility of deconstructing the overlap of chronic "autoimmune," "benign," and "idiopathic" categories. Isolated neutropenias caused by infection, drugs, and immunologic disorders are also addressed. Discussion of management options emphasizes a conservative approach, with largely supportive care for these mostly benign and self-limited disorders.
Collapse
Affiliation(s)
- Peter E Newburger
- Departments of Pediatrics and Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
15
|
Farina A, Farina GA. Fresh Insights into Disease Etiology and the Role of Microbial Pathogens. Curr Rheumatol Rep 2016; 18:1. [PMID: 26700911 DOI: 10.1007/s11926-015-0552-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pathogens have been implicated in the initiation and/or promotion of systemic sclerosis (scleroderma, SSc); however, no evidence was found to substantiate the direct contribution to this disease in past years. Recently, significant advances have been made in understanding the role of the innate immune system in SSc pathogenesis, supporting the idea that pathogens might interact with host innate immune-regulatory responses in SSc. In light of these findings, we review the studies that identified the presence of pathogens in SSc, along with studies on pathogens implicated in driving the innate immune dysregulation in SSc. The goal of this review is to illustrate how these pathogens, specifically viruses, may play important role both as triggers of the innate immune system, and critical players in the development of SSc disease.
Collapse
Affiliation(s)
- Antonella Farina
- Institute Pasteur-Fondazione Cenci Bolognetti, Department of Experimental Medicine, "Sapienza", University of Rome, Rome, Italy.
| | - G Alessandra Farina
- Arthritis Center, Department of Rheumatology, Boston University, 72 East Concord Street, E501, Boston, MA, 02118, USA.
| |
Collapse
|
16
|
Verdugo F, Laksmana T, Uribarri A. Systemic antibiotics and the risk of superinfection in peri-implantitis. Arch Oral Biol 2015; 64:39-50. [PMID: 26761363 DOI: 10.1016/j.archoralbio.2015.12.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/29/2015] [Accepted: 12/23/2015] [Indexed: 12/15/2022]
Abstract
Peri-implantitis has emerged in the last few years as a complication difficult to resolve. The etiopathogenesis consensus is mainly attributed to bacteria. Following the preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines, a PubMed/Medline literature search was performed using the US National Library of Medicine database up to 2015 to analyze available scientific data on the rationale and risk of superinfection associated to systemic antimicrobials in human peri-implant disease. A hand search was also conducted on relevant medical and microbiology journals. The methodological index for non-randomized studies (MINORS) was independently assessed for quality on the selected papers. Proposed combined therapies use broad-spectrum antibiotics to halt the disease progression. A major associated risk, particularly when prescribed empirically without microbiological follow-up, is the undetected development of superinfections and overgrowth of opportunistic pathogens difficult to eradicate. Peri-implant superinfections with opportunistic bacteria, yeast and viruses, are plausible risks associated to the use of systemic antibiotics in immunocompetent individuals. Lack of microbiological follow-up and antibiotic susceptibility testing may lead to ongoing microbial challenges that exacerbate the disease progression. The increased proliferation of antimicrobial resistance, modern implant surface topography and indiscriminative empiric antibiotic regimens may promote the escalation of peri-implant disease in years to come. A personalized 3-month supportive therapy may help prevent risks by sustaining a normal ecological balance, decreasing specific pathogen proportions and maintaining ideal plaque control.
Collapse
Affiliation(s)
- Fernando Verdugo
- Department of Periodontics, VA Hospital, Greater Los Angeles Healthcare System, USA.
| | - Theresia Laksmana
- Advanced Periodontology, University of Southern California School of Dentistry, Los Angeles, CA, USA
| | - Agurne Uribarri
- Department of Oral Medicine, School of Medicine and Odontology, University of Basque Country, Leioa, Spain
| |
Collapse
|
17
|
Moreno-Altamirano MMB, Rodríguez-Espinosa O, Rojas-Espinosa O, Pliego-Rivero B, Sánchez-García FJ. Dengue Virus Serotype-2 Interferes with the Formation of Neutrophil Extracellular Traps. Intervirology 2015; 58:250-9. [PMID: 26496355 DOI: 10.1159/000440723] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/27/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Neutrophils play an important role in the control of pathogens through several mechanisms, including phagocytosis and the formation of neutrophil extracellular traps (NETs). The latter consists of DNA as a backbone with embedded antimicrobial peptides, histones, and proteases, providing a matrix to entrap and in some cases to kill microbes. Some metabolic requirements for NET formation have recently been described. The virus-induced formation of NETs and the role of these traps in viral infections remain scarcely reported. Here, we analyzed whether dengue virus serotype-2 (DENV-2) induces NET formation and the DENV-2 effect on phorbol myristate acetate (PMA)-induced NETs. METHODS Peripheral blood-derived neutrophils were exposed in vitro to DENV-2 or exposed to DENV-2 and then stimulated with PMA. NET formation was assessed by fluorescence microscopy. Cell membrane Glut-1, glucose uptake, and reactive oxygen species (ROS) production were assessed. RESULTS DENV-2 does not induce the formation of NETs. Moreover, DENV-2 inhibits PMA-induced formation of NETs by about 80%. This effect is not related to the production of ROS. The mechanism seemingly accountable for this inhibitory effect is the DENV-2-mediated inhibition of PMA-induced glucose uptake by neutrophils. CONCLUSION Our results suggest that DENV-2 inhibits glucose uptake as a metabolism-based way to avoid the formation of NETs.
Collapse
Affiliation(s)
- Maria Maximina B Moreno-Altamirano
- Laboratorio de Inmunorregulacix00F3;n, Departamento de Inmunologx00ED;a, Escuela Nacional de Ciencias Biolx00F3;gicas, Instituto Politx00E9;cnico Nacional, Mexico City, Mexico
| | | | | | | | | |
Collapse
|
18
|
Dolcetti R. Cross-talk between Epstein-Barr virus and microenvironment in the pathogenesis of lymphomas. Semin Cancer Biol 2015; 34:58-69. [DOI: 10.1016/j.semcancer.2015.04.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 12/13/2022]
|
19
|
Abstract
The ability of Epstein-Barr virus (EBV) to establish latency despite specific immune responses and to successfully persist lifelong in the human host shows that EBV has developed powerful strategies and mechanisms to exploit, evade, abolish, or downsize otherwise effective immune responses to ensure its own survival. This chapter focuses on current knowledge on innate immune responses against EBV and its evasion strategies for own benefit and summarizes the questions that remain to be tackled. Innate immune reactions against EBV originate both from the main target cells of EBV and from nontarget cells, which are elements of the innate immune system. Thus, we structured our review accordingly but with a particular focus on the innate recognition of EBV in its two stages in its life cycle, latent state and lytic replication. Specifically, we discuss (I) innate sensing and resulting innate immune responses against EBV by its main target cells, focusing on (i) EBV transmission between epithelial cells and B cells and their life cycle stages; and (ii) elements of innate immunity in EBV's target cells. Further, we debate (II) the innate recognition and resulting innate immune responses against EBV by cells other than the main target cells, focusing on (iii) myeloid cells: dendritic cells, monocytes, macrophages, and neutrophil granulocytes; and (iv) natural killer cells. Finally, we address (III) how EBV counteracts or exploits innate immunity in its latent and lytic life cycle stages, concentrating on (v) TLRs; (vi) EBERs; and (vii) microRNAs.
Collapse
Affiliation(s)
- Anna Lünemann
- Division of Infectious Diseases and Hospital Epidemiology, University Children's Hospital of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland.,Children's Research Center, University Children's Hospital of Zurich, Zurich, Switzerland
| | - Martin Rowe
- Centre for Human Virology, School of Cancer Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, UK
| | - David Nadal
- Division of Infectious Diseases and Hospital Epidemiology, University Children's Hospital of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland. .,Children's Research Center, University Children's Hospital of Zurich, Zurich, Switzerland.
| |
Collapse
|
20
|
Lactoferrin suppresses the Epstein-Barr virus-induced inflammatory response by interfering with pattern recognition of TLR2 and TLR9. J Transl Med 2014; 94:1188-99. [PMID: 25068657 DOI: 10.1038/labinvest.2014.105] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/17/2014] [Accepted: 06/30/2014] [Indexed: 12/19/2022] Open
Abstract
Epstein-Barr virus (EBV) infection contributes to tumorigenesis of various human malignancies including nasopharyngeal carcinoma (NPC). EBV triggers innate immune and inflammatory responses partly through Toll-like receptor (TLR) signaling. Lactoferrin (LF), with its anti-inflammatory properties, is an important component of the innate immune system. We previously reported that LF protects human B lymphocytes from EBV infection by its ability to bind to the EBV receptor CD21, but whether LF can suppress EBV-induced inflammation is unclear. Here, we report that LF reduced synthesis of IL-8 and monocyte chemoattractant protein-1 (MCP-1) induced by EBV in macrophages via its suppression of NF-κB activity. LF interacted with TLR2 and interfered with EBV-triggered TLR2-NF-κB activation. LF inhibited the ability of TLR9 to recognize dsDNA by binding to its co-receptor CD14, which blocked the interaction between CD14 and TLR9. EBV-induced inflammation was thus aggravated in the presence of CD14. In addition, LF expression levels were significantly downregulated in NPC specimens, and correlated inversely with IL-8 and MCP-1 expression. These findings suggest that LF may suppress the EBV-induced inflammatory response through interfering with the activation of TLR2 and TLR9.
Collapse
|
21
|
Verdugo F, Castillo A, Castillo F, Uribarri A. Epstein–Barr virus associated peri-implantitis: a split-mouth study. Clin Oral Investig 2014; 19:535-43. [DOI: 10.1007/s00784-014-1250-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/24/2014] [Indexed: 12/01/2022]
|
22
|
Abstract
Neutropenia, defined as an absolute neutrophil count (ANC) <1.5 × 10(9)/L, encompasses a wide range of diagnoses, from normal variants to life-threatening acquired and congenital disorders. This review addresses the diagnosis and management of isolated neutropenia, not multiple cytopenias due to splenomegaly, bone marrow replacement, or myelosuppression by chemotherapy or radiation. Laboratory evaluation generally includes repeat complete blood cell counts (CBCs) with differentials and bone marrow examination with cytogenetics. Neutrophil antibody testing may be useful but only in the context of clinical and bone marrow findings. The discovery of genes responsible for congenital neutropenias now permits genetic diagnosis in many cases. Management of severe chronic neutropenia includes commonsense precautions to avoid infection, aggressive treatment of bacterial or fungal infections, and administration of granulocyte colony-stimulating factor (G-CSF). Patients with severe chronic neutropenia, particularly those who respond poorly to G-CSF, have a risk of eventually developing myelodysplastic syndromes (MDS) or acute myeloid leukemia (AML) and require monitoring for this complication, which also can occur without G-CSF therapy. Patients with cyclic, idiopathic, and autoimmune neutropenia have virtually no risk of evolving to MDS or AML. Hematopoietic stem cell transplantation is a curative therapy for congenital neutropenia with MDS/AML or with cytogenetic abnormalities indicating impending conversion.
Collapse
Affiliation(s)
- Peter E Newburger
- Departments of Pediatrics and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA.
| | | |
Collapse
|
23
|
Abstract
Viruses other than the classic hepatotropic viruses, hepatitis A through E, may cause hepatic injury [1]. Among these are Epstein–Barr virus (EBV), cytomegalovirus (CMV), herpes simplex virus (HSV), varicella zoster virus (VZV), human herpes viruses (HHV) 6, 7, and 8, human parvovirus B19, and adenoviruses (Table 11.1). The clinical presentation of infections with these viruses may be indistinguishable from that associated with infection with classic hepatotropic viruses. The presentation ranges from mild and transient elevation of aminotransferases to acute hepatitis and can also lead to acute liver failure [1]. These viruses should be considered as possible etiologic agents in patients who have acute liver injury and whose serologic markers for the classic hepatotropic viruses are not indicative of an active infection [1]. In the present chapter, we review the clinical manifestations and the potential for immune-mediated liver injury associated with several of these viruses (see summary Table 11.2).
Collapse
Affiliation(s)
- M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California School of Medicine, Davis, California USA
| | - John M. Vierling
- Medicine and Surgery, Baylor College of Medicine, Houston, Texas USA
| | - Michael P. Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School of Hannover, Germany
| |
Collapse
|
24
|
Smith H, Rogers SL, Smith HV, Gillis D, Siskind V, Smith JA. Virus-associated apoptosis of blood neutrophils as a risk factor for invasive meningococcal disease. J Clin Pathol 2013; 66:976-81. [PMID: 23801496 PMCID: PMC3841771 DOI: 10.1136/jclinpath-2013-201579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aims To quantify a range of haematological indicators of viral infection (leucocyte apoptosis, cytopenia of normal lymphocytes, reactive lymphocyte increase, neutropenia) in patients with recent onset invasive meningococcal disease (IMD), with a view to test the association of viral infection with IMD and identify possible haematological risk factors for its development. Subjects and methods 88 patients with recent onset IMD, classified on clinical severity as fatal (n=14), septic shock survived (n=26) and no shock (n=48), and 50 healthy controls were studied. Blood film microscopy and leucocyte counts were used to quantify the virus-associated indicators. Cocci-containing neutrophils were also quantified. Results All viral parameters were significantly more frequent or higher in patients than controls, with leucocyte apoptosis found only in the patients. A significant gradient in accord with clinical severity was found for neutrophil and lymphocyte apoptosis, neutropenia and cocci-containing neutrophils. Crucially, apoptotic neutrophils did not contain cocci, and cocci-containing neutrophils were not apoptotic. Conclusions The correlation between magnitude of neutrophil apoptosis and severity of IMD suggests a cause–effect relationship. We propose that neutrophil apoptosis is more likely a facilitator rather than an effect of IMD for these reasons: (1) apoptotic neutrophils did not contain cocci and cocci-containing neutrophils were not apoptotic, (2) leucocyte apoptosis is a recognised viral effect and (3) Neisseria meningitidis is incapable of producing a Panton–Valentine type leucocidin. The lymphocyte apoptosis which accompanies neutrophil death may contribute to risk by impairing the generation of microbicidal antibody. Leucocyte apoptosis is a morphological expression of viral immunosuppression and, we suggest, is a likely contributor to a range of viral effects.
Collapse
Affiliation(s)
- Harry Smith
- Department of Paediatrics, University of Queensland, Royal Children's Hospital, , Brisbane, Queensland, Australia
| | | | | | | | | | | |
Collapse
|
25
|
Verdugo F, Castillo A, Simonian K, Castillo F, Farez-Vidal E, D'Addona A. Periodontopathogen and Epstein-Barr Virus-Associated Periapical Periodontitis May Be the Source of Retrograde Infectious Peri-Implantitis. Clin Implant Dent Relat Res 2013; 17:199-207. [DOI: 10.1111/cid.12083] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Fernando Verdugo
- Periodontics Department; VA Hospital Greater Los Angeles Healthcare System; Los Angeles CA USA
- private practice; Altadena CA USA
| | - Ana Castillo
- Department of Microbiology; School of Medicine; University of Granada; Granada Spain
| | - Krikor Simonian
- Department of Periodontics/Advanced Periodontology; University of Southern California School of Dentistry; Los Angeles CA USA
- private practice; Pasadena CA USA
| | - Francisca Castillo
- Department of Microbiology; School of Dentistry; University of Granada; Granada Spain
| | - Esther Farez-Vidal
- Department of Biochemistry & Molecular Biology; University of Granada; School of Medicine; Granada Spain
| | | |
Collapse
|
26
|
Drescher B, Bai F. Neutrophil in viral infections, friend or foe? Virus Res 2013; 171:1-7. [PMID: 23178588 PMCID: PMC3557572 DOI: 10.1016/j.virusres.2012.11.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/31/2012] [Accepted: 11/06/2012] [Indexed: 12/22/2022]
Abstract
Polymorphonuclear leukocytes or neutrophils are the first immune cells to the site of injury and microbial infection. Neutrophils are crucial players in controlling bacterial and fungal infections, and in particular secondary infections, by phagocytosis, degranulation and neutrophil extracellular traps (NETs). While neutrophils have been shown to play important roles in viral pathogenesis, there is a lack of detailed investigation. In this article, we will review recent progresses toward understanding the role of neutrophils in viral pathogenesis.
Collapse
Affiliation(s)
- Brandon Drescher
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | | |
Collapse
|
27
|
Zihlif MA, Mahmoud IS, Ghanim MT, Zreikat MS, Alrabadi N, Imraish A, Odeh F, Abbas MA, Ismail SI. Thymoquinone efficiently inhibits the survival of EBV-infected B cells and alters EBV gene expression. Integr Cancer Ther 2012; 12:257-63. [PMID: 23089554 DOI: 10.1177/1534735412458827] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Epstein--Barr virus (EBV) is a human virus with oncogenic potentials that is implicated in various human diseases and malignancies. In this study, the modulator activity of the potent herbal extract drug thymoquinone on EBV was assessed in vitro. Thymoquinone was tested for cytotoxicity on human cells of lymphoblastoid cells, Raji Burkitt's lymphoma, DG-75 Burkitt's lymphoma, peripheral blood mononuclear cells, and periodontal ligament fibroblast. Apoptosis induction was analyzed via TUNEL assay and activity studies of caspase-3. The effect of thymoquinone on EBV gene expression was determined using real-time polymerase chain reaction. We report here, for the first time, a promising selective inhibitory affect of thymoquinone on EBV-infected B cell lines in vitro, compared with lower activity on EBV negative B cell line and very low toxicity on human peripheral blood mononuclear cells and periodontal ligament fibroblasts. Moreover, the drug was found to efficiently suppress the RNA expression of EBNA2, LMP1, and EBNA1 genes. Specifically, EBNA2 expression levels were the most affected indicating that this gene might have a major contribution to thymoquinone potency against EBV infected cells. Overall, our results suggest that thymoquinone has the potential to suppress the growth of EBV-infected B cells efficiently.
Collapse
|
28
|
Hoebe EK, Le Large TYS, Tarbouriech N, Oosterhoff D, De Gruijl TD, Middeldorp JM, Greijer AE. Epstein-Barr virus-encoded BARF1 protein is a decoy receptor for macrophage colony stimulating factor and interferes with macrophage differentiation and activation. Viral Immunol 2012; 25:461-70. [PMID: 23061794 DOI: 10.1089/vim.2012.0034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Epstein-Barr virus (EBV), like many other persistent herpes viruses, has acquired numerous mechanisms for subverting or evading immune surveillance. This study investigates the role of secreted EBV-encoded BARF1 protein (sBARF1) in creating an immune evasive microenvironment. Wild-type consensus BARF1 was expressed in the human 293 cell line and purified. This native hexameric sBARF1 had inhibitory capacity on macrophage colony stimulating factor (M-CSF)-stimulated, and not on granulocyte macrophage-colony stimulating factor (GM-CSF)-stimulated growth and differentiation of myeloid cells. Antibodies specific to hexameric sBARF1 were able to block this effect. M-CSF was shown to interact with sBARF1 via the protruding N-terminal loops involving Val38 and Ala84. Each BARF1 hexamer was capable of binding three M-CSF dimers. Mutations in the BARF1 loops greatly affected M-CSF interaction, and showed loss of growth inhibition. Analysis of the activation state of the M-CSF receptor c-fms and its downstream kinase pathways showed that sBARF1 prevented M-CSF-induced downstream phosphorylation. Since M-CSF is an important factor in macrophage differentiation, the effect of sBARF1 on the function of monocyte-derived macrophages was evaluated. sBARF1 affected overall survival and morphology and significantly reduced expression of macrophage differentiation surface markers such as CD14, CD11b, CD16, and CD169. Macrophages differentiating in the presence of sBARF1 showed impaired responses to lipopolysaccharide and decreased oxygen radical formation as well as reduced phagocytosis of apoptotic cells. In conclusion, EBV sBARF1 protein is a potent decoy receptor for M-CSF, hampering the function and differentiation of macrophages. These results suggest that sBARF1 contributes to the modulation of immune responses in the microenvironment of EBV-positive carcinomas.
Collapse
Affiliation(s)
- Eveline K Hoebe
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
29
|
Exploiting the interplay between innate and adaptive immunity to improve immunotherapeutic strategies for Epstein-Barr-virus-driven disorders. Clin Dev Immunol 2012; 2012:931952. [PMID: 22319542 PMCID: PMC3272797 DOI: 10.1155/2012/931952] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/28/2011] [Accepted: 10/16/2011] [Indexed: 12/14/2022]
Abstract
The recent demonstration that immunotherapeutic approaches may be clinically effective for cancer patients has renewed the interest for this strategy of intervention. In particular, clinical trials using adoptive T-cell therapies disclosed encouraging results, particularly in the context of Epstein-Barr-virus- (EBV-) related tumors. Nevertheless, the rate of complete clinical responses is still limited, thus stimulating the development of more effective therapeutic protocols. Considering the relevance of innate immunity in controlling both infections and cancers, innovative immunotherapeutic approaches should take into account also this compartment to improve clinical efficacy. Evidence accumulated so far indicates that innate immunity effectors, particularly NK cells, can be exploited with therapeutic purposes and new targets have been recently identified. We herein review the complex interactions between EBV and innate immunity and summarize the therapeutic strategies involving both adaptive and innate immune system, in the light of a fruitful integration between these immunotherapeutic modalities for a better control of EBV-driven tumors.
Collapse
|
30
|
Gargouri B, Nasr R, Mseddi M, Benmansour R, Lassoued S. Induction of Epstein-Barr virus (EBV) lytic cycle in vitro causes lipid peroxidation, protein oxidation and DNA damage in lymphoblastoid B cell lines. Lipids Health Dis 2011; 10:111. [PMID: 21722381 PMCID: PMC3146848 DOI: 10.1186/1476-511x-10-111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/01/2011] [Indexed: 12/15/2022] Open
Abstract
Background We investigated the oxidative modifications of lipids, proteins and DNA, potential molecular targets of oxidative stress, in two lymphoblastoid cell lines: B95-8 and Raji, after EBV lytic cycle induction. Conjugated dienes level was measured as biomarker of lipid peroxidation. Malondialdehyde adduct and protein carbonyl levels, as well as protein thiol levels were measured as biomarkers of protein oxidation. DNA fragmentation was evaluated as biomarker of DNA oxidation. Results After 48 h (peak of lytic cycle), a significant increase in conjugated dienes level was observed in B95-8 and Raji cell lines (p = 0.0001 and p = 0.019 respectively). Malondialdehyde adduct, protein carbonyl levels were increased in B95-8 and Raji cell lines after EBV lytic cycle induction as compared to controls (MDA-adduct: p = 0.008 and p = 0.006 respectively; Carbonyl: p = 0.003 and p = 0.0039 respectively). Proteins thiol levels were decreased by induction in B95-8 and Raji cell lines (p = 0.046; p = 0.002 respectively). DNA fragmentation was also detected in B95-8 and Raji cell lines after EBV lytic cycle induction as compared to controls. Conclusion The results of this study demonstrate the presence of increased combined oxidative modifications in lipids, proteins in B95-8 and Raji cells lines after EBV lytic cycle induction. These results suggest that lipid peroxidation, protein oxidation and DNA fragmentation are generally induced during EBV lytic cycle induction and probably contribute to the cytopathic effect of EBV.
Collapse
Affiliation(s)
- Bochra Gargouri
- Unité de Biotechnologie et Pathologies, Institut Supérieur de Biotechnologie de Sfax, Tunisia.
| | | | | | | | | |
Collapse
|
31
|
Graham JP, Arcipowski KM, Bishop GA. Differential B-lymphocyte regulation by CD40 and its viral mimic, latent membrane protein 1. Immunol Rev 2010; 237:226-48. [PMID: 20727039 DOI: 10.1111/j.1600-065x.2010.00932.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
CD40 plays a vital role in humoral immunity, via its potent and multifaceted function as an activating receptor of various immune cells, most notably B lymphocytes. The Epstein-Barr virus-encoded transforming protein latent membrane protein 1 (LMP1) serves as a functional mimic of CD40 signals to B cells but lacks key regulatory controls that restrain CD40 signaling. This allows LMP1 to activate B cells in an abnormal manner that can contribute to the pathogenesis of human B-cell lymphoma and autoimmune disease. This review focuses upon a comparative analysis of CD40 versus LMP1 functions and mechanisms of action in B lymphocytes, discussing how this comparison can provide valuable information on both how CD40 signaling is normally regulated and how LMP1 disrupts the normal CD40 pathways, which can provide information of value to therapeutic design.
Collapse
Affiliation(s)
- John P Graham
- Interdisciplinary Graduate Program in Immunology, The University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
32
|
Fiola S, Gosselin D, Takada K, Gosselin J. TLR9 Contributes to the Recognition of EBV by Primary Monocytes and Plasmacytoid Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:3620-31. [DOI: 10.4049/jimmunol.0903736] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Epstein-Barr virus interferes with the amplification of IFNalpha secretion by activating suppressor of cytokine signaling 3 in primary human monocytes. PLoS One 2010; 5:e11908. [PMID: 20689596 PMCID: PMC2912847 DOI: 10.1371/journal.pone.0011908] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 07/07/2010] [Indexed: 11/19/2022] Open
Abstract
Background Epstein-Barr virus is recognized to cause lymphoproliferative disorders and is also associated with cancer. Evidence suggests that monocytes are likely to be involved in EBV pathogenesis, especially due to a number of cellular functions altered in EBV-infected monocytes, a process that may affect efficient host defense. Because type I interferons (IFNs) are crucial mediators of host defense against viruses, we investigated the effect of EBV infection on the IFNα pathway in primary human monocytes. Methodology/Principal Findings Infection of monocytes with EBV induced IFNα secretion but inhibited the positive feedback loop for the amplification of IFNα. We showed that EBV infection induced the expression of suppressor of cytokine signaling 3 (SOCS3) and, to a lesser extent, SOCS1, two proteins known to interfere with the amplification of IFNα secretion mediated by the JAK/STAT signal transduction pathway. EBV infection correlated with a blockage in the activation of JAK/STAT pathway members and affected the level of phosphorylated IFN regulatory factor 7 (IRF7). Depletion of SOCS3, but not SOCS1, by small interfering RNA (siRNA) abrogated the inhibitory effect of EBV on JAK/STAT pathway activation and significantly restored IFNα secretion. Finally, transfection of monocytes with the viral protein Zta caused the upregulation of SOCS3, an event that could not be recapitulated with mutated Zta. Conclusions/Significance We propose that EBV protein Zta activates SOCS3 protein as an immune escape mechanism that both suppresses optimal IFNα secretion by human monocytes and favors a state of type I IFN irresponsiveness in these cells. This immunomodulatory effect is important to better understand the aspects of the immune response to EBV.
Collapse
|
34
|
Huang CC, Chang PH, Lee TJ, Chuang CC, Chang JTC. Preirradiation sinus mucosal disease in patients with nasopharyngeal carcinoma. Am J Otolaryngol 2009; 30:300-4. [PMID: 19720246 DOI: 10.1016/j.amjoto.2008.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 05/23/2008] [Accepted: 06/05/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE The objective of this study was to evaluate the incidence and the possible risk factors for preirradiation abnormalities of the sinus mucosa in patients with nasopharyngeal carcinoma (NPC) by magnetic resonance imaging. MATERIALS AND METHODS Medical records and magnetic resonance imaging results were reviewed and compared between a group of patients with NPC and a control group. The Lund-Mackay system for staging of rhinosinusitis (Lund score) was used as a tool for the investigation. RESULTS The incidence of sinus mucosal abnormalities was 32.1% in the NPC group and 20.7% in the control group (P = .041). The patients with NPC demonstrated a higher incidence of sinus abnormalities in nearly all sinuses. However, only the incidence of disease in the posterior ethmoid (P = .002) and sphenoid sinus (P = .006) was significantly increased in patients with NPC. The incidence and the severity of sinus abnormalities in male patients with NPC were significantly higher than that in female patients. Patients with advanced T stage showed significantly higher Lund scores (P = .015) than patients with early T stage. CONCLUSION The results supported the hypothesis that patients with NPC might be prone to have chronic infection and might be partially immunocompromised by Epstein-Barr virus. Female patients may have an inherited genetic advantage that protects against Epstein-Barr virus infection or lessens its devastating effects.
Collapse
|
35
|
Ariza ME, Glaser R, Kaumaya PTP, Jones C, Williams MV. The EBV-encoded dUTPase activates NF-kappa B through the TLR2 and MyD88-dependent signaling pathway. THE JOURNAL OF IMMUNOLOGY 2009; 182:851-9. [PMID: 19124728 DOI: 10.4049/jimmunol.182.2.851] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The innate immune response plays a key role as the primary host defense against invading pathogens including viruses. We have previously shown that treatment of human monocyte-derived macrophages with EBV-encoded dUTPase induces the expression of proinflammatory cytokines through the activation of NF-kappaB. However, the receptor responsible for EBV-encoded dUTPase-mediated biological effects is not known. In this study, we demonstrate that the purified EBV-encoded dUTPase activates NF-kappaB in a dose-dependent manner through TLR2 and requires the recruitment of the adaptor molecule MyD88 but not CD14. Furthermore, activation of NF-kappaB was abrogated by anti-TLR2, anti-EBV-encoded dUTPase blocking Abs and the overexpression of a dominant negative construct of MyD88 in human embryonic kidney 293 cells expressing TLR2. In addition, treatment of human monocyte-derived macrophages with the anti-EBV-encoded dUTPase Ab 7D6 or the anti-TLR2 Ab blocked the production of IL-6 by the EBV-encoded dUTPase. To our knowledge, this is the first report demonstrating that a nonstructural protein encoded by EBV is a pathogen-associated molecular pattern and that it has immunomodulatory functions. Although additional studies are necessary to define the signaling pathways activated by the EBV-encoded dUTPase and to determine its role in modulating immune responses to EBV infection, our results suggest that the dUTPase could be a potential target for the development of novel therapeutic agents against infections caused by EBV.
Collapse
Affiliation(s)
- Maria-Eugenia Ariza
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA.
| | | | | | | | | |
Collapse
|
36
|
Zhao Y, Lu M, Lau LT, Lu J, Gao Z, Liu J, Yu ACH, Cao Q, Ye J, McNutt MA, Gu J. Neutrophils may be a vehicle for viral replication and dissemination in human H5N1 avian influenza. Clin Infect Dis 2008; 47:1575-8. [PMID: 18990065 PMCID: PMC7107848 DOI: 10.1086/593196] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The mechanism of systemic spread of H5N1 virus in patients with avian influenza is unknown. Here, H5N1 nucleoprotein and hemagglutinin were identified by immunohistochemistry in the nucleus and cytoplasm of neutrophils in the placental blood of a pregnant woman. Viral RNA was detected in neutrophils by in situ hybridization and enhanced real-time polymerase chain reaction. Therefore, neutrophils may serve as a vehicle for viral replication and transportation in avian influenza.
Collapse
Affiliation(s)
- Yingying Zhao
- Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
McAulay KA, Higgins CD, Macsween KF, Lake A, Jarrett RF, Robertson FL, Williams H, Crawford DH. HLA class I polymorphisms are associated with development of infectious mononucleosis upon primary EBV infection. J Clin Invest 2007; 117:3042-8. [PMID: 17909631 PMCID: PMC1994627 DOI: 10.1172/jci32377] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 08/01/2007] [Indexed: 11/17/2022] Open
Abstract
Infectious mononucleosis (IM) is an immunopathological disease caused by EBV that occurs in young adults and is a risk factor for Hodgkin lymphoma (HL). An association between EBV-positive HL and genetic markers in the HLA class I locus has been identified, indicating that genetic differences in the HLA class I locus may alter disease phenotypes associated with EBV infection. To further determine whether HLA class I alleles may affect development of EBV-associated diseases, we analyzed 2 microsatellite markers and 2 SNPs located near the HLA class I locus in patients with acute IM and in asymptomatic EBV-seropositive and -seronegative individuals. Alleles of both microsatellite markers were significantly associated with development of IM. Specific alleles of the 2 SNPs were also significantly more frequent in patients with IM than in EBV-seronegative individuals. IM patients possessing the associated microsatellite allele had fewer lymphocytes and increased neutrophils relative to IM patients lacking the allele. These patients also displayed higher EBV titers and milder IM symptoms. The results of this study indicate that HLA class I polymorphisms may predispose patients to development of IM upon primary EBV infection, suggesting that genetic variation in T cell responses can influence the nature of primary EBV infection and the level of viral persistence.
Collapse
Affiliation(s)
- Karen A McAulay
- Clinical and Basic Virology Laboratory, School of Biomedical and Clinical Laboratory Sciences, University of Edinburgh, Summerhall, Edinburgh, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Gaudreault E, Fiola S, Olivier M, Gosselin J. Epstein-Barr virus induces MCP-1 secretion by human monocytes via TLR2. J Virol 2007; 81:8016-24. [PMID: 17522215 PMCID: PMC1951286 DOI: 10.1128/jvi.00403-07] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Epstein-Barr virus (EBV) is a gammaherpesvirus infecting the majority of the human adult population in the world. TLR2, a member of the Toll-like receptor (TLR) family, has been implicated in the immune responses to different viruses including members of the herpesvirus family, such as human cytomegalovirus, herpes simplex virus type 1, and varicella-zoster virus. In this report, we demonstrate that infectious and UV-inactivated EBV virions lead to the activation of NF-kappaB through TLR2 using HEK293 cells cotransfected with TLR2-expressing vector along with NF-kappaB-Luc reporter plasmid. NF-kappaB activation in HEK293-TLR2 cells (HEK293 cells transfected with TLR2) by EBV was not enhanced by the presence of CD14. The effect of EBV was abrogated by pretreating HEK293-TLR2 cells with blocking anti-TLR2 antibodies or by preincubating viral particles with neutralizing anti-EBV antibodies 72A1. In addition, EBV infection of primary human monocytes induced the release of MCP-1 (monocyte chemotactic protein 1), and the use of small interfering RNA targeting TLR2 significantly reduced such a chemokine response to EBV. Taken together, these results indicate that TLR2 may be an important pattern recognition receptor in the immune response directed against EBV infection.
Collapse
Affiliation(s)
- Eric Gaudreault
- Viral Immunology Laboratory, CHUL Research Center (CHUQ), 2705 boul. Laurier, Room T 1-49, Quebec, QC, Canada G1V 4G2
| | | | | | | |
Collapse
|
39
|
Appelberg R. Neutrophils and intracellular pathogens: beyond phagocytosis and killing. Trends Microbiol 2007; 15:87-92. [PMID: 17157505 DOI: 10.1016/j.tim.2006.11.009] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 10/25/2006] [Accepted: 11/28/2006] [Indexed: 01/21/2023]
Abstract
Neutrophils are not simply scavenging phagocytes that clear extracellular spaces of rapidly proliferating microbes; they are also active in the control of infections by intracellular pathogens. Several mechanisms for nonphagocytic roles of neutrophils in protective immunity have been put forth over the years but further evidence has recently been accumulating at an increasing pace. In this review, I present the evidence that suggests neutrophils are involved in pathogen shuttling into the lymphoid tissues, in antigen presentation, and in early T cell recruitment and initiation of granuloma organization. Also, a clearer view on the antimicrobial molecules that can be acquired by macrophages to enhance their antimicrobial activity is now emerging. Finally, neutrophils can adversely affect immunity against certain parasites by causing immune deviation.
Collapse
Affiliation(s)
- Rui Appelberg
- Laboratory of Microbiology and Immunology of Infection, Institute for Molecular and Cell Biology (IBMC) and Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), University of Porto, 4150-180 Porto, Portugal.
| |
Collapse
|
40
|
|