1
|
Shin D, Urbanek ME, Larson HH, Moussa AJ, Lee KY, Baker DL, Standen-Bloom E, Ramachandran S, Bogdanoff D, Cadwell CR, Nowakowski TJ. High-Complexity Barcoded Rabies Virus for Scalable Circuit Mapping Using Single-Cell and Single-Nucleus Sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.01.616167. [PMID: 39713304 PMCID: PMC11661106 DOI: 10.1101/2024.10.01.616167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Single cell genomics has revolutionized our understanding of neuronal cell types. However, scalable technologies for probing single-cell connectivity are lacking, and we are just beginning to understand how molecularly defined cell types are organized into functional circuits. Here, we describe a protocol to generate high-complexity barcoded rabies virus (RV) for scalable circuit mapping from tens of thousands of individual starter cells in parallel. In addition, we introduce a strategy for targeting RV-encoded barcode transcripts to the nucleus so that they can be read out using single-nucleus RNA sequencing (snRNA-seq). We apply this tool in organotypic slice cultures of the developing human cerebral cortex, which reveals the emergence of cell type-specific circuit motifs in midgestation. By leveraging the power and throughput of single cell genomics for mapping synaptic connectivity, we chart a path forward for scalable circuit mapping of molecularly-defined cell types in healthy and disease states.
Collapse
Affiliation(s)
- David Shin
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Madeleine E. Urbanek
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - H. Hanh Larson
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Anthony J. Moussa
- Medical Scientist Training Program, University of California, San Francisco, CA, USA
| | - Kevin Y. Lee
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Donovan L. Baker
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Elio Standen-Bloom
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Sangeetha Ramachandran
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Derek Bogdanoff
- Tetrad Graduate Program, University of California, San Francisco, CA, USA
| | - Cathryn R. Cadwell
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
- Weill Neurohub, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA, USA
| | - Tomasz J. Nowakowski
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| |
Collapse
|
2
|
Adusei M, Callaway EM, Usrey WM, Briggs F. Parallel Streams of Direct Corticogeniculate Feedback from Mid-level Extrastriate Cortex in the Macaque Monkey. eNeuro 2024; 11:ENEURO.0364-23.2024. [PMID: 38479809 PMCID: PMC10946028 DOI: 10.1523/eneuro.0364-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
First-order thalamic nuclei receive feedforward signals from peripheral receptors and relay these signals to primary sensory cortex. Primary sensory cortex, in turn, provides reciprocal feedback to first-order thalamus. Because the vast majority of sensory thalamocortical inputs target primary sensory cortex, their complementary corticothalamic neurons are assumed to be similarly restricted to primary sensory cortex. We upend this assumption by characterizing morphologically diverse neurons in multiple mid-level visual cortical areas of the primate (Macaca mulatta) brain that provide direct feedback to the primary visual thalamus, the dorsal lateral geniculate nucleus (LGN). Although the majority of geniculocortical neurons project to primary visual cortex (V1), a minority, located mainly in the koniocellular LGN layers, provide direct input to extrastriate visual cortex. These "V1-bypassing" projections may be implicated in blindsight. We hypothesized that geniculocortical inputs directly targeting extrastriate cortex should be complemented by reciprocal corticogeniculate circuits. Using virus-mediated circuit tracing, we discovered corticogeniculate neurons throughout three mid-level extrastriate areas: MT, MST, and V4. Quantitative morphological analyses revealed nonuniform distributions of unique cell types across areas. Many extrastriate corticogeniculate neurons had spiny stellate morphology, suggesting possible targeting of koniocellular LGN layers. Importantly though, multiple morphological types were observed across areas. Such morphological diversity could suggest parallel streams of V1-bypassing corticogeniculate feedback at multiple stages of the visual processing hierarchy. Furthermore, the presence of corticogeniculate neurons across visual cortex necessitates a reevaluation of the LGN as a hub for visual information rather than a simple relay.
Collapse
Affiliation(s)
- Matthew Adusei
- Neuroscience Graduate Program, University of Rochester, Rochester, New York 14642
| | - Edward M Callaway
- Systems Neurobiology Laboratory, Salk Institute for Biological Sciences, La Jolla, California 92037
| | - W Martin Usrey
- Center for Neuroscience, University of California Davis, Davis, California 95618
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California 95616
- Department of Neurology, University of California Davis, Davis, California 95618
| | - Farran Briggs
- Neuroscience Graduate Program, University of Rochester, Rochester, New York 14642
- Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York 14627
- Center for Visual Science, University of Rochester, Rochester, New York 14627
| |
Collapse
|
3
|
Poller W, Sahoo S, Hajjar R, Landmesser U, Krichevsky AM. Exploration of the Noncoding Genome for Human-Specific Therapeutic Targets-Recent Insights at Molecular and Cellular Level. Cells 2023; 12:2660. [PMID: 37998395 PMCID: PMC10670380 DOI: 10.3390/cells12222660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
While it is well known that 98-99% of the human genome does not encode proteins, but are nevertheless transcriptionally active and give rise to a broad spectrum of noncoding RNAs [ncRNAs] with complex regulatory and structural functions, specific functions have so far been assigned to only a tiny fraction of all known transcripts. On the other hand, the striking observation of an overwhelmingly growing fraction of ncRNAs, in contrast to an only modest increase in the number of protein-coding genes, during evolution from simple organisms to humans, strongly suggests critical but so far essentially unexplored roles of the noncoding genome for human health and disease pathogenesis. Research into the vast realm of the noncoding genome during the past decades thus lead to a profoundly enhanced appreciation of the multi-level complexity of the human genome. Here, we address a few of the many huge remaining knowledge gaps and consider some newly emerging questions and concepts of research. We attempt to provide an up-to-date assessment of recent insights obtained by molecular and cell biological methods, and by the application of systems biology approaches. Specifically, we discuss current data regarding two topics of high current interest: (1) By which mechanisms could evolutionary recent ncRNAs with critical regulatory functions in a broad spectrum of cell types (neural, immune, cardiovascular) constitute novel therapeutic targets in human diseases? (2) Since noncoding genome evolution is causally linked to brain evolution, and given the profound interactions between brain and immune system, could human-specific brain-expressed ncRNAs play a direct or indirect (immune-mediated) role in human diseases? Synergistic with remarkable recent progress regarding delivery, efficacy, and safety of nucleic acid-based therapies, the ongoing large-scale exploration of the noncoding genome for human-specific therapeutic targets is encouraging to proceed with the development and clinical evaluation of novel therapeutic pathways suggested by these research fields.
Collapse
Affiliation(s)
- Wolfgang Poller
- Department for Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum Charité (DHZC), Charité-Universitätsmedizin Berlin, 12200 Berlin, Germany;
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, 10785 Berlin, Germany
| | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA;
| | - Roger Hajjar
- Gene & Cell Therapy Institute, Mass General Brigham, 65 Landsdowne St, Suite 143, Cambridge, MA 02139, USA;
| | - Ulf Landmesser
- Department for Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum Charité (DHZC), Charité-Universitätsmedizin Berlin, 12200 Berlin, Germany;
- German Center for Cardiovascular Research (DZHK), Site Berlin, 10785 Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Anna M. Krichevsky
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
4
|
Sirucek L, Ganley RP, Zeilhofer HU, Schweinhardt P. Diffuse noxious inhibitory controls and conditioned pain modulation: a shared neurobiology within the descending pain inhibitory system? Pain 2023; 164:463-468. [PMID: 36017879 PMCID: PMC9916052 DOI: 10.1097/j.pain.0000000000002719] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Laura Sirucek
- Department of Chiropractic Medicine, Integrative Spinal Research Group, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Robert Philip Ganley
- Institute for Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- Institute for Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Petra Schweinhardt
- Department of Chiropractic Medicine, Integrative Spinal Research Group, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Saunders A, Huang KW, Vondrak C, Hughes C, Smolyar K, Sen H, Philson AC, Nemesh J, Wysoker A, Kashin S, Sabatini BL, McCarroll SA. Ascertaining cells' synaptic connections and RNA expression simultaneously with barcoded rabies virus libraries. Nat Commun 2022; 13:6993. [PMID: 36384944 PMCID: PMC9668842 DOI: 10.1038/s41467-022-34334-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
Brain function depends on synaptic connections between specific neuron types, yet systematic descriptions of synaptic networks and their molecular properties are not readily available. Here, we introduce SBARRO (Synaptic Barcode Analysis by Retrograde Rabies ReadOut), a method that uses single-cell RNA sequencing to reveal directional, monosynaptic relationships based on the paths of a barcoded rabies virus from its "starter" postsynaptic cell to that cell's presynaptic partners. Thousands of these partner relationships can be ascertained in a single experiment, alongside genome-wide RNAs. We use SBARRO to describe synaptic networks formed by diverse mouse brain cell types in vitro, finding that different cell types have presynaptic networks with differences in average size and cell type composition. Patterns of RNA expression suggest that functioning synapses are critical for rabies virus uptake. By tracking individual rabies clones across cells, SBARRO offers new opportunities to map the synaptic organization of neural circuits.
Collapse
Affiliation(s)
- Arpiar Saunders
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.5288.70000 0000 9758 5690Vollum Institute, Oregon Health & Science University, Portland, OR 97239 USA
| | - Kee Wui Huang
- grid.38142.3c000000041936754XHoward Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA
| | - Cassandra Vondrak
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Christina Hughes
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Karina Smolyar
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Harsha Sen
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Adrienne C. Philson
- grid.38142.3c000000041936754XHoward Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA
| | - James Nemesh
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Alec Wysoker
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Seva Kashin
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Bernardo L. Sabatini
- grid.38142.3c000000041936754XHoward Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA
| | - Steven A. McCarroll
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| |
Collapse
|
6
|
Satou C, Neve RL, Oyibo HK, Zmarz P, Huang KH, Arn Bouldoires E, Mori T, Higashijima SI, Keller GB, Friedrich RW. A viral toolbox for conditional and transneuronal gene expression in zebrafish. eLife 2022; 11:e77153. [PMID: 35866706 PMCID: PMC9307271 DOI: 10.7554/elife.77153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/06/2022] [Indexed: 12/13/2022] Open
Abstract
The zebrafish is an important model in systems neuroscience but viral tools to dissect the structure and function of neuronal circuitry are not established. We developed methods for efficient gene transfer and retrograde tracing in adult and larval zebrafish by herpes simplex viruses (HSV1). HSV1 was combined with the Gal4/UAS system to target cell types with high spatial, temporal, and molecular specificity. We also established methods for efficient transneuronal tracing by modified rabies viruses in zebrafish. We demonstrate that HSV1 and rabies viruses can be used to visualize and manipulate genetically or anatomically identified neurons within and across different brain areas of adult and larval zebrafish. An expandable library of viruses is provided to express fluorescent proteins, calcium indicators, optogenetic probes, toxins and other molecular tools. This toolbox creates new opportunities to interrogate neuronal circuits in zebrafish through combinations of genetic and viral approaches.
Collapse
Affiliation(s)
- Chie Satou
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Rachael L Neve
- Gene Delivery Technology Core, Massachusetts General HospitalCambridgeUnited States
| | - Hassana K Oyibo
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Pawel Zmarz
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Kuo-Hua Huang
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | | | - Takuma Mori
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu UniversityNaganoJapan
| | - Shin-ichi Higashijima
- National Institutes of Natural Sciences, Exploratory Research Center on Life and Living Systems, National Institute for Basic BiologyOkazakiJapan
- Graduate University for Advanced StudiesOkazakiJapan
| | - Georg B Keller
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of Natural Sciences, University of BaselBaselSwitzerland
| | - Rainer W Friedrich
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of Natural Sciences, University of BaselBaselSwitzerland
| |
Collapse
|
7
|
Glycoproteins of Predicted Amphibian and Reptile Lyssaviruses Can Mediate Infection of Mammalian and Reptile Cells. Viruses 2021; 13:v13091726. [PMID: 34578307 PMCID: PMC8473393 DOI: 10.3390/v13091726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 01/04/2023] Open
Abstract
Lyssaviruses are neurotropic rhabdoviruses thought to be restricted to mammalian hosts, and to originate from bats. The identification of lyssavirus sequences from amphibians and reptiles by metatranscriptomics thus comes as a surprise and challenges the mammalian origin of lyssaviruses. The novel sequences of the proposed American tree frog lyssavirus (ATFLV) and anole lizard lyssavirus (ALLV) reveal substantial phylogenetic distances from each other and from bat lyssaviruses, with ATFLV being the most distant. As virus isolation has not been successful yet, we have here studied the functionality of the authentic ATFLV- and ALLV-encoded glycoproteins in the context of rabies virus pseudotype particles. Cryogenic electron microscopy uncovered the incorporation of the plasmid-encoded G proteins in viral envelopes. Infection experiments revealed the infectivity of ATFLV and ALLV G-coated RABV pp for a broad spectrum of cell lines from humans, bats, and reptiles, demonstrating membrane fusion activities. As presumed, ATFLV and ALLV G RABV pp escaped neutralization by human rabies immune sera. The present findings support the existence of contagious lyssaviruses in poikilothermic animals, and reveal a broad cell tropism in vitro, similar to that of the rabies virus.
Collapse
|
8
|
Clark IC, Gutiérrez-Vázquez C, Wheeler MA, Li Z, Rothhammer V, Linnerbauer M, Sanmarco LM, Guo L, Blain M, Zandee SEJ, Chao CC, Batterman KV, Schwabenland M, Lotfy P, Tejeda-Velarde A, Hewson P, Manganeli Polonio C, Shultis MW, Salem Y, Tjon EC, Fonseca-Castro PH, Borucki DM, Alves de Lima K, Plasencia A, Abate AR, Rosene DL, Hodgetts KJ, Prinz M, Antel JP, Prat A, Quintana FJ. Barcoded viral tracing of single-cell interactions in central nervous system inflammation. Science 2021; 372:372/6540/eabf1230. [PMID: 33888612 DOI: 10.1126/science.abf1230] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/27/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022]
Abstract
Cell-cell interactions control the physiology and pathology of the central nervous system (CNS). To study astrocyte cell interactions in vivo, we developed rabies barcode interaction detection followed by sequencing (RABID-seq), which combines barcoded viral tracing and single-cell RNA sequencing (scRNA-seq). Using RABID-seq, we identified axon guidance molecules as candidate mediators of microglia-astrocyte interactions that promote CNS pathology in experimental autoimmune encephalomyelitis (EAE) and, potentially, multiple sclerosis (MS). In vivo cell-specific genetic perturbation EAE studies, in vitro systems, and the analysis of MS scRNA-seq datasets and CNS tissue established that Sema4D and Ephrin-B3 expressed in microglia control astrocyte responses via PlexinB2 and EphB3, respectively. Furthermore, a CNS-penetrant EphB3 inhibitor suppressed astrocyte and microglia proinflammatory responses and ameliorated EAE. In summary, RABID-seq identified microglia-astrocyte interactions and candidate therapeutic targets.
Collapse
Affiliation(s)
- Iain C Clark
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Bioengineering, University of California, Berkeley, California Institute for Quantitative Biosciences, Berkeley, CA 94720, USA
| | - Cristina Gutiérrez-Vázquez
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zhaorong Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Veit Rothhammer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Mathias Linnerbauer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Liliana M Sanmarco
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lydia Guo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Manon Blain
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Stephanie E J Zandee
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Chun-Cheih Chao
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Katelyn V Batterman
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Marius Schwabenland
- Institute of Neuropathology, University of Freiburg, D-79106 Freiburg, Germany
| | - Peter Lotfy
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amalia Tejeda-Velarde
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick Hewson
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Carolina Manganeli Polonio
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael W Shultis
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yasmin Salem
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Emily C Tjon
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pedro H Fonseca-Castro
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Davis M Borucki
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kalil Alves de Lima
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Agustin Plasencia
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Douglas L Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kevin J Hodgetts
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg, D-79106 Freiburg, Germany.,Signaling Research Centres BIOSS and CIBSS, University of Freiburg, D-79106 Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, D-79106 Freiburg, Germany
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexandre Prat
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
9
|
Hennrich AA, Sawatsky B, Santos-Mandujano R, Banda DH, Oberhuber M, Schopf A, Pfaffinger V, Wittwer K, Riedel C, Pfaller CK, Conzelmann KK. Safe and effective two-in-one replicon-and-VLP minispike vaccine for COVID-19: Protection of mice after a single immunization. PLoS Pathog 2021; 17:e1009064. [PMID: 33882114 PMCID: PMC8092985 DOI: 10.1371/journal.ppat.1009064] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/03/2021] [Accepted: 04/06/2021] [Indexed: 01/12/2023] Open
Abstract
Vaccines of outstanding efficiency, safety, and public acceptance are needed to halt the current SARS-CoV-2 pandemic. Concerns include potential side effects caused by the antigen itself and safety of viral DNA and RNA delivery vectors. The large SARS-CoV-2 spike (S) protein is the main target of current COVID-19 vaccine candidates but can induce non-neutralizing antibodies, which might cause vaccination-induced complications or enhancement of COVID-19 disease. Besides, encoding of a functional S in replication-competent virus vector vaccines may result in the emergence of viruses with altered or expanded tropism. Here, we have developed a safe single round rhabdovirus replicon vaccine platform for enhanced presentation of the S receptor-binding domain (RBD). Structure-guided design was employed to build a chimeric minispike comprising the globular RBD linked to a transmembrane stem-anchor sequence derived from rabies virus (RABV) glycoprotein (G). Vesicular stomatitis virus (VSV) and RABV replicons encoding the minispike not only allowed expression of the antigen at the cell surface but also incorporation into the envelope of secreted non-infectious particles, thus combining classic vector-driven antigen expression and particulate virus-like particle (VLP) presentation. A single dose of a prototype replicon vaccine complemented with VSV G, VSVΔG-minispike-eGFP (G), stimulated high titers of SARS-CoV-2 neutralizing antibodies in mice, equivalent to those found in COVID-19 patients, and protected transgenic K18-hACE2 mice from COVID-19-like disease. Homologous boost immunization further enhanced virus neutralizing activity. The results demonstrate that non-spreading rhabdovirus RNA replicons expressing minispike proteins represent effective and safe alternatives to vaccination approaches using replication-competent viruses and/or the entire S antigen.
Collapse
Affiliation(s)
- Alexandru A. Hennrich
- Max von Pettenkofer Institute Virology, and Gene Center, LMU Munich, Munich, Germany
| | - Bevan Sawatsky
- Department of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | | | - Dominic H. Banda
- Max von Pettenkofer Institute Virology, and Gene Center, LMU Munich, Munich, Germany
| | - Martina Oberhuber
- Max von Pettenkofer Institute Virology, and Gene Center, LMU Munich, Munich, Germany
| | - Anika Schopf
- Max von Pettenkofer Institute Virology, and Gene Center, LMU Munich, Munich, Germany
| | - Verena Pfaffinger
- Max von Pettenkofer Institute Virology, and Gene Center, LMU Munich, Munich, Germany
| | - Kevin Wittwer
- Department of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Christiane Riedel
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Karl-Klaus Conzelmann
- Max von Pettenkofer Institute Virology, and Gene Center, LMU Munich, Munich, Germany
| |
Collapse
|
10
|
Cassel JC, Pereira de Vasconcelos A. Routes of the thalamus through the history of neuroanatomy. Neurosci Biobehav Rev 2021; 125:442-465. [PMID: 33676963 DOI: 10.1016/j.neubiorev.2021.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 12/24/2022]
Abstract
The most distant roots of neuroanatomy trace back to antiquity, with the first human dissections, but no document which would identify the thalamus as a brain structure has reached us. Claudius Galenus (Galen) gave to the thalamus the name 'thalamus nervorum opticorum', but later on, other names were used (e.g., anchae, or buttocks-like). In 1543, Andreas Vesalius provided the first quality illustrations of the thalamus. During the 19th century, tissue staining techniques and ablative studies contributed to the breakdown of the thalamus into subregions and nuclei. The next step was taken using radiomarkers to identify connections in the absence of lesions. Anterograde and retrograde tracing methods arose in the late 1960s, supporting extension, revision, or confirmation of previously established knowledge. The use of the first viral tracers introduced a new methodological breakthrough in the mid-1970s. Another important step was supported by advances in neuroimaging of the thalamus in the 21th century. The current review follows the history of the thalamus through these technical revolutions from Antiquity to the present day.
Collapse
Affiliation(s)
- Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France.
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| |
Collapse
|
11
|
Hafner G, Guy J, Witte M, Truschow P, Rüppel A, Sirmpilatze N, Dadarwal R, Boretius S, Staiger JF. Increased Callosal Connectivity in Reeler Mice Revealed by Brain-Wide Input Mapping of VIP Neurons in Barrel Cortex. Cereb Cortex 2021; 31:1427-1443. [PMID: 33135045 PMCID: PMC7869096 DOI: 10.1093/cercor/bhaa280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 01/22/2023] Open
Abstract
The neocortex is composed of layers. Whether layers constitute an essential framework for the formation of functional circuits is not well understood. We investigated the brain-wide input connectivity of vasoactive intestinal polypeptide (VIP) expressing neurons in the reeler mouse. This mutant is characterized by a migration deficit of cortical neurons so that no layers are formed. Still, neurons retain their properties and reeler mice show little cognitive impairment. We focused on VIP neurons because they are known to receive strong long-range inputs and have a typical laminar bias toward upper layers. In reeler, these neurons are more dispersed across the cortex. We mapped the brain-wide inputs of VIP neurons in barrel cortex of wild-type and reeler mice with rabies virus tracing. Innervation by subcortical inputs was not altered in reeler, in contrast to the cortical circuitry. Numbers of long-range ipsilateral cortical inputs were reduced in reeler, while contralateral inputs were strongly increased. Reeler mice had more callosal projection neurons. Hence, the corpus callosum was larger in reeler as shown by structural imaging. We argue that, in the absence of cortical layers, circuits with subcortical structures are maintained but cortical neurons establish a different network that largely preserves cognitive functions.
Collapse
Affiliation(s)
- Georg Hafner
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Göttingen, 37075 Göttingen, Germany
| | - Julien Guy
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Göttingen, 37075 Göttingen, Germany
| | - Mirko Witte
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Göttingen, 37075 Göttingen, Germany
| | - Pavel Truschow
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Göttingen, 37075 Göttingen, Germany
| | - Alina Rüppel
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Göttingen, 37075 Göttingen, Germany
| | - Nikoloz Sirmpilatze
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Rakshit Dadarwal
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Susann Boretius
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
12
|
Mukherjee A, Bajwa N, Lam NH, Porrero C, Clasca F, Halassa MM. Variation of connectivity across exemplar sensory and associative thalamocortical loops in the mouse. eLife 2020; 9:e62554. [PMID: 33103997 PMCID: PMC7644223 DOI: 10.7554/elife.62554] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022] Open
Abstract
The thalamus engages in sensation, action, and cognition, but the structure underlying these functions is poorly understood. Thalamic innervation of associative cortex targets several interneuron types, modulating dynamics and influencing plasticity. Is this structure-function relationship distinct from that of sensory thalamocortical systems? Here, we systematically compared function and structure across a sensory and an associative thalamocortical loop in the mouse. Enhancing excitability of mediodorsal thalamus, an associative structure, resulted in prefrontal activity dominated by inhibition. Equivalent enhancement of medial geniculate excitability robustly drove auditory cortical excitation. Structurally, geniculate axons innervated excitatory cortical targets in a preferential manner and with larger synaptic terminals, providing a putative explanation for functional divergence. The two thalamic circuits also had distinct input patterns, with mediodorsal thalamus receiving innervation from a diverse set of cortical areas. Altogether, our findings contribute to the emerging view of functional diversity across thalamic microcircuits and its structural basis.
Collapse
Affiliation(s)
- Arghya Mukherjee
- McGovern Institute for Brain ResearchCambridgeUnited States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Navdeep Bajwa
- McGovern Institute for Brain ResearchCambridgeUnited States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Norman H Lam
- McGovern Institute for Brain ResearchCambridgeUnited States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - César Porrero
- Department of Anatomy and Neuroscience, School of Medicine, Autónoma de Madrid UniversityMadridSpain
| | - Francisco Clasca
- Department of Anatomy and Neuroscience, School of Medicine, Autónoma de Madrid UniversityMadridSpain
| | - Michael M Halassa
- McGovern Institute for Brain ResearchCambridgeUnited States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
13
|
Granier C, Schwarting J, Fourli E, Laage-Gaupp F, Hennrich AA, Schmalz A, Jacobi A, Wesolowski M, Conzelmann KK, Bareyre FM. Formation of somatosensory detour circuits mediates functional recovery following dorsal column injury. Sci Rep 2020; 10:10953. [PMID: 32616790 PMCID: PMC7331809 DOI: 10.1038/s41598-020-67866-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/15/2020] [Indexed: 11/15/2022] Open
Abstract
Anatomically incomplete spinal cord injuries can be followed by functional recovery mediated, in part, by the formation of intraspinal detour circuits. Here, we show that adult mice recover tactile and proprioceptive function following a unilateral dorsal column lesion. We therefore investigated the basis of this recovery and focused on the plasticity of the dorsal column-medial lemniscus pathway. We show that ascending dorsal root ganglion (DRG) axons branch in the spinal grey matter and substantially increase the number of these collaterals following injury. These sensory fibers exhibit synapsin-positive varicosities, indicating their integration into spinal networks. Using a monosynaptic circuit tracing with rabies viruses injected into the cuneate nucleus, we show the presence of spinal cord neurons that provide a detour pathway to the original target area of DRG axons. Notably the number of contacts between DRG collaterals and those spinal neurons increases by more than 300% after injury. We then characterized these interneurons and showed that the lesion triggers a remodeling of the connectivity pattern. Finally, using re-lesion experiments after initial remodeling of connections, we show that these detour circuits are responsible for the recovery of tactile and proprioceptive function. Taken together our study reveals that detour circuits represent a common blueprint for axonal rewiring after injury.
Collapse
Affiliation(s)
- Charlène Granier
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, 81377, Munich, Germany.,Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, 82152, Planegg-Martinsried, Germany.,Graduate School of Systemic Neurosciences, LMU Munich, 82152, Planegg-Martinsried, Germany
| | - Julian Schwarting
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, 81377, Munich, Germany.,Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, 82152, Planegg-Martinsried, Germany
| | - Evangelia Fourli
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, 81377, Munich, Germany.,Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, 82152, Planegg-Martinsried, Germany
| | - Fabian Laage-Gaupp
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, 81377, Munich, Germany.,Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, 82152, Planegg-Martinsried, Germany
| | - Alexandru A Hennrich
- Max Von Pettenkofer-Institute, Virology, Faculty of Medicine, and Gene Center, LMU Munich, 80336, Munich, Germany
| | - Anja Schmalz
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, 81377, Munich, Germany.,Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, 82152, Planegg-Martinsried, Germany
| | - Anne Jacobi
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, 81377, Munich, Germany.,Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, 82152, Planegg-Martinsried, Germany
| | - Marta Wesolowski
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, 81377, Munich, Germany.,Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, 82152, Planegg-Martinsried, Germany.,Graduate School of Systemic Neurosciences, LMU Munich, 82152, Planegg-Martinsried, Germany
| | - Karl Klaus Conzelmann
- Max Von Pettenkofer-Institute, Virology, Faculty of Medicine, and Gene Center, LMU Munich, 80336, Munich, Germany
| | - Florence M Bareyre
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, 81377, Munich, Germany. .,Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, 82152, Planegg-Martinsried, Germany. .,Munich Cluster of Systems Neurology (SyNergy), 81377, Munich, Germany.
| |
Collapse
|
14
|
Luo J, Zhang B, Lyu Z, Wu Y, Zhang Y, Guo X. Single amino acid change at position 255 in rabies virus glycoprotein decreases viral pathogenicity. FASEB J 2020; 34:9650-9663. [PMID: 32469133 DOI: 10.1096/fj.201902577r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/27/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022]
Abstract
Previous studies have indicated that the amino acid at position 333 in the glycoprotein (G) is closely related to rabies virus (RABV) pathogenicity. However, whether there are other amino acid residues in G that relate to pathogenicity remain unclear. The aim of this study is to find new amino acid residues in G that could strongly reduce RABV pathogenicity. The present study found that the pathogenicity of a virulent strain was strongly attenuated when the amino acid glycine (Gly) replaced the aspartic acid (Asp) at position 255 in G (D255G) as intracranial (i.c.) infection with this D255G mutant virus did not cause death in adult mice. The indexes of neurotropism of the D255G mutant strain and the parent GD-SH-01 are 0.72 and 10.0, respectively, which indicate that the D255G mutation decreased the neurotropism of RABV. In addition, the D255G mutation significantly decreased RABV replication in the mouse brain. Furthermore, the D255G mutation enhanced the immune response in mice, which contributed to the clearance of RABV after infection. The Asp255 → Gly255 mutation was genetically stable in vitro and in vivo. In this study, we describe a new referenced amino acid site in G that relates to the pathogenicity of RABV.
Collapse
Affiliation(s)
- Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Boyue Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ziyu Lyu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yuting Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yue Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
15
|
Lanciego JL, Wouterlood FG. Neuroanatomical tract-tracing techniques that did go viral. Brain Struct Funct 2020; 225:1193-1224. [PMID: 32062721 PMCID: PMC7271020 DOI: 10.1007/s00429-020-02041-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/31/2020] [Indexed: 12/29/2022]
Abstract
Neuroanatomical tracing methods remain fundamental for elucidating the complexity of brain circuits. During the past decades, the technical arsenal at our disposal has been greatly enriched, with a steady supply of fresh arrivals. This paper provides a landscape view of classical and modern tools for tract-tracing purposes. Focus is placed on methods that have gone viral, i.e., became most widespread used and fully reliable. To keep an historical perspective, we start by reviewing one-dimensional, standalone transport-tracing tools; these including today's two most favorite anterograde neuroanatomical tracers such as Phaseolus vulgaris-leucoagglutinin and biotinylated dextran amine. Next, emphasis is placed on several classical tools widely used for retrograde neuroanatomical tracing purposes, where Fluoro-Gold in our opinion represents the best example. Furthermore, it is worth noting that multi-dimensional paradigms can be designed by combining different tracers or by applying a given tracer together with detecting one or more neurochemical substances, as illustrated here with several examples. Finally, it is without any doubt that we are currently witnessing the unstoppable and spectacular rise of modern molecular-genetic techniques based on the use of modified viruses as delivery vehicles for genetic material, therefore, pushing the tract-tracing field forward into a new era. In summary, here, we aim to provide neuroscientists with the advice and background required when facing a choice on which neuroanatomical tracer-or combination thereof-might be best suited for addressing a given experimental design.
Collapse
Affiliation(s)
- Jose L Lanciego
- Neurosciences Department, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Avenue 55, 31008, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), Pamplona, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Floris G Wouterlood
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, Location VUmc, Neuroscience Campus Amsterdam, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Halassa MM, Sherman SM. Thalamocortical Circuit Motifs: A General Framework. Neuron 2020; 103:762-770. [PMID: 31487527 DOI: 10.1016/j.neuron.2019.06.005] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/28/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
Abstract
The role of the thalamus in cortical sensory transmission is well known, but its broader role in cognition is less appreciated. Recent studies have shown thalamic engagement in dynamic regulation of cortical activity in attention, executive control, and perceptual decision-making, but the circuit mechanisms underlying such functionality are unknown. Because the thalamus is composed of excitatory neurons that are devoid of local recurrent excitatory connectivity, delineating long-range, input-output connectivity patterns of single thalamic neurons is critical for building functional models. We discuss this need in relation to existing organizational schemes such as core versus matrix and first-order versus higher-order relay nuclei. We propose that a new classification is needed based on thalamocortical motifs, where structure naturally informs function. Overall, our synthesis puts understanding thalamic organization at the forefront of existing research in systems and computational neuroscience, with both basic and translational applications.
Collapse
Affiliation(s)
- Michael M Halassa
- Department of Brain and Cognitive Science and the McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - S Murray Sherman
- Department of Neurobiology, University of Chicago School of Medicine, Chicago, IL, USA.
| |
Collapse
|
17
|
Huang KW, Sabatini BL. Single-Cell Analysis of Neuroinflammatory Responses Following Intracranial Injection of G-Deleted Rabies Viruses. Front Cell Neurosci 2020; 14:65. [PMID: 32265666 PMCID: PMC7098990 DOI: 10.3389/fncel.2020.00065] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
Viral vectors are essential tools for the study of neural circuits, with glycoprotein-deleted rabies viruses being widely used for monosynaptic retrograde tracing to map connectivity between specific cell types in the nervous system. However, the use of rabies virus is limited by the cytotoxicity and the inflammatory responses these viruses trigger. While components of the rabies virus genome contribute to its cytotoxic effects, the function of other neuronal and non-neuronal cells within the vicinity of the infected host neurons in either effecting or mitigating virally-induced tissue damage are still being elucidated. Here, we analyzed 60,212 single-cell RNA profiles to assess both global and cell-type-specific transcriptional responses in the mouse dorsal raphe nucleus (DRN) following intracranial injection of glycoprotein-deleted rabies viruses and axonal infection of dorsal raphe serotonergic neurons. Gene pathway analyses revealed a down-regulation of genes involved in metabolic processes and neurotransmission following infection. We also identified several transcriptionally diverse leukocyte populations that infiltrate the brain and are distinct from resident immune cells. Cell type-specific patterns of cytokine expression showed that antiviral responses were likely orchestrated by Type I and Type II interferon signaling from microglia and infiltrating CD4+ T cells, respectively. Additionally, we uncovered transcriptionally distinct states of microglia along an activation trajectory that may serve different functions, which range from surveillance to antigen presentation and cytokine secretion. Intercellular interactions inferred from transcriptional data suggest that CD4+ T cells facilitate microglial state transitions during the inflammatory response. Our study uncovers the heterogeneity of immune cells mediating neuroinflammatory responses and provides a critical evaluation of the compatibility between rabies-mediated connectivity mapping and single-cell transcriptional profiling. These findings provide additional insights into the distinct contributions of various cell types in mediating different facets of antiviral responses in the brain and will facilitate the design of strategies to circumvent immune responses to improve the efficacy of viral gene delivery.
Collapse
Affiliation(s)
| | - Bernardo L. Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Li J, Liu T, Dong Y, Kondoh K, Lu Z. Trans-synaptic Neural Circuit-Tracing with Neurotropic Viruses. Neurosci Bull 2019; 35:909-920. [PMID: 31004271 PMCID: PMC6754522 DOI: 10.1007/s12264-019-00374-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/15/2018] [Indexed: 12/19/2022] Open
Abstract
A central objective in deciphering the nervous system in health and disease is to define the connections of neurons. The propensity of neurotropic viruses to spread among synaptically-linked neurons makes them ideal for mapping neural circuits. So far, several classes of viral neuronal tracers have become available and provide a powerful toolbox for delineating neural networks. In this paper, we review the recent developments of neurotropic viral tracers and highlight their unique properties in revealing patterns of neuronal connections.
Collapse
Affiliation(s)
- Jiamin Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Taian Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yun Dong
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Kunio Kondoh
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institute of Natural Sciences, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- Japan Science and Technology Agency, PRESTO, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| | - Zhonghua Lu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
19
|
Hafner G, Witte M, Guy J, Subhashini N, Fenno LE, Ramakrishnan C, Kim YS, Deisseroth K, Callaway EM, Oberhuber M, Conzelmann KK, Staiger JF. Mapping Brain-Wide Afferent Inputs of Parvalbumin-Expressing GABAergic Neurons in Barrel Cortex Reveals Local and Long-Range Circuit Motifs. Cell Rep 2019; 28:3450-3461.e8. [PMID: 31553913 PMCID: PMC6897332 DOI: 10.1016/j.celrep.2019.08.064] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 07/23/2019] [Accepted: 08/21/2019] [Indexed: 12/22/2022] Open
Abstract
Parvalbumin (PV)-expressing GABAergic neurons are the largest class of inhibitory neocortical cells. We visualize brain-wide, monosynaptic inputs to PV neurons in mouse barrel cortex. We develop intersectional rabies virus tracing to specifically target GABAergic PV cells and exclude a small fraction of excitatory PV cells from our starter population. Local inputs are mainly from layer (L) IV and excitatory cells. A small number of inhibitory inputs originate from LI neurons, which connect to LII/III PV neurons. Long-range inputs originate mainly from other sensory cortices and the thalamus. In visual cortex, most transsynaptically labeled neurons are located in LIV, which contains a molecularly mixed population of projection neurons with putative functional similarity to LIII neurons. This study expands our knowledge of the brain-wide circuits in which PV neurons are embedded and introduces intersectional rabies virus tracing as an applicable tool to dissect the circuitry of more clearly defined cell types.
Collapse
Affiliation(s)
- Georg Hafner
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August-University Göttingen, 37075 Göttingen, Germany
| | - Mirko Witte
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August-University Göttingen, 37075 Göttingen, Germany
| | - Julien Guy
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August-University Göttingen, 37075 Göttingen, Germany
| | - Nidhi Subhashini
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August-University Göttingen, 37075 Göttingen, Germany
| | - Lief E Fenno
- Departments of Bioengineering and Psychiatry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Charu Ramakrishnan
- Departments of Bioengineering and Psychiatry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Yoon Seok Kim
- Departments of Bioengineering and Psychiatry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Departments of Bioengineering and Psychiatry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Martina Oberhuber
- Max von Pettenkofer-Institute, Virology & Gene Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Karl-Klaus Conzelmann
- Max von Pettenkofer-Institute, Virology & Gene Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August-University Göttingen, 37075 Göttingen, Germany.
| |
Collapse
|
20
|
Schwarz MK, Remy S. Rabies virus-mediated connectivity tracing from single neurons. J Neurosci Methods 2019; 325:108365. [DOI: 10.1016/j.jneumeth.2019.108365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/09/2019] [Accepted: 07/14/2019] [Indexed: 02/01/2023]
|
21
|
Cryo EM structure of the rabies virus ribonucleoprotein complex. Sci Rep 2019; 9:9639. [PMID: 31270364 PMCID: PMC6610074 DOI: 10.1038/s41598-019-46126-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/21/2019] [Indexed: 10/26/2022] Open
Abstract
Rabies virus is an important zoonotic pathogen. Its bullet shaped particle contains a helical nucleocapsid. We used cryo-electron tomography and subsequent subtomogram averaging to determine the structure of its ribonucleoprotein. The resulting electron density map allowed for confident fitting of the N-protein crystal structure, indicating that interactions between neighbouring N-proteins are only mediated by N- and C-terminal protruding subdomains (aa 1-27 and aa 355-372). Additional connecting densities, likely stabilizing the ribonucleoprotein complex, are present between neighbouring M-protein densities on the same helical turn and between M- and N-protein densities located on neighbouring helical turns, but not between M-proteins of different turns, as is observed for the related Vesicular stomatitis virus (VSV). This insight into the architecture of the rabies virus nucleocapsid highlights the surprising structural divergence of large biological assemblies even if the building blocks - here exemplified by VSV M- and N-protein - are structurally closely related.
Collapse
|
22
|
Status of antiviral therapeutics against rabies virus and related emerging lyssaviruses. Curr Opin Virol 2019; 35:1-13. [PMID: 30753961 DOI: 10.1016/j.coviro.2018.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022]
Abstract
Rabies virus (RABV) constitutes a major social and economic burden associated with 60 000 deaths annually worldwide. Although pre-exposure and post-exposure treatment options are available, they are efficacious only when initiated before the onset of clinical symptoms. Aggravating the problem, the current RABV vaccine does not cross-protect against the emerging zoonotic phylogroup II lyssaviruses. A requirement for an uninterrupted cold chain and high cost of the immunoglobulin component of rabies prophylaxis generate an unmet need for the development of RABV-specific antivirals. We discuss desirable anti-RABV drug profiles, past efforts to address the problem and inhibitor candidates identified, and examine how the rapidly expanding structural insight into RABV protein organization has illuminated novel druggable target candidates and paved the way to structure-aided drug optimization. Special emphasis is given to the viral RNA-dependent RNA polymerase complex as a promising target for direct-acting broad-spectrum RABV inhibitors.
Collapse
|
23
|
de Git KCG, van Tuijl DC, Luijendijk MCM, Wolterink‐Donselaar IG, Ghanem A, Conzelmann K, Adan RAH. Anatomical projections of the dorsomedial hypothalamus to the periaqueductal grey and their role in thermoregulation: a cautionary note. Physiol Rep 2018; 6:e13807. [PMID: 30047252 PMCID: PMC6060107 DOI: 10.14814/phy2.13807] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/03/2018] [Accepted: 07/01/2018] [Indexed: 02/03/2023] Open
Abstract
The DMH is known to regulate brown adipose tissue (BAT) thermogenesis via projections to sympathetic premotor neurons in the raphe pallidus, but there is evidence that the periaqueductal gray (PAG) is also an important relay in the descending pathways regulating thermogenesis. The anatomical projections from the DMH to the PAG subdivisions and their function are largely elusive, and may differ per anterior-posterior level from bregma. We here aimed to investigate the anatomical projections from the DMH to the PAG along the entire anterior-posterior axis of the PAG, and to study the role of these projections in thermogenesis in Wistar rats. Anterograde channel rhodopsin viral tracing showed that the DMH projects especially to the dorsal and lateral PAG. Retrograde rabies viral tracing confirmed this, but also indicated that the PAG receives a diffuse input from the DMH and adjacent hypothalamic subregions. We aimed to study the role of the identified DMH to PAG projections in thermogenesis in conscious rats by specifically activating them using a combination of canine adenovirus-2 (CAV2Cre) and Cre-dependent designer receptor exclusively activated by designer drugs (DREADD) technology. Chemogenetic activation of DMH to PAG projections increased BAT temperature and core body temperature, but we cannot exclude the possibility that at least some thermogenic effects were mediated by adjacent hypothalamic subregions due to difficulties in specifically targeting the DMH and distinct subdivisions of the PAG because of diffuse virus expression. To conclude, our study shows the complexity of the anatomical and functional connection between the hypothalamus and the PAG, and some technical challenges in studying their connection.
Collapse
Affiliation(s)
- Kathy C. G. de Git
- Brain Center Rudolf MagnusDepartment of Translational NeuroscienceUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Diana C. van Tuijl
- Brain Center Rudolf MagnusDepartment of Translational NeuroscienceUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Mieneke C. M. Luijendijk
- Brain Center Rudolf MagnusDepartment of Translational NeuroscienceUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Inge G. Wolterink‐Donselaar
- Brain Center Rudolf MagnusDepartment of Translational NeuroscienceUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Alexander Ghanem
- VirologyFaculty of MedicineMax von Pettenkofer Institute & Gene CenterLMU MünchenMunichGermany
| | - Karl‐Klaus Conzelmann
- VirologyFaculty of MedicineMax von Pettenkofer Institute & Gene CenterLMU MünchenMunichGermany
| | - Roger A. H. Adan
- Brain Center Rudolf MagnusDepartment of Translational NeuroscienceUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
24
|
Identification of Two Classes of Somatosensory Neurons That Display Resistance to Retrograde Infection by Rabies Virus. J Neurosci 2017; 37:10358-10371. [PMID: 28951448 PMCID: PMC5656993 DOI: 10.1523/jneurosci.1277-17.2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/29/2017] [Accepted: 09/11/2017] [Indexed: 12/25/2022] Open
Abstract
Glycoprotein-deleted rabies virus-mediated monosynaptic tracing has become a standard method for neuronal circuit mapping, and is applied to virtually all parts of the rodent nervous system, including the spinal cord and primary sensory neurons. Here we identified two classes of unmyelinated sensory neurons (nonpeptidergic and C-fiber low-threshold mechanoreceptor neurons) resistant to direct and trans-synaptic infection from the spinal cord with rabies viruses that carry glycoproteins in their envelopes and that are routinely used for infection of CNS neurons (SAD-G and N2C-G). However, the same neurons were susceptible to infection with EnvA-pseudotyped rabies virus in tumor virus A receptor transgenic mice, indicating that resistance to retrograde infection was due to impaired virus adsorption rather than to deficits in subsequent steps of infection. These results demonstrate an important limitation of rabies virus-based retrograde tracing of sensory neurons in adult mice, and may help to better understand the molecular machinery required for rabies virus spread in the nervous system. In this study, mice of both sexes were used. SIGNIFICANCE STATEMENT To understand the neuronal bases of behavior, it is important to identify the underlying neural circuitry. Rabies virus-based monosynaptic tracing has been used to identify neuronal circuits in various parts of the nervous system. This has included connections between peripheral sensory neurons and their spinal targets. These connections form the first synapse in the somatosensory pathway. Here we demonstrate that two classes of unmyelinated sensory neurons, which account for >40% of dorsal root ganglia neurons, display resistance to rabies infection. Our results are therefore critical for interpreting monosynaptic rabies-based tracing in the sensory system. In addition, identification of rabies-resistant neurons might provide a means for future studies addressing rabies pathobiology.
Collapse
|
25
|
Hasse JM, Briggs F. Corticogeniculate feedback sharpens the temporal precision and spatial resolution of visual signals in the ferret. Proc Natl Acad Sci U S A 2017; 114:E6222-E6230. [PMID: 28698363 PMCID: PMC5544308 DOI: 10.1073/pnas.1704524114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The corticogeniculate (CG) pathway connects the visual cortex with the visual thalamus (LGN) in the feedback direction and enables the cortex to directly influence its own input. Despite numerous investigations, the role of this feedback circuit in visual perception remained elusive. To probe the function of CG feedback in a causal manner, we selectively and reversibly manipulated the activity of CG neurons in anesthetized ferrets in vivo using a combined viral-infection and optogenetics approach to drive expression of channelrhodopsin2 (ChR2) in CG neurons. We observed significant increases in temporal precision and spatial resolution of LGN neuronal responses to drifting grating and white noise stimuli when CG neurons expressing ChR2 were light activated. Enhancing CG feedback reduced visually evoked response latencies, increased spike-timing precision, and reduced classical receptive field size. Increased precision among LGN neurons led to increased spike-timing precision among granular layer V1 neurons as well. Together, our findings suggest that the function of CG feedback is to control the timing and precision of thalamic responses to incoming visual signals.
Collapse
Affiliation(s)
- J Michael Hasse
- Department of Physiology & Neurobiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756
- Program in Experimental and Molecular Medicine, Dartmouth College, Hanover, NH 03755
| | - Farran Briggs
- Department of Physiology & Neurobiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756;
- Program in Experimental and Molecular Medicine, Dartmouth College, Hanover, NH 03755
| |
Collapse
|
26
|
Npas1+ Pallidal Neurons Target Striatal Projection Neurons. J Neurosci 2017; 36:5472-88. [PMID: 27194328 DOI: 10.1523/jneurosci.1720-15.2016] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 04/03/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Compelling evidence demonstrates that the external globus pallidus (GPe) plays a key role in processing sensorimotor information. An anatomical projection from the GPe to the dorsal striatum has been described for decades. However, the cellular target and functional impact of this projection remain unknown. Using cell-specific transgenic mice, modern monosynaptic tracing techniques, and optogenetics-based mapping, we discovered that GPe neurons provide inhibitory inputs to direct and indirect pathway striatal projection neurons (SPNs). Our results indicate that the GPe input to SPNs arises primarily from Npas1-expressing neurons and is strengthened in a chronic Parkinson's disease (PD) model. Alterations of the GPe-SPN input in a PD model argue for the critical position of this connection in regulating basal ganglia motor output and PD symptomatology. Finally, chemogenetic activation of Npas1-expressing GPe neurons suppresses motor output, arguing that strengthening of the GPe-SPN connection is maladaptive and may underlie the hypokinetic symptoms in PD. SIGNIFICANCE STATEMENT An anatomical projection from the pallidum to the striatum has been described for decades, but little is known about its connectivity pattern. The authors dissect the presynaptic and postsynaptic neurons involved in this projection, and show its cell-specific remodeling and strengthening in parkinsonian mice. Chemogenetic activation of Npas1(+) pallidal neurons that give rise to the principal pallidostriatal projection increases the time that the mice spend motionless. This argues that maladaptive strengthening of this connection underlies the paucity of volitional movements, which is a hallmark of Parkinson's disease.
Collapse
|
27
|
Gorges M, Roselli F, Müller HP, Ludolph AC, Rasche V, Kassubek J. Functional Connectivity Mapping in the Animal Model: Principles and Applications of Resting-State fMRI. Front Neurol 2017; 8:200. [PMID: 28539914 PMCID: PMC5423907 DOI: 10.3389/fneur.2017.00200] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/24/2017] [Indexed: 12/25/2022] Open
Abstract
"Resting-state" fMRI has substantially contributed to the understanding of human and non-human functional brain organization by the analysis of correlated patterns in spontaneous activity within dedicated brain systems. Spontaneous neural activity is indirectly measured from the blood oxygenation level-dependent signal as acquired by echo planar imaging, when subjects quietly "resting" in the scanner. Animal models including disease or knockout models allow a broad spectrum of experimental manipulations not applicable in humans. The non-invasive fMRI approach provides a promising tool for cross-species comparative investigations. This review focuses on the principles of "resting-state" functional connectivity analysis and its applications to living animals. The translational aspect from in vivo animal models toward clinical applications in humans is emphasized. We introduce the fMRI-based investigation of the non-human brain's hemodynamics, the methodological issues in the data postprocessing, and the functional data interpretation from different abstraction levels. The longer term goal of integrating fMRI connectivity data with structural connectomes obtained with tracing and optical imaging approaches is presented and will allow the interrogation of fMRI data in terms of directional flow of information and may identify the structural underpinnings of observed functional connectivity patterns.
Collapse
Affiliation(s)
- Martin Gorges
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, University of Ulm, Ulm, Germany
- Department of Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | | | | | - Volker Rasche
- Core Facility Small Animal MRI, University of Ulm, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| |
Collapse
|
28
|
Abstract
Predictive coding theories of sensory brain function interpret the hierarchical construction of the cerebral cortex as a Bayesian, generative model capable of predicting the sensory data consistent with any given percept. Predictions are fed backward in the hierarchy and reciprocated by prediction error in the forward direction, acting to modify the representation of the outside world at increasing levels of abstraction, and so to optimize the nature of perception over a series of iterations. This accounts for many ‘illusory’ instances of perception where what is seen (heard, etc.) is unduly influenced by what is expected, based on past experience. This simple conception, the hierarchical exchange of prediction and prediction error, confronts a rich cortical microcircuitry that is yet to be fully documented. This article presents the view that, in the current state of theory and practice, it is profitable to begin a two-way exchange: that predictive coding theory can support an understanding of cortical microcircuit function, and prompt particular aspects of future investigation, whilst existing knowledge of microcircuitry can, in return, influence theoretical development. As an example, a neural inference arising from the earliest formulations of predictive coding is that the source populations of forward and backward pathways should be completely separate, given their functional distinction; this aspect of circuitry – that neurons with extrinsically bifurcating axons do not project in both directions – has only recently been confirmed. Here, the computational architecture prescribed by a generalized (free-energy) formulation of predictive coding is combined with the classic ‘canonical microcircuit’ and the laminar architecture of hierarchical extrinsic connectivity to produce a template schematic, that is further examined in the light of (a) updates in the microcircuitry of primate visual cortex, and (b) rapid technical advances made possible by transgenic neural engineering in the mouse. The exercise highlights a number of recurring themes, amongst them the consideration of interneuron diversity as a spur to theoretical development and the potential for specifying a pyramidal neuron’s function by its individual ‘connectome,’ combining its extrinsic projection (forward, backward or subcortical) with evaluation of its intrinsic network (e.g., unidirectional versus bidirectional connections with other pyramidal neurons).
Collapse
Affiliation(s)
- Stewart Shipp
- Laboratory of Visual Perceptual Mechanisms, Institute of Neuroscience, Chinese Academy of SciencesShanghai, China; INSERM U1208, Stem Cell and Brain Research InstituteBron, France; Department of Visual Neuroscience, UCL Institute of OphthalmologyLondon, UK
| |
Collapse
|
29
|
Moeschler S, Locher S, Conzelmann KK, Krämer B, Zimmer G. Quantification of Lyssavirus-Neutralizing Antibodies Using Vesicular Stomatitis Virus Pseudotype Particles. Viruses 2016; 8:E254. [PMID: 27649230 PMCID: PMC5035968 DOI: 10.3390/v8090254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/23/2016] [Accepted: 09/08/2016] [Indexed: 12/25/2022] Open
Abstract
Rabies is a highly fatal zoonotic disease which is primarily caused by rabies virus (RABV) although other members of the genus Lyssavirus can cause rabies as well. As yet, 14 serologically and genetically diverse lyssaviruses have been identified, mostly in bats. To assess the quality of rabies vaccines and immunoglobulin preparations, virus neutralization tests with live RABV are performed in accordance with enhanced biosafety standards. In the present work, a novel neutralization test is presented which takes advantage of a modified vesicular stomatitis virus (VSV) from which the glycoprotein G gene has been deleted and replaced by reporter genes. This single-cycle virus was trans-complemented with RABV envelope glycoprotein. Neutralization of this pseudotype virus with RABV reference serum or immune sera from vaccinated mice showed a strong correlation with the rapid fluorescent focus inhibition test (RFFIT). Importantly, pseudotype viruses containing the envelope glycoproteins of other lyssaviruses were neutralized by reference serum to a significantly lesser extent or were not neutralized at all. Taken together, a pseudotype virus system has been successfully developed which allows the safe, fast, and sensitive detection of neutralizing antibodies directed against different lyssaviruses.
Collapse
Affiliation(s)
- Sarah Moeschler
- Institut für Virologie und Immunologie (IVI), Abteilung Virologie, CH-3147 Mittelhäusern, Switzerland.
| | - Samira Locher
- Institut für Virologie und Immunologie (IVI), Abteilung Virologie, CH-3147 Mittelhäusern, Switzerland.
| | - Karl-Klaus Conzelmann
- Max von Pettenkofer-Institut und Genzentrum, Ludwig-Maximilians-Universität, D-81377 München, Germany.
| | - Beate Krämer
- Paul-Ehrlich-Institut, Abteilung Veterinärmedizin, D-63225 Langen, Germany.
| | - Gert Zimmer
- Institut für Virologie und Immunologie (IVI), Abteilung Virologie, CH-3147 Mittelhäusern, Switzerland.
| |
Collapse
|
30
|
Reardon TR, Murray AJ, Turi GF, Wirblich C, Croce KR, Schnell MJ, Jessell TM, Losonczy A. Rabies Virus CVS-N2c(ΔG) Strain Enhances Retrograde Synaptic Transfer and Neuronal Viability. Neuron 2016; 89:711-24. [PMID: 26804990 DOI: 10.1016/j.neuron.2016.01.004] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/22/2015] [Accepted: 12/24/2015] [Indexed: 12/20/2022]
Abstract
Virally based transsynaptic tracing technologies are powerful experimental tools for neuronal circuit mapping. The glycoprotein-deletion variant of the SAD-B19 vaccine strain rabies virus (RABV) has been the reagent of choice in monosynaptic tracing, since it permits the mapping of synaptic inputs to genetically marked neurons. Since its introduction, new helper viruses and reagents that facilitate complementation have enhanced the efficiency of SAD-B19(ΔG) transsynaptic transfer, but there has been little focus on improvements to the core RABV strain. Here we generate a new deletion mutant strain, CVS-N2c(ΔG), and examine its neuronal toxicity and efficiency in directing retrograde transsynaptic transfer. We find that by comparison with SAD-B19(ΔG), the CVS-N2c(ΔG) strain exhibits a reduction in neuronal toxicity and a marked enhancement in transsynaptic neuronal transfer. We conclude that the CVS-N2c(ΔG) strain provides a more effective means of mapping neuronal circuitry and of monitoring and manipulating neuronal activity in vivo in the mammalian CNS.
Collapse
Affiliation(s)
- Thomas R Reardon
- Departments of Neuroscience and Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | - Andrew J Murray
- Departments of Neuroscience and Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA.
| | - Gergely F Turi
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Christoph Wirblich
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Katherine R Croce
- Departments of Neuroscience and Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Thomas M Jessell
- Departments of Neuroscience and Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA.
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA
| |
Collapse
|