1
|
Hasan MN, Badsha MB, Mollah MNH. Robust hierarchical co-clustering for exploring toxicogenomic biomarkers and their chemical regulators. Sci Rep 2025; 15:16676. [PMID: 40369321 PMCID: PMC12078728 DOI: 10.1038/s41598-025-99568-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/21/2025] [Indexed: 05/16/2025] Open
Abstract
Toxicity measurement of doses of chemicals (DCs) is one of the most important tasks in toxicology studies and the drug discovery and development process. In this issue, toxicogenomic biomarkers are now playing a vital role in measuring the toxicity of DCs. Differentially expressed genes (DEGs) between DCs-treatment and control groups are considered toxicogenomic biomarkers, and associated chemicals are the regulators of DEGs. The co-clustering technique is now used extensively in toxicogenomic research to investigate co-clusters between genomic biomarkers and their chemical regulators. In the literature, there are few approaches to exploring co-clusters. The hierarchical co-clustering (HCoClust) approach is faster, simpler, and more flexible. Nevertheless, it is not robust against outlier data and there is no instruction about separating upregulatory or downregulatory co-clusters, a crucial goal of toxicogenomic data analysis. Therefore, in this article, we proposed a robust HCoClust (rHCoClust) approach and developed an r-package called "rhcoclust" for its implementation. Simulation results showed that the conventional HCoClust and the proposed rHCoClust performed equally well in detecting co-clusters in the absence of outliers, while rHCoClust performed much better than HCoClust in the presence of outliers. However, rHCoClust outperformed the bi-clustering approaches in detecting co-clusters, since bi-clustering methods only work when row and column clusters are equal, and they have no criterion for detecting upregulatory and downregulatory co-clusters. Then rHCoClust was compared with HCoClust through real data analysis and found that rHCoClust performed better than HCoClust. In the case of real data analysis, the proposed method rHCoClust identified top-ranked two DEGs-clusters (GSTA5, MGST2, GCLC, GCLM, G6PD) and (EHHADH, CYP4A1, ANGPT14, CPT1A) that were significantly expressed by the influence of top-ranked two DCs-clusters (acetaminophen_High _24.hr, nitrofurazone_High_24.hr, methapyrilene_High_24.hr) and (WY.14643_High_24.hr, clofibrate_High_24.hr, gemfibrozil_High_24.hr, benzbromarone_High_24.hr, aspirin_High_24.hr) through the glutathione metabolism (GMP) and PPAR signaling pathway (PPAR-SP) respectively. The literature review also supported these results. Thus, the proposed method would be useful to explore toxicogenomic biomarkers and their chemical regulators from the robustness point of view.
Collapse
Affiliation(s)
- Mohammad Nazmol Hasan
- Department of Statistics, Gazipur Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Bahadur Badsha
- Center for Applied Bioinformatics, St Jude Children's Research Hospital, Memphis, TN, USA
- Sera Prognostics, Inc., Salt Lake City, UT, USA
| | - Md Nurul Haque Mollah
- Bioinformatics Lab., Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
2
|
Chang LC, Yeh EL, Chuang YC, Wu CH, Kuo CW, Lii CK, Yang YC, Chen HW, Li CC. Luteolin Inhibits Indoxyl Sulfate-Induced ICAM-1 and MCP-1 Expression by Inducing HO-1 Expression in EA.hy926 Human Endothelial Cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:5112-5123. [PMID: 39105397 DOI: 10.1002/tox.24380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/31/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024]
Abstract
In patients with chronic kidney disease, the uremic toxin indoxyl sulfate (IS) accelerates kidney damage and the progression of cardiovascular disease. IS may contribute to vascular diseases by inducing inflammation in endothelial cells. Luteolin has documented antioxidant and anti-inflammatory properties. This study aimed to investigate the effect of luteolin on IS-mediated reactive oxygen species (ROS) production and intercellular adhesion molecule (ICAM-1) and monocyte chemoattractant protein (MCP-1) expression in EA.hy926 cells and the possible mechanisms involved. IS significantly induced ROS production (by 6.03-fold, p < 0.05), ICAM-1 (by 2.19-fold, p < 0.05) and MCP-1 protein expression (by 2.18-fold, p < 0.05), and HL-60 cell adhesion (by 31%, p < 0.05), whereas, luteolin significantly decreased IS-induced ROS production, ICAM-1 and MCP-1 protein expression, and HL-60 cell adhesion. Moreover, luteolin attenuated IS-induced nuclear accumulation of p65 and c-jun. Luteolin dose-dependently increased heme oxygenase-1 (HO-1) expression and the maximum fold induction of HO-1 by luteolin was 3.68-fold (p < 0.05), whereas, HO-1 knockdown abolished the suppression of ICAM-1 and MCP-1 expression by luteolin. Luteolin may protect against IS-induced vessel damage by inducing HO-1 expression in vascular endothelial cells, which suppresses nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1) mediated ICAM-1 and MCP-1 expression.
Collapse
Affiliation(s)
- Li-Chien Chang
- Division of Nephrology, Department of Internal Medicine, Armed Forces Taichung General Hospital, Taichung, Taiwan
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
- Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - En-Ling Yeh
- Department of Nutrition, College of Medical and Health Care, Hung-Kuang University, Taichung, Taiwan
| | - Ya-Chi Chuang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Hsuan Wu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Wen Kuo
- Division of Nephrology, Department of Internal Medicine, Armed Forces Taichung General Hospital, Taichung, Taiwan
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan
- Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Ya-Chen Yang
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chien-Chun Li
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
3
|
Mihaila AC, Ciortan L, Macarie RD, Vadana M, Cecoltan S, Preda MB, Hudita A, Gan AM, Jakobsson G, Tucureanu MM, Barbu E, Balanescu S, Simionescu M, Schiopu A, Butoi E. Transcriptional Profiling and Functional Analysis of N1/N2 Neutrophils Reveal an Immunomodulatory Effect of S100A9-Blockade on the Pro-Inflammatory N1 Subpopulation. Front Immunol 2021; 12:708770. [PMID: 34447377 PMCID: PMC8384118 DOI: 10.3389/fimmu.2021.708770] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
Neutrophils have been classically viewed as a homogenous population. Recently, neutrophils were phenotypically classified into pro-inflammatory N1 and anti-inflammatory N2 sub-populations, but the functional differences between the two subtypes are not completely understood. We aimed to investigate the phenotypic and functional differences between N1 and N2 neutrophils, and to identify the potential contribution of the S100A9 alarmin in neutrophil polarization. We describe distinct transcriptomic profiles and functional differences between N1 and N2 neutrophils. Compared to N2, the N1 neutrophils exhibited: i) higher levels of ROS and oxidative burst, ii) increased activity of MPO and MMP-9, and iii) enhanced chemotactic response. N1 neutrophils were also characterized by elevated expression of NADPH oxidase subunits, as well as activation of the signaling molecules ERK and the p65 subunit of NF-kB. Moreover, we found that the S100A9 alarmin promotes the chemotactic and enzymatic activity of N1 neutrophils. S100A9 inhibition with a specific small-molecule blocker, reduced CCL2, CCL3 and CCL5 chemokine expression and decreased MPO and MMP-9 activity, by interfering with the NF-kB signaling pathway. Together, these findings reveal that N1 neutrophils are pro-inflammatory effectors of the innate immune response. Pharmacological blockade of S100A9 dampens the function of the pro-inflammatory N1 phenotype, promoting the alarmin as a novel target for therapeutic intervention in inflammatory diseases.
Collapse
Affiliation(s)
- Andreea C Mihaila
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Letitia Ciortan
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Razvan D Macarie
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Mihaela Vadana
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Sergiu Cecoltan
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Mihai Bogdan Preda
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Ariana Hudita
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Ana-Maria Gan
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Gabriel Jakobsson
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Monica M Tucureanu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Elena Barbu
- Departament of Cardiology, Elias Emergency Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Serban Balanescu
- Departament of Cardiology, Elias Emergency Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Maya Simionescu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Alexandru Schiopu
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.,Department of Pathophysiology, University of Medicine, Pharmacy, Sciences and Technology of Targu-Mures, Targu-Mures, Romania
| | - Elena Butoi
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| |
Collapse
|
4
|
Uddin MS, Hasana S, Ahmad J, Hossain MF, Rahman MM, Behl T, Rauf A, Ahmad A, Hafeez A, Perveen A, Ashraf GM. Anti-Neuroinflammatory Potential of Polyphenols by Inhibiting NF-κB to Halt Alzheimer's Disease. Curr Pharm Des 2021; 27:402-414. [PMID: 33213314 DOI: 10.2174/1381612826666201118092422] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/01/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is an irrevocable chronic brain disorder featured by neuronal loss, microglial accumulation, and progressive cognitive impairment. The proper pathophysiology of this life-threatening disorder is not completely understood and no exact remedies have been found yet. Over the last few decades, research on AD has mainly highlighted pathomechanisms linked to a couple of the major pathological hallmarks, including extracellular senile plaques made of amyloid-β (Aβ) peptides, and intracellular neurofibrillary tangles (NFTs) made of tau proteins. Aβ can induce apoptosis, trigger an inflammatory response, and inhibit the synaptic plasticity of the hippocampus, which ultimately contributes to reducing cognitive functions and memory impairment. Recently, a third disease hallmark, the neuroinflammatory reaction that is mediated by cerebral innate immune cells, has become a spotlight in the current research area, assured by pre-clinical, clinical, and genetic investigations. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), a cytokine producer, is significantly associated with physiological inflammatory proceedings and thus shows a promising candidate for inflammation- based AD therapy. Recent data reveal that phytochemicals, mainly polyphenol compounds, exhibit potential neuroprotective functions and these may be considered as a vital resource for discovering several drug candidates against AD. Interestingly, phytochemicals can easily interfere with the signaling pathway of NF-κB. This review represents the anti-neuroinflammatory potential of polyphenols as inhibitors of NF-κB to combat AD pathogenesis.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Sharifa Hasana
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Jamil Ahmad
- Department of Human Nutrition, The University of Agriculture Peshawar, Khyber Pakhtunkhwa, Pakistan
| | | | | | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Ausaf Ahmad
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Uttar Pradesh, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Sourris KC, Watson A, Jandeleit-Dahm K. Inhibitors of Advanced Glycation End Product (AGE) Formation and Accumulation. Handb Exp Pharmacol 2020; 264:395-423. [PMID: 32809100 DOI: 10.1007/164_2020_391] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A range of chemically different compounds are known to inhibit the formation and accumulation of advanced glycation end products (AGEs) or disrupt associated signalling pathways. There is evidence that some of these agents can provide end-organ protection in chronic diseases including diabetes. Whilst this group of therapeutics are structurally and functionally different and have a range of mechanisms of action, they ultimately reduce the deleterious actions and the tissue burden of advanced glycation end products. To date it remains unclear if this is due to the reduction in tissue AGE levels per se or the modulation of downstream signal pathways. Some of these agents either stimulate antioxidant defence or reduce the formation of reactive oxygen species (ROS), modify lipid profiles and inhibit inflammation. A number of existing treatments for glucose lowering, hypertension and hyperlipidaemia are also known to reduce AGE formation as a by-product of their action. Targeted AGE formation inhibitors or AGE cross-link breakers have been developed and have shown beneficial effects in animal models of diabetic complications as well as other chronic conditions. However, only a few of these agents have progressed to clinical development. The failure of clinical translation highlights the importance of further investigation of the advanced glycation pathway, the diverse actions of agents which interfere with AGE formation, cross-linking or AGE receptor activation and their effect on the development and progression of chronic diseases including diabetic complications. Advanced glycation end products (AGEs) are (1) proteins or lipids that become glycated as a result of exposure to sugars or (2) non-proteinaceous oxidised lipids. They are implicated in ageing and the development, or worsening, of many degenerative diseases, such as diabetes, atherosclerosis, chronic kidney and Alzheimer's disease. Several antihypertensive and antidiabetic agents and statins also indirectly lower AGEs. Direct AGE inhibitors currently investigated include pyridoxamine and epalrestat, the inhibition of the formation of reactive dicarbonyls such as methylglyoxal as an important precursor of AGEs via increased activation of the detoxifying enzyme Glo-1 and inhibitors of NOX-derived ROS to reduce the AGE/RAGE signalling.
Collapse
Affiliation(s)
- Karly C Sourris
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Anna Watson
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Karin Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
6
|
Sima C, Viniegra A, Glogauer M. Macrophage immunomodulation in chronic osteolytic diseases-the case of periodontitis. J Leukoc Biol 2019; 105:473-487. [PMID: 30452781 PMCID: PMC6386606 DOI: 10.1002/jlb.1ru0818-310r] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
Periodontitis (PD) is a chronic osteolytic disease that shares pathogenic inflammatory features with other conditions associated with nonresolving inflammation. A hallmark of PD is inflammation-mediated alveolar bone loss. Myeloid cells, in particular polymorphonuclear neutrophils (PMN) and macrophages (Mac), are essential players in PD by control of gingival biofilm pathogenicity, activation of adaptive immunity, as well as nonresolving inflammation and collateral tissue damage. Despite mounting evidence of significant innate immune implications to PD progression and healing after therapy, myeloid cell markers and targets for immune modulation have not been validated for clinical use. The remarkable plasticity of monocytes/Mac in response to local activation factors enables these cells to play central roles in inflammation and restoration of tissue homeostasis and provides opportunities for biomarker and therapeutic target discovery for management of chronic inflammatory conditions, including osteolytic diseases such as PD and arthritis. Along a wide spectrum of activation states ranging from proinflammatory to pro-resolving, Macs respond to environmental changes in a site-specific manner in virtually all tissues. This review summarizes the existing evidence on Mac immunomodulation therapies for osteolytic diseases in the broader context of conditions associated with nonresolving inflammation, and discusses osteoimmune implications of Macs in PD.
Collapse
Affiliation(s)
- Corneliu Sima
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Ana Viniegra
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Michael Glogauer
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Elafibranor interrupts adipose dysfunction-mediated gut and liver injury in mice with alcoholic steatohepatitis. Clin Sci (Lond) 2019; 133:531-544. [PMID: 30602573 DOI: 10.1042/cs20180873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/17/2018] [Accepted: 12/28/2018] [Indexed: 02/07/2023]
Abstract
Background: Reversal of alcohol-induced peroxisome proliferator-activated receptor (PPAR) α (PPARα) and PPARδ dysfunction has been reported to decrease the severity of alcoholic steatohepatitis (ASH). Autophagy is essential for cell survival and tissue energy homeostasis. Emerging evidence indicates that alcohol-induced adipose tissue (AT) autophagy dysfunction contributes to injury in the intestine, liver, and AT of ASH. Methods: The effects and mechanisms of dual PPARα/δ agonist elafibranor on autophagy stimulation were investigated using mice with ASH. Results: C57BL/6 mice on ethanol diet showed AT dysfunction, disrupted intestinal barrier, and ASH, which was accompanied by alcohol-mediated decrease in PPARα, PPARδ, and autophagy levels in intestine, liver, and AT. Chronic treatment with elafibranor attenuated AT apoptosis and inflammation by restoration of tissue PPARα, PPARδ, and autophagy levels. In ASH mice, alcohol-induced AT dysfunction along with increased fatty acid (FA) uptake and decreased free FA (FFA) release from AT was inhibited by elafibranor. The improvement of AT autophagy dysfunction by elafibranor alleviated inflammation and apoptosis-mediated intestinal epithelial disruption in ASH mice. Acute elafibranor incubation inhibited ethanol-induced ASH-mice-sera-enhanced autophagy dysfunction, apoptosis, barrier disruption, and intracellular steatosis in Caco-2 cells and primary hepatocytes (PHs). Conclusion: Altogether, these findings demonstrated that the PPARα/δ agonist, elafibranor, decreased the severity of liver injury by restoration of alcohol-suppressed AT autophagy function and by decreasing the release of apoptotic markers, inflammatory cytokines, and FFA, thereby reducing intestinal epithelium disruption and liver inflammation/apoptosis/steatosis in ASH mice. These data suggest that dual PPAR agonists can serve as potential therapeutic agents for the management of ASH.
Collapse
|
8
|
Li S, Yu G, Jing F, Chen H, Liu A, Luo M, Huang W, Pu P, Chen M. RING finger protein 10 attenuates vascular restenosis by inhibiting vascular smooth muscle cell hyperproliferation in vivo and vitro. IUBMB Life 2018; 71:632-642. [PMID: 30597731 DOI: 10.1002/iub.1995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/28/2018] [Accepted: 12/02/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Siyu Li
- Department of CardiologyFirst Affiliated Hospital of Chongqing Medical University Chongqing People's Republic of China
| | - Guiquan Yu
- Department of CardiologyFirst Affiliated Hospital of Chongqing Medical University Chongqing People's Republic of China
| | - Fuyu Jing
- Department of CardiologyFirst Affiliated Hospital of Chongqing Medical University Chongqing People's Republic of China
| | - Hui Chen
- Department of NeurosurgeryChildren's Hospital of Chongqing Medical University Chongqing People's Republic of China
| | - Aoyi Liu
- Department of CardiologyChildren's Hospital of Chongqing Medical University Chongqing People's Republic of China
| | - Minghao Luo
- Department of CardiologyFirst Affiliated Hospital of Chongqing Medical University Chongqing People's Republic of China
| | - Wei Huang
- Department of CardiologyFirst Affiliated Hospital of Chongqing Medical University Chongqing People's Republic of China
| | - Peng Pu
- Department of CardiologyFirst Affiliated Hospital of Chongqing Medical University Chongqing People's Republic of China
| | - Ming Chen
- Department of CardiologyFirst Affiliated Hospital of Chongqing Medical University Chongqing People's Republic of China
| |
Collapse
|
9
|
Seo EJ, Fischer N, Efferth T. Phytochemicals as inhibitors of NF-κB for treatment of Alzheimer’s disease. Pharmacol Res 2018; 129:262-273. [DOI: 10.1016/j.phrs.2017.11.030] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/19/2017] [Accepted: 11/23/2017] [Indexed: 12/15/2022]
|
10
|
Schrör K, Hohlfeld T. Antiinflammatory effects of aspirin in ACS: relevant to its cardio coronary actions? Thromb Haemost 2017; 114:469-77. [DOI: 10.1160/th15-03-0191] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/14/2015] [Indexed: 01/04/2023]
Abstract
SummaryVascular injury in acute coronary syndromes (ACS) involves a complex cross-talk between inflammatory mediators, platelets and thrombosis, where the interaction between platelets and coagulation factors (e. g. thrombin) is a central link between thrombosis and inflammation. In ACS, aspirin at antiplatelet doses exhibits anti-inflammatory effects as seen from the decrease in inflammation markers such as CRP, M-CSF, MCP-1 and others. These actions probably occur subsequent to inhibition of platelet COX-1-dependent thromboxane formation and its action as a multipotent autocrine and paracrine agent. This likely involves inhibition of thrombin formation as well as inhibition of secondary pro-inflammatory mediators, such as sphingosine-1-phosphate. Experimental and limited clinical data additionally suggest antiinflammatory effects of aspirin independent of its antiplatelet action. For example, aspirin at antiplatelet doses might acetylate COX-2 in vascular cells, directing the activity of the enzyme into a 15-lipoxygenase which by transcellular metabolism results in the formation of 15-epi-lipoxin (‘aspirin-triggered lipoxin’), an antiinflammatory mediator. Furthermore, aspirin stimulates eNOS via lysine-acetylation, eventually resulting in induction of heme oxygenase (HO-1), which improves the antioxidative potential of vascular cells. All of these effects have been seen at antiplatelet doses of 100–300 mg/day, equivalent to peak plasma levels of 10–30 μM. Many more potentially antiinflammatory mechanisms of aspirin have been described, mostly salicy-late-related, at low to medium millimolar concentrations and, therefore, are of minor clinical interest. Altogether, there is a wealth of data supporting antiiflammatory effects of aspirin in ACS, but studies generating direct evidence for antiinflammatory effects in ACS remain to be done.
Collapse
|
11
|
Rezagholizadeh L, Pourfarjam Y, Nowrouzi A, Nakhjavani M, Meysamie A, Ziamajidi N, Nowrouzi PS. Effect of Cichorium intybus L. on the expression of hepatic NF-κB and IKKβ and serum TNF-α in STZ- and STZ+ niacinamide-induced diabetes in rats. Diabetol Metab Syndr 2016; 8:11. [PMID: 26877773 PMCID: PMC4752748 DOI: 10.1186/s13098-016-0128-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/01/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Inflammation is an early event in the development of diabetes type 2 (T2D). Cichorium intybus L. (chicory) possesses anti-inflammatory action. We compared the anti-inflammatory aspect of aqueous chicory seed extract (CSE) in early and late stage T2D in rats. METHODS Wistar albino rats were divided into nine final groups (n = 6). Three main groups consisted of non-diabetic (Control), early stage diabetes (ET2D; niacinamide/streptozotocin, i.e., NIA/STZ), and late stage diabetes (LT2D; STZ). Within each main group, a subgroup was treated with CSE (125 mg/kg; i.p.); within each diabetic group (STZ and NIA/STZ) a subgroup received metformin (100 mg/kg; i.p.); another subgroup in STZ group received aspirin (120 mg/kg; oral). After 21 days, fasting blood glucose (FBS), insulin, and TNF-α level were measured in serum; IKKβ and NF-κB (p65) mRNA and protein expression were evaluated by real time PCR and Western blotting; p65 DNA binding activity was determined by ELISA, in liver tissue. RESULTS The mRNA and protein expression levels of IKKβ, and P65 genes increased in both stages of T2D (p < 0.01); CSE decreased their expression (p < 0.001, mRNAs; p < 0.05, proteins). The increased DNA-binding capacity of NF-κB (p < 0.0001) in diabetes was lowered by CSE (p < 0.001). The effect of CSE was limited to ET2D requiring insulin. CONCLUSIONS The anti-inflammatory action of CSE is due to a direct modulation of cytokine expression. The dependency of chicory action on the presence of insulin indicates its usefulness in the early stages of diabetes and for the purpose of preventing and delaying diabetes onset.
Collapse
Affiliation(s)
- Lotfollah Rezagholizadeh
- />Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Enghelab Avenue, Poursina Street, Tehran, Iran
| | - Yasin Pourfarjam
- />Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Enghelab Avenue, Poursina Street, Tehran, Iran
| | - Azin Nowrouzi
- />Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Enghelab Avenue, Poursina Street, Tehran, Iran
| | - Manuchehr Nakhjavani
- />Endocrinology and Metabolism Research Center, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Alipasha Meysamie
- />Department of Community and Preventive Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Ziamajidi
- />Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Peyman S. Nowrouzi
- />Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Enghelab Avenue, Poursina Street, Tehran, Iran
| |
Collapse
|
12
|
da Silva BP, Matyelka JCDS, Moreira MEDC, Toledo RCL, Della Lucia CM, Pinheiro-Sant'Ana HM, Martino HSD. A high fat diet does not affect the iron bioavailability in Wistar rats fed with chia and increases gene expression of iron metabolism proteins. Food Funct 2016; 7:4861-4868. [DOI: 10.1039/c6fo00759g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study evaluated the effect of chia on the iron bioavailability and gene expression of proteins involved in iron metabolism in animals fed with a high fat diet and a standard diet.
Collapse
|
13
|
Harmer JA, Keech AC, Veillard AS, Skilton MR, Marwick TH, Watts GF, Meredith IT, Celermajer DS. Fenofibrate effects on arterial endothelial function in adults with type 2 diabetes mellitus: A FIELD substudy. Atherosclerosis 2015; 242:295-302. [PMID: 26233916 DOI: 10.1016/j.atherosclerosis.2015.07.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/20/2015] [Accepted: 07/20/2015] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Dislipidaemia in type 2 diabetes mellitus contributes to arterial endothelial dysfunction and an increased risk of cardiovascular disease. Fenofibrate, a lipid-regulating peroxisome proliferator-activated receptor-α (PPARα) agonist, has been shown to reduce vascular complications in adults with type 2 diabetes. However, the mechanisms for such benefit are not well understood. We examined the effects of fenofibrate on brachial artery endothelial function in adults with type 2 diabetes. METHODS In a prospectively designed substudy of the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study, we assessed arterial flow-mediated dilatation (FMD; endothelium-dependent dilatation) and dilator responses to glyceryl trinitrate (GTN, an endothelium-independent dilator) in a subset of 193 representative adults. Traditional risk factors were assessed at baseline, 4 months and 2 years after randomised treatment allocation to fenofibrate (200 mg daily) or placebo. The prespecified primary study endpoint was the difference in FMD between treatment groups at 4 months. RESULTS Fenofibrate was associated with a significant improvement at 4 months compared with placebo (+1.05% (absolute); P=0.03); GTN-dilator responses were unchanged (P=0.77). After 2 years, FMD was similar in both groups (P=0.46). In multivariable models, none of the fenofibrate-related changes in lipoproteins and lipids were significantly associated with improved FMD on fenofibrate at 4 months. CONCLUSION Treatment with fenofibrate significantly improved arterial endothelial function after 4 months. However, the effect was no longer apparent after 2 years. The long-term beneficial vascular effects of fenofibrate in type 2 diabetes are likely to be mediated via mechanisms other than improvement in endothelium-dependent dilatation of conduit arteries, and may differ for the microcirculation.
Collapse
Affiliation(s)
- Jason A Harmer
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| | - Anthony C Keech
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | | | - Michael R Skilton
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | | | - Gerald F Watts
- Department of Medicine, University of Western Australia, Perth, WA, Australia
| | - Ian T Meredith
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - David S Celermajer
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
14
|
Abstract
Atherosclerosis is a chronic inflammatory disease with deposition of excessive cholesterol in the arterial intima. Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor that can activate or inhibit the expression of many target genes by forming a heterodimer complex with the retinoid X receptor. Activation of PPARα plays an important role in the metabolism of multiple lipids, including high-density lipoprotein, cholesterol, low-density lipoprotein, triglyceride, phospholipid, bile acids, and fatty acids. Increased PPARα activity also mitigates atherosclerosis by blocking macrophage foam cell formation, vascular inflammation, vascular smooth muscle cell proliferation and migration, plaque instability, and thrombogenicity. Clinical use of synthetic PPARα agonist fibrate improved dyslipidemia and attenuated atherosclerosis-related disease risk. This review summarizes PPARα in lipid and lipoprotein metabolism and atherosclerosis, and also highlights its potential therapeutic benefits.
Collapse
|
15
|
Aspirin Inhibits Degenerative Changes of Aneurysmal Wall in a Rat Model. Neurochem Res 2015; 40:1537-45. [PMID: 26093650 DOI: 10.1007/s11064-015-1603-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/18/2015] [Accepted: 05/04/2015] [Indexed: 12/19/2022]
Abstract
Aneurysmal subarachnoid hemorrhage still has a high mortality and morbidity despite notable advances in surgical approaches to cerebral aneurysm (CA). We examined the role of aspirin in vascular inflammation and degeneration. CA was induced in male Sprague-Dawley rats by ligating left common carotid artery and bilateral posterior renal arteries with or without aspirin treatment. The right anterior cerebral artery/olfactory artery (ACA/OA) bifurcations were stripped and assessed morphologically after Verhoeff's Van Gieson staining. Blood sample was obtained to examine circulating CD34(+) CD133(+) endothelial progenitor cells (EPCs), platelet aggregation and platelet counts. Macrophages infiltration in aneurysmal wall was evaluated by immunohistochemistry. Expression of matrix metalloproteinase-2 and 9 (MMP-2 and 9), nuclear factor kappa B (NF-κB), macrophage chemoattractant protein-1 (MCP-1) and vascular cell adhesion molecule-1 (VCAM-1) was examined by RT-PCR. 2 months after CA induction, surgically treated rats manifested aneurysmal degeneration in ACA/OA bifurcations. Aspirin-treated rats exhibited a significant decrease in degradation of internal elastic lamina (IEL), medial layer thinning, CA size and macrophages infiltration with reduced expression of MMP-2 and 9 compared with rats in the CA group. RT-PCR demonstrated that the upregulation of NF-κB, MCP-1 and VCAM-1 after CA induction was reversed by aspirin treatment. Aspirin treatment following CA induction increased circulating EPCs to near control levels and reduced platelet aggregation without changing platelet counts. The evidence suggested that aspirin significantly reduced degeneration of aneurysm walls by inhibiting macrophages-mediated chronic inflammation and mobilizing EPCs.
Collapse
|
16
|
Puerarin suppresses high glucose-induced MCP-1 expression via modulating histone methylation in cultured endothelial cells. Life Sci 2015; 130:103-7. [DOI: 10.1016/j.lfs.2015.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/10/2015] [Accepted: 02/24/2015] [Indexed: 01/24/2023]
|
17
|
Shimada K, Furukawa H, Wada K, Korai M, Wei Y, Tada Y, Kuwabara A, Shikata F, Kitazato KT, Nagahiro S, Lawton MT, Hashimoto T. Protective Role of Peroxisome Proliferator-Activated Receptor-γ in the Development of Intracranial Aneurysm Rupture. Stroke 2015; 46:1664-72. [PMID: 25931465 DOI: 10.1161/strokeaha.114.007722] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 04/02/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Inflammation is emerging as a key component of the pathophysiology of intracranial aneurysms. Peroxisome proliferator-activated receptor-γ (PPARγ) is a nuclear hormone receptor of which activation modulates various aspects of inflammation. METHODS Using a mouse model of intracranial aneurysm, we examined the potential roles of PPARγ in the development of rupture of intracranial aneurysm. RESULTS A PPARγ agonist, pioglitazone, significantly reduced the incidence of ruptured aneurysms and the rupture rate without affecting the total incidence aneurysm (unruptured aneurysms and ruptured aneurysms). PPARγ antagonist (GW9662) abolished the protective effect of pioglitazone. The protective effect of pioglitazone was absent in mice lacking macrophage PPARγ. Pioglitazone treatment reduced the mRNA levels of inflammatory cytokines (monocyte chemoattractant factor-1, interleukin-1, and interleukin-6) that are primarily produced by macrophages in the cerebral arteries. Pioglitazone treatment reduced the infiltration of M1 macrophage into the cerebral arteries and the macrophage M1/M2 ratio. Depletion of macrophages significantly reduced the rupture rate. CONCLUSIONS Our data showed that the activation of macrophage PPARγ protects against the development of aneurysmal rupture. PPARγ in inflammatory cells may be a potential therapeutic target for the prevention of aneurysmal rupture.
Collapse
Affiliation(s)
- Kenji Shimada
- From the Departments of Anesthesia and Perioperative Care (K.S., H.F., K.W., M.K., Y.W., A.K., F.S., T.H.) and Neurological Surgery (M.T.L.), University of California, San Francisco; and Department of Neurosurgery (K.S., M.K., Y.T., K.T.K., S.N.), School of Medicine, The University of Tokushima, Tokushima City, Japan
| | - Hajime Furukawa
- From the Departments of Anesthesia and Perioperative Care (K.S., H.F., K.W., M.K., Y.W., A.K., F.S., T.H.) and Neurological Surgery (M.T.L.), University of California, San Francisco; and Department of Neurosurgery (K.S., M.K., Y.T., K.T.K., S.N.), School of Medicine, The University of Tokushima, Tokushima City, Japan
| | - Kosuke Wada
- From the Departments of Anesthesia and Perioperative Care (K.S., H.F., K.W., M.K., Y.W., A.K., F.S., T.H.) and Neurological Surgery (M.T.L.), University of California, San Francisco; and Department of Neurosurgery (K.S., M.K., Y.T., K.T.K., S.N.), School of Medicine, The University of Tokushima, Tokushima City, Japan
| | - Masaaki Korai
- From the Departments of Anesthesia and Perioperative Care (K.S., H.F., K.W., M.K., Y.W., A.K., F.S., T.H.) and Neurological Surgery (M.T.L.), University of California, San Francisco; and Department of Neurosurgery (K.S., M.K., Y.T., K.T.K., S.N.), School of Medicine, The University of Tokushima, Tokushima City, Japan
| | - Yuan Wei
- From the Departments of Anesthesia and Perioperative Care (K.S., H.F., K.W., M.K., Y.W., A.K., F.S., T.H.) and Neurological Surgery (M.T.L.), University of California, San Francisco; and Department of Neurosurgery (K.S., M.K., Y.T., K.T.K., S.N.), School of Medicine, The University of Tokushima, Tokushima City, Japan
| | - Yoshiteru Tada
- From the Departments of Anesthesia and Perioperative Care (K.S., H.F., K.W., M.K., Y.W., A.K., F.S., T.H.) and Neurological Surgery (M.T.L.), University of California, San Francisco; and Department of Neurosurgery (K.S., M.K., Y.T., K.T.K., S.N.), School of Medicine, The University of Tokushima, Tokushima City, Japan
| | - Atsushi Kuwabara
- From the Departments of Anesthesia and Perioperative Care (K.S., H.F., K.W., M.K., Y.W., A.K., F.S., T.H.) and Neurological Surgery (M.T.L.), University of California, San Francisco; and Department of Neurosurgery (K.S., M.K., Y.T., K.T.K., S.N.), School of Medicine, The University of Tokushima, Tokushima City, Japan
| | - Fumiaki Shikata
- From the Departments of Anesthesia and Perioperative Care (K.S., H.F., K.W., M.K., Y.W., A.K., F.S., T.H.) and Neurological Surgery (M.T.L.), University of California, San Francisco; and Department of Neurosurgery (K.S., M.K., Y.T., K.T.K., S.N.), School of Medicine, The University of Tokushima, Tokushima City, Japan
| | - Keiko T Kitazato
- From the Departments of Anesthesia and Perioperative Care (K.S., H.F., K.W., M.K., Y.W., A.K., F.S., T.H.) and Neurological Surgery (M.T.L.), University of California, San Francisco; and Department of Neurosurgery (K.S., M.K., Y.T., K.T.K., S.N.), School of Medicine, The University of Tokushima, Tokushima City, Japan
| | - Shinji Nagahiro
- From the Departments of Anesthesia and Perioperative Care (K.S., H.F., K.W., M.K., Y.W., A.K., F.S., T.H.) and Neurological Surgery (M.T.L.), University of California, San Francisco; and Department of Neurosurgery (K.S., M.K., Y.T., K.T.K., S.N.), School of Medicine, The University of Tokushima, Tokushima City, Japan
| | - Michael T Lawton
- From the Departments of Anesthesia and Perioperative Care (K.S., H.F., K.W., M.K., Y.W., A.K., F.S., T.H.) and Neurological Surgery (M.T.L.), University of California, San Francisco; and Department of Neurosurgery (K.S., M.K., Y.T., K.T.K., S.N.), School of Medicine, The University of Tokushima, Tokushima City, Japan
| | - Tomoki Hashimoto
- From the Departments of Anesthesia and Perioperative Care (K.S., H.F., K.W., M.K., Y.W., A.K., F.S., T.H.) and Neurological Surgery (M.T.L.), University of California, San Francisco; and Department of Neurosurgery (K.S., M.K., Y.T., K.T.K., S.N.), School of Medicine, The University of Tokushima, Tokushima City, Japan.
| |
Collapse
|
18
|
Li L, Ryoo JE, Lee KJ, Choi BC, Baek KH. Genetic variation in the Mcp-1 gene promoter associated with the risk of polycystic ovary syndrome. PLoS One 2015; 10:e0123045. [PMID: 25902044 PMCID: PMC4406762 DOI: 10.1371/journal.pone.0123045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/18/2015] [Indexed: 11/19/2022] Open
Abstract
Monocyte chemoattractant protein-1 (MCP-1) is a pivotal chemokine in the inflammatory response, which plays an important role in recruiting monocytes to sites of injury and infection. However, the exact mechanism of Mcp-1 associated with PCOS risk was unknown. In this study, we explored whether the Mcp-1 -2518G>A polymorphism increases the risk of PCOS. We performed a comparative study of -2518G>A polymorphism of the Mcp-1 gene with PCOS. In addition, luciferase reporter assay was performed to evaluate the Mcp-1 transcriptional activity. A strong association was observed between the -2518G>A polymorphism of Mcp-1 gene and PCOS (p-value = 0.016, odd ratio (OR) = 0.693). A p-value under 0.05 is considered statistically significant. The genotype and allelic frequencies were assumed to be in Hardy-Weinberg equilibrium (HWE). The luciferase assays in 2 cell lines showed that the Mcp-1 -2518G>A substitution can increase the expression of Mcp-1. MCP-1 levels in serum for PCOS group were significantly higher than those in serum for controls (p-value = 0.02). Furthermore, the patients carrying a genotype A/A had significantly increased levels of MCP-1 in serum compared with levels of the MCP-1 of the patients with genotypes G/G and G/A (p-value = 0.031). This is the first study on the genetic variation of the Mcp-1 gene and PCOS. This finding suggests that the Mcp-1 -2518G>A polymorphism is associated with PCOS risk by affecting transcriptional activity, leading to an increased expression level of Mcp-1.
Collapse
Affiliation(s)
- Lan Li
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-do, Republic of Korea
| | - Ji Eun Ryoo
- Hankuk Academy of Foreign Studies, Yongin, Republic of Korea
| | - Kyung-Ju Lee
- Department of Gynecology and Obstetrics, CHA University, CHA General Hospital, Seoul, Republic of Korea
| | - Bum-Chae Choi
- Department of Obstetrics and Gynecology, CL Women’s Hospital, Gwangju, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-do, Republic of Korea
- * E-mail:
| |
Collapse
|
19
|
MicroRNA-492 reverses high glucose-induced insulin resistance in HUVEC cells through targeting resistin. Mol Cell Biochem 2014; 391:117-25. [PMID: 24526524 PMCID: PMC4006129 DOI: 10.1007/s11010-014-1993-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/29/2014] [Indexed: 12/31/2022]
Abstract
The development of atherosclerosis (AS) is a multifactorial process, in which elevated plasma resistin (a key factor leading to insulin resistance) levels play an important role. Emerging evidence indicate that microRNAs (miRNAs) are involved in AS; However, the regulation and function of miRNAs in response to AS remain poorly understood. Our study analyzed the effects of miR-492 on insulin resistance, endothelial activation, and resistin expression in apoE knock-out mice and human umbilical vein endothelial cells after high-glucose treatment and miR-492 mimics transfection. We also investigated the underlying molecular mechanisms. Our results showed that high glucose stress induced a significant decrease in miR-492 expression, with a remarkable upregulation of resistin expression. We then identified resistin as a novel direct target of miR-492 using 3′-UTR luciferase reporter assay. Histopathologic examination demonstrated that upregulation of miR-492 attenuated endothelial cells migration and lipid accumulation induced by high glucose stress. Further investigation demonstrated that the upregulation of p-STAT3, SOCS, and P-selectin activation induced by high glucose stress was attenuated by upregulation of miR-492. Together, our findings indicate that miR-492 contributes to insulin resistance and endothelial dysfunction induced by high glucose, via directly downregulating resistin expression, and involving STAT3 phosphorylation, SOCS, and P-selectin activation.
Collapse
|
20
|
Flow Cytometry Analysis of Pparα Receptors in Metabolic Syndrome / Studiul Receptorilor Pparα prin Metoda Citometriei în Flux în Sindromul Metabolic. REV ROMANA MED LAB 2014. [DOI: 10.2478/rrlm-2014-0036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AbstractIntroduction. Metabolic syndrome (MS) is a cluster of distinct metabolic alterations with an increased cardiovascular risk. Peroxisome Proliferator-Activated Receptor - Alpha (PPARα), member of the nuclear receptor superfamily of transcription factors, is critically involved in the management of lipid metabolism during homeostasis or inflammatory stresses in various cell types and represents one of the therapeutic targets in MS. We analysed the PPARα expression in leukocytes of pacients with MS, in order to address PPARα involvement in these group of diseases. Material and method. Our study included 57 adult patients recruited under informed voluntary consent, investigated in order to establish whether they present MS, according to International Diabetes Federation (IDF) European guidelines and grouped in 2 lots: the MS Lot (26 patients) and control group, non-MS Lot (31 subjects). Common clinical and laboratory parameters targeted in MS evaluation were determined for all the studied cases. The expression levels of 2 molecules, PPARα and CD36 were evaluated in various circulating leukocyte populations of these patients by an optimized flow cytometry method. Statistic analysis clarifying the significance of value differences for various parameters measured was performed under SPSS and simple statistical tests (Pearson, t-Student, Chi -test). Results and discussion. The fluorescence staining for PPARα were significantly dimmer when comparing the cellular expression in eosinophils (p<0.05) of MS versus the Control group of subjects. Conclusions: Our study is the first to show that circulating eosinophils display significantly reduced PPARα protein expression in MS patients. The differences in key molecule expression in circulating leukocytes (like PPAR species, CD36, and other) might be evocatory for the endothelial dysfunction and obesity and might be of use in the therapeutic decision.
Collapse
|
21
|
Berg K, Langaas M, Ericsson M, Pleym H, Basu S, Nordrum IS, Vitale N, Haaverstad R. Acetylsalicylic acid treatment until surgery reduces oxidative stress and inflammation in patients undergoing coronary artery bypass grafting. Eur J Cardiothorac Surg 2012; 43:1154-63. [DOI: 10.1093/ejcts/ezs591] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
22
|
Chang J, Rimando A, Pallas M, Camins A, Porquet D, Reeves J, Shukitt-Hale B, Smith MA, Joseph JA, Casadesus G. Low-dose pterostilbene, but not resveratrol, is a potent neuromodulator in aging and Alzheimer's disease. Neurobiol Aging 2012; 33:2062-71. [PMID: 21982274 DOI: 10.1016/j.neurobiolaging.2011.08.015] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/26/2011] [Accepted: 08/28/2011] [Indexed: 02/05/2023]
Abstract
Recent studies have implicated resveratrol and pterostilbene, a resveratrol derivative, in the protection against age-related diseases including Alzheimer's disease (AD). However, the mechanism for the favorable effects of resveratrol in the brain remains unclear and information about direct cross-comparisons between these analogs is rare. As such, the purpose of this study was to compare the effectiveness of diet-achievable supplementation of resveratrol to that of pterostilbene at improving functional deficits and AD pathology in the SAMP8 mouse, a model of accelerated aging that is increasingly being validated as a model of sporadic and age-related AD. Furthermore we sought to determine the mechanism of action responsible for functional improvements observed by studying cellular stress, inflammation, and pathology markers known to be altered in AD. Two months of pterostilbene diet but not resveratrol significantly improved radial arm water maze function in SAMP8 compared with control-fed animals. Neither resveratrol nor pterostilbene increased sirtuin 1 (SIRT1) expression or downstream markers of sirtuin 1 activation. Importantly, markers of cellular stress, inflammation, and AD pathology were positively modulated by pterostilbene but not resveratrol and were associated with upregulation of peroxisome proliferator-activated receptor (PPAR) alpha expression. Taken together our findings indicate that at equivalent and diet-achievable doses pterostilbene is a more potent modulator of cognition and cellular stress than resveratrol, likely driven by increased peroxisome proliferator-activated receptor alpha expression and increased lipophilicity due to substitution of hydroxy with methoxy group in pterostilbene.
Collapse
Affiliation(s)
- Jaewon Chang
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Panee J. Monocyte Chemoattractant Protein 1 (MCP-1) in obesity and diabetes. Cytokine 2012; 60:1-12. [PMID: 22766373 DOI: 10.1016/j.cyto.2012.06.018] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 05/30/2012] [Accepted: 06/04/2012] [Indexed: 12/23/2022]
Abstract
Monocyte Chemoattractant Protein-1 (MCP-1) is the first discovered and most extensively studied CC chemokine, and the amount of studies on its role in the etiologies of obesity- and diabetes-related diseases have increased exponentially during the past two decades. This review attempted to provide a panoramic perspective of the history, regulatory mechanisms, functions, and therapeutic strategies of this chemokine. The highlights of this review include the roles of MCP-1 in the development of obesity, diabetes, cardiovascular diseases, insulitis, diabetic nephropathy, and diabetic retinopathy. Therapies that specifically or non-specifically inhibit MCP-1 overproduction have been summarized.
Collapse
Affiliation(s)
- Jun Panee
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street BSB 222, Honolulu, HI 96813, USA.
| |
Collapse
|
24
|
Antonelli A, Ferrari SM, Frascerra S, Ruffilli I, Pupilli C, Bernini G, Sellari-Franceschini S, Gelmini S, Ferrannini E, Fallahi P. β (CCL2) and α (CXCL10) chemokine modulations by cytokines and peroxisome proliferator-activated receptor-α agonists in Graves' ophthalmopathy. J Endocrinol 2012; 213:183-91. [PMID: 22378921 DOI: 10.1530/joe-11-0488] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
No data are present in the literature about the effect of cytokines on the prototype β chemokine (C-C motif) ligand 2 (CCL2) or of peroxisome proliferator-activated receptor α (PPARα (PPARA)) activation on CCL2 and CXCL10 chemokines secretion in fibroblasts or preadipocytes in Graves' ophthalmopathy (GO). We have tested the effect of interferon γ (IFNγ (IFNG)) and tumor necrosis factor α (TNFα) on CCL2, and for comparison on the prototype α chemokine (C-X-C motif) ligand 10 (CXCL10), and the possible modulatory role of PPARα activation on secretion of these chemokines in normal and GO fibroblasts or preadipocytes in primary cell cultures. This study shows that IFNγ alone, or in combination with TNFα, stimulates the secretion of CCL2 in primary orbital fibroblasts or preadipocytes from patients with GO at levels similar to those observed in controls. IFNγ and TNFα also stimulated CXCL10 chemokine secretion as expected. The presence of PPARα and PPARγ (PPARG) in primary fibroblasts or preadipocytes of patients with GO has been confirmed. PPARα activators were able to inhibit the secretion of CXCL10 and CCL2, while PPARγ activators were confirmed to be able to inhibit CXCL10 but had no effect on CCL2. PPARα activators were stronger inhibitors of chemokine secretions than PPARγ agonists. In conclusion, CCL2 and CXCL10 are modulated by IFNγ and TNFα in GO. PPARα activators inhibit the secretion of the main prototype α (CXCL10) and β (CCL2) chemokines in GO fibroblasts or preadipocytes, suggesting that PPARα may be involved in the modulation of the immune response in GO.
Collapse
Affiliation(s)
- Alessandro Antonelli
- Department of Internal Medicine, School of Medicine, University of Pisa, Via Roma 67, I-56100 Pisa, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Peroxisome proliferator-activated receptor α agonists modulate Th1 and Th2 chemokine secretion in normal thyrocytes and Graves' disease. Exp Cell Res 2011; 317:1527-33. [DOI: 10.1016/j.yexcr.2011.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 03/29/2011] [Accepted: 04/14/2011] [Indexed: 11/20/2022]
|
26
|
Sethi A, Parmar HS, Kumar A. The Effect of Aspirin on Atherogenic Diet-Induced Diabetes Mellitus. Basic Clin Pharmacol Toxicol 2011; 108:371-7. [DOI: 10.1111/j.1742-7843.2010.00663.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Noels H, Weber C. Fractalkine as an Important Target of Aspirin in the Prevention of Atherogenesis. Cardiovasc Drugs Ther 2009; 24:1-3. [DOI: 10.1007/s10557-009-6213-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
28
|
Similar effects of resistin and high glucose on P-selectin and fractalkine expression and monocyte adhesion in human endothelial cells. Biochem Biophys Res Commun 2009; 391:1443-8. [PMID: 20034466 DOI: 10.1016/j.bbrc.2009.12.089] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 12/16/2009] [Indexed: 11/23/2022]
Abstract
Resistin and high glucose (HG) are concomitantly present at elevated concentration in diabetic's plasma; both are pro-inflammatory agents acting on vascular cells by mechanisms that are not fully understood. We questioned whether resistin and HG affect the expression of major adhesion molecules, P-selectin and fractalkine in human endothelial cells (HEC). The results showed that in HEC (i) resistin increased P-selectin expression; (ii) HG up-regulated Fk expression; (iii) P-selectin and fractalkine were functional increasing monocyte adhesion to activated cells. Co-stimulation with resistin and HG increased P-selectin and fractalkine mRNA and protein and induced monocyte adhesion, generated an increase in NADPH oxidase activity and of the intracellular reactive oxygen species and activated the NF-kB and AP-1 transcription factors at similar values as those of each activator. In conclusion in HEC, resistin and HG induce the up-regulation of P-selectin and fractalkine and the ensuing increased monocyte adhesion by a mechanism involving oxidative stress and NF-kB and AP-1 activation.
Collapse
|
29
|
Irreversibly glycated LDL induce oxidative and inflammatory state in human endothelial cells; added effect of high glucose. Biochem Biophys Res Commun 2009; 390:877-82. [PMID: 19850013 DOI: 10.1016/j.bbrc.2009.10.066] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 10/13/2009] [Indexed: 11/21/2022]
Abstract
In diabetes, hyperglycemia and the associated formation of advanced glycation end-products (AGE) and AGE-modified low density lipoproteins (AGE-LDL) can directly affect the cells of the vascular wall. We hypothesize that AGE-LDL may act directly and induce oxidant and inflammatory alterations in human endothelial cells (HEC), this effect being amplified by high glucose. To test this assumption, the activity of NADPH oxidase (NADPHox) was evaluated and the expression of its subunits (p22(phox), NOX4, and p67(phox)), of the AGE receptor (RAGE), and of the monocyte chemoattractant protein-1 (MCP-1) were assessed by real-time PCR and Western blot in confluent EA.hy926 cells incubated with AGE-LDL for 24 and 48h, in normal and high glucose conditions. Exposure of HEC for 48h to AGE-LDL in 5mM glucose induced an increase of RAGE expression (50%), NADPHox activity (107%), p22(phox) and NOX4 mRNA (50% and 188%, respectively) and MCP-1 expression (80%). AGE-LDL-stimulated p22(phox) expression by activating p38 MAP kinase and NF-kB, and MCP-1 expression by activating NF-kB, as demonstrated by the use of specific inhibitors (SB203580 and Bay11-7085). The addition of 25mM glucose in the culture medium enhanced the effect of AGE-LDL, but also of nLDL, on RAGE, p22(phox), NOX4, p67(phox), and MCP-1 gene expression. In conclusion, AGE-LDL induce an oxidative stress and a pro-inflammatory state in human endothelial cells. Both AGE-LDL and nLDL in the presence of high glucose amplify their effect, revealing a link between hyperlipidemia, diabetes, and endothelial cell dysfunction.
Collapse
|
30
|
The peroxisome proliferator-activated receptor-alpha (PPAR-alpha) agonist, AVE8134, attenuates the progression of heart failure and increases survival in rats. Acta Pharmacol Sin 2009; 30:935-46. [PMID: 19503102 DOI: 10.1038/aps.2009.58] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIM To investigate the efficacy of the peroxisome proliferator-activated receptor-alpha (PPARalpha) agonist, AVE8134, in cellular and experimental models of cardiac dysfunction and heart failure. METHODS In Sprague Dawley rats with permanent ligation of the left coronary artery (post-MI), AVE8134 was compared to the PPARgamma agonist rosiglitazone and in a second study to the ACE inhibitor ramipril. In DOCA-salt sensitive rats, efficacy of AVE8134 on cardiac hypertrophy and fibrosis was investigated. Finally, AVE8134 was administered to old spontaneously hypertensive rats (SHR) at a non-blood pressure lowering dose with survival as endpoint. In cellular models, we studied AVE8134 on hypertrophy in rat cardiomyocytes, nitric oxide signaling in human endothelial cells (HUVEC) and LDL-uptake in human MonoMac-6 cells. RESULTS In post-MI rats, AVE8134 dose-dependently improved cardiac output, myocardial contractility and relaxation and reduced lung and left ventricular weight and fibrosis. In contrast, rosiglitazone exacerbated cardiac dysfunction. Treatment at AVE8134 decreased plasma proBNP and arginine and increased plasma citrulline and urinary NOx/creatinine ratio. In DOCA rats, AVE8134 prevented development of high blood pressure, myocardial hypertrophy and cardiac fibrosis, and ameliorated endothelial dysfunction. Compound treatment increased cardiac protein expression and phosphorylation of eNOS. In old SHR, treatment with a low dose of AVE8134 improved cardiac and vascular function and increased life expectancy without lowering blood pressure. AVE8134 reduced phenylephrine-induced hypertrophy in adult rat cardiomyocytes. In HUVEC, Ser-1177-eNOS phosphorylation but not eNOS expression was increased. In monocytes, AVE8134 increased the expression of CD36 and the macrophage scavenger receptor 1, resulting in enhanced uptake of oxidized LDL. CONCLUSION The PPARalpha agonist AVE8134 prevents post-MI myocardial hypertrophy, fibrosis and cardiac dysfunction. AVE8134 has beneficial effects against hypertension-induced organ damages, resulting in decreased mortality. The compound exerts its protective properties by a direct effect on cardiomyocyte hypertrophy, but also indirectly via monocyte signaling and increased endothelial NO production.Acta Pharmacologica Sinica (2009) 30: 935-946; doi: 10.1038/aps.2009.58; published online 8 June 2009.
Collapse
|
31
|
Robinson E, Grieve DJ. Significance of peroxisome proliferator-activated receptors in the cardiovascular system in health and disease. Pharmacol Ther 2009; 122:246-63. [PMID: 19318113 DOI: 10.1016/j.pharmthera.2009.03.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 03/03/2009] [Indexed: 01/12/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear transcription factors that belong to the nuclear receptor superfamily. Three isoforms of PPAR have been identified, alpha, delta and gamma, which play distinct roles in the regulation of key metabolic processes, such as glucose and lipid redistribution. PPARalpha is expressed predominantly in the liver, kidney and heart, and is primarily involved in fatty acid oxidation. PPARgamma is mainly associated with adipose tissue, where it controls adipocyte differentiation and insulin sensitivity. PPARdelta is abundantly and ubiquitously expressed, but as yet its function has not been clearly defined. Activators of PPARalpha (fibrates) and gamma (thiazolidinediones) have been used clinically for a number of years in the treatment of hyperlipidaemia and to improve insulin sensitivity in diabetes. More recently, PPAR activation has been found to confer additional benefits on endothelial function, inflammation and thrombosis, suggesting that PPAR agonists may be good candidates for the treatment of cardiovascular disease. In this regard, it has been demonstrated that PPAR activators are capable of reducing blood pressure and attenuating the development of atherosclerosis and cardiac hypertrophy. This review will provide a detailed discussion of the current understanding of basic PPAR physiology, with particular reference to the cardiovascular system. It will also examine the evidence supporting the involvement of the different PPAR isoforms in cardiovascular disease and discuss the current and potential future clinical applications of PPAR activators.
Collapse
Affiliation(s)
- Emma Robinson
- Centre for Vision and Vascular Science, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 3rd Floor, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL UK
| | | |
Collapse
|
32
|
Sutcliffe AM, Clarke DL, Bradbury DA, Corbett LM, Patel JA, Knox AJ. Transcriptional regulation of monocyte chemotactic protein-1 release by endothelin-1 in human airway smooth muscle cells involves NF-kappaB and AP-1. Br J Pharmacol 2009; 157:436-50. [PMID: 19371341 DOI: 10.1111/j.1476-5381.2009.00143.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Endothelin-1 (ET-1) is implicated in airway inflammation in asthma, but the mechanisms of its effects are poorly understood. We studied the effect of ET-1 on expression of the chemokine, monocyte chemotactic protein-1 (MCP-1), in primary cultures of human airway smooth muscle cells. EXPERIMENTAL APPROACH MCP-1 release was measured by elisa. Pharmacological antagonists/inhibitors, reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting were used to study ET receptors and kinase cascades. Transcriptional regulation was studied by real-time RT-PCR, transient transfection studies and chromatin immunoprecipitation assay. Major findings were confirmed in cells from three donors and mechanistic studies in cells from one donor. KEY RESULTS ET-1 increased MCP-1 release through an ET(A) and ET(B) receptor-dependent mechanism. ET-1 increased MCP-1 mRNA levels but not mRNA stability suggesting it was acting transcriptionally. ET-1 increased the activity of an MCP-1 promoter-reporter construct. Serial deletions of the MCP-1 promoter mapped ET-1 effects to a region between -213 and -128 base pairs upstream of the translation start codon, containing consensus sequences for activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB). ET-1 promoted binding of AP-1 c-Jun subunit and NF-kappaB p65 subunit to the MCP-1 promoter. Blocking the inhibitor of kappaB kinase-2 with 2-[(aminocarbonyl)amino]-5-[4-fluorophenyl]-3-thiophenecarboxamide (TPCA-1) decreased ET-1-stimulated MCP-1 production. p38 and p44/p42 mitogen-activated protein kinases were involved in upstream signalling. CONCLUSIONS AND IMPLICATIONS ET-1 regulated MCP-1 transcriptionally, via NF-kappaB and AP-1. The upstream signalling involved ET(A), ET(B) receptors, p38 and p44/p42 mitogen-activated protein kinases. These may be targets for novel asthma therapies.
Collapse
Affiliation(s)
- Amy M Sutcliffe
- Nottingham Respiratory Biomedical Research Unit, University of Nottingham, City Hospital, Nottingham NG5 1PB, UK
| | | | | | | | | | | |
Collapse
|
33
|
Chakravorty M, Datta De D, Choudhury A, Roychoudhury S. IL1B promoter polymorphism regulates the expression of gastric acid stimulating hormone gastrin. Int J Biochem Cell Biol 2009; 41:1502-10. [PMID: 19166966 DOI: 10.1016/j.biocel.2008.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 12/17/2008] [Accepted: 12/22/2008] [Indexed: 12/16/2022]
Abstract
It is important to dissect the effect of the alternative alleles of a functional SNP on the entire biochemical pathway for the complete understanding of the mechanism of the manifestation of complex diseases. IL1B-511C>T and -31C>T promoter polymorphisms have been suggested as potential susceptibility loci for Helicobacter pylori associated gastroduodenal diseases. We report that altered expression of IL1B due to a specific polymorphism in its promoter modulates the expression of gastrin, an acid regulating hormone. Treatment of gastric carcinoma cells, AGS, with IL1B resulted in a 20-fold reduction in gastrin expression. Gastrin promoter assay showed that IL1B inhibits gastrin expression at the transcriptional level and part of this inhibitory process is mediated via activation of NFkappaB and involvement of HDACs. An almost 3-fold increase in IL1B expression was observed when AGS cells were transfected with -31TIL1B expression plasmid in comparison to -31CIL1B. The -31TIL1B induced a 2-fold greater repression of the gastrin luciferase activity compared to -31CIL1B. This signaling of the -31TIL1B variant allele driven IL1B revealed an almost 1.5-fold greater expression of NFkappaB. Thus, this study showed that a single base substitution at the -31 position of the IL1B promoter brought about differential expression of IL1B which differentially altered both NFkappaB activation and gastrin expression.
Collapse
Affiliation(s)
- Meenakshi Chakravorty
- Molecular and Human Genetics Division, Indian Institute of Chemical Biology, Raja S.C. Mullick Road, Kolkata, India
| | | | | | | |
Collapse
|
34
|
Shaw SM, Fildes JE, Yonan N, Williams SG. Pleiotropic Effects and Cholesterol-Lowering Therapy. Cardiology 2009; 112:4-12. [DOI: 10.1159/000137692] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 01/31/2008] [Indexed: 11/19/2022]
|
35
|
Choe JY, Lee MY, Rheem I, Rhee MY, Park SH, Kim SK. No differences of carotid intima–media thickness between young patients with ankylosing spondylitis and healthy controls. Joint Bone Spine 2008; 75:548-53. [DOI: 10.1016/j.jbspin.2007.11.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2007] [Accepted: 11/21/2007] [Indexed: 12/17/2022]
|
36
|
Huang W, Rha GB, Han MJ, Eum SY, András IE, Zhong Y, Hennig B, Toborek M. PPARalpha and PPARgamma effectively protect against HIV-induced inflammatory responses in brain endothelial cells. J Neurochem 2008; 107:497-509. [PMID: 18710415 DOI: 10.1111/j.1471-4159.2008.05626.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors which down-regulate inflammatory signaling pathways. Therefore, we hypothesized that alterations of PPAR functions can contribute to human immunodeficiency virus-1 (HIV-1)-induced dysfunction of brain endothelial cells. Indeed, treatment with HIV-1 transactivator of transcription (Tat) protein decreased PPAR transactivation in brain endothelial cells. We next stably over-expressed PPARalpha and PPARgamma in a newly developed cell line of human brain endothelial cells (hCMEC/D3 cells). Tat-induced up-regulation of inflammatory mediators, such as interleukin (IL)-1beta, tumor necrosis factor-alpha, CCL2, and E-selectin were markedly attenuated in hCMEC/D3 over-expressing PPARalpha or PPARgamma. These results were confirmed in CCL2 and E-selectin promoter activity studies. Similar protective effects were observed in hCMEC/D3 after activation of PPARgamma by exogenous PPAR agonists (dPGJ(2) and rosiglitazone). PPAR over-expression also prevented Tat-induced binding activity and transactivation of nuclear factor-kappaB. Importantly, increased PPAR activity attenuated induction of IL-1beta, tumor necrosis factor-alpha, CCL2, and E-selectin in hCMEC/D3 cells co-cultured with HIV-1-infected Jurkat cells. The protective effects of PPAR over-expression were reversed by the antagonists of PPARalpha (MK886) or PPARgamma (GW9662). The present data suggest that targeting PPAR signaling may provide a novel therapeutic approach to attenuate HIV-1-induced local inflammatory responses in brain endothelial cells.
Collapse
Affiliation(s)
- Wen Huang
- Molecular Neuroscience and Vascular Biology Laboratory, Department of Neurosurgery, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hayashi K. [Kidney disease: potential of anti-inflammatory approaches for drug therapy]. Nihon Yakurigaku Zasshi 2008; 132:89-95. [PMID: 18689957 DOI: 10.1254/fpj.132.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
38
|
Chai D, Wang B, Shen L, Pu J, Zhang XK, He B. RXR agonists inhibit high-glucose-induced oxidative stress by repressing PKC activity in human endothelial cells. Free Radic Biol Med 2008; 44:1334-47. [PMID: 18206668 DOI: 10.1016/j.freeradbiomed.2007.12.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 11/16/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
Abstract
Activation of retinoid X receptor (RXR) is known to exert antiatherogenic effects. However, the underlying mechanism remains unclear. In this study, we examined the effects of the RXR agonists 9-cis-retinoic acid and SR11237 on high-glucose-induced oxidative stress in human endothelial cells. Our results demonstrated that high-glucose-induced oxidative stress in human umbilical vein endothelial cells (HUVECs) was mainly mediated through its activation of the Nox4, gp91phox, and p22phox components of nicotinamide adenine dinucleotide phosphate oxidase. Treatment of endothelial cells with RXR agonists resulted in significant inhibition of high-glucose-induced oxidative stress and expression of Nox4, gp91phox, and p22phox. The effect of RXR agonists was due to their inhibition of Rac-1 activation. Furthermore, RXR agonists rapidly inhibited high-glucose-induced activation of protein kinase C (PKC), an upstream activator of Rac-1. To study whether the rapid inhibitory effects of RXR agonists were mediated by RXR, we examined the effect of RXR downregulation by RXR siRNA. Our results showed that expression of RXR siRNA largely abrogated the effects of RXR agonists, suggesting the requirement of RXR expression. Interestingly, RXRalpha, which was diffusely distributed in HUVECs, accumulated mainly in the nucleus upon high glucose exposure. Treatment of cells with RXR agonists prevented the effect of high glucose. Thus, RXR ligands rapidly inhibit high-glucose-induced oxidative stress by antagonizing high-glucose-induced PKC activation, and cytoplasmic RXRalpha is implicated in this regulation.
Collapse
Affiliation(s)
- Dajun Chai
- Cardiovascular Department, Renji Hospital, Medical School of Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
39
|
Fujita K, Maeda N, Sonoda M, Ohashi K, Hibuse T, Nishizawa H, Nishida M, Hiuge A, Kurata A, Kihara S, Shimomura I, Funahashi T. Adiponectin protects against angiotensin II-induced cardiac fibrosis through activation of PPAR-alpha. Arterioscler Thromb Vasc Biol 2008; 28:863-70. [PMID: 18309113 DOI: 10.1161/atvbaha.107.156687] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Adiponectin is recognized as an antidiabetic, antiatherosclerotic, and anti-inflammatory protein derived from adipocytes. However, the role of adiponectin in cardiac fibrosis remains uncertain. We herein explore the effects of adiponectin on cardiac fibrosis induced by angiotensin II (Ang II). METHODS AND RESULTS Wild-type (WT), adiponectin knockout (Adipo-KO), and PPAR-alpha knockout (PPAR-alpha-KO) mice were infused with Ang II at 1.2 mg/kg/d. Severe cardiac fibrosis and left ventricular dysfunction were observed in Ang II-infused Adipo-KO mice compared to WT mice. Adenovirus-mediated adiponectin treatment improved the above phenotypes and the dysregulation of reactive oxygen species (ROS)-related mRNAs in Adipo-KO mice, whereas such amelioration was not observed in PPAR-alpha-KO mice despite adiponectin accumulation in heart tissue. In cultured cardiac fibroblasts, adiponectin improved the reduction of AMP-activated protein kinase (AMPK) activity and elevation of extracellular signal-regulated kinase 1/2 (ERK1/2) activity induced by Ang II. Adiponectin significantly enhanced PPAR-alpha activity, whereas the adiponectin-dependent PPAR-alpha activation was diminished by Compound C, an inhibitor of AMPK. CONCLUSIONS The present study suggests that adiponectin protects against Ang II-induced cardiac fibrosis possibly through AMPK-dependent PPAR-alpha activation.
Collapse
Affiliation(s)
- Koichi Fujita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Manea A, Manea SA, Gafencu AV, Raicu M. Regulation of NADPH oxidase subunit p22(phox) by NF-kB in human aortic smooth muscle cells. Arch Physiol Biochem 2007; 113:163-72. [PMID: 18158642 DOI: 10.1080/13813450701531235] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Accumulating evidence demonstrates the involvement of oxidative stress in the pathophysiology of cardiovascular diseases. The molecular mechanisms accountable for the increased production of reactive oxygen species remain uncertain. Among others, NADPH oxidase is one of the most important sources of superoxide in vascular cells. Here we investigate the role of NF-kB in the regulation of p22(phox) subunit and NADPH oxidase activity, in human aortic smooth muscle cells. Overexpression of p65/RelA or IKKbeta up-regulated p22(phox) gene promoter activity. Transcription factor pull-down assays demonstrated the physical interaction of p65/RelA protein with predicted NF-kB binding sites. Real time PCR and Western blotting analysis showed that p22(phox) mRNA and protein expression are significantly down-regulated by NF-kB decoy oligodeoxynucleotides and N-alpha-tosyl-l-phenylalanine chloromethyl ketone (TPCK). Lucigenin-enhanced chemiluminescence assay revealed that NF-kB inhibitors reduce the NADPH-dependent superoxide production. Regulation of NADPH oxidase by NF-kB may represent a possible mechanism whereby pro-inflammatory factors induce oxidative stress in atherosclerosis, hypertension, diabetes, stroke or heart failure.
Collapse
Affiliation(s)
- A Manea
- Nicolae Simionescu Institute of Cellular Biology and Pathology, 8 B.P. Hadeu Street, Bucharest, Romania
| | | | | | | |
Collapse
|
41
|
Archer DC, Frkanec JT, Cromwell J, Clopton P, Cunard R. WY14,643, a PPARalpha ligand, attenuates expression of anti-glomerular basement membrane disease. Clin Exp Immunol 2007; 150:386-96. [PMID: 17888025 PMCID: PMC2219353 DOI: 10.1111/j.1365-2249.2007.03505.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Peroxisome proliferator-activated receptor alpha (PPARalpha) ligands are medications used to treat hyperlipidaemia and atherosclerosis. Increasing evidence suggests that these agents are immunosuppressive. In the following studies we demonstrate that WY14,643, a PPARalpha ligand, attenuates expression of anti-glomerular basement membrane disease (AGBMD). C57BL/6 mice were fed 0.05% WY14,643 or control food and immunized with the non-collagenous domain of the alpha3 chain of Type IV collagen [alpha3(IV) NC1] in complete Freund's adjuvant (CFA). WY14,643 reduced proteinuria and greatly improved glomerular and tubulo-interstitial lesions. However, the PPARalpha ligand did not alter the extent of IgG-binding to the GBM. Immunohistochemical studies revealed that the prominent tubulo-interstitial infiltrates in the control-fed mice consisted predominately of F4/80(+) macrophages and WY14,643-feeding decreased significantly the number of renal macrophages. The synthetic PPARalpha ligand also reduced significantly expression of the chemokine, monocyte chemoattractant protein (MCP)-1/CCL2. Sera from mice immunized with AGBMD were also evaluated for antigen-specific IgGs. There was a significant increase in the IgG1 : IgG2c ratio and a decline in the intrarenal and splenocyte interferon (IFN)-gamma mRNA expression in the WY14,643-fed mice, suggesting that the PPARalpha ligand could skew the immune response to a less inflammatory T helper 2-type of response. These studies suggest that PPARalpha ligands may be a novel treatment for inflammatory renal disease.
Collapse
Affiliation(s)
- D C Archer
- Research Service and Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, Veterans Medical Research Foundation, San Diego, CA, USA
| | | | | | | | | |
Collapse
|
42
|
Tojo A, Asaba K, Onozato ML. Suppressing renal NADPH oxidase to treat diabetic nephropathy. Expert Opin Ther Targets 2007; 11:1011-8. [PMID: 17665974 DOI: 10.1517/14728222.11.8.1011] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Renal nicotinamide adenine dinucleotide phosphate reduced form (NADPH) oxidase is an important source of oxidative stress and its expression is enhanced in the glomerulus and distal tubules of diabetic nephropathy. High glucose-induced protein kinase C signalling or renal angiotensin II signalling increases the membrane translocation of cytosolic component p47phox. NADPH oxidase-derived reactive oxygen species (ROS) in the podocytes damage the glomerular basement membrane and the slit diaphragm causing proteinuria, and mesangial and glomerular endothelial NADPH oxidase increase TGF-beta and cause collagen and fibronectin accumulation. Tubular NADPH oxidase stimulated by angiotensin II or aldosterone contributes to sodium retention and to tubulointerstitial damage. Thus, inhibition of the renal renin-angiotensin II-aldosterone system with angiotensin-converting enzyme inhibitor, angiotensin II type 1 receptor blocker or selective aldosterone inhibitor indirectly suppresses NADPH oxidase reducing renal ROS, proteinuria and glomerulosclerosis. Statins are also effective in blocking the membrane translocation of Rac, especially in diabetes with hypercholesterolemia where ROS is produced by the intrinsic NADPH oxidase and by the activated macrophages. A medical herb, picrorhiza, inhibits the membrane translocation of p47phox, is a specific inhibitor of NADPH oxidase and, more so than superoxide dismutase mimetics, may be a promising strategy for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Akihiro Tojo
- University of Tokyo, Division of Nephrology and Endocrinology, Division of Nephrology and Endocrinology, Japan.
| | | | | |
Collapse
|
43
|
Calder PC, Dimitriadis G, Newsholme P. Glucose metabolism in lymphoid and inflammatory cells and tissues. Curr Opin Clin Nutr Metab Care 2007; 10:531-40. [PMID: 17563475 DOI: 10.1097/mco.0b013e3281e72ad4] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW To examine the role of glucose as a fuel for immune cells and the influence of glucose supply on immune-cell functional responses. RECENT FINDINGS Immune cells express the insulin receptor and a range of glucose-transporter isoforms. Glucose transporters are responsive to both immune stimulation and insulin. The pattern of glucose-transporter upregulation differs among different types of immune cell. In-vitro studies reveal that both hypo- and hyperglycaemia impair immune-cell functions and promote inflammatory responses. Clamp studies have revealed proinflammatory effects of hyperglycaemia and antiinflammatory and immune-promoting effects of insulin. SUMMARY Glucose is readily utilized by cells of the immune system and is used to generate energy and biosynthetic precursors. Activation of immune cells is associated with increased glucose utilization and this is facilitated, in part, by increased expression of glucose transporters. Immune cells express the insulin receptor and respond to insulin. Both hypo- and hyperglycaemia impair immune-cell functions and promote inflammatory responses. Insulin therapy in hyperglycaemic subjects may be of benefit through effects of both insulin itself and lowered glucose concentration. Excessive lowering of blood glucose concentration may also be harmful to the immune response.
Collapse
Affiliation(s)
- Philip C Calder
- Institute of Human Nutrition, School of Medicine, University of Southampton, Southampton, UK.
| | | | | |
Collapse
|
44
|
Coll B, Alonso-Villaverde C, Joven J. Monocyte chemoattractant protein-1 and atherosclerosis: is there room for an additional biomarker? Clin Chim Acta 2007; 383:21-9. [PMID: 17521622 DOI: 10.1016/j.cca.2007.04.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 03/21/2007] [Accepted: 04/07/2007] [Indexed: 12/28/2022]
Abstract
Atherosclerosis is an inflammatory disease in which several chemokines are implicated. The roles of these molecules extend from the recruitment of circulating inflammatory cells to the activation of inflammatory and pro-thrombotic cascades, which ultimately leads to an atherosclerosis-related event. One of the most studied chemokines is monocyte chemoattractant protein-1 (CCL2), which has been strongly linked to atherosclerosis in both animal and human studies. The higher the expression of either the CCL2 gene or its receptor CCR-2, the higher the likelihood of developing atherosclerosis in genetically-modified animals. Conversely, the deletion of either CCL2 or its receptor is followed by a significant reduction in the development of atherosclerotic plaques. Studies in humans yield controversial results. Most of these studies linked the plasma CCL2 concentration to the occurrence of atherosclerosis or related events; however, this relationship does not seem to be independent of the classical, known risk factors. Currently, there are no suitable analytical tools to reach strong conclusions with respect to the value of plasma CCL2 concentration as a biomarker of atherosclerosis, but experimental evidence suggests that the CCL2/CCR2 pathway should be further explored as a diagnostic, prognostic and therapeutic target.
Collapse
Affiliation(s)
- Blai Coll
- Centre de Recerca Biomedica, Hospital Universitari Sant Joan, 43201, Reus, Spain
| | | | | |
Collapse
|
45
|
Guri AJ, Hontecillas R, Bassaganya-Riera J. Peroxisome proliferator-activated receptors: Bridging metabolic syndrome with molecular nutrition. Clin Nutr 2006; 25:871-85. [PMID: 17052808 DOI: 10.1016/j.clnu.2006.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 08/25/2006] [Accepted: 08/30/2006] [Indexed: 12/25/2022]
Abstract
Over recent years, obesity rates and the onset of obesity-induced chronic diseases have risen dramatically. The more we learn about the physiological and morphological changes that occur during obesity, the more it is becoming clear that obesity-related disorders can be traced back to adipocyte hypertrophy and inflammation at white adipose tissue (WAT). To combat this problem, the body has developed a regulatory system specifically designed at mediating the systemic response to obesity, utilizing free fatty acids (FFAs) and their metabolites as nutrient messengers to signal adaptations from peripheral tissues. These messages are predominantly interceded through the peroxisome proliferator-activated receptors (PPARs), a family of ligand-induced transcription factors that serve as a net of lipid sensors throughout the body. Understanding how and why nutrients, nutrient derivatives and metabolites exert their physiological effects are the key goals in the study of molecular nutrition. By learning about the mechanisms and tissue-specific effects of endogenous PPAR ligands and expanding our knowledge of the body's integrated homeostatic system, we will significantly increase our odds of designing safe and effective preventive and therapeutic interventions that keep us one step ahead of obesity-related diseases.
Collapse
Affiliation(s)
- Amir J Guri
- Laboratory of Nutritional Immunology and Molecular Nutrition, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
46
|
Simionescu M. Implications of early structural-functional changes in the endothelium for vascular disease. Arterioscler Thromb Vasc Biol 2006; 27:266-74. [PMID: 17138941 DOI: 10.1161/01.atv.0000253884.13901.e4] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
By location, between the blood and tissues and the multiple functions, the endothelial cells (ECs) play a major role in securing body homeostasis. The ECs sense all variations occurring in the plasma and interstitial fluid, and respond (function of intensity), initially by modulation of their constitutive functions, then by dysfunction, expressed by temporarily altered functions and a phenotypic shift, and ultimately by injury/death. In dyslipidemia/hyperglycemia, the initial response of EC is the modulation of 2 constitutive functions: permeability and biosynthesis. Increased transcytosis of plasma beta-lipoproteins leads to their accumulation within the hyperplasic basal lamina, interaction with matrix proteins, and conversion to modified and reassembled lipoproteins (MRL). This generates a multipart inflammatory process and EC dysfunction characterized by expression of new cell adhesion molecules and MCP-1 that trigger T-lymphocytes and monocyte recruitment, diapedesis, and homing within the subendothelium where activated macrophages become foam cells. The latter, together with the subendothelial accrual of MRL, growth factors, cytokines, and chemokines, and accretion of smooth muscle cells of various sources lead to atheroma formation; in advanced disease, the EC overlaying atheroma take up lipids, become EC-derived foam cells, and the cytotoxic ambient ultimately conducts to EC apoptosis. Understanding the mechanisms of EC dysfunction is a prerequisite for EC-targeted therapy to reduce the incidence of cardiovascular diseases.
Collapse
Affiliation(s)
- Maya Simionescu
- Institute of Cellular Biology and Pathology Nicolae Simionescu, 8, B. P. Hasdeu Street, Bucharest, Romania.
| |
Collapse
|
47
|
Dragomir E, Simionescu M. Monocyte chemoattractant protein-1--a major contributor to the inflammatory process associated with diabetes. Arch Physiol Biochem 2006; 112:239-44. [PMID: 17178597 DOI: 10.1080/13813450601094672] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
There is evidence that strongly suggests that inflammation plays an important role in diabetes and cardiovascular diseases. The high glucose-induced inflammatory process is characterised by the cooperation of a complex network of inflammatory molecules such as cytokines, adhesion molecules, growth factors, and chemokines. Among the chemokine family, monocyte chemoattractant protein (MCP-1) is a potent chemotactic factor, which is upregulated at sites of inflammation being in control of leukocytes trafficking. Here, we review the current knowledge on MCP-1 and its regulation by high glucose level in vascular cells involved in diabetes-induced accelerated atherosclerosis. The signalling pathways involved in MCP-1 modulation by high glucose, the proximal signalling events that stimulate downstream effects and the role of this chemokine in the pathophysiology of diabetes and its complications, are discussed.
Collapse
Affiliation(s)
- Elena Dragomir
- Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania.
| | | |
Collapse
|