1
|
Bettiol A, Urban ML, Emmi G, Galora S, Argento FR, Fini E, Borghi S, Bagni G, Mattioli I, Prisco D, Fiorillo C, Becatti M. SIRT1 and thrombosis. Front Mol Biosci 2024; 10:1325002. [PMID: 38304233 PMCID: PMC10833004 DOI: 10.3389/fmolb.2023.1325002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024] Open
Abstract
Thrombosis is a major cause of morbidity and mortality worldwide, with a complex and multifactorial pathogenesis. Recent studies have shown that SIRT1, a member of the sirtuin family of NAD + -dependent deacetylases, plays a crucial role in regulating thrombosis, modulating key pathways including endothelial activation, platelet aggregation, and coagulation. Furthermore, SIRT1 displays anti-inflammatory activity both in vitro, in vivo and in clinical studies, particularly via the reduction of oxidative stress. On these bases, several studies have investigated the therapeutic potential of targeting SIRT1 for the prevention of thrombosis. This review provides a comprehensive and critical overview of the main preclinical and clinical studies and of the current understanding of the role of SIRT1 in thrombosis.
Collapse
Affiliation(s)
- Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Maria Letizia Urban
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Silvia Galora
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Eleonora Fini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Giacomo Bagni
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Irene Mattioli
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| |
Collapse
|
2
|
Xu CQ, Li J, Liang ZQ, Zhong YL, Zhang ZH, Hu XQ, Cao YB, Chen J. Sirtuins in macrophage immune metabolism: A novel target for cardiovascular disorders. Int J Biol Macromol 2024; 256:128270. [PMID: 38000586 DOI: 10.1016/j.ijbiomac.2023.128270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/17/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Sirtuins (SIRT1-SIRT7), as a family of NAD+-dependent protein modifying enzymes, have various catalytic functions, such as deacetylases, dealkalylases, and deribonucleases. The Sirtuins family is directly or indirectly involved in pathophysiological processes such as glucolipid metabolism, oxidative stress, DNA repair and inflammatory response through various pathways and assumes an important role in several cardiovascular diseases such as atherosclerosis, myocardial infarction, hypertension and heart failure. A growing number of studies supports that metabolic and bioenergetic reprogramming directs the sequential process of inflammation. Failure of homeostatic restoration leads to many inflammatory diseases, and that macrophages are the central cells involving the inflammatory response and are the main source of inflammatory cytokines. Regulation of cellular metabolism has emerged as a fundamental process controlling macrophage function, but its exact signaling mechanisms remain to be revealed. Understanding the precise molecular basis of metabolic control of macrophage inflammatory processes may provide new approaches for targeting immune metabolism and inflammation. Here, we provide an update of studies in cardiovascular disease on the function and role of sirtuins in macrophage inflammation and metabolism, as well as drug candidates that may interfere with sirtuins, pointing to future prospects in this field.
Collapse
Affiliation(s)
- Chen-Qin Xu
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Ji Li
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Zhi-Qiang Liang
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yi-Lang Zhong
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Zhi-Hui Zhang
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xue-Qing Hu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America
| | - Yong-Bing Cao
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| | - Jian Chen
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| |
Collapse
|
3
|
Vijakumaran U, Shanmugam J, Heng JW, Azman SS, Yazid MD, Haizum Abdullah NA, Sulaiman N. Effects of Hydroxytyrosol in Endothelial Functioning: A Comprehensive Review. Molecules 2023; 28:molecules28041861. [PMID: 36838850 PMCID: PMC9966213 DOI: 10.3390/molecules28041861] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Pharmacologists have been emphasizing and applying plant and herbal-based treatments in vascular diseases for decades now. Olives, for example, are a traditional symbol of the Mediterranean diet. Hydroxytyrosol is an olive-derived compound known for its antioxidant and cardioprotective effects. Acknowledging the merit of antioxidants in maintaining endothelial function warrants the application of hydroxytyrosol in endothelial dysfunction salvage and recovery. Endothelial dysfunction (ED) is an impairment of endothelial cells that adversely affects vascular homeostasis. Disturbance in endothelial functioning is a known precursor for atherosclerosis and, subsequently, coronary and peripheral artery disease. However, the effects of hydroxytyrosol on endothelial functioning were not extensively studied, limiting its value either as a nutraceutical supplement or in clinical trials. The action of hydroxytyrosol in endothelial functioning at a cellular and molecular level is gathered and summarized in this review. The favorable effects of hydroxytyrosol in the improvement of endothelial functioning from in vitro and in vivo studies were scrutinized. We conclude that hydroxytyrosol is capable to counteract oxidative stress, inflammation, vascular aging, and arterial stiffness; thus, it is beneficial to preserve endothelial function both in vitro and in vivo. Although not specifically for endothelial dysfunction, hydroxytyrosol safety and efficacy had been demonstrated via in vivo and clinical trials for cardiovascular-related studies.
Collapse
|
4
|
Ahmadi A, Bagheri Ekta M, Sahebkar A. Mechanisms of antidiabetic drugs and cholesterol efflux: A clinical perspective. Drug Discov Today 2022; 27:1679-1688. [PMID: 35182734 DOI: 10.1016/j.drudis.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/09/2022] [Accepted: 02/14/2022] [Indexed: 11/26/2022]
Abstract
Reverse cholesterol transport (RCT) is a physiological process that reduces excess cholesterol in the body. Cholesterol efflux (CE), an important step in RCT, is mainly mediated by ATP-binding cassette transporters A1 and G1 and has a significant role in atheroprotection. Moreover, impairments in CE can lead to the development of diabetes and fatty liver disease. In this review, we summarize the possible effects of hypoglycemic agents on CE and how this might influence atherosclerosis and dyslipidemia-related pathologies. Newer antidiabetic agents could have significant potential for targeting CE and preventing or alleviating atherosclerosis, obesity, and liver steatosis, and simultaneously improving insulin secretion. However, more research is warranted to interpret the clinical relevance of these data.
Collapse
Affiliation(s)
- Ali Ahmadi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948567, Iran
| | - Mariam Bagheri Ekta
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, A.P. Avtsyn Research Institute of Human Morphology, 3 Tsyurupy Street, 117418 Moscow, Russian Federation
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, WA, Australia; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Abstract
Atherosclerosis is an inflammatory disease with a high level of cholesterol in the blood. Apremilast is a new anti-inflammatory drug that possesses a potential anti-atherosclerosis effect. RT-qPCR and western blot were undertaken to assay the levels of Sirtuin 1 (SIRT1), oxidized low density lipoprotein receptor 1 (LOX-1), and CD36 molecule (CD36). Reactive oxygen species (ROS) levels were evaluated by 2’, 7’-dichlorodihydrofluorescein diacetate (DCFH-DA) staining, and Oil Red O staining was performed to show lipid accumulation. The result showed that apremilast treatment reduced the expression levels of pro-inflammatory factors and p-p65, as well as lipid accumulation. Meanwhile, triglyceride (TG), total cholesterol (TC) and free cholesterol (FC) levels declined in oxidized low density lipoprotein (ox-LDL)-treated macrophages. Mechanistically, apremilast targets SIRT1 and increases SIRT1 expression. The efficacy of apremilast on inflammatory response and lipid formation required the involvement of SIRT1. Additionally, apremilast treatment reduced scavenger receptors, LOX-1, and CD36 levels. These findings suggest the protective effects of apremilast via SIRT1 in atherogenesis and highlight the need for translational research from bench to bedside.
Collapse
Affiliation(s)
- Dongkui Sui
- Ultrasonography Department, the Affiliated Lianyungang Hospital of Xuzhou Medical University, the First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Hua Yu
- Department of Cardiovascular Medicine, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| |
Collapse
|
6
|
HAND2-AS1 targeting miR-1208/SIRT1 axis alleviates foam cell formation in atherosclerosis. Int J Cardiol 2022; 346:53-61. [PMID: 34780888 DOI: 10.1016/j.ijcard.2021.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/17/2021] [Accepted: 11/07/2021] [Indexed: 01/10/2023]
Abstract
The abnormally expressed long non-coding RNAs (lncRNAs) exert an important part in the occurrence and development of cardiovascular disease, however, their roles in atherosclerosis (AS) remains unknown. This work focused on investigating the role of HAND2 Antisense RNA 1 (HAND2-AS1) and the related mechanism. As a result, SIRT1 and HAND2-AS1 expression significantly decreased in plasma from patients with atherosclerotic plaques and macrophages originating from THP-1 induced by ox-LDL. Lentivirus mediated HAND2-AS1 overexpression markedly inhibited lipid absorption and deposition within foam cells originating from THP-1 macrophages. HAND2-AS1 endogenously sponged miR-128 and suppressed its activity via sequence complementation. Furthermore, HAND2-AS1 enhanced the expression of SIRT1 via binding to miR-128, thereby promoting ABCA1/G1 expression. Altogether, HAND2-AS1 targeting miR-1208/SIRT1 axis alleviates the formation of foam cells within AS. Besides, HAND2-AS1 may be used to be the possible anti-AS therapeutic target.
Collapse
|
7
|
Stelmaszyk A, Mikołajczak P, Dworacka M. Sirtuin 1 as the mechanism of action of agents used in the diabetes mellitus pharmacotherapy. Eur J Pharmacol 2021; 907:174289. [PMID: 34214583 DOI: 10.1016/j.ejphar.2021.174289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 05/23/2021] [Accepted: 06/25/2021] [Indexed: 01/13/2023]
Abstract
SIRT1 (sirtuin 1, a member of histone deacetylase III family) is responsible for deacetylation of lysine in histones and the conservation of DNA in the state of transcriptionally inactive heterochromatin. SIRT1 is also capable of deacetylation of transcription factors, as well as other regulatory proteins. The SIRT1 activity plays a unique role in the prevention of metabolic memory, reducing many pathways leading to chronic diabetic complications or diseases concomitant with diabetes. Factors modifying expression and/or activity of SIRT1 may be especially helpful for patients with diabetes. This article attempts to sum up the current state of knowledge about agents commonly used in the treatment of type 2 diabetes which might have an impact on the SIRT1 expression and activity. It is the review of several studies regarding drug-induced pleiotropic activity and the way in which their interference with cellular pathways gives us better understanding of this activity, as well as the influence of therapy on the course of the disease.
Collapse
Affiliation(s)
- Agnieszka Stelmaszyk
- Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu, Katedra i Zakład Farmakologii, Poznan University of Medical Sciences, Department of Pharmacology, ul. Rokietnicka 5A, 60-806, Poznań, Poland.
| | - Przemysław Mikołajczak
- Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu, Katedra i Zakład Farmakologii, Poznan University of Medical Sciences, Department of Pharmacology, ul. Rokietnicka 5A, 60-806, Poznań, Poland
| | - Marzena Dworacka
- Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu, Katedra i Zakład Farmakologii, Poznan University of Medical Sciences, Department of Pharmacology, ul. Rokietnicka 5A, 60-806, Poznań, Poland
| |
Collapse
|
8
|
Hong W, Wei Z, Qiu Z, Li Z, Fu C, Ye Z, Xu X. Atorvastatin promotes bone formation in aged apoE -/- mice through the Sirt1-Runx2 axis. J Orthop Surg Res 2020; 15:303. [PMID: 32762716 PMCID: PMC7412819 DOI: 10.1186/s13018-020-01841-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Background Statins are the most widely used drugs in elderly patients; the most common clinical application of statins is in aged hyperlipemia patients. There are few studies on the effects and mechanisms of statins on bone in elderly mice with hyperlipemia. The study is to examine the effects of atorvastatin on bone phenotypes and metabolism in aged apolipoprotein E-deficient (apoE–/–) mice, and the possible mechanisms involved in these changes. Methods Twenty-four 60-week-old apoE–/– mice were randomly allocated to two groups. Twelve mice were orally gavaged with atorvastatin (10 mg/kg body weight/day) for 12 weeks; the others served as the control group. Bone mass and skeletal microarchitecture were determined using micro-CT. Bone metabolism was assessed by serum analyses, qRT-PCR, and Western blot. Bone marrow-derived mesenchymal stem cells (BMSCs) from apoE–/– mice were differentiated into osteoblasts and treated with atorvastatin and silent information regulator 1 (Sirt1) inhibitor EX-527. Results The results showed that long-term administration of atorvastatin increases bone mass and improves bone microarchitecture in trabecular bone but not in cortical bone. Furthermore, the serum bone formation marker osteocalcin (OCN) was ameliorated by atorvastatin, whereas the bone resorption marker tartrate-resistant acid phosphatase 5b (Trap5b) did not appear obviously changes after the treatment of atorvastatin. The mRNA expression of Sirt1, runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), and OCN in bone tissue were increased after atorvastatin administration. Western blot showed same trend in Sirt1 and Runx2. The in vitro study showed that when BMSCs from apoE–/– mice were pretreated with EX527, the higher expression of Runx2, ALP, and OCN activated by atorvastatin decreased significantly or showed no difference compared with the control. The protein expression of Runx2 showed same trend. Conclusions Accordingly, the current study validates the hypothesis that atorvastatin can increase bone mass and promote osteogenesis in aged apoE−/− mice by regulating the Sirt1–Runx2 axis.
Collapse
Affiliation(s)
- Wei Hong
- Department of Osteoporosis and Bone Metabolism Disease, Huadong Hospital, Fu Dan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Zhanying Wei
- Department of Osteoporosis and Related Bone Disease, Shanghai 6th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaohui Qiu
- Department of Cardiology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Li
- Laboratory Animal Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chensheng Fu
- Department of Nephrology, Huadong Hospital, Fudan University, Shanghai, China
| | - Zhibin Ye
- Department of Nephrology, Huadong Hospital, Fudan University, Shanghai, China.
| | - Xiaoya Xu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai, China. .,Department of Radiation Biology, Institute of Radiation Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Frambach SJCM, de Haas R, Smeitink JAM, Rongen GA, Russel FGM, Schirris TJJ. Brothers in Arms: ABCA1- and ABCG1-Mediated Cholesterol Efflux as Promising Targets in Cardiovascular Disease Treatment. Pharmacol Rev 2020; 72:152-190. [PMID: 31831519 DOI: 10.1124/pr.119.017897] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular disease worldwide, and hypercholesterolemia is a major risk factor. Preventive treatments mainly focus on the effective reduction of low-density lipoprotein cholesterol, but their therapeutic value is limited by the inability to completely normalize atherosclerotic risk, probably due to the disease complexity and multifactorial pathogenesis. Consequently, high-density lipoprotein cholesterol gained much interest, as it appeared to be cardioprotective due to its major role in reverse cholesterol transport (RCT). RCT facilitates removal of cholesterol from peripheral tissues, including atherosclerotic plaques, and its subsequent hepatic clearance into bile. Therefore, RCT is expected to limit plaque formation and progression. Cellular cholesterol efflux is initiated and propagated by the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. Their expression and function are expected to be rate-limiting for cholesterol efflux, which makes them interesting targets to stimulate RCT and lower atherosclerotic risk. This systematic review discusses the molecular mechanisms relevant for RCT and ABCA1 and ABCG1 function, followed by a critical overview of potential pharmacological strategies with small molecules to enhance cellular cholesterol efflux and RCT. These strategies include regulation of ABCA1 and ABCG1 expression, degradation, and mRNA stability. Various small molecules have been demonstrated to increase RCT, but the underlying mechanisms are often not completely understood and are rather unspecific, potentially causing adverse effects. Better understanding of these mechanisms could enable the development of safer drugs to increase RCT and provide more insight into its relation with atherosclerotic risk. SIGNIFICANCE STATEMENT: Hypercholesterolemia is an important risk factor of atherosclerosis, which is a leading pathological mechanism underlying cardiovascular disease. Cholesterol is removed from atherosclerotic plaques and subsequently cleared by the liver into bile. This transport is mediated by high-density lipoprotein particles, to which cholesterol is transferred via ATP-binding cassette transporters ABCA1 and ABCG1. Small-molecule pharmacological strategies stimulating these transporters may provide promising options for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Sanne J C M Frambach
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ria de Haas
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerard A Rongen
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Wang W, Shang C, Zhang W, Jin Z, Yao F, He Y, Wang B, Li Y, Zhang J, Lin R. Hydroxytyrosol NO regulates oxidative stress and NO production through SIRT1 in diabetic mice and vascular endothelial cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 52:206-215. [PMID: 30599900 DOI: 10.1016/j.phymed.2018.09.208] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Vascular complications are major causes of disability and death in people with diabetes mellitus (DM). Nitric oxide (NO) supplement may help prevent vascular complications and is an attractive treatment option for DM. Hydroxytyrosol (HT) is a major polyphenol in olive oil. It is mainly used as a dietary supplement because of its antioxidant effect. PURPOSE We aimed to determine the effects of hydroxytyrosol nitric oxide (HT-NO) on oxidative stress and NO level as well as related mechanisms. STUDY DESIGN/METHODS The effects of HT-NO on oxidative stress and NO level were examined by using diabetic mouse model and HUVECs. RESULTS Our results showed that HT-NO has antioxidant and NO-releasing activities in vitro and in DM mice. HT-NO not only decreased blood glucose and oxidative stress but also increased NO level and deacetylase Sirtuin 1 (SIRT1) expression in DM mice and high glucose (HG)-stimulated HUVECs. Further studies found that SIRT1 activation augmented the effect of HT-NO on eNOS phosphorylation in HG-stimulated HUVECs. However, the promotive effect of HT-NO on eNOS phosphorylation was abolished by SIRT1 knockdown. Most importantly, HT-NO inhibited reactive oxygen species (ROS) production through SIRT1 in HUVECs. The ROS scavenger enhanced the effect of HT-NO on eNOS phosphorylation. CONCLUSION These results suggest that HT-NO regulates oxidative stress and NO production partly through SIRT1 in DM mice and HG-stimulated HUVECs.
Collapse
Affiliation(s)
- Weirong Wang
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an 710061, China; Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Chenxu Shang
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Wei Zhang
- Department of Pharmacy, Yangquan Coalmine Group General Hospital, Yangquan 045000, China
| | - Zhen Jin
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Feng Yao
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yanhao He
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Bo Wang
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yanan Li
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Medical College, Xi'an 710061, China
| | - Jiye Zhang
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Rong Lin
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| |
Collapse
|
11
|
Li W, Zhi W, Zhao J, Li W, Zang L, Liu F, Niu X. Cinnamaldehyde attenuates atherosclerosis via targeting the IκB/NF-κB signaling pathway in high fat diet-induced ApoE−/− mice. Food Funct 2019; 10:4001-4009. [DOI: 10.1039/c9fo00396g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cinnamaldehyde is a flavor isolated from the bark of Cinnamomum cassia Presl and exerts anti-inflammation effects in various diseases.
Collapse
Affiliation(s)
- Weifeng Li
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
| | - Wenbing Zhi
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
- Shaanxi Academy of Traditional Chinese Medicine
| | - Jinmeng Zhao
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
| | - Wenqi Li
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
| | - Lulu Zang
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
| | - Fang Liu
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
| | - Xiaofeng Niu
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
| |
Collapse
|
12
|
Chen X, Cao J, Sun Y, Dai Y, Zhu J, Zhang X, Zhao X, Wang L, Zhao T, Li Y, Liu Y, Wei G, Zhang T, Yan Z. Ethanol extract of Schisandrae chinensis fructus ameliorates the extent of experimentally induced atherosclerosis in rats by increasing antioxidant capacity and improving endothelial dysfunction. PHARMACEUTICAL BIOLOGY 2018; 56:612-619. [PMID: 31070526 PMCID: PMC6282463 DOI: 10.1080/13880209.2018.1523933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
CONTEXT Schisandrae chinensis fructus, the dried ripe fruit of Schisandra chinensis (Turcz.) Baill. (Magnoliaceae) has been used for thousands of years as a traditional Chinese herb, which can attenuate and prevent the development of cardiovascular events. OBJECTIVE To evaluate the effects of the ethanol extracts from Schisandrae chinensis fructus fruit (EESC) on experimental atherosclerosis (AS) in rats. MATERIALS AND METHODS Treatment with EESC (0.35, 0.7, 1.4 g/kg/d, i.g.) and simvastatin (4 mg/kg/d, i.g.) on AS rats for 3 weeks. Sprague-Dawley rats on normal chow and under water treatment were used as control. The content of schisandrin, schisandrin A and schisandrin B in EESC was detected by HPLC. Aortic pathology changes, serum biochemical indices and nuclear factor E2-related factor 2 (Nrf-2) and heame oxygenase-1 (HO-1) expressions were measured. RESULTS Schisandrin, schisandrin A and schisandrin B contents were 291.8, 81.46 and 279.1 mg/g of dry weight, respectively. EESC significantly reduced the aortic plaque area (76.5, 90.5 and 73.9% reduction), regulated the levels of serum lipid (p < 0.05), enhanced the antioxidant enzyme activities (p < 0.01), reduced the malondialdehyde levels (72.5, 69.3, 67.3%), and up-regulated the Nrf-2 and HO-1 expression (p < 0.05). Furthermore, EESC reduced the levels of oxidized-LDL and endothelin-1 and thromboxane B2 but increased that of 6-keto prostaglandin F1α (p < 0.05). Acute toxicity was calculated on mice to be LD50 > 20 g/kg. CONCLUSIONS EESC positively affects the treatment of AS in vivo and the findings will provide a reliable theoretical basis for developing novel therapeutics.
Collapse
Affiliation(s)
- Xiu Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Jiahong Cao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Yong Sun
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Yaolan Dai
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Jiali Zhu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Xuemei Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Xiaoqin Zhao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Liwen Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Tingting Zhao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Yongbiao Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Youping Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Guihua Wei
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Tiane Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
- CONTACT Zhiyong Yan School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China; Tiane Zhang School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Zhiyong Yan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
- CONTACT Zhiyong Yan School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China; Tiane Zhang School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| |
Collapse
|
13
|
D'Onofrio N, Servillo L, Balestrieri ML. SIRT1 and SIRT6 Signaling Pathways in Cardiovascular Disease Protection. Antioxid Redox Signal 2018; 28:711-732. [PMID: 28661724 PMCID: PMC5824538 DOI: 10.1089/ars.2017.7178] [Citation(s) in RCA: 280] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 05/24/2017] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Oxidative stress represents the common hallmark of pathological conditions associated with cardiovascular disease (CVD), including atherosclerosis, heart failure, hypertension, aging, diabetes, and other vascular system-related diseases. The sirtuin (SIRT) family, comprising seven proteins (SIRT1-SIRT7) sharing a highly conserved nicotinamide adenine dinucleotide (NAD+)-binding catalytic domain, attracted a great attention for the past few years as stress adaptor and epigenetic enzymes involved in the cellular events controlling aging-related disorder, cancer, and CVD. Recent Advances: Among sirtuins, SIRT1 and SIRT6 are the best characterized for their protective roles against inflammation, vascular aging, heart disease, and atherosclerotic plaque development. This latest role has been only recently unveiled for SIRT6. Of interest, in recent years, complex signaling networks controlled by SIRT1 and SIRT6 common to stress resistance, vascular aging, and CVD have emerged. CRITICAL ISSUES We provide a comprehensive overview of recent developments on the molecular signaling pathways controlled by SIRT1 and SIRT6, two post-translational modifiers proven to be valuable tools to dampen inflammation and oxidative stress at the cardiovascular level. FUTURE DIRECTIONS A deeper understanding of the epigenetic mechanisms through which SIRT1 and SIRT6 act in the signalings responsible for onset and development CVD is a prime scientific endeavor of the upcoming years. Multiple "omic" technologies will have widespread implications in understanding such mechanisms, speeding up the achievement of selective and efficient pharmacological modulation of sirtuins for future applications in the prevention and treatment of CVD. Antioxid. Redox Signal. 28, 711-732.
Collapse
Affiliation(s)
- Nunzia D'Onofrio
- Department of Biochemistry, Biophysics and General Pathology, School of Medicine and Surgery, Università degli Studi della Campania , Naples, Italy
| | - Luigi Servillo
- Department of Biochemistry, Biophysics and General Pathology, School of Medicine and Surgery, Università degli Studi della Campania , Naples, Italy
| | - Maria Luisa Balestrieri
- Department of Biochemistry, Biophysics and General Pathology, School of Medicine and Surgery, Università degli Studi della Campania , Naples, Italy
| |
Collapse
|