1
|
Enhancing Dark Fermentative Hydrogen Production from Problematic Substrates via the Co-Fermentation Strategy. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of the present paper is the improvement of dark fermentative hydrogen production from problematic substrates. In detail, the study is aimed at (i) investigating the inhibiting effect of two problematic biomasses (i.e., of olive mill wastewater, containing recalcitrant/toxic compounds and cheese whey, lacking pH buffering capacity) on the dark fermentation process, (ii) as well as verifying the possibility to apply a co-fermentation strategy to enhance the process. To investigate the inhibiting effect of the substrates, two experimental sets were conducted using olive mill wastewater and cheese whey alone, under different food-to-microorganism ratios (i.e., 1, 2.5, and 5). Further experiments were conducted to verify the possibility of improving hydrogen production via the co-fermentation strategy. Such experiments included two tests conducted using different volumetric percentages of olive mill wastewater and cheese whey (90% olive mill wastewater + 10% cheese whey and 80% olive mill wastewater + 20% cheese whey). Results show that using olive mill wastewater alone, the inhibiting effect increased at a higher food-to-microorganism ratio. Moreover, because of the occurrence of a metabolic shift, hydrogen was not produced using 100% cheese whey. Interestingly, compared to the 100% olive mill wastewater condition, the use of 20% cheese whey allowed to double the hydrogen yield, reaching the high cumulative hydrogen production of 2.08 LL−1. Obtained results confirm that the two investigated substrates exert inhibiting effects on microorganisms. Nevertheless, co-fermentation is an effective strategy to improve the dark fermentation process of problematic biomass.
Collapse
|
2
|
Martínez-Mendoza LJ, Lebrero R, Muñoz R, García-Depraect O. Influence of key operational parameters on biohydrogen production from fruit and vegetable waste via lactate-driven dark fermentation. BIORESOURCE TECHNOLOGY 2022; 364:128070. [PMID: 36202282 DOI: 10.1016/j.biortech.2022.128070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
This study aims at investigating the influence of operational parameters on biohydrogen production from fruit-vegetable waste (FVW) via lactate-driven dark fermentation. Mesophilic batch fermentations were conducted at different pH (5.5, 6.0, 6.5, 7.0, and non-controlled), total solids (TS) contents (5, 7, and 9%) and initial cell biomass concentrations (18, 180, and 1800 mg VSS/L). Higher hydrogen yields and rates were attained with more neutral pH values and low TS concentrations, whereas higher biomass densities enabled higher production rates and avoided wide variations in hydrogen production. A marked lactate accumulation (still at neutral pH) in the fermentation broth was closely associated with hydrogen inhibition. In contrast, enhanced hydrogen productions matched with much lower lactate accumulations (even it was negligible in some fermentations) along with the acetate and butyrate co-production but not with carbohydrates removal. At pH 7, 5% TS, and 1800 mg VSS/L, 49.5 NmL-H2/g VSfed and 976.4 NmL-H2/L-h were attained.
Collapse
Affiliation(s)
- Leonardo J Martínez-Mendoza
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Raquel Lebrero
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Octavio García-Depraect
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain.
| |
Collapse
|
3
|
Assessment of Hydrogen and Volatile Fatty Acid Production from Fruit and Vegetable Waste: A Case Study of Mediterranean Markets. ENERGIES 2022. [DOI: 10.3390/en15145032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study investigates the dark fermentation of fruit and vegetable waste under mesophilic conditions (30–34 °C), as a valorization route for H2 and volatile fatty acids production, simulating the open market waste composition over the year in two Mediterranean countries. Specifically, the study focuses on the effect of the (i) seasonal variability, (ii) initial pH, and (iii) substrate/inoculum ratio on the yields and composition of the main end products. Concerning the seasonal variation, the summer and spring mixtures led to +16.8 and +21.7% higher H2 production than the winter/autumn mixture, respectively. Further investigation on the least productive substrate (winter/autumn) led to 193.0 ± 7.4 NmL of H2 g VS−1 at a pH of 5.5 and a substrate/inoculum of 1. With the same substrate, at a pH of 7.5, the highest acetic acid yield of 7.0 mmol/g VS was observed, with acetic acid corresponding to 78.2% of the total acids. Whereas a substrate/inoculum of 3 resulted in the lowest H2 yield, amounting to 111.2 ± 7.6 NmL of H2 g VS−1, due to a decrease of the pH to 4.8, which likely caused an inhibitory effect by undissociated acids. This study demonstrates that dark fermentation can be a valuable strategy to efficiently manage such leftovers, rather than landfilling or improperly treating them.
Collapse
|
4
|
Jayachandran V, Basak N, De Philippis R, Adessi A. Novel strategies towards efficient molecular biohydrogen production by dark fermentative mechanism: present progress and future perspective. Bioprocess Biosyst Eng 2022; 45:1595-1624. [PMID: 35713786 DOI: 10.1007/s00449-022-02738-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/27/2022] [Indexed: 01/05/2023]
Abstract
In the scenario of alarming increase in greenhouse and toxic gas emissions from the burning of conventional fuels, it is high time that the population drifts towards alternative fuel usage to obviate pollution. Hydrogen is an environment-friendly biofuel with high energy content. Several production methods exist to produce hydrogen, but the least energy intensive processes are the fermentative biohydrogen techniques. Dark fermentative biohydrogen production (DFBHP) is a value-added, less energy-consuming process to generate biohydrogen. In this process, biohydrogen can be produced from sugars as well as complex substrates that are generally considered as organic waste. Yet, the process is constrained by many factors such as low hydrogen yield, incomplete conversion of substrates, accumulation of volatile fatty acids which lead to the drop of the system pH resulting in hindered growth and hydrogen production by the bacteria. To circumvent these drawbacks, researchers have come up with several strategies that improve the yield of DFBHP process. These strategies can be classified as preliminary methodologies concerned with the process optimization and the latter that deals with pretreatment of substrate and seed sludge, bioaugmentation, co-culture of bacteria, supplementation of additives, bioreactor design considerations, metabolic engineering, nanotechnology, immobilization of bacteria, etc. This review sums up some of the improvement techniques that profoundly enhance the biohydrogen productivity in a DFBHP process.
Collapse
Affiliation(s)
- Varsha Jayachandran
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, 144 027, Punjab, India
| | - Nitai Basak
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, 144 027, Punjab, India.
| | - Roberto De Philippis
- Department of Agriculture, Food, Environment and Forestry, Florence University, Florence, Italy
| | - Alessandra Adessi
- Department of Agriculture, Food, Environment and Forestry, Florence University, Florence, Italy
| |
Collapse
|
5
|
Ghimire A, Luongo V, Frunzo L, Lens PNL, Pirozzi F, Esposito G. Biohythane production from food waste in a two-stage process: assessing the energy recovery potential. ENVIRONMENTAL TECHNOLOGY 2022; 43:2190-2196. [PMID: 33357020 DOI: 10.1080/09593330.2020.1869319] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
ABSTRACTBiohythane (hydrogen + methane) production in a two stage dark fermentation (DF) and anaerobic digestion (AD) process from food waste (FW) has been studied. This paper investigated the effect of operation temperature, i.e. mesophilic (34 °C) and thermophilic (55 °C) , on biohythane yield and total energy recovery carried out at the initial culture pH 5.5 and pH 7, respectively for DF and AD batch tests. The mesophilic DF tests gave a higher hydrogen yield of 53.5 (±4) mL H2/g VS added compared to thermophilic DF tests, i.e. 37.6 (±1) mL H2/g VS added. However, higher methane yields, i.e. 307.5 (± 10) mL CH4/g VS, were obtained at thermophilic AD tests compared to mesophilic AD, i.e. 276.5 (±4.3) mL CH4/g VS. The total energy recovery from thermophilic DF + AD was higher (11.4 MJ/kg VS) than the mesophilic (10.4 MJ/kg VS) combined process. Interestingly, the analysis of kinetic parameters of mesophilic tests, determined from the Modified Gompertz equation, showed that mesophilic DF had faster H2 production kinetics, which can be attributed to a faster adaptation of the heat-shocked inoculum used in the tests to the incubation temperature. However, thermophilic AD tests exhibited faster kinetics for methane production.
Collapse
Affiliation(s)
- Anish Ghimire
- Department of Environmental Science and Engineering, Kathmandu University, Dhulikhel, Nepal
| | - Vincenzo Luongo
- Department of Mathematics and Applications Renato Caccioppoli, University of Naples Federico II, Naples, Italy
| | - Luigi Frunzo
- Department of Mathematics and Applications Renato Caccioppoli, University of Naples Federico II, Naples, Italy
| | - Piet N L Lens
- IHE Delft Institute for Water Education, Delft, the Netherlands
| | - Francesco Pirozzi
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Naples, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
Co-production of Biohydrogen and Biomethane from Chicken Manure and Food Waste in a Two-Stage Anaerobic Fermentation Process. Appl Biochem Biotechnol 2022; 194:3706-3720. [PMID: 35499692 DOI: 10.1007/s12010-022-03945-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Batch experiments were performed to evaluate the biohydrogen and biomethane production by co-digestion of chicken manure and food waste in a two-stage mesophilic fermentation process. Results showed that no hydrogen was produced in the first stage of sole chicken manure fermentation, while methane yield was 247.3 mL·g-1-VS. By comparison, the co-digestion process with food waste proportions of 50-85% obtained hydrogen yields of 15.5-57.5 mL·g-1-VS, and the methane yields and maximum specific methane production rates were also improved by 7.0-16.7% and 80%, respectively. Moreover, the highest hydrogen and methane yields were achieved during sole food waste fermentation process. The acetate was the main volatile fatty acid (VFA) produced during sole chicken manure fermentation process in the first stage. Statistical analysis revealed that hydrogen production from co-digestion process and sole food waste fermentation process followed the n-butyrate-type pathway. Meanwhile, it should be noticed that the co-fermentation of chicken manure and food waste had antagonistic effects on the hydrogen fermentation, implying that there might be some inhibition factors existing in chicken manure or produced during the co-fermentation process. At the beginning of methane fermentation, the VFA profiles were similar to those at the end of hydrogen fermentation, and the main VFA compositions changed to acetate and propionate in the latter period of methane production. The volatile solid removal efficiencies were also promoted in co-digestion process compared with sole chicken manure digestion, which were increased by 9.7-14.4% with food waste proportions of 50-80%.
Collapse
|
7
|
Thermophilic Dark Fermentation of Olive Mill Wastewater in Batch Reactors: Effect of pH and Organic Loading. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In recent decades, olive oil consumption has almost tripled worldwide. Olive oil production is linked with the production of enormous amounts of olive mill wastewater, the main by-product derived from three-phase olive mills. Due to the environmental risks of olive mill wastewater disposal, the management and valorization of the specific waste stream is of great importance. This work focuses on the thermophilic dark fermentation of olive mill wastewater in batch reactors, targeting pH optimization and the organic loading effect. A series of experiments were performed, during which the organic load of the substrate remained at 40 g/L after dilution with tap water, and the pH was tested in the range of 4.5 to 7.5. The maximum yield in terms of produced hydrogen was obtained at pH 6.0, and the yields were 0.7 mol H2/mol glucose or 0.5 L H2/Lreactor. At the same conditions, a reduction of 62% of the waste’s phenols was achieved. However, concerning the effect of organic loading at the optimized pH value (6.0), a further increase in the organic load minimized the hydrogen production, and the overall process was strongly inhibited.
Collapse
|
8
|
Effect of the Substrate to Inoculum Ratios on the Kinetics of Biogas Production during the Mesophilic Anaerobic Digestion of Food Waste. ENERGIES 2022. [DOI: 10.3390/en15030834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study evaluates the effects of the varying substrate to inoculum ratios (S:I) of 0.5, 1, 2, 3, 4, 5, and 6 (volatile solids/VS basis) on the kinetics of biogas production during batch mesophilic (35 ± 1 °C) anaerobic digestion (AD) of simulated food waste (FW), using anaerobic digestate as the inoculum. Kinetic parameters during biogas production (scrubbed with NaOH solution) are predicted by the first-order and the modified Gompertz model. The observed average specific biogas yields are in descending order corresponding to the S:I ratios 1, 2, 4, 6, 3, 5, and 0.5, respectively, and the significant effect of the S:I ratio was observed. The tests with the S:I of 1 have the maximum average biogas production rates of 88.56 NmL/gVS.d, whereas tests with the S:I of 6 exhibited the lowest production rates (24.61 NmL/gVS.d). The maximum biogas yields, predicted by the first order and the modified Gompertz model, are 668.65 NmL/gVS (experimental 674.40 ± 29.10 NmL/gVS) and 653.17 NmL/gVS, respectively. The modified Gompertz model has been proven to be suitable in predicting biogas production from FW. VS removal efficiency is greater in higher S:I ratios, with a maximum of 78.80 % at the S:I ratio of 6, supported by the longer incubation time. Moreover, a significant effect of the S:I ratio is seen on kinetics and energy recovery from the AD of FW.
Collapse
|
9
|
Chen H, Wu J, Huang R, Zhang W, He W, Deng Z, Han Y, Xiao B, Luo H, Qu W. Effects of temperature and total solid content on biohydrogen production from dark fermentation of rice straw: Performance and microbial community characteristics. CHEMOSPHERE 2022; 286:131655. [PMID: 34315083 DOI: 10.1016/j.chemosphere.2021.131655] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/22/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Semi-continuous experiments were carried out in lab-scale continuous stirred tank reactors to evaluate the effects of fermentation temperature (37 ± 1 °C and 55 ± 1 °C) and total solids (TS) contents (3 %, 6 %, and 12 %) on biohydrogen production from the dark fermentations (DF) of rice straw (RS) and the total operation duration was 105 days. The experimental results show that biohydrogen production (0.46-63.60 mL/g VSadded) from the thermophilic (55 ± 1 °C) DF (TDF) was higher than the mesophilic (37 ± 1 °C) DF (MDF) (0.19-2.13 mL/g VSadded) at the three TS contents, and achieved the highest of 63.60 ± 2.98 mL/g VSadded at TS = 6 % in TDF. The pH, NH4+-N and total volatile fatty acid of fermentation liquids in the TDF were all higher than those in the MDF. The high abundance of lactic acid-producing bacteria resulted in low biohydrogen produced at TS = 3 %. Under the TDF with TS = 6 %, the highest abundance of hydrolytic bacteria (Ruminiclostridium 54.24 %) led to the highest biohydrogen production. The increase of TS content from 6 % to 12 % induced degradation pathway changes from biohydrogen production to methane production. This study demonstrated that butyric acid fermentation was the main pathway to produce biohydrogen from RS in both DFs.
Collapse
Affiliation(s)
- Hong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China
| | - Jun Wu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China
| | - Rong Huang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China
| | - Wenzhe Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weining He
- China Machinery International Engineering Design & Research Institute Co., Ltd, Changsha, 410007, China
| | - Zhengyu Deng
- China Machinery International Engineering Design & Research Institute Co., Ltd, Changsha, 410007, China
| | - Yunping Han
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Benyi Xiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hongmei Luo
- Hunan Provincial Meteorological Service Center, Changsha, 410118, China
| | - Wei Qu
- Changsha Environmental Protection College, Changsha, 410004, China
| |
Collapse
|
10
|
Slezak R, Grzelak J, Krzystek L, Ledakowicz S. Influence of initial pH on the production of volatile fatty acids and hydrogen during dark fermentation of kitchen waste. ENVIRONMENTAL TECHNOLOGY 2021; 42:4269-4278. [PMID: 32255721 DOI: 10.1080/09593330.2020.1753818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
The purpose of this work was to determine the effect of initial pH on the production of volatile fatty acids (VFA) and hydrogen (H2) in the dark fermentation processes of kitchen waste. The study was conducted in batch bioreactors of working volume 1 L for different initial pH in the range from 5.5 to 9.0. The dark fermentation processes were carried out for 4 days at 37°C. Initial organic load of the kitchen waste in all bioreactors amounted to 25.5 gVS/L. Buffering of pH during the fermentation process was carried out with the use of ammonia contained mainly in digested sludge. The optimal conditions for the production of VFA and H2 were achieved at the initial pH of 8. Production of VFA and H2 in these conditions was, respectively, 13.9 g/L and 72.4 mL/gVS. The main produced components of VFA were acetic and butyric acids. The production of ethanol and lactic acid was at very low levels due to the high ratio of the volatile fatty acids to total organic content of 0.86. With the optimal initial pH of 8 the yield of CO2 production was 0.30 gC/gC. High initial pH value (above 8) extended the lag phase duration in the course of H2 production. The dominant groups of micro-organisms at the most favourable initial pH of 8 for the production of VFA and H2 were Bacteroidetes, Firmicutes, Spirochaetes and Waste Water of Evry 1 (WWE1) at the phylum level.
Collapse
Affiliation(s)
- Radosław Slezak
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, Lodz, Poland
| | - Justyna Grzelak
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, Lodz, Poland
| | - Liliana Krzystek
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, Lodz, Poland
| | - Stanisław Ledakowicz
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
11
|
Dark Fermentation of Sweet Sorghum Stalks, Cheese Whey and Cow Manure Mixture: Effect of pH, Pretreatment and Organic Load. Processes (Basel) 2021. [DOI: 10.3390/pr9061017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to determine the optimal conditions for dark fermentation using agro-industrial liquid wastewaters mixed with sweet sorghum stalks (i.e., 55% sorghum, 40% cheese whey, and 5% liquid cow manure). Batch experiments were performed to investigate the effect of controlled pH (5.0, 5.5, 6.0, 6.5) on the production of bio-hydrogen and volatile fatty acids. According to the obtained results, the maximum hydrogen yield of 0.52 mol H2/mol eq. glucose was measured at pH 5.5 accompanied by the highest volatile fatty acids production, whereas similar hydrogen productivity was also observed at pH 6.0 and 6.5. The use of heat-treated anaerobic sludge as inoculum had a positive impact on bio-hydrogen production, exhibiting an increased yield of 1.09 mol H2/mol eq. glucose. On the other hand, the pretreated (ensiled) sorghum, instead of a fresh one, led to a lower hydrogen production, while the organic load decrease did not affect the process performance. In all experiments, the main fermentation end-products were volatile fatty acids (i.e., acetic, propionic, butyric), ethanol and lactic acid.
Collapse
|
12
|
Development and optimization of an innovative three-stage bioprocess for converting food wastes to hydrogen and methane. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Abstract
The constant increase in the amount of food waste accumulating in landfills and discharged into the water reservoirs causes environment pollution and threatens human health. Solid and liquid food wastes include fruit, vegetable, and meat residues, alcohol bard, and sewage from various food enterprises. These products contain high concentrations of biodegradable organic compounds and represent an inexpensive and renewable substrate for the hydrogen fermentation. The goal of the work was to study the efficiency of hydrogen obtaining and decomposition of solid and liquid food waste via fermentation by granular microbial preparation (GMP). The application of GMP improved the efficiency of the dark fermentation of food waste. Hydrogen yields reached 102 L/kg of solid waste and 2.3 L/L of liquid waste. The fermentation resulted in the 91-fold reduction in the weight of the solid waste, while the concentration of organics in the liquid waste decreased 3-fold. Our results demonstrated the potential of granular microbial preparations in the production of hydrogen via dark fermentation. Further development of this technology may help to clean up the environment and reduce the reliance on fossil fuels by generating green hydrogen via recycling of household and industrial organic wastes.
Collapse
|
14
|
Salakkam A, Sittijunda S, Mamimin C, Phanduang O, Reungsang A. Valorization of microalgal biomass for biohydrogen generation: A review. BIORESOURCE TECHNOLOGY 2021; 322:124533. [PMID: 33348113 DOI: 10.1016/j.biortech.2020.124533] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 05/16/2023]
Abstract
Third generation biomass, i.e. microalgae, has emerged as a promising alternative to first and second generation biomass for biohydrogen production. However, its utilization is still low at present, due to several reasons including the strong and rigidity of the microalgal cell wall that limit the hydrolysis efficiency during dark fermentation (DF) and photofermentation (PF) processes. To improve the utilization efficiency of microalgal biomass, it is crucial that important aspects related to the production of the biomass and the following processes are elaborated. Thus, this article provides detailed overview of algal strains, cultivation, and harvesting. It also presents recent research and detailed information on microalgal biomass pretreatment, and biohydrogen production through DF, PF, and co-digestion of microalgal biomass with organic materials. Furthermore, factors affecting fermentation processes performance and the use of molecular techniques in biohydrogen production are presented. This review also discusses challenges and future prospects towards biohydrogen production from microalgal biomass.
Collapse
Affiliation(s)
- Apilak Salakkam
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sureewan Sittijunda
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Chonticha Mamimin
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Orawan Phanduang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand; Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen 40002, Thailand; Academy of Science, Royal Society of Thailand, Bangkok 10300, Thailand.
| |
Collapse
|
15
|
Mugnai G, Borruso L, Mimmo T, Cesco S, Luongo V, Frunzo L, Fabbricino M, Pirozzi F, Cappitelli F, Villa F. Dynamics of bacterial communities and substrate conversion during olive-mill waste dark fermentation: Prediction of the metabolic routes for hydrogen production. BIORESOURCE TECHNOLOGY 2021; 319:124157. [PMID: 32987280 DOI: 10.1016/j.biortech.2020.124157] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
The aim of this work was to study the biological catalysts and possible substrate conversion routes in mesophilic dark fermentation reactors aimed at producing H2 from olive mill wastewater. Bacillus and Clostridium were the most abundant phylotypes during the rapid stage of H2 production. Chemical analyses combined with predictive functional profiling of the bacterial communities indicated that the lactate fermentation was the main H2-producing route. In fact, during the fermentation process, lactate and acetate were consumed, while H2 and butyrate were being produced. The fermentation process was rich in genes that encode enzymes for lactate generation from pyruvate. Lactate conversion to butyrate through the generation of pyruvate produced H2 through the recycling of electron carriers via the pyruvate ferredoxin oxydoreductase pathway. Overall, these findings showed the synergy among lactate-, acetate- and H2-producing bacteria, which complex interactions determine the H2 production routes in the bioreactors.
Collapse
Affiliation(s)
- Gianmarco Mugnai
- Department of Food, Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Luigimaria Borruso
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Vincenzo Luongo
- Department of Mathematics and Applications "Renato Caccioppoli", University of Naples "Federico II", via Cintia, Monte S. Angelo, 80126 Naples, Italy
| | - Luigi Frunzo
- Department of Mathematics and Applications "Renato Caccioppoli", University of Naples "Federico II", via Cintia, Monte S. Angelo, 80126 Naples, Italy
| | - Massimiliano Fabbricino
- Department of Civil, Architectural and Environmental Engineering, University of Naples "Federico II", via Claudio 21, 80125 Naples, Italy
| | - Francesco Pirozzi
- Department of Civil, Architectural and Environmental Engineering, University of Naples "Federico II", via Claudio 21, 80125 Naples, Italy
| | - Francesca Cappitelli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Federica Villa
- Department of Food, Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy.
| |
Collapse
|
16
|
Dauptain K, Schneider A, Noguer M, Fontanille P, Escudie R, Carrere H, Trably E. Impact of microbial inoculum storage on dark fermentative H 2 production. BIORESOURCE TECHNOLOGY 2021; 319:124234. [PMID: 33254457 DOI: 10.1016/j.biortech.2020.124234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 06/12/2023]
Abstract
Complex organic substrates represent an important and relevant feedstock for producing hydrogen by Dark Fermentation (DF). Usually, an external microbial inoculum originated from various natural environments is added to seed the DF reactors. However, H2 yields are significantly impacted by the inoculum origin and the storage conditions as microbial community composition can fluctuate. This study aims to determine how the type and time of inoculum storage can impact the DF performances. Biochemical Hydrogen Potential tests were carried out using three substrates (glucose, the organic fraction of municipal solid waste, and food waste), inocula of three different origins, different storage conditions (freezing or freeze-drying) and duration. As a result, H2 production from glucose with the differently stored inocula was significantly impacted (positively or negatively) and was inoculum-origin-dependent. For complex substrates, hydrogen yields with the stored inocula were not statistically different from the fresh inocula, offering the possibility to store an inoculum.
Collapse
Affiliation(s)
- K Dauptain
- LBE, Université de Montpellier, INRAE, 102 avenue des Étangs, 11100 Narbonne, France
| | - A Schneider
- LBE, Université de Montpellier, INRAE, 102 avenue des Étangs, 11100 Narbonne, France
| | - M Noguer
- LBE, Université de Montpellier, INRAE, 102 avenue des Étangs, 11100 Narbonne, France
| | - P Fontanille
- Université de Clermont Auvergne, Institut Pascal, TSA 60026, 63178 Aubière, France
| | - R Escudie
- LBE, Université de Montpellier, INRAE, 102 avenue des Étangs, 11100 Narbonne, France
| | - H Carrere
- LBE, Université de Montpellier, INRAE, 102 avenue des Étangs, 11100 Narbonne, France
| | - E Trably
- LBE, Université de Montpellier, INRAE, 102 avenue des Étangs, 11100 Narbonne, France.
| |
Collapse
|
17
|
Abstract
Due to rapid urbanization and industrialization, the population density of the world is intense in developing countries. This overgrowing population has resulted in the production of huge amounts of waste/refused water due to various anthropogenic activities. Household, municipal corporations (MC), urban local bodies (ULBs), and industries produce a huge amount of waste water, which is discharged into nearby water bodies and streams/rivers without proper treatment, resulting in water pollution. This mismanaged treatment of wastewater leads to various challenges like loss of energy to treat the wastewater and scarcity of fresh water, beside various water born infections. However, all these major issues can provide solutions to each other. Most of the wastewater generated by ULBs and industries is rich in various biopolymers like starch, lactose, glucose lignocellulose, protein, lipids, fats, and minerals, etc. These biopolymers can be converted into sustainable biofuels, i.e., ethanol, butanol, biodiesel, biogas, hydrogen, methane, biohythane, etc., through its bioremediation followed by dark fermentation (DF) and anaerobic digestion (AD). The key challenge is to plan strategies in such a way that they not only help in the treatment of wastewater, but also produce some valuable energy driven products from it. This review will deal with various strategies being used in the treatment of wastewater as well as for production of some valuable energy products from it to tackle the upcoming future demands and challenges of fresh water and energy crisis, along with sustainable development.
Collapse
|
18
|
Repeated-Batch Fermentation of Cheese Whey for Semi-Continuous Lactic Acid Production Using Mixed Cultures at Uncontrolled pH. SUSTAINABILITY 2019. [DOI: 10.3390/su11123330] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The paper investigates mixed-culture lactate (LA) fermentation of cheese whey (CW) in order to verify the possibility of using waste materials as feedstock to produce a product with high economic potential. The fermentation performance of two reactors operating in repeated-batch mode under uncontrolled pH conditions and various hydraulic retention time and feeding conditions was evaluated in terms of LA production. Five experimental phases were conducted. The hydraulic retention time (HRT) was varied from 1 to 4 days to verify its effect on the process performance. The best results, corresponding to the maximum LA concentration (20.1 g LA/L) and the maximum LA yield (0.37 g chemical oxygen demand (COD)(LA)/g COD(CW)), were reached by feeding the reactors with cheese whey alone and setting the HRT to 2 days. The maximum productivity of lactic acid (10.6 g LA/L/day) was observed when the HRT was decreased to 1 day.
Collapse
|
19
|
Baldi F, Iannelli R, Pecorini I, Polettini A, Pomi R, Rossi A. Influence of the pH control strategy and reactor volume on batch fermentative hydrogen production from the organic fraction of municipal solid waste. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2019; 37:478-485. [PMID: 30736725 PMCID: PMC6484781 DOI: 10.1177/0734242x19826371] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Three different experimental sets of runs involving batch fermentation assays were performed to evaluate the influence of the experimental conditions on biological hydrogen production from the source-separated organic fraction of municipal solid waste collected through a door-to-door system. The fermentation process was operated with and without automatic pH control, at a pH of 5.5 and 6.5, food-to-microorganism ratios of 1/3 and 1/1 (wet weight basis) and with different working volumes (0.5 and 3 L). The experimental results showed that the pH control strategy and the reactor volume did not affect the final hydrogen production yield but played an important role in determining the time evolution of the process. Indeed, although the different experimental conditions tested yielded comparable hydrogen productions (with maximum average values ranging from 68.5 to 88.5 NLH2 (kgTVSOF)-1), the automatic pH control strategy improved the process from the kinetic viewpoint resulting in a t95 reduction from an average of 34.9 h without automatic pH control to an average of 19.5 h.
Collapse
Affiliation(s)
- Francesco Baldi
- DIEF, Department of Industrial Engineering, University of Florence, Italy
| | - Renato Iannelli
- DESTEC – Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, Italy
| | - Isabella Pecorini
- DESTEC – Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, Italy
| | - Alessandra Polettini
- DICEA, Department of Civil and Environmental Engineering, University of Rome “La Sapienza”, Italy
| | - Raffaella Pomi
- DICEA, Department of Civil and Environmental Engineering, University of Rome “La Sapienza”, Italy
| | - Andreina Rossi
- DICEA, Department of Civil and Environmental Engineering, University of Rome “La Sapienza”, Italy
| |
Collapse
|
20
|
Akhlaghi M, Boni MR, Polettini A, Pomi R, Rossi A, De Gioannis G, Muntoni A, Spiga D. Fermentative H 2 production from food waste: Parametric analysis of factor effects. BIORESOURCE TECHNOLOGY 2019; 276:349-360. [PMID: 30654168 DOI: 10.1016/j.biortech.2019.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Factorial fermentation experiments on food waste (FW) inoculated with activated sludge (AS) were conducted to investigate the effects of pH and the inoculum-to-substrate ratio (ISR [g VSAS/g TOCFW]) on biohydrogen production. The two parameters affected the H2 yield, the fermentation rate and the biochemical pathways. The minimum and maximum yields were 41 L H2/kg TOCFW (pH = 7.5, ISR = 1.74) and 156-160 L H2/kg TOCFW (pH = 5.5, ISR = 0.58 and 1.74). The range of carbohydrates conversion into H2 was 0.37-1.45 mol H2/mol hexose, corresponding to 9.4-36.2% of the theoretical threshold. A second-order predictive model for H2 production identified an optimum region at low pHs and high ISRs, with a theoretical maximum of 168 L H2/kg TOCFW at pH = 5.5 and ISR = 1.74. The Spearman's correlation method revealed several relationships between the variables, suggesting the potentially governing metabolic pathways, which turned out to involve both hydrogenogenic pathways and competing reactions.
Collapse
Affiliation(s)
- M Akhlaghi
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Italy
| | - M R Boni
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Italy
| | - A Polettini
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Italy.
| | - R Pomi
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Italy
| | - A Rossi
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Italy
| | - G De Gioannis
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Italy; IGAG - CNR (Environmental Geology and Geoengineering Institute of the National Research Council), Italy
| | - A Muntoni
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Italy; IGAG - CNR (Environmental Geology and Geoengineering Institute of the National Research Council), Italy
| | - D Spiga
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Italy
| |
Collapse
|
21
|
Biohydrogen Production from Food Waste: Influence of the Inoculum-To-Substrate Ratio. SUSTAINABILITY 2018. [DOI: 10.3390/su10124506] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study, the influence of the inoculum-to-substrate ratio (ISR) on dark fermentative hydrogen production from food waste (FW) was evaluated. ISR values ranging from 0.05 to 0.25 g VSinoculum/g VSsubstrate were investigated by performing batch tests at T = 39 °C and pH = 6.5, the latter being the optimal value identified based on a previous study. The ISR was found to affect the fermentation process, clearly showing that an adequate ISR is essential in order to optimise the process kinetics and the H2 yield. An ISR of 0.14 proved to optimum, leading to a maximum H2 yield of 88.8 L H2/kg VSFW and a maximum production rate of 10.8 L H2/kg VSFW∙h. The analysis of the fermentation products indicated that the observed highest H2 production mostly derived from the typical acetate/butyrate-type fermentation.
Collapse
|
22
|
Banu JR, Yukesh Kannah R, Dinesh Kumar M, Gunasekaran M, Sivagurunathan P, Park JH, Kumar G. Recent advances on biogranules formation in dark hydrogen fermentation system: Mechanism of formation and microbial characteristics. BIORESOURCE TECHNOLOGY 2018; 268:787-796. [PMID: 30025888 DOI: 10.1016/j.biortech.2018.07.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 06/08/2023]
Abstract
Hydrogen producing granules (HPGs) are most promising biological methods used to treat organic rich wastes and generate clean hydrogen energy. This review provides information regarding types of immobilization, supporting materials and microbiome involved on HPG formation and its performances. In this review, importance has been given to three kinds of immobilization techniques such as adsorption, encapsulation, and entrapment. The HPG, characteristics and types of organic and inorganic supporting materials followed for enhancing hydrogen yield were also discussed. This review also considers the applications of HPG for sustainable and high rate hydrogen production. A detailed discussion on insight of key mechanism for HPGs formation and its performances for stable operation of high rate hydrogen production system are also provided.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Civil Engineering, Regional Campus Anna University Tirunelveli, Tamilnadu, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Regional Campus Anna University Tirunelveli, Tamilnadu, India
| | - M Dinesh Kumar
- Department of Civil Engineering, Regional Campus Anna University Tirunelveli, Tamilnadu, India
| | - M Gunasekaran
- Department of Physics, Regional Campus Anna University Tirunelveli, Tamilnadu, India
| | | | - Jeong-Hoon Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Gopalakrishnan Kumar
- Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
23
|
Rafieenia R, Pivato A, Lavagnolo MC, Cossu R. Pre-treating anaerobic mixed microflora with waste frying oil: A novel method to inhibit hydrogen consumption. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 71:129-136. [PMID: 29097127 DOI: 10.1016/j.wasman.2017.10.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
An innovative method was introduced to inhibit methanogenic H2 consumption during dark fermentative hydrogen production by anaerobic mixed cultures. Waste frying oil was used as an inhibitor for hydrogenotrophic methanogens. Simultaneous effect of waste frying oil concentrations (0-20 g/L) and initial pH (5.5, 6.5 and 7.5) on inhibition of methanogenic H2 consumption and enhancement of H2 accumulation were investigated using glucose as substrate. Enhanced hydrogen yields with decreased methane productions were observed with increasing the waste frying oil concentrations. On average, CH4 productions from glucose in the cultures received 10 g/L WFO were reduced by 88%. Increased WFO concentration up to 20 g/L led to negligible CH4 productions and in turn enhanced H2 yields. Hydrogen yields of 209.26, 195.35 and 185.60 mL/g glucoseadded were obtained for the cultures pre-treated with 20 g/L waste frying oil with initial pH of 5.5, 6.5 and 7.5 respectively. H2 production by pre-treated cultures was also studied using a synthetic food waste. Anaerobic mixed cultures were pre-treated with 10 g/L WFO and varying durations (0, 24 and 48 h). A H2 yield of 71.46 mL/g VS was obtained for cultures pre-treated with 10 g/L WFO for 48 h that was 475% higher than untreated control. This study suggests a novel and inexpensive approach for suppressing hydrogenotrophic methanogens during dark fermentative H2 production.
Collapse
Affiliation(s)
- Razieh Rafieenia
- Department of Industrial Engineering, University of Padova, Via Marzolo No. 9, 35131 Padova, Italy
| | - Alberto Pivato
- Department of Industrial Engineering, University of Padova, Via Marzolo No. 9, 35131 Padova, Italy.
| | | | - Raffaello Cossu
- Department of Industrial Engineering, University of Padova, Via Marzolo No. 9, 35131 Padova, Italy
| |
Collapse
|
24
|
Rafieenia R, Lavagnolo MC, Pivato A. Pre-treatment technologies for dark fermentative hydrogen production: Current advances and future directions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 71:734-748. [PMID: 28529040 DOI: 10.1016/j.wasman.2017.05.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
Hydrogen is regarded as a clean and non-carbon fuel and it has a higher energy content compared to carbon fuels. Dark fermentative hydrogen production from organic wastes is the most promising technology for commercialization among chemical and biological methods. Using mixed microflora is favored in terms of easier process control and substrate conversion efficiencies instead of pure cultures. However, mixed cultures should be first pre-treated in order to select sporulating hydrogen producing bacteria and suppress non-spore forming hydrogen consumers. Various inoculum pre-treatments have been used to enhance hydrogen production by dark fermentation including heat shock, acid or alkaline treatment, chemical inhibition, aeration, irradiation and inhibition by long chain fatty acids. Regarding substrate pre-treatment, that is performed with the aim of enhanced substrate biodegradability, thermal pre-treatment, pH adjustment using acid or base, microwave irradiation, sonication and biological treatment are the most commonly studied technologies. This article reviews the most investigated pre-treatment technologies applied for either inoculum or substrate prior to dark fermentation, the long-term effects of varying pre-treatment methods and the subsequently feasibility of each method for commercialization.
Collapse
Affiliation(s)
- Razieh Rafieenia
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy.
| | | | - Alberto Pivato
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| |
Collapse
|
25
|
Co-Digestion of Napier Grass and Its Silage with Cow Dung for Bio-Hydrogen and Methane Production by Two-Stage Anaerobic Digestion Process. ENERGIES 2017. [DOI: 10.3390/en11010047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Akhlaghi M, Boni MR, De Gioannis G, Muntoni A, Polettini A, Pomi R, Rossi A, Spiga D. A parametric response surface study of fermentative hydrogen production from cheese whey. BIORESOURCE TECHNOLOGY 2017; 244:473-483. [PMID: 28803097 DOI: 10.1016/j.biortech.2017.07.158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
Batch factorial experiments were performed on cheese whey+wastewater sludge mixtures to evaluate the influence of pH and the inoculum-to-substrate ratio (ISR) on fermentative H2 production and build a related predictive model. ISR and pH affected H2 potential and rate, and the fermentation pathways. The specific H2 yield varied from 61 (ISR=0, pH=7.0) to 371L H2/kg TOCwhey (ISR=1.44gVS/g TOC, pH=5.5). The process duration range was 5.3 (ISR=1.44gVS/g TOC, pH=7.5) - 183h (ISR=0, pH=5.5). The metabolic products included mainly acetate and butyrate followed by ethanol, while propionate was only observed once H2 production had significantly decreased. The multiple metabolic products suggested that the process was governed by several fermentation pathways, presumably overlapping and mutually competing, reducing the conversion yield into H2 compared to that expected with clostridial fermentation.
Collapse
Affiliation(s)
- Masoumeh Akhlaghi
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Italy
| | - Maria Rosaria Boni
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Italy
| | - Giorgia De Gioannis
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Italy; IGAG - CNR (Environmental Geology and Geoengineering Institute of the National Research Council), Italy
| | - Aldo Muntoni
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Italy; IGAG - CNR (Environmental Geology and Geoengineering Institute of the National Research Council), Italy
| | - Alessandra Polettini
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Italy.
| | - Raffaella Pomi
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Italy
| | - Andreina Rossi
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Italy
| | - Daniela Spiga
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Italy
| |
Collapse
|
27
|
Paudel S, Kang Y, Yoo YS, Seo GT. Effect of volumetric organic loading rate (OLR) on H 2 and CH 4 production by two-stage anaerobic co-digestion of food waste and brown water. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 61:484-493. [PMID: 28017551 DOI: 10.1016/j.wasman.2016.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/25/2016] [Accepted: 12/05/2016] [Indexed: 06/06/2023]
Abstract
Two-stage anaerobic digestion system consisting of two continuously stirred tank reactors (CSTRs) operating at mesophillic conditions (37°C) were studied. The aim of this study is to determine optimum Hydraulic Retention Time (HRT) of the two-stage anaerobic digester system for hydrogen and methane production. This paper also discusses the effect of OLR with change in HRT on the system. Four different HRTs of 48, 24, 12, 8h were monitored for acidogenic reactor, which provided OLR of 17.7, 34.8, 70.8, 106gVS/L·d respectively. Two HRTs of 15days and 20days were studied with OLR of 1.24 and 1.76gVS/L·d respectively in methanogenic reactor. Hydrogen production at higher OLR and shorter HRT seemed favorable 106gVS/L·d (8h) in acidogenic reactor system. In methanogenic reactor system HRT of 20day with OLR of 1.24gVS/L·d was found optimum in terms of methane production and organic removal. The result of this study illustrated the optimum HRT of 8h and 20days in acidogenic stage and methanogenic stage for maximum hydrogen and methane production.
Collapse
Affiliation(s)
- Sachin Paudel
- Department of Environmental Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon 641-773, Republic of Korea
| | - Youngjun Kang
- Department of Eco-friendly Offshore FEED Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon 641-773, Republic of Korea
| | - Yeong-Seok Yoo
- Advanced Environment Technology Research Department, Korea Institute of Construction Technology, Goyang 10223, Republic of Korea
| | - Gyu Tae Seo
- Department of Environmental Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon 641-773, Republic of Korea.
| |
Collapse
|