1
|
Saffar-Avval S, Gharehveran MM, Alvarez Ruiz R, Lee LS, Chaplin BP. Matrix Effects on Electrochemical Oxidation of Per- and Polyfluoroalkyl Substances in Sludge Centrate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8263-8273. [PMID: 40245167 DOI: 10.1021/acs.est.4c13720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
This study investigated the electrochemical oxidation of per- and polyfluoroalkyl substances (PFAS) using a Ti4O7 anode in centrate from sludge dewatering. Synthetic solutions containing perfluorooctanoic acid (PFOA), other PFAS, and inorganic constituents (phosphate, ammonium, chloride, carbonate, and acetate salts) found in centrate were studied to assess their impact on the oxidation process. PFOA removal decreased from 95% in a stable electrolyte (NaClO4) to 81% in a Na2HPO4 electrolyte and 30% in a solution mimicking concentrated centrate. X-ray photoelectron spectroscopy detected phosphate and nitrogen species on the electrode surface. At potentials required to oxidize PFAS (>3.0 V/SHE), phosphate and ammonium were oxidized to radicals that blocked electrode sites, inhibiting PFAS removal and shifting PFOA oxidation from first-order kinetics. The kinetics were accurately modeled using a Langmuir-Hinshelwood approach with a transient inhibition term. Results suggested that phosphate, ammonium, and bicarbonate ions reduced hydroxyl radical availability, thereby limiting PFOA defluorination. In concentrated centrate, 95% of the chemical oxygen demand and 93% of total PFAS were removed after 233 s of electrolysis at 30 mA cm-2. However, partial degradation of perfluorohexanoic acid and accumulation of perfluoroheptanoic acid, attributed to inorganic electrode fouling, suggested the need for a multistage reactor system for more complete PFAS mineralization.
Collapse
Affiliation(s)
- Shirin Saffar-Avval
- Department of Chemical Engineering, University of Illinois Chicago, 929 W. Taylor St., Chicago, Illinois 60607, United States
| | | | - Rodrigo Alvarez Ruiz
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Linda S Lee
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, United States
- Interdisciplinary Ecological Sciences & Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brian P Chaplin
- Department of Chemical Engineering, University of Illinois Chicago, 929 W. Taylor St., Chicago, Illinois 60607, United States
| |
Collapse
|
2
|
Singh S, Sharma P, Pandey A, Chandra Garg M, Lo SL, Kumar P. Challenges and contribution of electrochemical driven by-products in tannery wastewater treatment: Optimization, detection and distribution of reactive oxidation species. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124381. [PMID: 39946808 DOI: 10.1016/j.jenvman.2025.124381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
Electrochemical oxidation (EO) is an excellent approach for the treatment of persistent pollutant from synthesistic and real wastewater than conventional wastewater treatment processes. Chloride and sulfate salts generally used and present in natural wastewater that affect the EO process. In this research, the effect of electrolyte concentration on active sulfate (SO42⁻) species (HSO4⁻, SO4•⁻ and S2O82⁻) formation, chlorinated by-products distribution (ClO4-, ClO3-, Cl2), and tannery effluent degradation have been examined while using graphite electrodes. A full factorial design was used to optimize the three independent factors, namely: initial pH (pHo): 3-11, current (I): 1-3 A, and electrolysis time (t): 20-110 min for the responses of chemical oxygen demand (COD) and chromium (Cr) removal. Under the optimum treatment conditions of 3 A current, 90 min electrolysis time, 600 mg L-1 Na2SO4 concentration and pHo of 7, more than 88% COD and 90% Cr removal were achieved under optimal conditions. Qualitative and quantitative analysis confirmed the formation and distribution of various reactive oxidation species and a plausible mechanism was discussed. EO processes yielded almost total mineralization due to the synergistic action of generated active chlorine, sulfate species and hydroxyl radicals. A relatively higher amount of ClO3⁻ was occurred that sign the efficient •OH generation in sulfate mediated EO because the ClO3⁻ formation is certainly associated to •OH concentration. Overall results demonstrate that sulfate enriched electrolyte systems are helpful for EO of hazardous organic pollutants.
Collapse
Affiliation(s)
- Seema Singh
- Centre of Research Impact and Outcomes, Chitkara University, Rajpura, 140417, Punjab, India
| | - Pinki Sharma
- Department of Hydrology, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| | - Agrima Pandey
- Centre for Sustainable Technologies, Indian Institute of Science, Bengaluru, 560012, Karnataka, India
| | - Manoj Chandra Garg
- Amity Institute of Environmental Science, Amity University, Noida, Uttar Pradesh, India
| | - Shang-Lien Lo
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chuo-Shan Rd., Taipei, 10673, Taiwan
| | - Praveen Kumar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, 1000, Slovenia.
| |
Collapse
|
3
|
Souli I, Fernandes A, Lopes A, Gomes I, Afonso A, Labiadh L, Ammar S. Treatment of cheese whey wastewater by electrochemical oxidation using BDD, Ti/RuO 2-TiO 2, and Ti/RuO 2-IrO 2-Pt anodes: ecotoxicological and energetic evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:7058-7069. [PMID: 40032783 PMCID: PMC11928415 DOI: 10.1007/s11356-025-36174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
The effectiveness of boron-doped diamond (BDD) and titanium metal-mixed oxides (Ti/MMO: Ti/RuO2-TiO2 and Ti/RuO2-IrO2-Pt) anodes to treat cheese whey wastewater (CWW) by electrochemical oxidation (EO) was evaluated. The results show that EO with BDD is effective in the removal of organic compounds. Conversely, Ti/MMO anodes exhibit higher removals of nitrogenated compounds. After 8 h of EO treatment at an applied current density of 500 A m-2, the biodegradability index increased from 0.55 to 0.81 with the BDD anode, while with Ti/MMO only reached 0.64. The acute toxicity of the CWW, before and after treatment, was assessed with the model organism Daphnia magna. The use of BDD showed favorable outcomes, leading to a reduction in ecotoxicity, which changed the CWW classification from "very toxic" to "toxic," very close to the "non-toxic" level. Contrarywise, the use of Ti/MMO anodes led to an escalation of potentially harmful substances in the treated effluent. Still, Ti/MMO anodes provide the most favorable energy consumption when operating at current densities equal to or below 100 A m-2. While both Ti/RuO2-TiO2 and Ti/RuO2-IrO2-Pt exhibit similar performance, the effectiveness of Ti/RuO2-TiO2 is somewhat lower.
Collapse
Affiliation(s)
- Imen Souli
- Laboratoire de Recherche Matériaux, Electrochimie Et Environnement LRM2E (LR24ES18), Faculté Des Sciences de Gabès, Université de Gabès, Cité Erriadh, 6072, Gabès, Tunisia
| | - Annabel Fernandes
- Fiber Materials and Environmental Technologies (FibEnTech-UBI), Universidade da Beira Interior, R. Marquês de D'Ávila E Bolama, 6201-001, Covilhã, Portugal.
- Department of Chemistry, Universidade da Beira Interior, Rua Marquês D'Ávila E Bolama, 6201-001, Covilhã, Portugal.
| | - Ana Lopes
- Fiber Materials and Environmental Technologies (FibEnTech-UBI), Universidade da Beira Interior, R. Marquês de D'Ávila E Bolama, 6201-001, Covilhã, Portugal
| | - Inês Gomes
- Fiber Materials and Environmental Technologies (FibEnTech-UBI), Universidade da Beira Interior, R. Marquês de D'Ávila E Bolama, 6201-001, Covilhã, Portugal
| | - Alexandra Afonso
- Fiber Materials and Environmental Technologies (FibEnTech-UBI), Universidade da Beira Interior, R. Marquês de D'Ávila E Bolama, 6201-001, Covilhã, Portugal
- Department of Applied Sciences and Technologies, Instituto Politécnico de Beja, Escola Superior Agrária de Beja, 7800-309, Beja, Portugal
| | - Lazhar Labiadh
- Laboratoire de Recherche Matériaux, Electrochimie Et Environnement LRM2E (LR24ES18), Faculté Des Sciences de Gabès, Université de Gabès, Cité Erriadh, 6072, Gabès, Tunisia
| | - Salah Ammar
- Laboratoire de Recherche Matériaux, Electrochimie Et Environnement LRM2E (LR24ES18), Faculté Des Sciences de Gabès, Université de Gabès, Cité Erriadh, 6072, Gabès, Tunisia
| |
Collapse
|
4
|
Sun J, Xu S, Gao W, Zhao G. Engineering the Local Electronic Configuration of Diatomic Iron-Nickel Site for Enhanced Nitrate and Ammonia Co-Electrolysis Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409239. [PMID: 39659094 DOI: 10.1002/smll.202409239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/29/2024] [Indexed: 12/12/2024]
Abstract
Anthropogenic activities have caused a significant rise in nitrate and ammonia nitrogen levels in natural water bodies, disrupting the balance of the nitrogen cycle. The electrocatalytic reduction of nitrate and the oxidation of ammonia are promising strategies for converting polyvalent nitrogen into nontoxic and harmless N2. Herein, a bifunctional electrode loaded with diatomic iron-nickel site on porous N-doped carbon (FeNi-NC) is designed and successfully applied for the co-electrolysis of nitrate and ammonia. The incorporation of the Fe atom shifts the partial density of states of Ni 3d away from the Fermi level and suppresses the 3d-2π* coupling between Ni sites and superficial N2, leading to the easy desorption of N2 intermediates. Consequently, the Faradaic efficiencies of FeNi-NC for N2 production at the cathode and anode are 90.3% and 99.4% at 1.8 V, respectively, and an electricity consumption saving of 19.4% is achieved. This work provides a feasible strategy to regulate the electronic configuration of atomically dispersed catalysts for sewage treatment.
Collapse
Affiliation(s)
- Jie Sun
- School of Chemical Science and Engineering, Department of Thoracic Surgery, Shanghai Tongji Hospital, Tongji University, Shanghai, 200092, P. R. China
| | - Shaohan Xu
- School of Chemical Science and Engineering, Department of Thoracic Surgery, Shanghai Tongji Hospital, Tongji University, Shanghai, 200092, P. R. China
| | - Weiqi Gao
- School of Chemical Science and Engineering, Department of Thoracic Surgery, Shanghai Tongji Hospital, Tongji University, Shanghai, 200092, P. R. China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Department of Thoracic Surgery, Shanghai Tongji Hospital, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
5
|
Liu HY, Lant HMC, Decavoli C, Crabtree RH, Brudvig GW. pH-Dependent Electrocatalytic Aqueous Ammonia Oxidation to Nitrite and Nitrate by a Copper(II) Complex with an Oxidation-Resistant Ligand. J Am Chem Soc 2025; 147:1624-1630. [PMID: 39757550 DOI: 10.1021/jacs.4c11822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
The electrocatalytic aqueous ammonia oxidation (AO) represents a more sustainable alternative to accessing nitrite (NO2-) and nitrate (NO3-). We now report that Cu(pyalk)2 {pyalk = 2-(pyridin-2-yl)propan-2-oate}, previously employed as a homogeneous water oxidation (WO) catalyst, is also active for selective AO in aqueous environments. The traditional Griess analytical test for NO2-/NO3- was modified to permit the operation in the presence of the otherwise interfering Cu2+ ion. Choosing the right pH is crucial for achieving high AO selectivity, with optimal formation of NO2- occurring at pH 9 (faradaic efficiency 62%). Electrochemical analysis reveals a monometallic reaction pathway and offers a plausible explanation for the chemoselectivity: at pH 9, AO is dominant, while at elevated pH 13, WO dominates.
Collapse
Affiliation(s)
- Han-Yu Liu
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, 810 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Hannah M C Lant
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Cristina Decavoli
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, 810 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Robert H Crabtree
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, 810 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Gary W Brudvig
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, 810 West Campus Drive, West Haven, Connecticut 06516, United States
| |
Collapse
|
6
|
Mandal P, Gupta AK, Dubey BK. Simultaneous ammonia and organics degradation from municipal landfill leachate by electrochemical oxidation. ENVIRONMENTAL TECHNOLOGY 2024; 45:6083-6097. [PMID: 38471068 DOI: 10.1080/09593330.2024.2323554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
The two primary issues for wide implementation of the electrochemical oxidation of wastewater are the significant cost of electrode and high energy consumption. On the other side, conventional biological processes and membrane technology have several drawbacks for recalcitrant landfill leachate (LL) treatment. To address these issues, graphite/PbO2 anode was used to treat medium to mature age (biodegradability index, 5-day biochemical oxygen demand/chemical oxygen demand: 0.25) LL. To reduce the cost of the oxidation process and maximize the efficiency, operating conditions were optimized. The optimum parameter values were obtained as 24.7 mA cm-2, 180 ± 3 rpm, and 1.9 cm of current density, stirring rate, and electrode gap, respectively. Dissolved organic carbon (DOC), chemical oxygen demand (COD), and ammonia-N removal efficiencies of 55 ± 1.4%, 81 ± 1.9%, and 56 ± 3% were obtained after 8 h of degradation at optimum conditions. The decrease in aromatic substances and ultraviolet (UV) quenching materials were evaluated by UV-Visible spectroscopy and Specific UV absorbance. The conversion of aromatic compounds into simpler molecule compounds was also verified by Fourier-transform infrared spectroscopy analysis. The lab-scale anode synthesis cost was evaluated as 0.42 USD.
Collapse
Affiliation(s)
- Pubali Mandal
- Department of Civil Engineering, Birla Institute of Technology and Science-Pilani, Pilani, India
| | - Ashok K Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Brajesh K Dubey
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
7
|
Galoppo S, Fenti A, Falco G, Huang Q, Chianese S, Musmarra D, Iovino P. Efficient electrochemical removal of ammoniacal nitrogen from livestock wastewater: The role of the electrode material. Heliyon 2024; 10:e36803. [PMID: 39263129 PMCID: PMC11388747 DOI: 10.1016/j.heliyon.2024.e36803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/29/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
Wastewater from livestock farms contains high concentrations of suspended solids, organic contaminants, and nitrogen compounds, such as ammoniacal nitrogen. Discharging livestock effluents into water bodies without appropriate treatment leads to severe environmental pollution. Compared to conventional treatment methods, electrochemical oxidation exhibits higher nitrogen removal efficiencies. In the present work, the electrochemical removal of ammoniacal nitrogen from real livestock wastewater was investigated through a lab-scale reactor. Preliminary experiments were carried out to investigate the effects of different anode materials, including boron-doped diamond and iridium/ruthenium-coated titanium, on the total nitrogen removal efficiency using synthetic wastewater. Boron-doped diamond, a well-known non-active electrode, allowed to obtain 63.7 ± 1.21 % of total nitrogen degradation efficiency. However, the iridium/ruthenium-coated titanium electrode, belonging to the class of active anodes, showed a higher performance, achieving 78.8 ± 0.76 % contaminant degradation. Coupling iridium/ruthenium-coated titanium anode with a stainless-steel cathode improved the performance of the system, achieving even 96.2 ± 2.73 % of total nitrogen removal. The optimized cell configuration was used to treat livestock wastewater, resulting in the degradation of 67.0 ± 2.25 % of total nitrogen and 37.3 ± 0.68 % of total organic carbon when sodium chloride was added. At the end of the process, the ammonium content was completely removed, and only 17.7 ± 0.51 % of the initial nitrogen turned into nitrate. The results show that the proposed system is a promising approach to treating livestock wastewater by coupling high contaminant removal efficiencies with low operational costs. Anyway, further studies on process optimization with an emphasis on power requirements and electrode costs need to be carried out.
Collapse
Affiliation(s)
- Simona Galoppo
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031, Aversa, Italy
| | - Angelo Fenti
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031, Aversa, Italy
| | - Giovanni Falco
- Department of Environmental, Biological and Pharmaceutical Science and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, University of Georgia, Griffin, GA, United States
| | - Simeone Chianese
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031, Aversa, Italy
| | - Dino Musmarra
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031, Aversa, Italy
| | - Pasquale Iovino
- Department of Environmental, Biological and Pharmaceutical Science and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| |
Collapse
|
8
|
Hasnine T, Lumbaque EC, Yuan Q. Optimisation of electrochemical oxidation process with boron doped diamond (BDD) for removing COD, colour, ammonium, and phosphate in landfill leachate. ENVIRONMENTAL TECHNOLOGY 2024; 45:3141-3154. [PMID: 37139901 DOI: 10.1080/09593330.2023.2210769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/17/2023] [Indexed: 05/05/2023]
Abstract
This study investigated the electrooxidation (EO) of mature landfill leachate from the Brady Road Resource Management Facility, Winnipeg (Canada). EO using boron-doped diamond (BDD) electrodes were applied to treat real landfill leachate using a batch reactor. Response surface methodology (RSM) was used to determine the optimum process parameter levels. This research mainly focused on how different current densities (64, 95, and 125 mA/cm2) and operational time (30 min, 1, 1.5, 2, 2.5, and 3 hr.) influenced the optimisation of parameters such as chemical oxygen demand (COD), colour, ammonium, and phosphate removal in mature landfill leachate at varied pH. To attain a high percentage of removal for the parameters mentioned above, the optimal conditions were found to be a current density (J) of 125 mA/cm2 and a pH of 8. The optimum conditions resulted in removal percentages of 95.47%, 80.27%, 71.15%, and 47.15% for colour, NH4+, COD, and PO43- respectively, with an energy consumption of 0.05 kWh/dm3. The removal is related to a mechanism of the decomposition of water molecules to hydroxyl radicals and by direct anodic oxidation where the pollutants are transformed to CO2 and H2O. The novelty of this research lies in the optimisation of BDD electrode-based treatment for the simultaneous removal of COD, ammonium, phosphate, and colour from mature leachate collected from a severely cold climatic region of Canada. The BDD electrode showed excellent removal efficiencies for the targeted contaminants with lower energy consumption, making it a feasible method for on-site landfill leachate treatment.
Collapse
Affiliation(s)
- Tanvir Hasnine
- Department of Civil Engineering, University of Manitoba, Winnipeg, Canada
| | | | - Qiuyan Yuan
- Department of Civil Engineering, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
9
|
Li H, Zeng Q, Zan F, Lin S, Hao T. In situ coagulation-electrochemical oxidation of leachate concentrate: A key role of cathodes. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 16:100267. [PMID: 37065009 PMCID: PMC10091031 DOI: 10.1016/j.ese.2023.100267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/25/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
To efficiently remove organic and inorganic pollutants from leachate concentrate, an in situ coagulation-electrochemical oxidation (CO-EO) system was proposed using Ti/Ti4O7 anode and Al cathode, coupling the "super-Faradaic" dissolution of Al. The system was evaluated in terms of the removal efficiencies of organics, nutrients, and metals, and the underlying cathodic mechanisms were investigated compared with the Ti/RuO2-IrO2 and graphite cathode systems. After a 3-h treatment, the Al-cathode system removed 89.0% of COD and 36.3% of total nitrogen (TN). The TN removal was primarily ascribed to the oxidation of both ammonia and organic-N to N2. In comparison, the Al-cathode system achieved 3-10-fold total phosphorus (TP) (62.6%) and metal removals (>80%) than Ti/RuO2-IrO2 and graphite systems. The increased removals of TP and metals were ascribed to the in situ coagulation of Al(OH)3, hydroxide precipitation, and electrodeposition. With the reduced scaling on the Al cathode surface, the formation of Al3+ and electrified Al(OH)3 lessened the requirement for cathode cleaning and increased the bulk conductivity, resulting in increased instantaneous current production (38.9%) and operating cost efficiencies (48.3 kWh kgCOD -1). The present study indicated that the in situ CO-EO process could be potentially used for treating persistent wastewater containing high levels of organic and inorganic ions.
Collapse
Affiliation(s)
- Huankai Li
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Qian Zeng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), Huazhong University of Science and Technology, Wuhan, China
| | - Sen Lin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| |
Collapse
|
10
|
Khavari Kashani MR, Wang Q, Khatebasreh M, Li X, Sheikh Asadi AM, Boczkaj G, Ghanbari F. Sequential treatment of landfill leachate by electrocoagulation/aeration, PMS/ZVI/UV and electro-Fenton: Performance, biodegradability and toxicity studies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117781. [PMID: 37015143 DOI: 10.1016/j.jenvman.2023.117781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
This study presents a systematic study on sequential treatment of highly resistant landfill leachate by electrocoagulation (EC)/aeration, sulfate radical advanced oxidation process (SR-AOP) and electro-Fenton (EF). In case of SR-AOP, peroxymonosulfate (PMS) catalyzed by zero valent iron (ZVI) and ultraviolet irradiation (UV) system was developed. Treatment process was optimized in respect to COD removal. Analysis of results revealed that sequential application of EC/aeration, PMS/ZVI/UV, and EF processes provide an extraordinary performance and meet the environmental regulations. The source of iron for EF process was provided from previous process reducing the cost of sequential process. Separately, EC/aeration (inlet COD = 4040 mg/L), PMS/ZVI/UV (inlet COD = 1560 mg/L), and EF (inlet COD = 471 mg/L) removed 61, 69 and 82% of COD respectively. Overall, sequential processes of EC/aeration, PMS/ZVI/UV and EF could remove the COD, TOC and ammonia of the landfill leachate around 98%, 93% and 94%, respectively. The comparison of different sequences of following processes indicated that current configuration (EC/aeration-PMS/ZVI/UV-EF) could meet the discharge standards. Furthermore, humification degree was significantly improved after oxidative processes. Biodegradability study was also performed by means of BOD/COD, average oxidation state (AOS), and Zahn-Wellens test, and the best results associated with these indices were obtained 0.56, 2.37, and over 98%, respectively. Phytotoxicity of leachate was remarkably reduced and the final effluent can be considered as a non-phytotoxic wastewater.
Collapse
Affiliation(s)
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Masoumeh Khatebasreh
- Department of Environmental Health Engineering, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Amir Mohammad Sheikh Asadi
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, Gdansk, Poland
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, Gdansk, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, Gdansk, 80-233, Poland.
| | - Farshid Ghanbari
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
11
|
Liu S, Xu L, Lin X, Zhang J, Wu D. From black water to flushing water: potential applications of chlorine-mediated indirect electrooxidation for ammonia removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:69473-69485. [PMID: 37140864 DOI: 10.1007/s11356-023-27033-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023]
Abstract
Removing ammonia from black water is one of the most urgent issues before it can be recycled as flushing water. In this study, an electrochemical oxidation (EO) process with commercial Ti/IrO2-RuO2 anodes to treat black water could remove 100% of different concentrations of ammonia by adjusting the dosage of chloride. Through the relationship between ammonia, chloride, and corresponding the pseudo-first-order degradation rate constant (Kobs), we could determine the chloride dosage and predict the kinetics of ammonia oxidation based on initial ammonia concentration in black water. The optimal N/Cl molar ratio was 1:1.8. The difference between black water and the model solution in terms of ammonia removal efficiency and oxidation products was explored. A higher chloride dosage was beneficial for removing ammonia and shortening the treatment cycle, but it also led to the generation of toxic by-products. Especially HClO and ClO3- generated in black water were 1.2 and 1.5 times more than the synthesized model solution under 40 mA cm-2. Through SEM characterization of electrodes and repeated experiments, the electrodes always maintained a high treatment efficiency. These results demonstrated the potential of the electrochemical process as a treatment method for black water.
Collapse
Affiliation(s)
- Shanshan Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Longqian Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Xiaoqing Lin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Jiaming Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
12
|
Jiang BC, Tian YC, Li AM, Han YZ, Wu ZT, Lu C, Song HO, Ji R, Li WT, Korshin GV. Changes of dissolved organic matter fractions and formation of oxidation byproducts during electrochemical treatment of landfill leachates: Development of spectroscopic indicators for process optimization. WATER RESEARCH 2023; 232:119702. [PMID: 36758356 DOI: 10.1016/j.watres.2023.119702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Electrochemical oxidation (EO) is an attractive option for treatment of dissolved organic matter (DOM) in landfill leachate but concerns remain over the energy efficiency and formation of oxidation byproducts ClO3- and ClO4-. In this study, EO treatment of landfill leachates was carried out using representative active and nonactive anode materials, cell configurations and current densities. Size exclusion chromatograms coupled with 2D synchronous and asynchronous correlation analysis showed that the sensitivity of DOM fractions to EO degradation was dependent on the anode material. The nonactive boron-doped diamond (BDD) anode demonstrated the best performance for DOM oxidation. The humic acid-like fraction (HA, 2.5-20 kDa) predominated the visible absorbance of landfill leachates at λ ≥400 nm, and it generally had the highest reaction rates except the occurrence of the pH-induced denaturation and precipitation of the proteinaceous biopolymer fraction (BP, >20 kDa). During the EO treatment of landfill leachate with BDD anode, the UV absorbance spectra of landfill leachates at wavelengths <400 nm were affected by the formation of free chlorine. Instead, the decrease of Abs420 was found to be a good indicator of the shift of the oxidation from predominantly HA fraction to the proteinaceous BP fraction. The behavior of the Abs420 parameter was also indicative of the transition from the energy-efficient oxidation of DOM to the dominance of side reactions of chlorine evolution and the subsequent formation of ClO3- and ClO4-. These findings suggest that the EO treatment of landfill leachate can be optimized by adjusting the current density with feedback signals from the online monitoring of Abs420, to achieve a trade-off between degradation of DOM and control of ClO3- and ClO4-.
Collapse
Affiliation(s)
- Bi-Cun Jiang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Nanjing Innovation Center for Environmental Protection Industry Co., Ltd., Nanjing, 211102, PR China
| | - Ye-Chao Tian
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ai-Min Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yu-Ze Han
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ze-Tao Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chang Lu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hai-Ou Song
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing Normal University, Nanjing 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wen-Tao Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Gregory V Korshin
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA 98195-2700, USA
| |
Collapse
|
13
|
Iovino P, Fenti A, Galoppo S, Najafinejad MS, Chianese S, Musmarra D. Electrochemical Removal of Nitrogen Compounds from a Simulated Saline Wastewater. Molecules 2023; 28:molecules28031306. [PMID: 36770973 PMCID: PMC9920612 DOI: 10.3390/molecules28031306] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
In the last few years, many industrial sectors have generated and discharged large volumes of saline wastewater into the environment. In the present work, the electrochemical removal of nitrogen compounds from synthetic saline wastewater was investigated through a lab-scale experimental reactor. Experiments were carried out to examine the impacts of the operational parameters, such as electrolyte composition and concentration, applied current intensity, and initial ammoniacal nitrogen concentration, on the total nitrogen removal efficiency. Using NaCl as an electrolyte, the NTOT removal was higher than Na2SO4 and NaClO4; however, increasing the initial NaCl concentration over 250 mg·L-1 resulted in no benefits for the NTOT removal efficiency. A rise in the current intensity from 0.05 A to 0.15 A resulted in an improvement in NTOT removal. Nevertheless, a further increase to 0.25 A led to basically no enhancement of the efficiency. A lower initial ammoniacal nitrogen concentration resulted in higher removal efficiency. The highest NTOT removal (about 75%) was achieved after 90 min of treatment operating with a NaCl concentration of 250 mg·L-1 at an applied current intensity of 0.15 A and with an initial ammoniacal nitrogen concentration of 13 mg·L-1. The nitrogen degradation mechanism proposed assumes a series-parallel reaction system, with a first step in which NH4+ is in equilibrium with NH3. Moreover, the nitrogen molar balance showed that the main product of nitrogen oxidation was N2, but NO3- was also detected. Collectively, electrochemical treatment is a promising approach for the removal of nitrogen compounds from impacted saline wastewater.
Collapse
Affiliation(s)
- Pasquale Iovino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
- Correspondence: (P.I.); (A.F.)
| | - Angelo Fenti
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, 81031 Aversa, Italy
- Correspondence: (P.I.); (A.F.)
| | - Simona Galoppo
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, 81031 Aversa, Italy
| | | | - Simeone Chianese
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, 81031 Aversa, Italy
| | - Dino Musmarra
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, 81031 Aversa, Italy
| |
Collapse
|
14
|
Magotra VK, Lee DJ, Kim DY, Lee SJ, Kang TW, Magotra A, Inamdar AI, Shrestha NK, Patil SA, Thammanu S, Jeon HC. Increasing power generation to a single-chamber compost soil urea fuel cell for carbon-neutral bioelectricity generation: A novel approach. Front Microbiol 2023; 14:1086962. [PMID: 36876058 PMCID: PMC9983554 DOI: 10.3389/fmicb.2023.1086962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/16/2023] [Indexed: 02/19/2023] Open
Abstract
Microbial fuel cells (CS-UFC) utilize waste resources containing biodegradable materials that play an essential role in green energy. MFC technology generates "carbon-neutral" bioelectricity and involves a multidisciplinary approach to microbiology. MFCs will play an important role in the harvesting of "green electricity." In this study, a single-chamber urea fuel cell is fabricated that uses these different wastewaters as fuel to generate power. Soil has been used to generate electrical power in microbial fuel cells and exhibited several potential applications to optimize the device; the urea fuel concentration is varied from 0.1 to 0.5 g/mL in a single-chamber compost soil urea fuel cell (CS-UFC). The proposed CS-UFC has a high power density and is suitable for cleaning chemical waste, such as urea, as it generates power by consuming urea-rich waste as fuel. The CS-UFC generates 12 times higher power than conventional fuel cells and exhibits size-dependent behavior. The power generation increases with a shift from the coin cell toward the bulk size. The power density of the CS-UFC is 55.26 mW/m2. This result confirmed that urea fuel significantly affects the power generation of single-chamber CS-UFC. This study aimed to reveal the effect of soil properties on the generated electric power from soil processes using waste, such as urea, urine, and industrial-rich wastewater as fuel. The proposed system is suitable for cleaning chemical waste; moreover, the proposed CS-UFC is a novel, sustainable, cheap, and eco-friendly design system for soil-based bulk-type design for large-scale urea fuel cell applications.
Collapse
Affiliation(s)
- Verjesh Kumar Magotra
- Quantum-Functional Semiconductor Research Center, Dongguk University, Seoul, Republic of Korea
| | - Dong-Jin Lee
- Quantum-Functional Semiconductor Research Center, Dongguk University, Seoul, Republic of Korea
| | - D Y Kim
- Quantum-Functional Semiconductor Research Center, Dongguk University, Seoul, Republic of Korea
| | - S J Lee
- Quantum-Functional Semiconductor Research Center, Dongguk University, Seoul, Republic of Korea
| | - T W Kang
- Quantum-Functional Semiconductor Research Center, Dongguk University, Seoul, Republic of Korea
| | - Arjun Magotra
- Department of Computer Science and Engineering, Dongguk University, Seoul, Republic of Korea
| | - Akbar I Inamdar
- Division of Physics and Semiconductor Science, Dongguk University, Seoul, Republic of Korea
| | - Nabeen K Shrestha
- Division of Physics and Semiconductor Science, Dongguk University, Seoul, Republic of Korea.,Department of Nano Technology and Advanced Materials Engineering, Sejong University, Seoul, Republic of Korea
| | - Supriya A Patil
- Department of Nano Technology and Advanced Materials Engineering, Sejong University, Seoul, Republic of Korea
| | | | - Hee Chang Jeon
- Quantum-Functional Semiconductor Research Center, Dongguk University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Kuang P, Cui Y, Zhao K, Zhang W, Zhang X. Kinetics and mechanisms of enhanced ammonia abatement under synchronous process of electrochemistry and adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:172-183. [PMID: 35896872 DOI: 10.1007/s11356-022-21829-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
As a kind of common nitrogen pollutants, ammonia seriously pollutes water and soil environments and threatens human health. The treatment of water contaminated with ammonia was carried out in an electrochemical-adsorption system (ECAS). This paper discusses the capacity, kinetics, and mechanism of ammonia electrosorption, which is accurately described by a pseudo-first-order model, indicating that physical adsorption is the dominating mechanism. A high adsorption capacity of 4.086 mg N/g was attributed to the formation of a large number of adsorption sites and the highly acidic nature of dealumination of zeolites during electrolysis. Fast directional migration of ammonia in the electric field weakened the negative effect of boundary layer on adsorption and accelerated adsorption procedure. Brunauer, Emmett, and Teller measurements and scanning electron microscopy indicated that the formation of new channels and surface erosion, which resulted in a large surface area and pore volume of zeolites and a low resistance towards ion migration. As a whole, this study achieved efficient ammonia removal without the addition of chemical reagents to avoid secondary pollution.
Collapse
Affiliation(s)
- Peijing Kuang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Economic and Technological Development Zone, Dalian Minzu University, 18 Liaohe Road West, Dalian, 116600, China
- College of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Yubo Cui
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Economic and Technological Development Zone, Dalian Minzu University, 18 Liaohe Road West, Dalian, 116600, China.
- College of Environment and Resources, Dalian Minzu University, Dalian, 116600, China.
| | - Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Wanjun Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Economic and Technological Development Zone, Dalian Minzu University, 18 Liaohe Road West, Dalian, 116600, China
- College of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Xiaomeng Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Economic and Technological Development Zone, Dalian Minzu University, 18 Liaohe Road West, Dalian, 116600, China
- College of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| |
Collapse
|
16
|
Zhang YH, Zhu L, Guo X, Zhang WJ, Shao X, Yang J. Modified W, Ti-doped IrO2 anode for efficient organic contaminant oxidation in livestock wastewater. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
17
|
Barisci S, Suri R. Degradation of 1,4-dioxane from water and plating industry wastewater using electrochemical batch and plug flow reactors. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Santos G, Ortiz-Gándara I, Del Castillo A, Arruti A, Gómez P, Ibáñez R, Urtiaga A, Ortiz I. Intensified fish farming. Performance of electrochemical remediation of marine RAS waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157368. [PMID: 35843323 DOI: 10.1016/j.scitotenv.2022.157368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Aquaculture has been the fastest growing agricultural sector in the past few decades and currently supplies about half of the fish market. A range of environmental and management concerns including limited land and water availability have led to intensifying fish production by recirculating aquaculture systems (RAS). Fish's diet contains 30-60 % protein and about 4-10 % nitrogen (N). As fish assimilate only 20-30 % of the feed to produce body mass, the unassimilated N is released in the form of toxic ammonium that deteriorates water quality and compels its degradation. Widely extended biological nitrification is not efficient in the removal of nitrites nor other chemicals and pharmaceuticals used during fish culture. Electrochemical oxidation, a less developed alternative, reports several advantages such as, i) simultaneous degradation of ammonia‑nitrogen (TAN) and water disinfection in the same step with considerable simplification of the whole process, ii) easy adaptability to different production scales and periods of fish growth, and iii) no generation of harmful by-products and no use of chemicals, among others. Besides, in the case of marine aquaculture, the technology benefits from the high conductivity of seawater; thus, electrochemical oxidation is positioned in a very good place to satisfy the water treatment needs of the increasing production rate of marine aquaculture fish. Here, we report the analysis of the performance of a RAS demonstration plant aimed at farming gilthead sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) and provided with electrochemical remediation of culture water. The performance of the plant, with 20 m3 of seawater operating at a recirculation rate of 0.9-1.4 h-1, has been analysed in terms of TAN removal, water disinfection, make-up water intake and energy consumption and compared to data of conventional RAS provided with biofilters. The benefits and advantages of the innovative electrochemical remediation of RAS water are highlighted.
Collapse
Affiliation(s)
- Germán Santos
- APRIA Systems, S.L., Business Park of Morero, Parcel P-2-12, Industrial Unit 1-Door 5, Guarnizo 39611, Spain
| | - Isabel Ortiz-Gándara
- APRIA Systems, S.L., Business Park of Morero, Parcel P-2-12, Industrial Unit 1-Door 5, Guarnizo 39611, Spain
| | - Andrés Del Castillo
- APRIA Systems, S.L., Business Park of Morero, Parcel P-2-12, Industrial Unit 1-Door 5, Guarnizo 39611, Spain
| | - Axel Arruti
- APRIA Systems, S.L., Business Park of Morero, Parcel P-2-12, Industrial Unit 1-Door 5, Guarnizo 39611, Spain
| | - Pedro Gómez
- APRIA Systems, S.L., Business Park of Morero, Parcel P-2-12, Industrial Unit 1-Door 5, Guarnizo 39611, Spain
| | - Raquel Ibáñez
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, Av. de Los Castros s/n, Santander 39005, Spain
| | - Ane Urtiaga
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, Av. de Los Castros s/n, Santander 39005, Spain
| | - Inmaculada Ortiz
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, Av. de Los Castros s/n, Santander 39005, Spain.
| |
Collapse
|
19
|
İskurt Ç, Aliyev E, Gengec E, Kobya M, Khataee A. Electrochemical oxidation of pretreated landfill leachate nanofiltration concentrate in terms of pollutants removal and formation of by-products. CHEMOSPHERE 2022; 307:135954. [PMID: 35963383 DOI: 10.1016/j.chemosphere.2022.135954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/14/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
This study compares the efficiencies of active (Ti/TiO2-RuO2-IrO2 (TIR)) and inactive (Ni/Boron Doped Diamond (BDD)) anodes in terms of pollutant treatment and by-product formation in pretreated (chemical coagulation) landfill leachate nanofiltration membrane concentrate (PLNC). PLNC has high chemical oxygen demand (COD:4900 mg/L), total organic carbon (TOC: 1874 mg/L), total Kjeldahl nitrogen (TKN: 520 mg/L), ammonium nitrogen (NH3-N: 21.35 mg/L), chloride (5700 mg/L) and sulfate (9000 mg/L - due to coagulant type). The parameters of COD, TOC, NH3-N, TKN, free and combined chlorine species, halogenated organic compounds (HOCs), adsorbable organic halogens (AOX), and nitrate at different current density (J: 111-555 A/m2) and initial pH (pHi:3.5-7) were compared for both anodes. The removal efficiencies at the optimum conditions (pHi 5.5, 333 A/m2 and 8 h) were obtained as 86.4% COD, 77.4% TOC, 93.4% TKN, 94.4% NH3-N with BDD and 34.3% COD, 27.3% TOC, 93.7% TKN, 97.4% NH3-N with TIR. According to gas chromatography-mass spectrometry (GC-MS) results obtained under optimum conditions, haloalkane/alkene, halonitroalkane, halonitrile, haloketone, haloalcohols, haloacids, haloaldehydes, haloamines/amides on both electrodes were detected as species of HOCs. In addition, the highest nitrate concentration was observed at the TIR anode, while the highest AOX concentration was observed at the BDD anode.
Collapse
Affiliation(s)
- Çisel İskurt
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey
| | - Emil Aliyev
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey
| | - Erhan Gengec
- Department of Environmental Protection, University of Kocaeli, 41275, Izmit, Kocaeli, Turkey
| | - Mehmet Kobya
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Department of Environmental Engineering, Kyrgyz-Turkish Manas University, 720038, Bishkek, Kyrgyzstan.
| | - Alireza Khataee
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| |
Collapse
|
20
|
Hien SA, Trellu C, Oturan N, Assémian AS, Briton BGH, Drogui P, Adouby K, Oturan MA. Comparison of homogeneous and heterogeneous electrochemical advanced oxidation processes for treatment of textile industry wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129326. [PMID: 35714542 DOI: 10.1016/j.jhazmat.2022.129326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
This study aimed at understanding the influence of the generation of oxidants in a heterogeneous way at boron-doped diamond (BDD) anode (anodic oxidation (AO)) or homogeneously in the bulk (electro-Fenton (EF)) during treatment of a textile industry wastewater. Both processes achieved high TOC removal. A yield of 95 % was obtained by combining EF with BDD anode during 6 h of treatment. The EF process was found to be faster and more efficient for discoloration of the effluent, whereas AO was more effective to limit the formation of degradation by-products in the bulk. An advantage of AO was to treat this alkaline effluent without any pH adjustment. Operating these processes under current limitation allowed optimizing energy consumption in both cases. However, using BDD anode led to the formation of very high concentration of ClO3-/ClO4- from Cl- oxidation (even at low current density), which appears as a key challenge for treatment of such effluent by AO. By comparison, EF with Pt anode strongly reduced the formation of ClO3-/ClO4-. Operating EF at low current density even maintained these concentrations below 0.5 % of the initial Cl- concentration. A trade-off should be considered between TOC removal and formation of toxic chlorinated by-products.
Collapse
Affiliation(s)
- Sié Alain Hien
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France; Laboratoire des Procédés Industriels, de Synthèse de l'Environnement et des Energies Nouvelles (LAPISEN), Institut National Polytechnique Houphouët-Boigny, BP 1313 Yamoussoukro, Côte d'Ivoire
| | - Clément Trellu
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France.
| | - Nihal Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France
| | - Alain Stéphane Assémian
- Laboratoire de Thermodynamique et Chimie Physique de l'Environnement, Université de Nangui-Abrogoua, 02 BP 801, Abidjan 01, Côte d'Ivoire
| | - Bi Gouessé Henri Briton
- Laboratoire des Procédés Industriels, de Synthèse de l'Environnement et des Energies Nouvelles (LAPISEN), Institut National Polytechnique Houphouët-Boigny, BP 1313 Yamoussoukro, Côte d'Ivoire
| | - Patrick Drogui
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K9A9, Canada
| | - Kopoin Adouby
- Laboratoire des Procédés Industriels, de Synthèse de l'Environnement et des Energies Nouvelles (LAPISEN), Institut National Polytechnique Houphouët-Boigny, BP 1313 Yamoussoukro, Côte d'Ivoire
| | - Mehmet A Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France.
| |
Collapse
|
21
|
Wilk BK, Szopińska M, Sobaszek M, Pierpaoli M, Błaszczyk A, Luczkiewicz A, Fudala-Ksiazek S. Electrochemical oxidation of landfill leachate using boron-doped diamond anodes: pollution degradation rate, energy efficiency and toxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65625-65641. [PMID: 35501433 DOI: 10.1007/s11356-022-19915-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Electrochemical oxidation (EO), due to high efficiency and small carbon footprint, is regarded as an attractive option for on-site treatment of highly contaminated wastewater. This work shows the effectiveness of EO using three boron-doped diamond electrodes (BDDs) in sustainable management of landfill leachate (LL). The effect of the applied current density (25-100 mA cm-2) and boron doping concentration (B/C ratio: 500 ppm, 10,000 ppm and 15,000 ppm) on the performance of EO was investigated. It was found that, of the electrodes used, the one most effective at COD, BOD20 and ammonia removal (97.1%, 98.8% and 62%, respectively) was the electrode with the lowest boron doping. Then, to better elucidate the ecological role of LLs, before and after EO, cultivation of faecal bacteria and microscopic analysis of total (prokaryotic) cell number, together with ecotoxicity assay (Daphnia magna, Thamnocephalus platyurus and Artemia salina) were combined for the two better-performing electrodes. The EO process was very effective at bacterial cell inactivation using each of the two anodes, even within 2 h of contact time. In a complex matrix of LLs, this is probably a combined effect of electrogenerated oxidants (hydroxyl radicals, active chlorine and sulphate radicals), which may penetrate into the bacterial cells and/or react with cellular components. The toxicity of EO-treated LLs proved to be lower than that of raw ones. Since toxicity drops with increased boron doping, it is believed that appropriate electrolysis parameters can diminish the toxicity effect without compromising the nutrient-removal and disinfection capability, although salinity of LLs and related multistep-oxidation pathways needs to be further elucidated.
Collapse
Affiliation(s)
- Barbara Krystyna Wilk
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St, 80-233, Gdansk, Poland.
| | - Malgorzata Szopińska
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St, 80-233, Gdansk, Poland
| | - Michał Sobaszek
- Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 11/12 Narutowicza St, 80-233, Gdansk, Poland
| | - Mattia Pierpaoli
- Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 11/12 Narutowicza St, 80-233, Gdansk, Poland
| | - Agata Błaszczyk
- Faculty of Oceanography and Geography, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Aneta Luczkiewicz
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St, 80-233, Gdansk, Poland
| | - Sylwia Fudala-Ksiazek
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St, 80-233, Gdansk, Poland
| |
Collapse
|
22
|
Veciana M, Bräunig J, Farhat A, Pype ML, Freguia S, Carvalho G, Keller J, Ledezma P. Electrochemical oxidation processes for PFAS removal from contaminated water and wastewater: fundamentals, gaps and opportunities towards practical implementation. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128886. [PMID: 35436757 DOI: 10.1016/j.jhazmat.2022.128886] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/20/2022] [Accepted: 04/07/2022] [Indexed: 05/27/2023]
Abstract
Electrochemical oxidation (EO) is emerging as one of the most promising methods for the degradation of recalcitrant per- and poly-fluoroalkyl substances (PFASs) in water and wastewater, as these compounds cannot be effectively treated with conventional bio- or chemical approaches. This review examines the state of the art of EO for PFASs destruction, and comprehensively compares operating parameters and treatment performance indicators for both synthetic and real contaminated water and wastewater media. The evaluation shows the need to use environmentally-relevant media to properly quantify the effectiveness/efficiency of EO for PFASs treatment. Additionally, there is currently a lack of quantification of sorption losses, resulting in a likely over-estimation of process' efficiencies. Furthermore, the majority of experimental results to date indicate that short-chain PFASs are the most challenging and need to be prioritized as environmental regulations become more stringent. Finally, and with a perspective towards practical implementation, several operational strategies are proposed, including processes combining up-concentration followed by EO destruction.
Collapse
Affiliation(s)
- Mersabel Veciana
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia.
| | - Jennifer Bräunig
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane QLD 4102, Australia
| | - Ali Farhat
- GHD Pty Ltd, Brisbane QLD 4000, Australia
| | - Marie-Laure Pype
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Stefano Freguia
- Department of Chemical Engineering, The University of Melbourne, Parkville VIC 3010, Australia
| | - Gilda Carvalho
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Jürg Keller
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Pablo Ledezma
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia.
| |
Collapse
|
23
|
Chen S, He Z. Sonoelectrochemical activation of peroxymonosulfate: Influencing factors and mechanism of FA degradation, and application on landfill leachate treatment. CHEMOSPHERE 2022; 296:133365. [PMID: 34954193 DOI: 10.1016/j.chemosphere.2021.133365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
In this work, sonoelectrochemically activated peroxymonosulfate (US-EC/PMS) was used to degrade fulvic acid (FA) in water. Compared with other technologies, the US-EC/PMS system can achieve higher FA decolorization in a short time. Moreover, the benefits of synergy are more prominent in the US-EC/PMS system. The effects of operating parameters on the sonoelectrochemical degradation of FA were investigated, including initial pH, initial FA concentration, current density, ultrasonic power, PMS dosage. The results showed the initial FA concentration and current density were critical to the degradation of FA. Under optimized parameters: initial pH of 2, 50 mg L-1 initial FA concentration, 30 mA cm-2 current density, 50 W ultrasonic power, 1 mM PMS dosage, the US-EC/PMS system can achieve 93% FA decolorization. The calculation results of current efficiency and energy consumption indicate that the introduction of PMS into the US-EC system has economic applicability. Scavenger experiments and electron paramagnetic resonance suggest that hydroxyl radicals, sulfate radicals, and singlet oxygen were the main ROS produced in the US-EC/PMS system. Accordingly, the possible mechanism of FA degradation by sonoelectrochemical activation PMS was proposed. Finally, the US-EC/PMS system was used to treat the aged landfill leachate. Three-dimensional fluorescence analysis showed that most of the humic substances (Hss) were effectively removed, and the biodegradability of the leachate was considerably improved. In addition, the effective removal of COD, chroma, and ammonia nitrogen were observed, proving that this technology is a powerful means to treat organic wastewater contaminated by Hss.
Collapse
Affiliation(s)
- Shuxun Chen
- School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Zhengguang He
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
24
|
Magotra VK, Lee SJ, Kang TW, Inamdar AI, Kim DY, Im H, Jeon HC. High Power Generation with Reducing Agents Using Compost Soil as a Novel Electrocatalyst for Ammonium Fuel Cells. NANOMATERIALS 2022; 12:nano12081281. [PMID: 35457989 PMCID: PMC9029104 DOI: 10.3390/nano12081281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022]
Abstract
Ammonium toxicity is a significant source of pollution from industrial civilization that is disrupting the balance of natural systems, adversely affecting soil and water quality, and causing several environmental problems that affect aquatic and human life, including the strong promotion of eutrophication and increased dissolved oxygen consumption. Thus, a cheap catalyst is required for power generation and detoxification. Herein, compost soil is employed as a novel electrocatalyst for ammonium degradation and high-power generation. Moreover, its effect on catalytic activity and material performances is systematically optimized and compared by treating it with various reducing agents, including potassium ferricyanide, ferrocyanide, and manganese dioxide. Ammonium fuel was supplied to the compost soil ammonium fuel cell (CS-AFC) at concentrations of 0.1, 0.2, and 0.3 g/mL. The overall results show that ferricyanide affords a maximum power density of 1785.20 mW/m2 at 0.2 g/mL fuel concentration. This study focuses on high-power generation for CS-AFC. CS-AFCs are sustainable for many hours without any catalyst deactivation; however, they need to be refueled at regular intervals (every 12 h). Moreover, CS-AFCs afford the best performance when ferricyanide is used as the electron acceptor at the cathode. This study proposes a cheap electrocatalyst and possible solutions to the more serious energy generation problems. This study will help in recycling ammonium-rich wastewaters as free fuel for running CS-AFC devices to yield high-power generation with reducing agents for ammonium fuel cell power applications.
Collapse
Affiliation(s)
- Verjesh Kumar Magotra
- Nano Information Technology Academy, Dongguk University, Jung-Gu, Seoul 100715, Korea; (V.K.M.); (S.J.L.); (T.W.K.)
| | - Seung Joo Lee
- Nano Information Technology Academy, Dongguk University, Jung-Gu, Seoul 100715, Korea; (V.K.M.); (S.J.L.); (T.W.K.)
| | - Tae Won Kang
- Nano Information Technology Academy, Dongguk University, Jung-Gu, Seoul 100715, Korea; (V.K.M.); (S.J.L.); (T.W.K.)
| | - Akbar I. Inamdar
- Division of Physics and Semiconductor Science, Dongguk University, Jung-Gu, Seoul 100715, Korea; (A.I.I.); (D.Y.K.); (H.I.)
| | - Deuk Young Kim
- Division of Physics and Semiconductor Science, Dongguk University, Jung-Gu, Seoul 100715, Korea; (A.I.I.); (D.Y.K.); (H.I.)
| | - Hyunsik Im
- Division of Physics and Semiconductor Science, Dongguk University, Jung-Gu, Seoul 100715, Korea; (A.I.I.); (D.Y.K.); (H.I.)
| | - Hee Chang Jeon
- Nano Information Technology Academy, Dongguk University, Jung-Gu, Seoul 100715, Korea; (V.K.M.); (S.J.L.); (T.W.K.)
- Correspondence:
| |
Collapse
|
25
|
Benguit A, Tiwari B, Drogui P, Landry D. Tertiary treatment of a mixture of composting and landfill leachates using electrochemical processes. CHEMOSPHERE 2022; 292:133379. [PMID: 34958788 DOI: 10.1016/j.chemosphere.2021.133379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/07/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
The study investigated the treatment efficiency of coupled electrocoagulation (EC) and electrooxidation (EO) processes for landfill leachate treatment in batch and continuous mode. The EC process (iron anode and graphite cathode) at 18.2 mA/cm2 for 2.5 min resulted in COD, turbidity, total phosphorus, total coliforms and fecal coliforms removal of 58.1, 72.9, 98.5, 97.9, and 97.2% respectively. Under the same operating conditions, the coupled EC/EO (Ti-Pt anode, bipolar iron electrode, and graphite cathode) processes showed that the COD, turbidity, total phosphorus, total coliforms, and fecal coliforms removal of 56.5%, 78.3%, 96.3%, 97.2% and fecal coliforms 72.7%, respectively. The energy costs associated with the EC and EC/EO were 0.11 and 0.25 $/m3, respectively. Compared to the batch configuration, the continuous configuration of EC resulted in similar processing performance. However, the EC/EO process resulted in the production of chlorates, perchlorates, and trihalomethanes as by-products. Moreover, the continuous process slightly increases the pH and ammonia concentration of the leachate and also resulted in the metallic sludge production with an average dryness of 4.2%. The toxicity tests determined that the treated effluent was not toxic to Rainbow trout and Daphnia.
Collapse
Affiliation(s)
- Alae Benguit
- Institut National de la Recherche Scientifique (INRS-Eau Terre et Environnement), Université du Québec, 490 rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Bhagyashree Tiwari
- Institut National de la Recherche Scientifique (INRS-Eau Terre et Environnement), Université du Québec, 490 rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Patrick Drogui
- Institut National de la Recherche Scientifique (INRS-Eau Terre et Environnement), Université du Québec, 490 rue de la Couronne, Québec, QC, G1K 9A9, Canada.
| | - Dany Landry
- Englobe Company, Englobe Corp., 505 Boul. de Parc Technologique, Québec, QC, G1P 4S7, Canada
| |
Collapse
|
26
|
Özyonar F, Korkmaz MU. Sequential use of the electrocoagulation-electrooxidation processes for domestic wastewater treatment. CHEMOSPHERE 2022; 290:133172. [PMID: 34914950 DOI: 10.1016/j.chemosphere.2021.133172] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/27/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Nowadays, the decrease in useable water resources day by day necessitates studies on the protection of resources by treating wastewater. It is also one of the best options for reusing the water to be treated, and electrochemical technologies can be an alternative to existing technologies, because of the easy operation and effectiveness of pollutants treatment. The study evaluated the treatment of domestic wastewater by Electrocoagulation-Electrooxidation successive processes in continuous and batch modes. The effects of the operational parameters on the Electrocoagulation and Electrooxidation processes were determined for removals of chemical oxygen demand, ammonium-nitrogen, nitrate-nitrogen, turbidity, phosphate-phosphorus, nitrite-nitrogen, and Escherichia coli. The experiments revealed that the Electrocoagulation process effectively removed all pollutants but not ammonium-nitrogen. After the Electrocoagulation process was completed, ammonium-nitrogen from domestic wastewater treatment was removed with the Electrooxidation process for further treatment. The optimum operational conditions in the Electrocoagulation process were electrode type iron anode-carbon felt cathode, current density 100 A m-2, initial pH original, and operation time 20 min. Under these conditions, removal efficiencies of chemical oxygen demand, turbidity, phosphate-phosphorus, nitrate-nitrogen, nitrite-nitrogen, and Escherichia coli were found to be 90.2%, 96%, 88.2%, 73.6%, and 97.9%, respectively. The removal efficiencies for the optimum operating conditions of the Electrooxidation process using Ti/SbO2 anode and stainless steel cathode were obtained as 95.4% (chemical oxygen demand), 89.4% (ammonium-nitrogen), and 99.99% (Escherichia coli) at 100 A m-2, 5 mm electrode distance, and 30 min operation time. Finally, the EC process is an effective process for removing chemical oxygen demand, phosphate-phosphorus, turbidity, nitrite-nitrogen, and nitrate-nitrogen. However, the Electrooxidation process is a successful process for the treatment of ammonium-nitrogen and Escherichia coli. This research revealed that the sequential processes effectively removed organic, inorganic, and Escherichia coli from domestic wastewater.
Collapse
Affiliation(s)
- Fuat Özyonar
- Department of Environmental Engineering, Sivas Cumhuriyet University, 58140, Sivas, Turkey.
| | - Mehmet Utku Korkmaz
- Department of Environmental Engineering, Sivas Cumhuriyet University, 58140, Sivas, Turkey.
| |
Collapse
|
27
|
Bagastyo AY, Sari PPI, Direstiyani LC. Effect of chloride ions on the simultaneous electrodialysis and electrochemical oxidation of mature landfill leachate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:63646-63660. [PMID: 33200386 DOI: 10.1007/s11356-020-11519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
An attempt has been made to improve the treatment efficiency of mature landfill leachate prior to the existing biological treatment. In this study, electrochemical oxidation (EO) was applied as a pre-treatment to remove organic contaminants and was simultaneously combined with electrodialysis (ED) to remove ionic constituents, such as ammonium and phosphate. A laboratory-scale electrochemical reactor was designed by utilizing a carbon graphite anode and a stainless steel cathode and separated by an anion exchange membrane (AEM) and cation exchange membrane (CEM), creating a three-compartment reactor. The oxidation of the organic pollutant would occur in the anodic compartment, while the targeted ammonium and phosphate ions would be migrated and accumulated in the central compartment. The treatment process was performed in a batch recirculation time of 12 h at a constant supplied current of 0.25 A and evaluated by means of the initial leachate pH (i.e., original pH value of 7.85; adjusted pH value of 5.50 and 8.50) and three different initial chloride concentrations. The higher the chloride concentration in the leachate, the higher the removal efficiency, except for total phosphate. The highest chemical oxidation demand (COD) removal was 86.2% (0.88 g W-1 h-1), at an initial leachate pH value of 7.85 with the addition of 2 g L-1 of NaCl. Furthermore, under the same conditions, the ammonium, total phosphate, and chloride removals were 85% (0.44 g W-1 h-1), 89% (0.08 g W-1 h-1), and 83% (0.69 g W-1 h-1), respectively. Also, the concentrated ionic compounds in the central compartment can lower the energy consumption and can possibly be further treated or managed.
Collapse
Affiliation(s)
- Arseto Yekti Bagastyo
- Department of Environmental Engineering, Faculty of Civil, Planning, and Geo Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia.
| | - Putu Putri Indira Sari
- Department of Environmental Engineering, Faculty of Civil, Planning, and Geo Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
| | - Lucky Caesar Direstiyani
- Department of Environmental Engineering, Faculty of Civil, Planning, and Geo Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
- Environmental Engineering Study Program, Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Indonesia, Depok, 16424, Indonesia
| |
Collapse
|
28
|
Qing G, Foster SL, Anari Z, Matlock M, Thoma G, Greenlee LF. Disinfection/ammonia removal from aquaculture wastewater and disinfection of irrigation water using electrochemical flow cells: A case study in Hawaii. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2149-2168. [PMID: 34022089 DOI: 10.1002/wer.1588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/20/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
This field case study reports findings on disinfection/ammonia removal from aquaculture wastewater and disinfection of irrigation water carried out at an aquaculture farm and two irrigation locations in Hawaii. We used a flow cell incorporating PtRu/graphite anode and graphite cathode for the disinfection/ammonia removal from aquaculture wastewater, and a flow cell assembled with graphite plates as both anode and cathode for the disinfection of irrigation water. The removal of ammonia followed the indirect oxidation mechanism mediated by free chlorine electro-generated at the PtRu/graphite anode. Ammonia removal rate increased with the increase in NaCl concentration, applied current density, or flow rate. The disinfection of aquaculture wastewater can be readily achieved due to the presence of highly germicidal free chlorine species. The disinfection of irrigation water was realized without the addition of chemicals. The disinfection mechanism was attributed to the formation of free chlorine from the anodic oxidation of chloride ions naturally occurring in the water sources. The disinfection efficiency decreased with increasing organic matter concentration. In addition to the flow cell approach, we also successfully demonstrated the disinfection of irrigation water by adding electrolyzed NaCl solution or purging with a mixture of air and chlorine gas, both of which were generated on-site. PRACTITIONER POINTS: Field case study on disinfection/ammonia removal from aquaculture wastewater and disinfection of irrigation water was carried out in Hawaii. Electrochemical flow cell assembled with PtRu/graphite anode and graphite cathode effectively removes ammonia from aquaculture wastewater. Ammonia removal proceeds via the indirect oxidation mechanism mediated by free chlorine electro-generated at the PtRu/graphite anode. Electrochemical flow cell assembled with commercial graphite electrodes enables fast disinfection of coliform bacteria and E. coli. The primary disinfection mechanism is through chlorine species electro-generated from chloride oxidation at the graphite anode.
Collapse
Affiliation(s)
- Geletu Qing
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Shelby L Foster
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Zahra Anari
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Marty Matlock
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Greg Thoma
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Lauren F Greenlee
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
29
|
Comprehensive kinetics of electrochemically assisted ammonia removal in marine aquaculture recirculating systems. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Paired electrochemical removal of nitrate and terbuthylazine pesticide from groundwater using mesh electrodes. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Mieszkowska M, Grdeń M. Electrochemical deposition of nickel targets from aqueous electrolytes for medical radioisotope production in accelerators: a review. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04950-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractThis paper reviews reported methods of the electrochemical deposition of nickel layers which are used as target materials for accelerator production of medical radioisotopes. The review focuses on the electrodeposition carried out from aqueous electrolytes. It describes the main challenges related to the preparation of suitable Ni target layers, such as work with limited amounts of expensive isotopically enriched nickel; electrodeposition of sufficiently thick, smooth and free of cracks layers; and recovery of unreacted Ni isotopes from the irradiated targets and from used electrolytic baths.
Collapse
|
32
|
Wang L, Nickelsen M, Chiang SY, Woodard S, Wang Y, Liang S, Mora R, Fontanez R, Anderson H, Huang Q. Treatment of perfluoroalkyl acids in concentrated wastes from regeneration of spent ion exchange resin by electrochemical oxidation using Magnéli phase Ti4O7 anode. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2020.100078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Bagastyo AY, Hidayati AS, Herumurti W, Nurhayati E. Application of boron-doped diamond, Ti/IrO 2, and Ti/Pt anodes for the electrochemical oxidation of landfill leachate biologically pretreated by moving bed biofilm reactor. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1357-1368. [PMID: 33767042 DOI: 10.2166/wst.2021.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Conventional biological treatments used in most Indonesian landfill sites are mostly ineffective in treating stabilized landfill leachates to meet the standard regulation. Thus, a combination of biological and electrochemical process is offered to successfully treat leachates containing a high concentration of organic and nitrogenous compounds. In this study, a moving bed biofilm reactor (MBBR) was applied prior to electrochemical oxidation by using boron-doped diamond (BDD), Ti/IrO2, and Ti/Pt anodes with applied current of 350, 400 and 450 mA. The objectives were to investigate the effect of anode type and the applied current on the removal of organics as well as total nitrogen from the MBBR-treated leachate with electrochemical oxidation. The optimum removal of chemical oxygen demand (COD) observed on the Ti/Pt anode was 78% by applying 400 mA, with an estimated energy of 56.7 Wh g L-1. In the case of Ti/IrO2 and BDD anodes, the optimum removal of COD was 76 and 85% with an energy consumption of 58.9 and 36.9 Wh g L-1, respectively, both achieved at 350 mA. Although all anodes showed less-satisfactory performances for total nitrogen reduction, around 46-95% removal of nitrogenous compounds was achieved by MBBR, with their partial conversion to nitrates.
Collapse
Affiliation(s)
- Arseto Yekti Bagastyo
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, Indonesia 60111 E-mail:
| | - Arum Sofiana Hidayati
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, Indonesia 60111 E-mail:
| | - Welly Herumurti
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, Indonesia 60111 E-mail:
| | - Ervin Nurhayati
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, Indonesia 60111 E-mail:
| |
Collapse
|
34
|
Lin H, Peng H, Feng X, Li X, Zhao J, Yang K, Liao J, Cheng D, Liu X, Lv S, Xu J, Huang Q. Energy-efficient for advanced oxidation of bio-treated landfill leachate effluent by reactive electrochemical membranes (REMs): Laboratory and pilot scale studies. WATER RESEARCH 2021; 190:116790. [PMID: 33508906 DOI: 10.1016/j.watres.2020.116790] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/08/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
This study for the first time investigated the advanced treatment of bio-treated landfill leachate effluent using a novel reactive electrochemical membrane (REM) technology at the laboratory and pilot scales. At the laboratory scale, RuO2-Ir-REM, Ti4O7-REM, and β-PbO2-REM featured similar properties in pore size and water flux. Although RuO2-Ir-REM holds more reactive sites than the other two REMs, β-PbO2-REM and Ti4O7-REM featured higher oxidation ability than RuO2-Ir-REM, causing their high yield of hydroxyl radical. Consequently, β-PbO2-REM and Ti4O7-REM performed better than RuO2-Ir-REM, which removed total organic carbon and ammonia nitrogen by 70%-76% and 100%, respectively, after 45 minutes of treatment. Fluorescence spectroscopy analysis showed that humic acid-like substances were oxidized by the REM treatment. Using the β-PbO2-REM in the lab-scale setup with the solutions circulated, we observed a greater removal of chemical oxygen demand (COD) at a higher applied current or a faster water flux. The pilot system with four large size of β-PbO2-REMs modules in series was developed based on the lab-scale setup, which steadily treated landfill leachate in compliance with the disposal regulations of China, at an energy consumption of 3.6 kWh/m3. Also, a single-pass REM can effectively prevent the transformation of chloride to chlorate and perchlorate. Our study showed REM technology is a powerful and promising process for the advanced treatment of landfill leachate.
Collapse
Affiliation(s)
- Hui Lin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Hanjun Peng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Xingwei Feng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Xiaojing Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Jinbo Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Kui Yang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Jianbo Liao
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Xinhui Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Sihao Lv
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Jiale Xu
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, United States.
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, United States
| |
Collapse
|
35
|
Perfluorooctanesulfonate (PFOS), Its Occurrence, Fate, Transport and Removal in Various Environmental Media: A Review. CONTAMINANTS IN DRINKING AND WASTEWATER SOURCES 2021. [DOI: 10.1007/978-981-15-4599-3_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
36
|
Deng Y, Zhu X, Chen N, Feng C, Wang H, Kuang P, Hu W. Review on electrochemical system for landfill leachate treatment: Performance, mechanism, application, shortcoming, and improvement scheme. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140768. [PMID: 32726696 DOI: 10.1016/j.scitotenv.2020.140768] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/26/2020] [Accepted: 07/03/2020] [Indexed: 05/21/2023]
Abstract
Landfill leachate is a type of complex organic wastewater, which can easily cause serious negative impacts on the human health and ecological environment if disposed improperly. Electrochemical technology provides an efficient approach to effectively reduce the pollutants in landfill leachate. In this review, the electrochemical standalone processes (electrochemical oxidation, electrochemical reduction, electro-coagulation, electro-Fenton process, three-dimensional electrode process, and ion exchange membrane electrochemical process) and the electrochemical integrated processes (electrochemical-advanced oxidation process (AOP) and biological electrochemical process) for landfill leachate treatment are summarized, which include the performance, mechanism, application, existing problems, and improvement schemes such as cost-effectiveness. The main objective of this review is to help researchers understand the characteristics of electrochemical treatment of landfill leachate and to provide a useful reference for the design of the process and reactor for the harmless treatment of landfill leachate.
Collapse
Affiliation(s)
- Yang Deng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Xu Zhu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Haishuang Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Peijing Kuang
- College of Environment and Resources, Dalian Minzu University, Dalian 116600, China
| | - Weiwu Hu
- China University of Geosciences (Beijing), Journal Center, Beijing 100083, China
| |
Collapse
|
37
|
Ecotoxicological Evaluation of Methiocarb Electrochemical Oxidation. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ecotoxicity of methiocarb aqueous solutions treated by electrochemical oxidation was evaluated utilizing the model organism Daphnia magna. The electrodegradation experiments were performed using a boron-doped diamond anode and the influence of the applied current density and the supporting electrolyte (NaCl or Na2SO4) on methiocarb degradation and toxicity reduction were assessed. Electrooxidation treatment presented a remarkable efficiency in methiocarb complete degradation and a high potential for reducing the undesirable ecological effects of this priority substance. The reaction rate followed first-order kinetics in both electrolytes, being more favorable in a chloride medium. In fact, the presence of chloride increased the methiocarb removal rate and toxicity reduction and favored nitrogen removal. A 200× reduction in the acute toxicity towards D. magna, from 370.9 to 1.6 toxic units, was observed for the solutions prepared with NaCl after 5 h treatment at 100 A m−2. An increase in the applied current density led to an increase in toxicity towards D. magna of the treated solutions. At optimized experimental conditions, electrooxidation offers a suitable solution for the treatment and elimination of undesirable ecological effects of methiocarb contaminated industrial or agricultural wastewaters, ensuring that this highly hazardous pesticide is not transferred to the aquatic environment.
Collapse
|
38
|
Elmaadawy K, Liu B, Hu J, Hou H, Yang J. Performance evaluation of microbial fuel cell for landfill leachate treatment: Research updates and synergistic effects of hybrid systems. J Environ Sci (China) 2020; 96:1-20. [PMID: 32819684 DOI: 10.1016/j.jes.2020.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Over half of century, sanitary landfill was and is still the most economical treatment strategy for solid waste disposal, but the environmental risks associated with the leachate have brought attention of scientists for its proper treatment to avoid surface and ground water deterioration. Most of the treatment technologies are energy-negative and cost intensive processes, which are unable to meet current environmental regulations. There are continuous demands of alternatives concomitant with positive energy and high effluent quality. Microbial fuel cells (MFCs) were launched in the last two decades as a potential treatment technology with bioelectricity generation accompanied with simultaneous carbon and nutrient removal. This study reviews capability and mechanisms of carbon, nitrogen and phosphorous removal from landfill leachate through MFC technology, as well as summarizes and discusses the recent advances of standalone and hybrid MFCs performances in landfill leachate (LFL) treatment. Recent improvements and synergetic effect of hybrid MFC technology upon the increasing of power densities, organic and nutrient removal, and future challenges were discussed in details.
Collapse
Affiliation(s)
- Khaled Elmaadawy
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, China
| | - Bingchuan Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, China.
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
39
|
Mandal P, Yadav MK, Gupta AK, Dubey BK. Chlorine mediated indirect electro-oxidation of ammonia using non-active PbO2 anode: Influencing parameters and mechanism identification. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116910] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Impact of sulfate ion addition on electrochemical oxidation of anaerobically treated landfill leachate using boron-doped diamond anode. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04243-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Electro-Oxidation of Humic Acids Using Platinum Electrodes: An Experimental Approach and Kinetic Modelling. WATER 2020. [DOI: 10.3390/w12082250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Humic acids (HA) are a potential hazard to aquatic ecosystems and human health. Because biological treatment of contaminated water does not satisfactorily remove these pollutants, novel approaches are under evaluation. This work explores electrochemical oxidation of HA in aqueous solution in a lab-scale apparatus using platinum-coated titanium electrodes. We evaluated the effects of HA concentration, current density, chloride concentration and ionic strength on the rate of HA oxidation. The initial reaction rate method was used for determining the rate law of HA degradation. The results showed that the reaction rate was first-order relative to HA concentration, chloride concentration and current density. An appreciable effect of ionic strength was also observed, most likely due to the polyanionic character of HA. We propose a kinetic model that satisfactorily fits the experimental data.
Collapse
|
42
|
Moradi M, Vasseghian Y, Khataee A, Kobya M, Arabzade H, Dragoi EN. Service life and stability of electrodes applied in electrochemical advanced oxidation processes: A comprehensive review. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.03.038] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Xu B, Iskander SM, He Z. Dominant formation of unregulated disinfection by-products during electrocoagulation treatment of landfill leachate. ENVIRONMENTAL RESEARCH 2020; 182:109006. [PMID: 31863939 DOI: 10.1016/j.envres.2019.109006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/26/2019] [Accepted: 12/04/2019] [Indexed: 05/27/2023]
Abstract
During the electrocoagulation (EC) treatment of landfill leachate, the production of chlorine species may result in the formation of harmful disinfection by-products (DBPs). This formation was investigated in the present study by monitoring five classes of DBPs (haloacetic acids-HAA, trihalomethanes-THM, haloacetonitriles-HAN, haloketones-HK, and halonitromethanes-HNM) in two leachate samples treated by EC. It was shown that the applied current has stimulated the formation of DBPs, which were dominated by unregulated DBPs. With a current density of 100 mA cm-2, the unregulated HK dominated the weight-based DBP concentration (96% in Leachate A and 44.3% in Leachate B), while the unregulated HAN contributed to >80% of the DBP additive toxicity in both leachates. The concentrations of regulated THM and HAA species were below US EPA regulations. The in situ generation of active chlorine has resulted in the DBP formation, as demonstrated in the scavenging test. Applying granular activated carbon as a post-treatment step could successfully reduce the total DBP concentration from 295.33 μg L-1 to 82.04 μg L-1 in Leachate A, leading to a total DBP removal of 72.2% and a toxicity removal of 50%. Given the dominant concentration and lack of toxicity information, the unregulated DBPs should receive more attention.
Collapse
Affiliation(s)
- Bing Xu
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Syeed Md Iskander
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, 90007, USA
| | - Zhen He
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
44
|
Iskander SM, Zeng T, Smiley E, Bolyard SC, Novak JT, He Z. Formation of disinfection byproducts during Fenton's oxidation of chloride-rich landfill leachate. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121213. [PMID: 31557577 DOI: 10.1016/j.jhazmat.2019.121213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/01/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Because of the production of chlorine species in leachate during Fenton's oxidation, harmful disinfection byproducts (DBP) can be formed but this has not been well studied before. Herein, we have investigated five classes of DBP: trihalomethanes, haloacetic acids, haloacetonitriles, haloketones, and halonitromethanes during Fenton's oxidation of landfill leachates. The results show that the DBP concentration increased with the increase of [H2O2]: [Cl-] ratio due to the increased concentration of chlorine species. The highest total DBP concentration was 4860 μg L-1 at [H2O2]: [Cl-] = 4.0 and the lowest was 84 μg L-1 at [H2O2]: [Cl-] = 0.25. Both the DBP concentration and DBP toxicity increased with the increase of the [H2O2]: [Fe2+] ratio, because of the increased concentration and lifetime of the chlorine species. Most of the DBP were formed during the first minute of the reaction and stayed stable up to 3 h, indicating that DBP may not be preferred targets of hydroxyl radicals in the presence of a large amount of organics. In most cases, trihalomethanes dominated the DBP concentration, while haloacetonitriles dominated the total additive toxicity. This study has provided important implications to understand DBP formation during Fenton's oxidation.
Collapse
Affiliation(s)
- Syeed Md Iskander
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Teng Zeng
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, United States
| | - Elizabeth Smiley
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Stephanie C Bolyard
- Environmental Research & Education Foundation, Raleigh, NC 27609, United States
| | - John T Novak
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Zhen He
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States.
| |
Collapse
|
45
|
Schranck A, Doudrick K. Effect of reactor configuration on the kinetics and nitrogen byproduct selectivity of urea electrolysis using a boron doped diamond electrode. WATER RESEARCH 2020; 168:115130. [PMID: 31606555 DOI: 10.1016/j.watres.2019.115130] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Electrochemical systems have emerged as an advantageous approach for decentralized management of source-separated urine with the possibility of recovering or removing nutrients and generating energy. In this study, the kinetics and byproduct selectivity of the electrolytic removal of urea were investigated using a boron doped diamond working electrode under varied operational conditions with a primary focus on comparing undivided and divided reactors. The urea removal rate in the undivided and divided reactors was similar, but the divided reactor had an increased required cell voltage needed to maintain the equivalent current density. The current efficiency was similar for 0.1, 0.25, and 0.5 A (33.3, 83.3, 167 mA/cm2), suggesting no interference from competing reactions at higher potentials. In a divided reactor, increasing the anolyte pH reduced the urea removal rate presumably from hydroxyl radical scavenging by hydroxide. Further, for all divided reactor experiments, the final pH was less than 1, suggesting that the transport of protons across the ion exchange membrane to the cathode was slower than the oxidation reactions producing protons. The nitrogen byproduct selectivity was markedly different in the undivided and divided reactors. In both reactors, nitrate (NO3-) formed as the main byproduct at the anode, but in the undivided reactor it was reduced at the stainless steel cathode to ammonia. In the presence of 1 M chloride, the urea removal kinetics improved from the generation of reactive chlorine species, and the byproduct selectivity was shifted away from NO3- to presumably chloramines and N2. Overall, these results indicate that the electrochemical reactor configuration should be carefully considered depending on the desired outcome of treating source-separated urine (e.g., nitrogen recovery, H2 generation).
Collapse
Affiliation(s)
- Andrew Schranck
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kyle Doudrick
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
46
|
Pieczyńska A, Ochoa-Chavez SA, Wilczewska P, Bielicka-Giełdoń A, Siedlecka EM. Insights into Mechanisms of Electrochemical Drug Degradation in Their Mixtures in the Split-Flow Reactor. Molecules 2019; 24:E4356. [PMID: 31795278 PMCID: PMC6930462 DOI: 10.3390/molecules24234356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 11/17/2022] Open
Abstract
The recirculating split-flow batch reactor with a cell divided into anolyte and catholyte compartments for oxidation mixture of cytostatic drugs (CD) was tested. In this study, kinetics and mechanisms of electrochemical oxidization of two mixtures: 5-FU/CP and IF/CP were investigated. The order of the CD degradation rate in single drug solutions and in mixtures was found to be 5-FU < CP < IF. In the 5-FU/CP mixture, kapp of 5-FU increased, while kapp of CP decreased comparing to the single drug solutions. No effect on the degradation rate was found in the CP/IF mixture. The presence of a second drug in the 5-FU/CP mixture significantly altered mineralization and nitrogen removal efficiency, while these processes were inhibited in IF/CP. The experiments in the different electrolytes showed that •OH and sulphate active species can participate in the drug's degradation. The kapp of the drugs was accelerated by the presence of Cl- ions in the solution. Chlorine active species played the main role in the production of gaseous nitrogen products and increased the mineralisation. Good results were obtained for the degradation and mineralisation processes in mixtures of drugs in municipal wastewater-treated effluent, which is beneficial from the technological and practical point of view.
Collapse
Affiliation(s)
- Aleksandra Pieczyńska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (A.P.); (P.W.); (A.B.-G.)
| | - Stalin Andres Ochoa-Chavez
- Centro de Investigación y Control Ambiental, Departamento de Ingeniería Civil y Ambiental, Escurla Politécnica Nacional, Ladrón de Guevara E11-253, Quito P.O. Box 17-01-2759, Ecuador;
| | - Patrycja Wilczewska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (A.P.); (P.W.); (A.B.-G.)
| | - Aleksandra Bielicka-Giełdoń
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (A.P.); (P.W.); (A.B.-G.)
| | - Ewa M. Siedlecka
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (A.P.); (P.W.); (A.B.-G.)
| |
Collapse
|
47
|
Liu X, Novak JT, He Z. Removal of landfill leachate ultraviolet quenching substances by electricity induced humic acid precipitation and electrooxidation in a membrane electrochemical reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:571-579. [PMID: 31279203 DOI: 10.1016/j.scitotenv.2019.06.329] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
Persistent UV quenching substances (UVQS) in landfill leachate can affect the effectiveness of UV disinfection in domestic wastewater treatment systems when leachate is being co-treated. As a result, effective onsite leachate pre-treatment will have to be implemented to reduce the UV quenching capability. Herein, a membrane electrochemical reactor (MER) was developed and investigated for treating UV quenching organics contained in landfill leachate. Compared to a control reactor that did not have a membrane separator, the MER achieved significantly higher removals of both dissolved organic carbon (61.5 ± 4.1%) and UV254nm absorbance (63.4 ± 8.4%). This enhanced performance was likely due to the combined effects of humic acid precipitation and augmented oxidation of organics. The MER was able to remove 89.1 ± 2.9% of total nitrogen from the leachate while recovering about 51% of the influent ammonia in the catholyte, in comparison to 38.1 ± 4.4% of total nitrogen removal by the control reactor. The MER consumed significantly less electrical energy with specific energy consumption of 70.62 kWh kg-1 DOC or 33.03 kWh kg-1 sCOD, compared to that of the control reactor (211.8 kWh kg-1 DOC or 55.02 kWh kg-1 sCOD). A current density of 20 mA cm-2 was considered optimal in terms of both UVQS removal and energy efficiency. Consideration should be given to the spacing of electrodes to minimize internal resistance and also to avoid trapping of the produced gas bubbles. These results collectively suggest that the MER is a promising onsite pretreatment approach for landfill leachate and further exploration of this technology should be encouraged.
Collapse
Affiliation(s)
- Xingjian Liu
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - John T Novak
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Zhen He
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
48
|
Xiaocai Yu, Yang H, Liu J, Wang L, Guo M. Electrochemical Degradation of Ammonia Nitrogen in Mariculture Wastewater Using an Activated Carbon Fiber Composite Anode. SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY 2019. [DOI: 10.3103/s1068375519050144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Silveira JE, Zazo JA, Casas JA. Coupled heat-activated persulfate - Electrolysis for the abatement of organic matter and total nitrogen from landfill leachate. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 97:47-51. [PMID: 31447026 DOI: 10.1016/j.wasman.2019.07.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/05/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
This work analyzes the viability of a coupled heat-activated persulfate (PS) and electro-oxidation treatment toabatetheorganic matter and nitrogen from ahigh polluted landfill leachate (5500 mg L-1 TOC; 5849 mg L-1 TN, pH: 8.4). These characteristics makes PS as a suitable oxidant to deal with the recalcitrant organic matter. Under the optimal conditions (70 °C and 60% of the stoichiometric amount of PS), around 60% of the initial organic load was mineralized. On the contrary, the nitrogen removal was below 20%. A subsequent electrolytic stage using Ti/IrO2-TaO2 anode at 175 mA cm-2 and 0.42 M NaCl during 60 min, led to overall organic matter and nitrogen removal above 85% and 90%, respectively, with energy requirement of 38 kWh per kg of nitrogen removed. In this sense, the combined process achieves a significant reduction in terms of energy consumption, up to one fifth in relation to sole electrolysis. These results confirm the feasibility of this combined process to treat landfill leachate.
Collapse
Affiliation(s)
- Jefferson E Silveira
- Chemical Engineering, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | - Juan A Zazo
- Chemical Engineering, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Jose A Casas
- Chemical Engineering, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
50
|
Fernandes A, Chamem O, Pacheco MJ, Ciríaco L, Zairi M, Lopes A. Performance of Electrochemical Processes in the Treatment of Reverse Osmosis Concentrates of Sanitary Landfill Leachate. Molecules 2019; 24:molecules24162905. [PMID: 31405098 PMCID: PMC6720919 DOI: 10.3390/molecules24162905] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/25/2019] [Accepted: 08/08/2019] [Indexed: 11/16/2022] Open
Abstract
Electrochemical technologies have been broadly applied in wastewaters treatment, but few studies have focused on comparing the performance of the different electrochemical processes, especially when used to treat highly-polluted streams. The electrochemical treatment of a reverse osmosis concentrate of sanitary landfill leachate was performed by means of electrocoagulation (EC), anodic oxidation (AO) and electro-Fenton (EF) processes, and the use of different electrode materials and experimental conditions was assessed. All the studied processes and experimental conditions were effective in organic load removal. The results obtained showed that EC, with stainless steel electrodes, is the cheapest process, although it presents the disadvantage of sludge formation with high iron content. At high applied current intensity, AO presents the best treatment time/energy consumption ratio, especially if the samples’ initial pH is corrected to 3. However, pH correction from natural to 3 deeply decreases nitrogen-containing compounds’ removal. For longer treatment time, the EF process with a carbon-felt cathode and a BDD anode, performed at natural iron content and low applied current intensity, is the most favorable solution.
Collapse
Affiliation(s)
- Annabel Fernandes
- FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior, 6201-001 Covilhã, Portugal.
| | - Oumaima Chamem
- Water, Energy and Environment Laboratory, National School of Engineering of Sfax (ENIS), Sfax 3038, Tunisia
| | - Maria José Pacheco
- FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
| | - Lurdes Ciríaco
- FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
| | - Moncef Zairi
- Water, Energy and Environment Laboratory, National School of Engineering of Sfax (ENIS), Sfax 3038, Tunisia
| | - Ana Lopes
- FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior, 6201-001 Covilhã, Portugal.
| |
Collapse
|