1
|
Chavarria K, Batista J, Saltonstall K. Widespread occurrence of fecal indicator bacteria in oligotrophic tropical streams. Are common culture-based coliform tests appropriate? PeerJ 2024; 12:e18007. [PMID: 39253603 PMCID: PMC11382651 DOI: 10.7717/peerj.18007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Monitoring of stream water quality is a key element of water resource management worldwide, but methods that are commonly used in temperate habitats may not be appropriate in humid tropical systems. We assessed the influence of four land uses on microbial water quality in 21 streams in the Panama Canal Watershed over a one-year period, using a common culture-based fecal indicator test and 16S rDNA metabarcoding. Each stream was located within one of four land uses: mature forest, secondary forest, silvopasture, and traditional cattle pasture. Culturing detected total coliforms and Escherichia coli across all sites but found no significant differences in concentrations between land uses. However, 16S rDNA metabarcoding revealed variability in the abundance of coliforms across land uses and several genera that can cause false positives in culture-based tests. Our results indicate that culture-based fecal indicator bacteria tests targeting coliforms may be poor indicators of fecal contamination in Neotropical oligotrophic streams and suggest that tests targeting members of the Bacteroidales would provide a more reliable indication of fecal contamination.
Collapse
Affiliation(s)
- Karina Chavarria
- Smithsonian Tropical Research Institute, Panama City, Panama
- Department of Civil and Environmental Engineering, University of Massachusetts at Amherst, Amherst, MA, United States of America
| | - Jorge Batista
- Smithsonian Tropical Research Institute, Panama City, Panama
| | | |
Collapse
|
2
|
Tuo J, Shen Y, Jia S, Liu S, Zhang Q, Wang D, He X, Liu P, Zhang XX. HPB-Chip: An accurate high-throughput qPCR-based tool for rapidly profiling waterborne human pathogenic bacteria in the environment. WATER RESEARCH 2024; 260:121927. [PMID: 38941866 DOI: 10.1016/j.watres.2024.121927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/30/2024]
Abstract
Waterborne pathogens are threatening public health globally, but profiling multiple human pathogenic bacteria (HPBs) in various polluted environments is still a challenge due to the absence of rapid, high-throughput and accurate quantification tools. This work developed a novel chip, termed the HPB-Chip, based on high-throughput quantitative polymerase chain reactions (HT-qPCR). The HPB-Chip with 33-nL reaction volume could simultaneously complete 10,752 amplification reactions, quantifying 27 HPBs in up to 192 samples with two technical replicates (including those for generating standard curves). Specific positive bands of target genes across different species and single peak melting curves demonstrated high specificity of the HPB-Chip. The mixed plasmid serial dilution test validated its high sensitivity with the limit of quantification (LoD) of averaged 82 copies per reaction for 25 target genes. PCR amplification efficiencies and R2 coefficients of standard curves of the HPB-Chip averaged 101 % and 0.996, respectively. Moreover, a strong positive correlation (Pearson' r: 0.961-0.994, P < 0.001) of HPB concentrations (log10 copies/L) between HPB-Chip and conventional qPCR demonstrated high accuracy of the HPB-Chip. Subsequently, the HPB-Chip has been successfully applied to absolutely quantify 27 HPBs in municipal and hospital wastewater treatment plants (WWTPs) after PMA treatment. A total of 17 HPBs were detected in the 6 full-scale WWTPs, with an additional 19 in the hospital WWTP. Remarkably, Acinetobacter baumannii, Legionella pneumophila, and Arcobacter butzler were present in the final effluent of each municipal WWTP. Overall, the HPB-Chip is an efficient and accurate high-throughput quantification tool to comprehensively and rapidly quantify 27 HPBs in the environment.
Collapse
Affiliation(s)
- Jinhua Tuo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yan Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shuyu Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengnan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qifeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Depeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Peng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
3
|
Sekgobela JM, Murei A, Khabo-Mmekoa CM, Momba MNB. Identification of fecal contamination sources of groundwater in rural areas of Vhembe District Municipality, Limpopo Province, South Africa. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10965. [PMID: 38151283 DOI: 10.1002/wer.10965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/30/2023] [Accepted: 11/30/2023] [Indexed: 12/29/2023]
Abstract
Groundwater is a valuable source of drinking water worldwide, recognized as an improved drinking water source. However, on-site sanitation systems may put groundwater at risk of fecal contamination. In the present study, two approaches were used to ascertain the sources of fecal contamination in groundwater used by communities of the Vhembe District Municipality. Overall, 87.5% of boreholes (n = 70) in the wet and 72.5% in the dry season were contaminated with Escherichia coli, and septic tank (n = 18) wastewaters displayed up to 104 cfu/mL E. coli. Host-specific Bacteroidales quantitative polymerase chain reaction (qPCR) assays established the presence of human (BacHum and HF183) and animal (Cytb, BacCan, and Pig-2Bac) genetic markers in groundwater from 15.7% of boreholes (wet) and 10% of boreholes (dry). No strong associations were founded between culturable E. coli counts and the presence/absence of marker genes for all the markers except for Cytb marker, which showed a weak significant correlation (r = 0.217; p = <0.01) between E. coli and the Cytb marker under dry seasonal conditions. Human markers and Cytb were present in the household septic tank wastewater samples. Significant differences in marker genes distribution in wastewater were observed using the Chi-squared test: HF183 (p = <0.001) and BacHum (p = <0.001). Overall, no association was recorded between markers in groundwater and in wastewater for 18 households' septic tanks. A combined culturable E. coli and host-specific Bacteroidales qPCR assays remain an appropriate approach for the identification of fecal contamination of groundwater. PRACTITIONER POINTS: Households primarily used private boreholes for drinking water, as a primary source. Most households used on-site sanitation systems, including ventilated improved pit latrines and flush toilets connected to septic tanks. Escherichia coli was detected in groundwater, and the sources of fecal contamination were humans and animals (pigs, dogs, and chickens). The presence of human and animal markers in groundwater suggests that humans and animals are liable for fecal contamination. Fecal contamination in drinking water sources poses a significant concern due to pathogenic microorganisms posing potential human health risks.
Collapse
Affiliation(s)
- Jeridah Matlhokha Sekgobela
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Arinao Murei
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Pretoria, South Africa
| | | | - Maggy Ndombo Benteke Momba
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
4
|
Liu Z, Lin Y, Ge Y, Zhu Z, Yuan J, Yin Q, Liu B, He K, Hu M. Meta-analysis of microbial source tracking for the identification of fecal contamination in aquatic environments based on data-mining. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118800. [PMID: 37591102 DOI: 10.1016/j.jenvman.2023.118800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/29/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Microbial source tracking (MST) technology represents an innovative approach employed to trace fecal contamination in environmental water systems. The performance of primers may be affected by amplification techniques, target primer categories, and regional differences. To investigate the influence of these factors on primer recognition performance, a meta-analysis was conducted on the application of MST in water environments using three databases: Web of Science, Scopus, and PubMed (n = 2291). After data screening, 46 studies were included in the final analysis. The investigation encompassed Polymerase Chain Reaction (PCR)/quantitative PCR (qPCR) methodologies, dye-based (SYBR)/probe-based (TaqMan) techniques, and geographical differences of a human host-specific (HF183) primer and other 21 additional primers. The results indicated that the primers analyzed were capable of differentiating host specificity to a certain degree. Nonetheless, by comparing sensitivity and specificity outcomes, it was observed that virus-based primers exhibited superior specificity and recognition capacity, as well as a stronger correlation with human pathogenicity in water environments compared to bacteria-based primers. This finding highlights an important direction for future advancements. Moreover, within the same category, qPCR did not demonstrate significant benefits over conventional PCR amplification methods. In comparing dye-based and probe-based techniques, it was revealed that the probe-based method's advantage lay primarily in specificity, which may be associated with the increased propensity of dye-based methods to produce false positives. Furthermore, the heterogeneity of the HF183 primer was not detected in China, Canada, and Singapore respectively, indicating a low likelihood of regional differences. The variation among the 21 other primers may be attributable to regional differences, sample sources, detection techniques, or alternative factors. Finally, we identified that economic factors, climatic conditions, and geographical distribution significantly influence primer performance.
Collapse
Affiliation(s)
- Zejun Liu
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China; Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yingying Lin
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Yanhong Ge
- Guangdong Infore Technology Co., Ltd, Foshan, 528322, China
| | - Ziyue Zhu
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Jinlong Yuan
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Qidong Yin
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Bingjun Liu
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Kai He
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China.
| | - Maochuan Hu
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China; Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
5
|
Ahmed W, Payyappat S, Cassidy M, Harrison N, Besley C. Microbial source tracking of untreated human wastewater and animal scats in urbanized estuarine waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162764. [PMID: 36907409 DOI: 10.1016/j.scitotenv.2023.162764] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 05/06/2023]
Abstract
The study assessed the performance characteristics of host sensitivity, host specificity and concentration for seven human wastewater- and six animal scat-associated marker genes by analysing human wastewater and animal scat samples from urban catchments of the mega-coastal city of Sydney, Australia. Absolute host sensitivity was exhibited across three criteria used to assess seven human wastewater-associated marker genes of cross-assembly phage (CrAssphage), human adenovirus (HAdV), Bacteroides HF183 (HF183), human polyomavirus (HPyV), Lachnospiraceae (Lachno3), Methnobrevibacter smithii nifH (nifH) and pepper mild mottle virus (PMMoV). In contrast, only the horse scat-associated marker gene Bacteroides HoF597 (HoF597) exhibited absolute host sensitivity. The absolute host specificity value of 1.0 was returned for the wastewater-associated marker genes of HAdV, HPyV, nifH and PMMoV for each of the three applied host specificity calculation criteria, while values of >0.9 were returned for CrAssphage and Lachno3. Ruminants and cow scat-associated marker genes of BacR and CowM2, respectively exhibited the absolute host specificity value of 1.0. Concentrations of Lachno3 were greater in most human wastewater samples followed by CrAssphage, HF183, nifH, HPyV, PMMoV and HAdV. Human wastewater marker genes were detected in several scat samples from cats and dogs, and this suggests concordant sampling of animal scat-associated marker genes and at least two human wastewater-associated marker genes will be required to assist in interpretation of fecal sources in environmental waters. A greater prevalence, together with several samples with greater concentrations of human wastewater-associated marker genes PMMoV and CrAssphage warrant consideration by water quality managers for the detection of diluted human fecal pollution in estuarine waters.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Sudhi Payyappat
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Michele Cassidy
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Nathan Harrison
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Colin Besley
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| |
Collapse
|
6
|
Devane M, Dupont PY, Robson B, Lin S, Scholes P, Wood D, Weaver L, Webster-Brown J, Gilpin B. Mobilization of Escherichia coli and fecal source markers from decomposing cowpats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158509. [PMID: 36063947 DOI: 10.1016/j.scitotenv.2022.158509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
In rural environments, the sources of fecal contamination in freshwater environments are often diffuse and a mix of fresh and aged fecal sources. It is important for water monitoring purposes, therefore, to understand the impacts of weathering on detection of the fecal source markers available for mobilization from livestock sources. This study targets the impacts of rainfall events on the mobilization of fecal source tracking (FST) markers from simulated cowpats decomposing in situ for five-and-a-half-months. The FST markers analysed were Escherichia coli, microbial source tracking (MST) markers, fecal steroids and a fecal ageing ratio based on the ratio between counts of river microflora and total coliforms. There was a substantial concentration of E. coli (104/100 mL) released from the ageing cowpats suggesting a long-term reservoir of E. coli in the cowpat. Mobilization of fecal markers from rainfall-impacted cowpats, however, was markedly reduced compared with fecal markers in the cowpat. Overall, the Bacteroidales bovine-associated MST markers were less persistent than E. coli in the cowpat and rainfall runoff. The ten fecal steroids, including the major herbivore steroid, 24-ethylcoprostanol, are shown to be stable markers of bovine pollution due to statistically similar degradation rates among all steroids. The mobilizable fraction for each FST marker in the rainfall runoff allowed generation of mobilization decline curves and the derived decline rate constants can be incorporated into source attribution models for agricultural contaminants. Findings from this study of aged bovine pollution sources will enable water managers to improve attribution of elevated E. coli to the appropriate fecal source in rural environments.
Collapse
Affiliation(s)
- Megan Devane
- Institute of Environmental Science and Research Ltd., (ESR) 27 Creyke Rd, Ilam, Christchurch, New Zealand.
| | - Pierre-Yves Dupont
- Institute of Environmental Science and Research Ltd., (ESR) 27 Creyke Rd, Ilam, Christchurch, New Zealand
| | - Beth Robson
- Institute of Environmental Science and Research Ltd., (ESR) 27 Creyke Rd, Ilam, Christchurch, New Zealand
| | - Susan Lin
- Institute of Environmental Science and Research Ltd., (ESR) 27 Creyke Rd, Ilam, Christchurch, New Zealand
| | - Paula Scholes
- Institute of Environmental Science and Research Ltd., (ESR) 27 Creyke Rd, Ilam, Christchurch, New Zealand
| | - David Wood
- Institute of Environmental Science and Research Ltd., (ESR) 27 Creyke Rd, Ilam, Christchurch, New Zealand
| | - Louise Weaver
- Institute of Environmental Science and Research Ltd., (ESR) 27 Creyke Rd, Ilam, Christchurch, New Zealand
| | - Jenny Webster-Brown
- Waterways Centre for Freshwater Management, University of Canterbury, Christchurch, New Zealand
| | - Brent Gilpin
- Institute of Environmental Science and Research Ltd., (ESR) 27 Creyke Rd, Ilam, Christchurch, New Zealand
| |
Collapse
|
7
|
Wang J, Ranjbaran M, Ault A, Verma MS. A loop-mediated isothermal amplification assay to detect Bacteroidales and assess risk of fecal contamination. Food Microbiol 2022; 110:104173. [DOI: 10.1016/j.fm.2022.104173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/04/2022]
|
8
|
Ragot R, Villemur R. Influence of temperature and water quality on the persistence of human mitochondrial DNA, human Hf183 Bacteroidales, fecal coliforms and enterococci in surface water in human fecal source tracking context. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156025. [PMID: 35588844 DOI: 10.1016/j.scitotenv.2022.156025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Mitochondrial DNA (mtDNA) is used as a genetic marker to track fecal contamination in surface water. Its potential to effectively discriminate between the nonpoint sources of fecal pollution (e.g. human, livestock) in water environments is relevant for water quality management. However, there is a lack of knowledge about the environmental persistence of mtDNA in relation to those of other microbial parameters, such as fecal indicator bacteria (FIB). In this study, mesocosms composed of water collected from four rivers and tap water were spiked with raw wastewater to mimic human fecal contamination. Mesocosms composed of raw wastewater were also studied. The mesocosms were incubated at 4 °C or at 22 °C for 189 days, from which the levels of human mtDNA (HumtDNA) and human Bacteroidales (Hf183) were measured by qPCR. The levels of FIB (fecal coliforms and enterococci) and heterotrophs were determined by culture methods along with the determination of physicochemical attributes. The decay rates of the genetic markers and FIB were determined with first-order decay rate models. The decay rates of HumtDNA (0.004-0.059 d-1), Hf183 (0.007-0.082 d-1), and the two FIBs (0.005-0.066 d-1) were similar at 4 °C, while the genetic markers both had higher decay rates (0.013-0.919 d-1) at 22 °C. Different HumtDNA decay rates were observed between the river mesocosms (0.043-0.919 d-1) and the wastewater and tap water mesocosms (0.004-0.095 d-1). Covariations of pH and conductivity among the HumtDNA, Hf183 and FIB decay rates were observed. HumtDNA and Hf183 had similar environmental persistence, whereas fecal coliforms and enterococci persisted longer at 22 °C. Finally, HumtDNA had the same trends of persistence in the four river mesocosms, suggesting a relative stability of this marker in different rivers. Our results suggest that HumtDNA could be more suitable for tracking the source of a recent fecal contamination in complement to FIB.
Collapse
Affiliation(s)
- Rose Ragot
- INRS Centre Armand-Frappier Santé Biotechnologie, Canada.
| | | |
Collapse
|
9
|
Nopprapun P, Boontanon SK, Harada H, Surinkul N, Fujii S. Evaluation of a human-associated genetic marker for Escherichia coli (H8) for fecal source tracking in Thailand. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:2929-2936. [PMID: 33341782 DOI: 10.2166/wst.2020.525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High levels of microbial fecal pollution are a major concern in many countries. A human-associated genetic marker for Escherichia coli (H8) has recently been developed for fecal source tracking. The assessment of the H8 marker performance is crucial before it can be applied as a suitable method for fecal source tracking in each country. The performance (specificity and sensitivity) of the H8 marker was evaluated by using non-target host groups (cattle, buffalo, chicken, duck, and pig feces) and target host groups (influent and effluent from a wastewater treatment plant and septages). SYBR based real-time PCR (polymerase chain reaction) was done on 400 E. coli isolates from non-target and target host groups after E. coli isolation. It was found that the specificity from animal feces samples collected in Thailand was 96%. Moreover, influent, effluent, and septage samples showed the values of the sensitivity at 18, 12, and 36%, respectively. All of the non-target host groups were found to be significantly different with positive proportions from the target host group (septage samples) (p ≤ 0.01). Based on the results, this marker is recommended for use as a human-associated E. coli marker for identifying sources of fecal pollution in Thailand.
Collapse
Affiliation(s)
- Pimchanok Nopprapun
- Civil and Environmental Engineering Department, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand E-mail:
| | - Suwanna Kitpati Boontanon
- Civil and Environmental Engineering Department, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand E-mail: ; Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hidenori Harada
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan; Graduate School of Asian and African Area Studies, Kyoto University, 46 Yoshida-Shimoadachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Nawatch Surinkul
- Civil and Environmental Engineering Department, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand E-mail:
| | - Shigeo Fujii
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
10
|
Gyawali P, Hamilton K, Joshi S, Aster D, Ahmed W. Identification of reliable marker genes for the detection of canine fecal contamination in sub-tropical Australia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137246. [PMID: 32105941 DOI: 10.1016/j.scitotenv.2020.137246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/09/2020] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
Animal fecal contamination in aquatic environments is a major source of zoonotic diseases in humans. While concerns are focused on livestock, companion animals such as dogs can also be a source of a wide range of zoonotic pathogens. Therefore, detection of dog or canine fecal contamination in aquatic environments is important for mitigating risks. In this study, host-sensitivity and specificity of four canine fecal-associated marker genes were evaluated by analyzing 30 canine and 240 non-canine fecal samples. The application of these markers was also tested in water from an urban river under dry weather conditions. The host sensitivity values of the Bacteroides BacCan-UCD, DogBact, DF113 and DF418 were 1.00, 0.90, 0.83, and 0.90, respectively. The host specificity value of the BacCan-UCD, DogBact, DF113 and DF418 were 0.87, 0.98, 0.83, and 0.41, respectively. The mean concentrations of DF418 were highest (7.82 ± 1.13 log10 gene copies (GC)/g of feces) followed by BacCan-UCD (7.61 ± 1.06 log10 GC/g) and DogBact (7.15 ± 0.92 log10 GC/g). The mean concentration of DF113 (5.80 ± 1.25 log10 GC/g) was 1.5 to 2.5 orders of magnitude lower than the other marker genes. The DogBact marker gene was not detected in any other animal feces other than a small number of untreated sewage samples. The BacCan-UCD marker gene cross-reacted with cat, chicken, and pig fecal samples, while the DF113 marker gene cross-reacted with cat, chicken, cattle fecal and untreated sewage samples. The DF418 marker gene was detected in all sewage and animal feces and deemed not suitable for canine fecal contamination tracking in sub-tropical Australia. Canine fecal contamination was infrequently detected in environmental water samples. Based on the results obtained in this study, we recommend that at least two canine feces-associated marker genes should be used in field studies.
Collapse
Affiliation(s)
- Pradip Gyawali
- Institute of Environmental Science and Research Ltd (ESR), Porirua 5240, New Zealand
| | - Kerry Hamilton
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ 85281, USA; The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S McAlister Ave, Tempe, AZ 85281, USA
| | - Sayalee Joshi
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ 85281, USA; The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S McAlister Ave, Tempe, AZ 85281, USA
| | - David Aster
- Department of Agriculture and Fisheries, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| |
Collapse
|
11
|
Fan L, Zhang X, Zeng R, Wang S, Jin C, He Y, Shuai J. Verification of Bacteroidales 16S rRNA markers as a complementary tool for detecting swine fecal pollution in the Yangtze Delta. J Environ Sci (China) 2020; 90:59-66. [PMID: 32081341 DOI: 10.1016/j.jes.2019.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/02/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
To correctly assess and properly manage the public health risks associated with exposure to contaminated water, it is necessary to identify the source of fecal pollution in a watershed. In this study, we evaluated the efficacy of our two previously developed real time-quantitative PCR (qPCR) assays for the detection of swine-associated Bacteroidales genetic markers (gene 1-38, gene 3-53) in the Yangtze Delta watershed of southeastern China. The results indicated that the gene 1-38 and 3-53 markers exhibited high accuracy (92.5%, 91.7% conditional probability, respectively) in detecting Bacteroidales spp. in water samples. According to binary logistic regression (BLR), these two swine-associated markers were well correlated (P < 0.05) with fecal indicators (Escherichia coli and Enterococci spp.) and zoonotic pathogens (E. coli O157: H7, Salmonella spp. and Campylobacter spp.) in water samples. In contrast, concentrations of conventional fecal indicator bacteria (FIB) were not correlated with zoonotic pathogens, suggesting that they are noneffective at detecting fecal pollution events. Collectively, the results obtained in this study demonstrated that a swine-targeted qPCR assay based on two Bacteroidales genes markers (gene 1-38, gene 3-53) could be a useful tool in determining the swine-associated impacts of fecal contamination in a watershed.
Collapse
Affiliation(s)
- Lihua Fan
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Xiaofeng Zhang
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China
| | - Ruoxue Zeng
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China
| | - Suhua Wang
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China
| | - Chenchen Jin
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China
| | - Yongqiang He
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China
| | - Jiangbing Shuai
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China.
| |
Collapse
|
12
|
Ballesté E, Belanche-Muñoz LA, Farnleitner AH, Linke R, Sommer R, Santos R, Monteiro S, Maunula L, Oristo S, Tiehm A A, Stange C, Blanch AR. Improving the identification of the source of faecal pollution in water using a modelling approach: From multi-source to aged and diluted samples. WATER RESEARCH 2020; 171:115392. [PMID: 31865126 DOI: 10.1016/j.watres.2019.115392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 05/20/2023]
Abstract
The last decades have seen the development of several source tracking (ST) markers to determine the source of pollution in water, but none of them show 100% specificity and sensitivity. Thus, a combination of several markers might provide a more accurate classification. In this study Ichnaea® software was improved to generate predictive models, taking into account ST marker decay rates and dilution factors to reflect the complexity of ecosystems. A total of 106 samples from 4 sources were collected in 5 European regions and 30 faecal indicators and ST markers were evaluated, including E. coli, enterococci, clostridia, bifidobacteria, somatic coliphages, host-specific bacteria, human viruses, host mitochondrial DNA, host-specific bacteriophages and artificial sweeteners. Models based on linear discriminant analysis (LDA) able to distinguish between human and non-human faecal pollution and identify faecal pollution of several origins were developed and tested with 36 additional laboratory-made samples. Almost all the ST markers showed the potential to correctly target their host in the 5 areas, although some were equivalent and redundant. The LDA-based models developed with fresh faecal samples were able to differentiate between human and non-human pollution with 98.1% accuracy in leave-one-out cross-validation (LOOCV) when using 2 molecular human ST markers (HF183 and HMBif), whereas 3 variables resulted in 100% correct classification. With 5 variables the model correctly classified all the fresh faecal samples from 4 different sources. Ichnaea® is a machine-learning software developed to improve the classification of the faecal pollution source in water, including in complex samples. In this project the models were developed using samples from a broad geographical area, but they can be tailored to determine the source of faecal pollution for any user.
Collapse
Affiliation(s)
- Elisenda Ballesté
- Dept. Genetics, Microbiology and Statistics, University of Barcelona, Catalonia, Spain.
| | | | - Andreas H Farnleitner
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Environmental Microbiology and Molecular Diagnostics 166/5/3, TU Wien, Getreidemarkt 9/166, 1060, Vienna, Austria; Karl Landsteiner University of Health Sciences, Research Division Water Quality and Health, Dr.-Karl-Dorrek-Straße 30, 3500, Krems an der Donau, Austria
| | - Rita Linke
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Environmental Microbiology and Molecular Diagnostics 166/5/3, TU Wien, Getreidemarkt 9/166, 1060, Vienna, Austria
| | - Regina Sommer
- Unit of Water Hygiene, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Ricardo Santos
- Laboratório Analises, Instituto Superior Tecnico. Universidade Lisboa, Lisbon, Portugal
| | - Silvia Monteiro
- Laboratório Analises, Instituto Superior Tecnico. Universidade Lisboa, Lisbon, Portugal
| | - Leena Maunula
- Dept. Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Satu Oristo
- Dept. Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Andreas Tiehm A
- Dept. Microbiology and Molecular Biology, DVGW-Technologiezentrum Wasser, Germany
| | - Claudia Stange
- Dept. Microbiology and Molecular Biology, DVGW-Technologiezentrum Wasser, Germany
| | - Anicet R Blanch
- Dept. Genetics, Microbiology and Statistics, University of Barcelona, Catalonia, Spain
| |
Collapse
|
13
|
Xue J, Feng Y. Comparison of microbial source tracking efficacy for detection of cattle fecal contamination by quantitative PCR. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:1104-1112. [PMID: 31412506 DOI: 10.1016/j.scitotenv.2019.06.091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 06/10/2023]
Abstract
Identification of fecal contamination sources in surface water has become heavily dependent on quantitative PCR (qPCR) because this technique allows for the rapid enumeration of fecal indicator bacteria as well as the detection and quantification of fecal source-associated genetic markers in the environment. Identification of contamination sources in impaired waters is a prerequisite for developing best management practices to reduce future pollution. Proper management decisions rely on the quality and interpretation of qPCR data. In this study, we developed a method to determine analytical and process lower limits of detection (LLOD) and quantification (LLOQ) using two cattle-associated genetic markers targeting Bacteroidales. Analytical LLOD (ALLOD) for both CowM2 and CowM3 genetic markers in the qPCR assay were five gene copies per reaction. Using composite fecal DNA, the analytical LLOQ (ALLOQ) determined for CowM2 and CowM3 were 78 and 195 gene copies/reaction, respectively. When plasmid DNA was used, the ALLOQ for CowM2 and CowM3 were 46 and 20 gene copies/reaction, respectively. The process LLOD (PLLOD) for CowM2 and CowM3 were 0.4 and 0.02 mg feces/filter (wet weight), respectively. Using the standard deviation value of 0.25 as a cut-off point for LLOQ in regression analysis, the process LLOQ (PLLOQ) for CowM2 and CowM3 were 3.2 and 0.3 mg feces/filter, respectively. These results indicate that CowM3 exhibited superior performance characteristics compared with CowM2 for fecal samples collected from our geographical region. Moreover, the method for calculating LLOD and LLOQ developed here can be applied to other microbial source tracking studies.
Collapse
Affiliation(s)
- Jia Xue
- Department of Crop, Soil and Environmental Sciences, Auburn University, AL 36849, USA.
| | - Yucheng Feng
- Department of Crop, Soil and Environmental Sciences, Auburn University, AL 36849, USA.
| |
Collapse
|
14
|
Abstract
Fecal microorganisms can enter water bodies in diverse ways, including runoff, sewage discharge, and direct fecal deposition. Once in water, the microorganisms experience conditions that are very different from intestinal habitats. The transition from host to aquatic environment may lead to rapid inactivation, some degree of persistence, or growth. Microorganisms may remain planktonic, be deposited in sediment, wash up on beaches, or attach to aquatic vegetation. Each of these habitats offers a panoply of different stressors or advantages, including UV light exposure, temperature fluctuations, salinity, nutrient availability, and biotic interactions with the indigenous microbiota (e.g., predation and/or competition). The host sources of fecal microorganisms are likewise numerous, including wildlife, pets, livestock, and humans. Most of these microorganisms are unlikely to affect human health, but certain taxa can cause waterborne disease. Others signal increased probability of pathogen presence, e.g., the fecal indicator bacteria Escherichia coli and enterococci and bacteriophages, or act as fecal source identifiers (microbial source tracking markers). The effects of environmental factors on decay are frequently inconsistent across microbial species, fecal sources, and measurement strategies (e.g., culture versus molecular). Therefore, broad generalizations about the fate of fecal microorganisms in aquatic environments are problematic, compromising efforts to predict microbial decay and health risk from contamination events. This review summarizes the recent literature on decay of fecal microorganisms in aquatic environments, recognizes defensible generalizations, and identifies knowledge gaps that may provide particularly fruitful avenues for obtaining a better understanding of the fates of these organisms in aquatic environments.
Collapse
|
15
|
Host Specificity and Sensitivity of Established and Novel Sewage-Associated Marker Genes in Human and Nonhuman Fecal Samples. Appl Environ Microbiol 2019; 85:AEM.00641-19. [PMID: 31076423 DOI: 10.1128/aem.00641-19] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022] Open
Abstract
Microbial source tracking (MST) methods measure fecal contamination levels and identify possible sources using quantitative PCR (qPCR) that targets host-associated fecal microorganisms. To date, most established MST assays for human sources, especially bacterial markers, have shown some nonhuman host cross-reactions. Recently developed assays, such as the crAssphage CPQ_056, Lachnospiraceae Lachno3, and Bacteroides BacV6-21, have more limited information on host sensitivity and host specificity for human or sewage sources, particularly in countries other than the United States. In this study, we rigorously evaluated six sewage-associated MST assays (i.e., Bacteroides HF183, human adenovirus [HAdV], human polyomavirus [HPyV], crAssphage CPQ_056, Lachno3, and BacV6-21) to show advantages and disadvantages of their applications for MST. A total of 29 human and 3 sewage samples and 360 nonhuman fecal samples across 14 hosts collected from a subtropical region of Australia were tested for marker host specificity, host sensitivity, and concentrations. All sewage samples were positive for all six marker genes tested in this study. Bacterial markers were more prevalent than viral markers in human feces. Testing against animal hosts showed human feces (or sewage)-associated marker gene specificity was HAdV (1.00) > HPyV (0.99) > crAssphage CPQ_056 (0.98) > HF183 (0.96) > Lachno3 (0.95) > BacV6-21 (0.90), with marker concentrations in some animal fecal samples being 3 to 5 orders of magnitude lower than those in sewage. When considering host specificity, sensitivity, and concentrations in source samples, the HF183, Lachno3, and crAssphage CPQ_056 tests were the most suitable assays in this study for sewage contamination tracking in subtropical waters of Australia.IMPORTANCE Large financial investments are required to remediate fecal contamination sources in waterways, and accurate results from field studies are crucial to build confidence in MST approaches. Host specificity and sensitivity are two main performance characteristics for consideration when choosing MST assays. Ongoing efforts for marker assay validation will improve interpretation of results and could shed light on patterns of occurrence in nontarget hosts that might explain the underlying drivers of cross-reaction of certain markers. For field applications, caution should be taken to choose appropriate MST marker genes and assays based on available host specificity and sensitivity data and background knowledge of the contaminating sources in the study area. Since many waterborne pathogens are viruses, employing both viral and bacterial markers in investigations could provide insight into contamination dynamics and ecological behavior in the environment. Therefore, combined usage of marker assays is recommended for more accurate and informative sewage contamination detection and fecal source resolution.
Collapse
|
16
|
Vadde KK, McCarthy AJ, Rong R, Sekar R. Quantification of Microbial Source Tracking and Pathogenic Bacterial Markers in Water and Sediments of Tiaoxi River (Taihu Watershed). Front Microbiol 2019; 10:699. [PMID: 31105648 PMCID: PMC6492492 DOI: 10.3389/fmicb.2019.00699] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/20/2019] [Indexed: 12/13/2022] Open
Abstract
Taihu Lake is one of the largest freshwater lakes in China, serving as an important source of drinking water; >60% of source water to this lake is provided by the Tiaoxi River. This river faces serious fecal contamination issues, and therefore, a comprehensive investigation to identify the sources of fecal contamination was carried out and is presented here. The performance of existing universal (BacUni and GenBac), human (HF183-Taqman, HF183-SYBR, BacHum, and Hum2), swine (Pig-2-Bac), ruminant (BacCow), and avian (AV4143 and GFD) associated microbial source tracking (MST) markers was evaluated prior to their application in this region. The specificity and sensitivity results indicated that BacUni, HF183-TaqMan, Pig-2-Bac, and GFD assays are the most suitable in identifying human and animal fecal contamination. Therefore, these markers along with marker genes specific to selected bacterial pathogens were quantified in water and sediment samples of the Tiaoxi River, collected from 15 locations over three seasons during 2014 and 2015. Total/universal Bacteroidales markers were detected in all water and sediment samples (mean concentration 6.22 log10 gene copies/100 ml and 6.11 log10 gene copies/gram, respectively), however, the detection of host-associated MST markers varied. Human and avian markers were the most frequently detected in water samples (97 and 89%, respectively), whereas in sediment samples, only human-associated markers were detected more often (86%) than swine (64%) and avian (8.8%) markers. The results indicate that several locations in the Tiaoxi River are heavily polluted by fecal contamination and this correlated well with land use patterns. Among the five bacterial pathogens tested, Shigella spp. and Campylobacter jejuni were the most frequently detected pathogens in water (60% and 62%, respectively) and sediment samples (91% and 53%, respectively). Shiga toxin-producing Escherichia coli (STEC) and pathogenic Leptospira spp. were less frequently detected in water samples (55% and 33%, respectively) and sediment samples (51% and 13%, respectively), whereas E. coli O157:H7 was only detected in sediment samples (11%). Overall, the higher prevalence and concentrations of Campylobacter jejuni, Shigella spp., and STEC, along with the MST marker detection at a number of locations in the Tiaoxi River, indicates poor water quality and a significant human health risk associated with this watercourse. GRAPHICAL ABSTRACTTracking fecal contamination and pathogens in watersheds using molecular methods.
Collapse
Affiliation(s)
- Kiran Kumar Vadde
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Alan J. McCarthy
- Microbiology Research Group, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Rong Rong
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Raju Sekar
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
17
|
Devane ML, Moriarty EM, Robson B, Lin S, Wood D, Webster-Brown J, Gilpin BJ. Relationships between chemical and microbial faecal source tracking markers in urban river water and sediments during and post-discharge of human sewage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1588-1604. [PMID: 30360285 DOI: 10.1016/j.scitotenv.2018.09.258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
This study explores the relationships between faecal source tracking (FST) markers (quantitative Polymerase Chain Reaction (qPCR) markers and steroids), microbial indicators, the faecal ageing ratio of atypical colonies/total coliforms (AC/TC) and potential human pathogens (Giardia, Cryptosporidium and Campylobacter). Faecal source PCR markers tested were GenBac3, HumM3, HumBac (HF183-Bac708R); Bifidobacterium adolescentis, wildfowl and canine-associated markers. Sediment and water samples from the Avon River were collected during and post-discharge of untreated human sewage inputs, following a series of earthquakes, which severely damaged the Christchurch sewerage system. Significant, positive Spearman Ranks (rs) correlations were observed between human-associated qPCR markers and steroid FST markers and Escherichia coli and F-specific RNA bacteriophage (rs 0.57 to 0.84, p < 0.001) in water samples. These human source indicative FST markers demonstrated that they were also effective predictors of potentially pathogenic protozoa in water (rs 0.43-0.74, p ≤ 0.002), but correlated less well with Campylobacter. Human-associated qPCR and steroid markers showed significant, substantial agreement between the two FST methods (Cohen's kappa, 0.78, p = 0.023), suggesting that water managers could be confident in the results using either method under these contamination conditions. Low levels of fluorescent whitening agents (FWA) (mean 0.06 μg/L, range 0.01-0.40 μg/L) were observed in water throughout the study, but steroids and FWA appeared to be retained in river sediments, months after continuous sewage discharges had ceased. No relationship was observed between chemical FST markers in sediments and the overlying water, and few correlations in sediment between chemical FST markers and target microorganisms. The low values observed for the faecal ageing ratio, AC/TC in water, were significantly, negatively correlated with increasing pathogen detection. This study provides support for the use of the AC/TC ratio, and qPCR and steroid FST markers as indicators of health risks associated with the discharge of raw human sewage into a freshwater system.
Collapse
Affiliation(s)
- Megan L Devane
- Institute of Environmental Science and Research Limited, Christchurch Science Centre, PO Box 29-181, Christchurch, New Zealand.
| | - Elaine M Moriarty
- Institute of Environmental Science and Research Limited, Christchurch Science Centre, PO Box 29-181, Christchurch, New Zealand
| | - Beth Robson
- Institute of Environmental Science and Research Limited, Christchurch Science Centre, PO Box 29-181, Christchurch, New Zealand
| | - Susan Lin
- Institute of Environmental Science and Research Limited, Christchurch Science Centre, PO Box 29-181, Christchurch, New Zealand
| | - David Wood
- Institute of Environmental Science and Research Limited, Christchurch Science Centre, PO Box 29-181, Christchurch, New Zealand
| | - Jenny Webster-Brown
- Waterways Centre for Freshwater Management, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Brent J Gilpin
- Institute of Environmental Science and Research Limited, Christchurch Science Centre, PO Box 29-181, Christchurch, New Zealand
| |
Collapse
|
18
|
Korajkic A, McMinn BR, Ashbolt NJ, Sivaganesan M, Harwood VJ, Shanks OC. Extended persistence of general and cattle-associated fecal indicators in marine and freshwater environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1292-1302. [PMID: 30308816 PMCID: PMC8982556 DOI: 10.1016/j.scitotenv.2018.09.108] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 05/26/2023]
Abstract
Fecal contamination of recreational waters with cattle manure can pose a risk to public health due to the potential presence of various zoonotic pathogens. Fecal indicator bacteria (FIB) have a long history of use in the assessment of recreational water quality, but FIB quantification provides no information about pollution sources. Microbial source tracking (MST) markers have been developed in response to a need to identify pollution sources, yet factors that influence their decay in ambient waters are often poorly understood. We investigated the influence of water type (freshwater versus marine) and select environmental parameters (indigenous microbiota, ambient sunlight) on the decay of FIB and MST markers originating from cattle manure. Experiments were conducted in situ using a submersible aquatic mesocosm containing dialysis bags filled with a mixture of cattle manure and ambient water. Culturable FIB (E. coli, enterococci) were enumerated by membrane filtration and general fecal indicator bacteria (GenBac3, Entero1a, EC23S857) and MST markers (Rum2Bac, CowM2, CowM3) were estimated by qPCR. Water type was the most significant factor influencing decay (three-way ANOVA, p: 0.006 to <0.001), although the magnitude of the effect differed among microbial targets and over time. The presence of indigenous microbiota and exposure to sunlight were significantly correlated (three-way ANOVA, p: 0.044 to <0.001) with decay of enterococci and CowM2, while E. coli, EC23S857, Rum2Bac, and CowM3 (three-way ANOVA, p: 0.044 < 0.001) were significantly impacted by sunlight or indigenous microbiota. Results indicate extended persistence of both cultivated FIB and genetic markers in marine and freshwater water types. Findings suggest that multiple environmental stressors are important determinants of FIB and MST marker persistence, but their magnitude can vary across indicators. Selective exclusion of natural aquatic microbiota and/or sunlight typically resulted in extended survival, but the effect was minor and limited to select microbial targets.
Collapse
Affiliation(s)
- Asja Korajkic
- National Exposure Research Laboratory, Office of Research and Development, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States.
| | - Brian R McMinn
- National Exposure Research Laboratory, Office of Research and Development, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Nicholas J Ashbolt
- University of Alberta, School of Public Health, 3-57D South Academic Building, Edmonton, AB T6G 2G7, Canada
| | - Mano Sivaganesan
- National Risk Management Research Laboratory, Office of Research and Development, United States Environmental Protection Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Valerie J Harwood
- University of South Florida, Department of Integrative Biology, 4202 E Fowler Ave SCA 110, Tampa, FL 33620, United States
| | - Orin C Shanks
- National Risk Management Research Laboratory, Office of Research and Development, United States Environmental Protection Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| |
Collapse
|
19
|
García-Aljaro C, Blanch AR, Campos C, Jofre J, Lucena F. Pathogens, faecal indicators and human-specific microbial source-tracking markers in sewage. J Appl Microbiol 2019; 126:701-717. [PMID: 30244503 DOI: 10.1111/jam.14112] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023]
Abstract
The objective of this review is to assess the current state of knowledge of pathogens, general faecal indicators and human-specific microbial source tracking markers in sewage. Most of the microbes present in sewage are from the microbiota of the human gut, including pathogens. Bacteria and viruses are the most abundant groups of microbes in the human gut microbiota. Most reports on this topic show that raw sewage microbiological profiles reflect the human gut microbiota. Human and animal faeces share many commensal microbes as well as pathogens. Faecal-orally transmitted pathogens constitute a serious public health problem that can be minimized through sanitation. Assessing both the sanitation processes and the contribution of sewage to the faecal contamination of water bodies requires knowledge of the content of pathogens in sewage, microbes indicating general faecal contamination and microbes that are only present in human faecal remains, which are known as the human-specific microbial source-tracking (MST) markers. Detection of pathogens would be the ideal option for managing sanitation and determining the microbiological quality of waters contaminated by sewage; but at present, this is neither practical nor feasible in routine testing. Traditionally, faecal indicator bacteria have been used as surrogate indicators of general faecal residues. However, in many water management circumstances, it becomes necessary to detect both the origin of faecal contamination, for which MST is paramount, and live micro-organisms, for which molecular methods are not suitable. The presence and concentrations of pathogens, general faecal indicators and human-specific MST markers most frequently reported in different areas of the world are summarized in this review.
Collapse
Affiliation(s)
- C García-Aljaro
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain.,The Water Research Institute, University of Barcelona, Barcelona, Spain
| | - A R Blanch
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain.,The Water Research Institute, University of Barcelona, Barcelona, Spain
| | - C Campos
- Departamento de Microbiología, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - J Jofre
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain.,The Water Research Institute, University of Barcelona, Barcelona, Spain
| | - F Lucena
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain.,The Water Research Institute, University of Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Zhang Y, Wu R, Zhang Y, Wang G, Li K. Impact of nutrient addition on diversity and fate of fecal bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:717-726. [PMID: 29727839 DOI: 10.1016/j.scitotenv.2018.04.312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Understanding the variations in the microorganisms associated with human fecal pollution in different types of water is necessary to manage water quality and predict human health risks. Using an Illumina sequencing method, we investigated variations in the fecal bacteria originating from fresh human feces and their decay trends in nutrient-supplemented water and natural river water. Nutrient addition contributed to the growth of heterotrophic bacteria like Comamonadaceae, Cytophagaceae, and Sphingobacteriaceae, but led to lower concentrations for Bacteroidaceae, Lachnospiraceae, and Ruminococcaceae. This result suggests that the utilization of nutrients by high-activity bacteria may suppress other bacteria via depletion of the available nutrient resources. As we did not observe proliferation of Bacteroidales, Lactobacillales, Clostridiales, or Ruminococcaceae in either supplemented or river water, we consider these groups suitable for use as indicators to determine the level of fecal pollution. Moreover, we tested the persistence of Bacteroidales markers, including general-Bacteroidales marker GenBac and human-specific Bacteroidales marker qHS601, by quantitative PCR. We observed similar trends in the decay of the Bacteroidales markers GenBac and qHS601 in the nutrient-supplemented water and natural river water, and the high R2 values of the GenBac (R2nutrient-supplemented = 0.93, R2natural river = 0.81) and qHS601 (R2nutrient-supplemented = 0.93, R2natural river = 0.91) suggests they are a good fit for the first-order decay model. We also found stronger correlations between the markers and potential pathogenic anaerobes in the different types of water, demonstrating the validity of the use of GenBac and qHS601 from Bacteroidales for the identification of human-associated pollution sources.
Collapse
Affiliation(s)
- Yang Zhang
- College of Resources and Environment Engineering, Wuhan University of Technology, Wuhan 430070, PR China; South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510530, PR China
| | - Renren Wu
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510530, PR China; The key Laboratory of Water and Air Pollution Control of Guangdong Province, Guangzhou 510530, PR China.
| | - Yimin Zhang
- College of Resources and Environment Engineering, Wuhan University of Technology, Wuhan 430070, PR China; College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| | - Guang Wang
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510530, PR China; The key Laboratory of Water and Air Pollution Control of Guangdong Province, Guangzhou 510530, PR China
| | - Kaiming Li
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510530, PR China; The key Laboratory of Water and Air Pollution Control of Guangdong Province, Guangzhou 510530, PR China
| |
Collapse
|
21
|
Fang HM, Gin KYH, Viswanath B, Petre M, Ghandehari M. Sensing Water-Borne Pathogens by Intrinsic Fluorescence. OPTICAL PHENOMENOLOGY AND APPLICATIONS 2018. [DOI: 10.1007/978-3-319-70715-0_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
22
|
Billian H, Krometis LA, Thompson T, Hagedorn C. Movement of traditional fecal indicator bacteria and source-tracking targets through septic drainfields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:1467-1475. [PMID: 28892841 DOI: 10.1016/j.scitotenv.2017.08.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/09/2017] [Accepted: 08/13/2017] [Indexed: 06/07/2023]
Abstract
The past three decades' data on outbreaks in the United States indicate that homes dependent on untreated groundwater (e.g. wells) for household drinking water that are also reliant on onsite treatment of household wastewater (e.g. septic systems) may be at greater risk for waterborne disease. While groundwater quality monitoring to protect public health has traditionally focused on the detection of fecal indicator bacteria, the application of emerging source tracking strategies may offer a more efficient means to identify pollution sources and effective means of remediation. This study compares the movement of common fecal indicator bacteria (E. coli and enterococci) with a chemical (optical brighteners, OB) and a molecular (Bacteroides HF183) source tracking (ST) target in small scale septic drainfield models in order to evaluate their potential utility in groundwater monitoring. Nine PVC column drainfield models received synchronized doses of primary-treated wastewater twice daily, with influent and effluent monitored bi-weekly over a 7-month period for all targets. Results indicate that E. coli and enterococci concentrations were strongly associated (Spearman's rank, p<0.05), and correlations between enterococci and optical brighteners were moderately strong. Bacteroides HF183 was significantly, but not strongly, associated with optical brighteners and both indicator bacteria (Point-biserial correlation, p<0.05), most likely due to its sporadic detection. Application of human ST marker monitoring in groundwaters at risk of contamination by human sewage is recommended, although consistent interpretation of results will rely on more detailed evaluation of HF183 incidence in source contamination waters.
Collapse
Affiliation(s)
- Hannah Billian
- Department of Biological Systems Engineering, 200 Seitz Hall, 155 Ag Quad Lane (0303), Virginia Tech, Blacksburg, VA 24061, United States
| | - Leigh-Anne Krometis
- Department of Biological Systems Engineering, 200 Seitz Hall, 155 Ag Quad Lane (0303), Virginia Tech, Blacksburg, VA 24061, United States.
| | - Theresa Thompson
- Department of Biological Systems Engineering, 200 Seitz Hall, 155 Ag Quad Lane (0303), Virginia Tech, Blacksburg, VA 24061, United States
| | - Charles Hagedorn
- Department of Crop & Soil Environmental Sciences, 330 Smyth Hall, 185 Ag Quad Lane (0404), Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
23
|
Fan L, Shuai J, Zeng R, Mo H, Wang S, Zhang X, He Y. Validation and application of quantitative PCR assays using host-specific Bacteroidales genetic markers for swine fecal pollution tracking. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1569-1577. [PMID: 28967572 DOI: 10.1016/j.envpol.2017.09.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
Genome fragment enrichment (GFE) method was applied to identify host-specific bacterial genetic markers that differ among different fecal metagenomes. To enrich for swine-specific DNA fragments, swine fecal DNA composite (n = 34) was challenged against a DNA composite consisting of cow, human, goat, sheep, chicken, duck and goose fecal DNA extracts (n = 83). Bioinformatic analyses of 384 non-redundant swine enriched metagenomic sequences indicated a preponderance of Bacteroidales-like regions predicted to encode metabolism-associated, cellular processes and information storage and processing. After challenged against fecal DNA extracted from different animal sources, four sequences from the clone libraries targeting two Bacteroidales- (genes 1-38 and 3-53), a Clostridia- (gene 2-109) as well as a Bacilli-like sequence (gene 2-95), respectively, showed high specificity to swine feces based on PCR analysis. Host-specificity and host-sensitivity analysis confirmed that oligonucleotide primers and probes capable of annealing to select Bacteroidales-like sequences (1-38 and 3-53) exhibited high specificity (>90%) in quantitative PCR assays with 71 fecal DNAs from non-target animal sources. The two assays also demonstrated broad distributions of corresponding genetic markers (>94% positive) among 72 swine feces. After evaluation with environmental water samples from different areas, swine-targeted assays based on two Bacteroidales-like GFE sequences appear to be suitable quantitative tracing tools for swine fecal pollution.
Collapse
Affiliation(s)
- Lihua Fan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jiangbing Shuai
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou, China.
| | - Ruoxue Zeng
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou, China
| | - Hongfei Mo
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou, China
| | - Suhua Wang
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou, China
| | - Xiaofeng Zhang
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou, China
| | - Yongqiang He
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou, China
| |
Collapse
|
24
|
Paruch L, Paruch AM, Blankenberg AGB, Haarstad K, Mæhlum T. Norwegian study on microbial source tracking for water quality control and pollution removal in constructed wetland treating catchment run-off. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 76:1158-1166. [PMID: 28876257 DOI: 10.2166/wst.2017.303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study describes the first Norwegian microbial source tracking (MST) approach for water quality control and pollution removal from catchment run-off in a nature-based treatment system (NBTS) with a constructed wetland. The applied MST tools combined microbial analyses and molecular tests to detect and define the source(s) and dominant origin(s) of faecal water contamination. Faecal indicator bacteria Escherichia coli and host-specific Bacteroidales 16 s rRNA gene markers have been employed. The study revealed that the newly developed contribution profiling of faecal origin derived from the Bacteroidales DNA could quantitatively distinguish between human and non-human pollution origins. Further, the outcomes of the MST test have been compared with the results of both physicochemical analyses and tests of pharmaceutical and personal care products (PPCPs). A strong positive correlation was discovered between the human marker and PPCPs. Gabapentin was the most frequently detected compound and it showed the uppermost positive correlation with the human marker. The study demonstrated that the NBTS performs satisfactorily with the removal of E. coli but not PPCPs. Interestingly, the presence of PPCPs in the water samples was not correlated with high concentrations of E. coli. Neither has the latter an apparent correlation with the human marker.
Collapse
Affiliation(s)
- Lisa Paruch
- Division of Environment and Natural Resources, NIBIO - Norwegian Institute of Bioeconomy Research, Pb 115, Aas NO-1431, Norway E-mail:
| | - Adam M Paruch
- Division of Environment and Natural Resources, NIBIO - Norwegian Institute of Bioeconomy Research, Pb 115, Aas NO-1431, Norway E-mail:
| | - Anne-Grete Buseth Blankenberg
- Division of Environment and Natural Resources, NIBIO - Norwegian Institute of Bioeconomy Research, Pb 115, Aas NO-1431, Norway E-mail:
| | - Ketil Haarstad
- Division of Environment and Natural Resources, NIBIO - Norwegian Institute of Bioeconomy Research, Pb 115, Aas NO-1431, Norway E-mail:
| | - Trond Mæhlum
- Division of Environment and Natural Resources, NIBIO - Norwegian Institute of Bioeconomy Research, Pb 115, Aas NO-1431, Norway E-mail:
| |
Collapse
|
25
|
Paruch L, Paruch AM. The importance of melting curve analysis in discriminating faecal and environmental Bacteroidales bacteria. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717040117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
26
|
Cantor J, Krometis LA, Sarver E, Cook N, Badgley B. Tracking the downstream impacts of inadequate sanitation in central Appalachia. JOURNAL OF WATER AND HEALTH 2017; 15:580-590. [PMID: 28771155 DOI: 10.2166/wh.2017.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Poor sanitation in rural infrastructure is often associated with high levels of fecal contamination in adjacent surface waters, which presents a community health risk. Although microbial source tracking techniques have been widely applied to identify primary remediation needs in urban and/or recreational waters, use of human-specific markers has been more limited in rural watersheds. This study quantified the human source tracking marker Bacteroides-HF183, along with more general fecal indicators (i.e. culturable Escherichia coli and a molecular Enterococcus marker), in two Appalachian streams above and below known discharges of untreated household waste. Although E. coli and Enterococcus were consistently recovered in samples collected from both streams, Bacteroides-HF183 was only detected sporadically in one stream. Multiple linear regression analysis demonstrated a positive correlation between the concentration of E. coli and the proximity and number of known waste discharge points upstream; this correlation was not significant with respect to Bacteroides-HF183, likely due to the low number of quantifiable samples. These findings suggest that, while the application of more advanced source targeting strategies can be useful in confirming the influence of substandard sanitation on surface waters to justify infrastructure improvements, they may be of limited use without concurrent traditional monitoring targets and on-the-ground sanitation surveys.
Collapse
Affiliation(s)
- Jacob Cantor
- Biological System Engineering, Virginia Tech, 155 Ag Quad Lane, Seitz Hall, Blacksburg, VA 24060, USA E-mail:
| | - Leigh-Anne Krometis
- Biological System Engineering, Virginia Tech, 155 Ag Quad Lane, Seitz Hall, Blacksburg, VA 24060, USA E-mail:
| | - Emily Sarver
- Mining and Minerals Engineering, Virginia Tech, 108A Holden Hall, Blacksburg, VA 24061, USA
| | - Nicholas Cook
- Forest Ecohydrology and Watershed Management, Department of Forest Engineering, Resources, and Management, College of Forestry, Oregon State University, 215 Peavy Hall, Corvallis, OR 97731, USA
| | - Brian Badgley
- Crop and Soil Environmental Sciences, Virginia Tech, RB1880 Suite 1129 Room 1121, Blacksburg, VA 24061, USA
| |
Collapse
|
27
|
Brooks L, Field K. Global model fitting to compare survival curves for faecal indicator bacteria and ruminant‐associated genetic markers. J Appl Microbiol 2017; 122:1704-1713. [DOI: 10.1111/jam.13454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/10/2017] [Accepted: 03/16/2017] [Indexed: 11/30/2022]
Affiliation(s)
- L.E. Brooks
- Department of Microbiology Oregon State University Corvallis OR USA
| | - K.G. Field
- Department of Microbiology Oregon State University Corvallis OR USA
| |
Collapse
|
28
|
Mika KB, Chavarria KA, Imamura G, Tang C, Torres R, Jay JA. Sources and persistence of fecal indicator bacteria and Bacteroidales in sand as measured by culture-based and culture-independent methods: A case study at Santa Monica Pier, California. WATER, AIR, AND SOIL POLLUTION 2017; 228:124. [PMID: 30853729 PMCID: PMC6404519 DOI: 10.1007/s11270-017-3291-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study investigated causes of persistent fecal indicator bacteria (FIB) in beach sand under the pier in Santa Monica, CA. FIB levels were up to 1,000 times higher in sand underneath the pier than that collected from adjacent to the pier, with the highest concentrations under the pier in spring and fall. Escherichia coli (EC) and enterococci (ENT) under the pier were significantly positively correlated with moisture (ρ = 0.61, p < 0.001, n = 59; ρ = 0.43, p < 0.001, n = 59, respectively), and ENT levels measured by qPCR (qENT) were much higher than those measured by membrane filtration (cENT). Microcosm experiments tested the ability of EC, qENT, cENT, and general Bacteroidales (GenBac) to persist under in-situ moisture conditions (10% and 0.1%). Decay rates of qENT, cENT, and GenBac were not significantly different from zero at either moisture level, while decay rates for EC were relatively rapid during the microcosm at 10% moisture (k = 0.7 days-1). Gull/pelican marker was detected at eight of 12 sites and no human-associated markers (TaqHF183 and HumM2) were detected at any site during a one-day site survey. Results from this study indicate that the high levels of FIB observed likely stem from environmental sources combined with high persistence of FIB under the pier.
Collapse
Affiliation(s)
- Kathryn B Mika
- Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, CA 90095
| | - Karina A Chavarria
- Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, CA 90095
| | - Greg Imamura
- Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, CA 90095
| | - Chay Tang
- Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, CA 90095
| | - Robert Torres
- Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, CA 90095
| | - Jennifer A. Jay
- Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
29
|
Sowah RA, Habteselassie MY, Radcliffe DE, Bauske E, Risse M. Isolating the impact of septic systems on fecal pollution in streams of suburban watersheds in Georgia, United States. WATER RESEARCH 2017; 108:330-338. [PMID: 27847149 DOI: 10.1016/j.watres.2016.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/19/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
The presence of multiple sources of fecal pollution at the watershed level presents challenges to efforts aimed at identifying the influence of septic systems. In this study multiple approaches including targeted sampling and monitoring of host-specific Bacteroidales markers were used to identify the impact of septic systems on microbial water quality. Twenty four watersheds with septic density ranging from 8 to 373 septic units/km2 were monitored for water quality under baseflow conditions over a 3-year period. The levels of the human-associated HF183 marker, as well as total and ruminant Bacteroidales, were quantified using quantitative polymerase chain reaction. Human-associated Bacteroidales yield was significantly higher in high density watersheds compared to low density areas and was negatively correlated (r = -0.64) with the average distance of septic systems to streams in the spring season. The human marker was also positively correlated with the total Bacteroidales marker, suggesting that the human source input was a significant contributor to total fecal pollution in the study area. Multivariable regression analysis indicates that septic systems, along with forest cover, impervious area and specific conductance could explain up to 74% of the variation in human fecal pollution in the spring season. The results suggest septic system impact through contributions to groundwater recharge during baseflow or failing septic system input, especially in areas with >87 septic units/km2. This study supports the use of microbial source tracking approaches along with traditional fecal indicator bacteria monitoring and land use characterization in a tiered approach to isolate the influence of septic systems on water quality in mixed-use watersheds.
Collapse
Affiliation(s)
- Robert A Sowah
- Crop and Soil Sciences, The University of Georgia Griffin Campus, 1109 Experiment St, Griffin, GA, 30223, USA.
| | - Mussie Y Habteselassie
- Crop and Soil Sciences, The University of Georgia Griffin Campus, 1109 Experiment St, Griffin, GA, 30223, USA
| | - David E Radcliffe
- Crop and Soil Sciences, The University of Georgia, 3111 Carlton St, Athens, GA, 30602, USA
| | - Ellen Bauske
- Center for Urban Agriculture, The University of Georgia Griffin Campus, 1109 Experiment St, Griffin, GA, 30223, USA
| | - Mark Risse
- The University of Georgia, Marine Extension and Georgia Sea Grant, 1030 Chicopee Building, Athens, GA, 30602, USA
| |
Collapse
|
30
|
Brooks LE, Field KG. Bayesian meta-analysis to synthesize decay rate constant estimates for common fecal indicator bacteria. WATER RESEARCH 2016; 104:262-271. [PMID: 27543910 DOI: 10.1016/j.watres.2016.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
For decades, fecal indicator bacteria have been used as proxies to quantitatively estimate fecal loading into water bodies. Widely used cultured indicators (e.g. Escherichia coli and Enterococcus spp.) and more recently developed genetic markers are well studied, but their decay in the environment is still poorly understood. We used Hierarchical Bayesian Linear Modeling to conduct a series of meta-analyses using published decay rate constant estimates, to synthesize findings into pooled estimates and identify gaps in the data preventing reliable estimates. In addition to the meta-analysis assuming all estimates come from the same population, meta-regressions including covariates believed to contribute to decay were fit and used to provided synthesized estimates for specific combinations of significant variables. Additionally, statements regarding the significance of variables across studies were made using the 95% confidence interval for meta-regression coefficients. These models were used to construct a mean decay rate constant estimate as well as credible intervals for the mean and the distribution of all likely data points. While synthesized estimates for each targeted indicator bacteria were developed, the amount of data available varied widely for each target, as did the predictive power of the models as determined by testing with additional data not included in the modeling. Temperature was found to be significant for all selected indicators, while light was found to be significant only for culturable indicators. Results from the models must be interpreted with caution, as they are based only on the data available, which may not be representative of decay in other scenarios.
Collapse
Affiliation(s)
- Lauren E Brooks
- Oregon State University, Department of Microbiology, 226 Nash Hall, Oregon State University, Corvallis, OR, 97331, USA.
| | - Katharine G Field
- Oregon State University, Department of Microbiology, 226 Nash Hall, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
31
|
Human-Associated Bacteroides spp. and Human Polyomaviruses as Microbial Source Tracking Markers in Hawaii. Appl Environ Microbiol 2016; 82:6757-6767. [PMID: 27613686 DOI: 10.1128/aem.01959-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/05/2016] [Indexed: 11/20/2022] Open
Abstract
Identification of sources of fecal contaminants is needed to (i) determine the health risk associated with recreational water use and (ii) implement appropriate management practices to mitigate this risk and protect the environment. This study evaluated human-associated Bacteroides spp. (HF183TaqMan) and human polyomavirus (HPyV) markers for host sensitivity and specificity using human and animal fecal samples collected in Hawaii. The decay rates of those markers and indicator bacteria were identified in marine and freshwater microcosms exposed and not exposed to sunlight, followed by field testing of the usability of the molecular markers. Both markers were strongly associated with sewage, although the cross-reactivity of the HF183TaqMan (also present in 82% of canine [n = 11], 30% of mongoose [n = 10], and 10% of feline [n = 10] samples) needs to be considered. Concentrations of HF183TaqMan in human fecal samples exceeded those in cross-reactive animals at least 1,000-fold. In the absence of sunlight, the decay rates of both markers were comparable to the die-off rates of enterococci in experimental freshwater and marine water microcosms. However, in sunlight, the decay rates of both markers were significantly lower than the decay rate of enterococci. While both markers have their individual limitations in terms of sensitivity and specificity, these limitations can be mitigated by using both markers simultaneously; ergo, this study supports the concurrent use of HF183TaqMan and HPyV markers for the detection of sewage contamination in coastal and inland waters in Hawaii. IMPORTANCE This study represents an in-depth characterization of microbial source tracking (MST) markers in Hawaii. The distribution and concentrations of HF183TaqMan and HPyV markers in human and animal fecal samples and in wastewater, coupled with decay data obtained from sunlight-exposed and unexposed microcosms, support the concurrent application of HF183TaqMan and HPyV markers for sewage contamination detection in Hawaii waters. Both markers are more conservative and more specific markers of sewage than fecal indicator bacteria (enterococci and Escherichia coli). Analysis of HF183TaqMan (or newer derivatives) is recommended for inclusion in future epidemiological studies concerned with beach water quality, while better concentration techniques are needed for HPyV. Such epidemiological studies can be used to develop new recreational water quality criteria, which will provide direct information on the absence or presence of sewage contamination in water samples as well as reliable measurements of the risk of waterborne disease transmission to swimmers.
Collapse
|
32
|
Current Status of Marker Genes of Bacteroides and Related Taxa for Identifying Sewage Pollution in Environmental Waters. WATER 2016. [DOI: 10.3390/w8060231] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Tambalo DD, Boa T, Aryal B, Yost CK. Temporal variation in the prevalence and species richness of Campylobacter spp. in a prairie watershed impacted by urban and agricultural mixed inputs. Can J Microbiol 2016; 62:402-10. [DOI: 10.1139/cjm-2015-0710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Campylobacter spp. are a substantial cause of gastroenteritis worldwide. Human infection can result from ingestion of contaminated food or water from a variety of sources, including the consumption of fresh produce that is contaminated with the pathogen via the use of contaminated irrigation water. Using molecular methods, we investigated the occurrence of Campylobacter in the Qu’Appelle River watershed, an important source of irrigation water for vegetable producers in southern Saskatchewan, Canada. Water samples were collected from 7 sampling sites from April to September 2009 (145 samples), and from 5 sampling sites from May to October 2013 (116 samples). Campylobacter was detected in 57% and 16% of the samples collected in 2009 and 2013, respectively. Campylobacter detection was highest in May and June for both sampling years. In 2009, the predominant species were Campylobacter lari and Campylobacter jejuni, with prevalences of 84% and 41%, respectively. Other Campylobacter spp. were detected less frequently. Only C. lari was detected in 2013. The results in 2009 demonstrate the species richness of Campylobacter in water sources within the watershed. The occurrence of Campylobacter in the study area also underscores the importance of monitoring irrigation water used to irrigate fresh produce from a public health prospective.
Collapse
Affiliation(s)
- Dinah D. Tambalo
- Biology Department, University of Regina, Regina, SK S4S 0A2, Canada
- Biology Department, University of Regina, Regina, SK S4S 0A2, Canada
| | - Tyler Boa
- Biology Department, University of Regina, Regina, SK S4S 0A2, Canada
- Biology Department, University of Regina, Regina, SK S4S 0A2, Canada
| | - Bijaya Aryal
- Biology Department, University of Regina, Regina, SK S4S 0A2, Canada
- Biology Department, University of Regina, Regina, SK S4S 0A2, Canada
| | - Christopher K. Yost
- Biology Department, University of Regina, Regina, SK S4S 0A2, Canada
- Biology Department, University of Regina, Regina, SK S4S 0A2, Canada
| |
Collapse
|
34
|
Mayer RE, Bofill-Mas S, Egle L, Reischer GH, Schade M, Fernandez-Cassi X, Fuchs W, Mach RL, Lindner G, Kirschner A, Gaisbauer M, Piringer H, Blaschke AP, Girones R, Zessner M, Sommer R, Farnleitner AH. Occurrence of human-associated Bacteroidetes genetic source tracking markers in raw and treated wastewater of municipal and domestic origin and comparison to standard and alternative indicators of faecal pollution. WATER RESEARCH 2016; 90:265-276. [PMID: 26745175 PMCID: PMC4884448 DOI: 10.1016/j.watres.2015.12.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/13/2015] [Accepted: 12/17/2015] [Indexed: 05/19/2023]
Abstract
This was a detailed investigation of the seasonal occurrence, dynamics, removal and resistance of human-associated genetic Bacteroidetes faecal markers (GeBaM) compared with ISO-based standard faecal indicator bacteria (SFIB), human-specific viral faecal markers and one human-associated Bacteroidetes phage in raw and treated wastewater of municipal and domestic origin. Characteristics of the selected activated sludge wastewater treatment plants (WWTPs) from Austria and Germany were studied in detail (WWTPs, n = 13, connected populations from 3 to 49000 individuals), supported by volume-proportional automated 24-h sampling and chemical water quality analysis. GeBaM were consistently detected in high concentrations in raw (median log10 8.6 marker equivalents (ME) 100 ml(-1)) and biologically treated wastewater samples (median log10 6.2-6.5 ME 100 ml(-1)), irrespective of plant size, type and time of the season (n = 53-65). GeBaM, Escherichia coli, and enterococci concentrations revealed the same range of statistical variability for raw (multiplicative standard deviations s* = 2.3-3.0) and treated wastewater (s* = 3.7-4.5), with increased variability after treatment. Clostridium perfringens spores revealed the lowest variability for raw wastewater (s* = 1.5). In raw wastewater correlations among microbiological parameters were only detectable between GeBaM, C. perfringens and JC polyomaviruses. Statistical associations amongst microbial parameters increased during wastewater treatment. Two plants with advanced treatment were also investigated, revealing a minimum log10 5.0 (10th percentile) reduction of GeBaM in the activated sludge membrane bioreactor, but no reduction of the genetic markers during UV irradiation (254 nm). This study highlights the potential of human-associated GeBaM to complement wastewater impact monitoring based on the determination of SFIB. In addition, human-specific JC polyomaviruses and adenoviruses seem to be a valuable support if highly specific markers are needed.
Collapse
Affiliation(s)
- R E Mayer
- Institute of Chemical Engineering, Research Division Biotechnology and Microbiology, Research Group Environmental Microbiology and Molecular Ecology, Vienna University of Technology, Gumpendorfer Straße 1a/166-5-2, A-1060, Vienna, Austria; InterUniversity Cooperation Centre for Water and Health, Austria
| | - S Bofill-Mas
- Laboratory of Virus Contaminants of Water and Food, Department of Microbiology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
| | - L Egle
- Institute for Water Quality Resources and Waste Management, Vienna University of Technology, Karlsplatz 13/226, 1040, Vienna, Austria; Center of Water Resource Systems, Vienna University of Technology, Karlsplatz 13/222, 1040, Vienna, Austria
| | - G H Reischer
- Institute of Chemical Engineering, Research Division Biotechnology and Microbiology, Research Group Environmental Microbiology and Molecular Ecology, Vienna University of Technology, Gumpendorfer Straße 1a/166-5-2, A-1060, Vienna, Austria; InterUniversity Cooperation Centre for Water and Health, Austria
| | - M Schade
- Bavarian Environment Agency, Bürgermeister-Ulrich-Straße 160, 86179, Augsburg, Germany
| | - X Fernandez-Cassi
- Laboratory of Virus Contaminants of Water and Food, Department of Microbiology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
| | - W Fuchs
- Department of Environmental Biotechnology at IFA, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180, Vienna, Austria
| | - R L Mach
- Institute of Chemical Engineering, Research Division Biotechnology and Microbiology, Research Group Environmental Microbiology and Molecular Ecology, Vienna University of Technology, Gumpendorfer Straße 1a/166-5-2, A-1060, Vienna, Austria; InterUniversity Cooperation Centre for Water and Health, Austria
| | - G Lindner
- InterUniversity Cooperation Centre for Water and Health, Austria; Medical University Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria
| | - A Kirschner
- InterUniversity Cooperation Centre for Water and Health, Austria; Medical University Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria
| | - M Gaisbauer
- Schreiber-AWATEC Umwelttechnik GmbH, Bergmillergasse 3/1, 1140, Vienna, Austria
| | - H Piringer
- VRVis Research Center, Donau-City-Strasse 1, 1220, Vienna, Austria
| | - A P Blaschke
- InterUniversity Cooperation Centre for Water and Health, Austria; Center of Water Resource Systems, Vienna University of Technology, Karlsplatz 13/222, 1040, Vienna, Austria
| | - R Girones
- Laboratory of Virus Contaminants of Water and Food, Department of Microbiology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
| | - M Zessner
- Institute for Water Quality Resources and Waste Management, Vienna University of Technology, Karlsplatz 13/226, 1040, Vienna, Austria; Center of Water Resource Systems, Vienna University of Technology, Karlsplatz 13/222, 1040, Vienna, Austria
| | - R Sommer
- InterUniversity Cooperation Centre for Water and Health, Austria; Medical University Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria.
| | - A H Farnleitner
- Institute of Chemical Engineering, Research Division Biotechnology and Microbiology, Research Group Environmental Microbiology and Molecular Ecology, Vienna University of Technology, Gumpendorfer Straße 1a/166-5-2, A-1060, Vienna, Austria; InterUniversity Cooperation Centre for Water and Health, Austria
| |
Collapse
|
35
|
Kim M, Wuertz S. Survival and persistence of host-associated Bacteroidales cells and DNA in comparison with Escherichia coli and Enterococcus in freshwater sediments as quantified by PMA-qPCR and qPCR. WATER RESEARCH 2015; 87:182-192. [PMID: 26408951 DOI: 10.1016/j.watres.2015.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/01/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
Decay of the fecal source identifier Bacteroidales in sediments has not been studied until now. Two types of microcosms inoculated with human, cow and dog feces were constructed to investigate the survival and persistence of host-associated Bacteroidales cells and their DNA, respectively, in freshwater sediments: (i) a completely anaerobic microcosm where feces were entirely mixed with sediments for estimating decay of Bacteroidales in oxygen-free sediments at two temperatures (6 °C and 20 °C) and (ii) a core microcosm where feces in the overlying water column settled on top of undisturbed core sediments. Quantitative PCR (qPCR) along with propidium monoazide (PMA) was used to differentiate between genetic markers present in intact cells and total intracellular as well as extracellular marker DNA. Regulated fecal indicator bacteria were measured by cultivation (Escherichia coli and Enterococcus) and qPCR (Enterococcus) in relation to Bacteroidales-associated host markers. In anaerobic microcosms, the survival and persistence of Bacteroidales cells and DNA in sediments were considerably extended, especially at the lower temperature of 6 °C, with two-log reduction times (T99) >56 d (cells) and >169 d (DNA). Bacteroidales DNA persisted up to five times longer than cells in anaerobic microcosms at 6 °C, whereas decay rates of cells and DNA were not significantly different at 20 °C in anaerobic microcosms. In core microcosms, the levels of Bacteroidales cells and DNA decreased approximately six times more slowly in sediments than in overlying water; T99 values of Bacteroidales cells and DNA were 6-9 d (water) and 29-82 d (sediment). The survival of universal, human-, ruminant- and dog-associated Bacteroidales cells in sediments was similar in both microcosms under each given condition, as was the persistence of DNA. Decay rate constants of Bacteroidales cells and DNA were comparable with those of cultivable Enterococcus and E. coli cells in core sediments while Enterococcus DNA levels fluctuated without noticeable decay. The prolonged persistence of host-associated Bacteroidales suggests that sediments should be considered in practical applications of microbial source tracking, because they can act as non-point sources of fecal markers.
Collapse
Affiliation(s)
- Minji Kim
- Department of Civil and Environmental Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Stefan Wuertz
- Department of Civil and Environmental Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| |
Collapse
|
36
|
He X, Chen H, Shi W, Cui Y, Zhang XX. Persistence of mitochondrial DNA markers as fecal indicators in water environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 533:383-390. [PMID: 26172605 DOI: 10.1016/j.scitotenv.2015.06.119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/08/2015] [Accepted: 06/26/2015] [Indexed: 06/04/2023]
Abstract
Mitochondrial DNA (mtDNA) polymerase chain reaction (PCR) technology has recently been developed to identify sources of fecal contamination, but information regarding environmental fate of mtDNA is limited. In this study, quantitative real-time PCR was used to determine the persistence of three species-specific mtDNA markers (human, pig and chicken) in river microcosms under different laboratory conditions and in dialysis tubes incubated in river environments during different seasons. Human feces had a higher abundance of mtDNA marker than pig and chicken feces. A biphasic decay pattern was observed for the mtDNA markers in microcosms incubated in darkness, and T90 (time needed for 90% reduction) ranged from 2.03 to 13.83 d. Each species-specific mtDNA marker persisted for relatively longer time at lower temperatures, and light exposure and predation increased the decay rates. Field experiments showed that the mtDNA markers could survive for longer time in winter (T90: 1.79-4.37 d) than in summer (T90: 0.60-0.75 d). Field application of mtDNA technology indicated that the markers were mainly distributed on the sites near animal breeding plants and had lower abundance in downstream water of the receiving river. This study expands our knowledge of the environmental fate of mtDNA markers and the results may be useful for practical application of the technology in fecal source tracking.
Collapse
Affiliation(s)
- Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, China
| | - Huimei Chen
- Jiangsu Key Laboratory of Molecular Medicine, School of Medicine, Nanjing University, China.
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, China
| | - Yibin Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, China.
| |
Collapse
|
37
|
Belostotskiy DE, Ziganshina EE, Siniagina M, Boulygina EA, Miluykov VA, Ziganshin AM. Impact of the substrate loading regime and phosphoric acid supplementation on performance of biogas reactors and microbial community dynamics during anaerobic digestion of chicken wastes. BIORESOURCE TECHNOLOGY 2015; 193:42-52. [PMID: 26117234 DOI: 10.1016/j.biortech.2015.06.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/09/2015] [Accepted: 06/13/2015] [Indexed: 05/27/2023]
Abstract
This study evaluates the effects of increasing organic loading rate (OLR) and decreasing hydraulic retention time (HRT) as well as phosphoric acid addition on mesophilic reactors' performance and biogas production from chicken wastes. Furthermore, microbial community composition in reactors was characterized by a 16S rRNA gene-based pyrosequencing analysis. Each step of increasing OLR impacted on the activity of microorganisms what caused a temporary decrease in biogas production. The addition of phosphoric acid resulted in the increased biogas production with values between 361 and 447 mL g(VS)(-1) from day 61 to day 74 compared to control reactor (309-350 mL g(VS)(-1)). With reactors' operation, Bacteroidetes phylotypes were noticeably replaced with Firmicutes representatives, and significant increase of Clostridium sp. was identified. Within Euryarchaeota, Methanosarcina sp. dominated in all analyzed samples, in which high ammonium levels were detected (3.4-4.9 NH4(+)-N g L(-1)). These results can help in better understanding the anaerobic digestion process of simultaneously ammonium/phosphate-rich substrates.
Collapse
Affiliation(s)
- Dmitry E Belostotskiy
- Department of Technologies, A.E. Arbuzov Institute of Organic and Physical Chemistry, RAN, Kazan 420088, The Republic of Tatarstan, Russia
| | - Elvira E Ziganshina
- Department of Microbiology, Kazan (Volga Region) Federal University, Kazan 420008, The Republic of Tatarstan, Russia
| | - Maria Siniagina
- Laboratory of Omics Technologies, Kazan (Volga Region) Federal University, Kazan 420008, The Republic of Tatarstan, Russia
| | - Eugenia A Boulygina
- Laboratory of Omics Technologies, Kazan (Volga Region) Federal University, Kazan 420008, The Republic of Tatarstan, Russia
| | - Vasili A Miluykov
- Department of Technologies, A.E. Arbuzov Institute of Organic and Physical Chemistry, RAN, Kazan 420088, The Republic of Tatarstan, Russia
| | - Ayrat M Ziganshin
- Department of Microbiology, Kazan (Volga Region) Federal University, Kazan 420008, The Republic of Tatarstan, Russia.
| |
Collapse
|
38
|
Oyafuso ZS, Baxter AE, Hall JE, Naman SM, Greene CM, Rhodes LD. Widespread detection of human- and ruminant-origin Bacteroidales markers in subtidal waters of the Salish Sea in Washington State. JOURNAL OF WATER AND HEALTH 2015; 13:827-837. [PMID: 26322768 DOI: 10.2166/wh.2015.253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Rising populations around coastal systems are increasing the threats to marine water quality. To assess anthropogenic fecal influence, subtidal waters were examined monthly for human- and ruminant-sourced Bacteroidales markers at 80 sites across six oceanographic basins of the Salish Sea (Washington State) from April through October, 2011. In the basins containing cities with individual populations>190,000, >50% of sites were positive for the human marker, while in the basins with high densities of dairy and cattle operations, ∼30% of sites were positive for the ruminant marker. Marker prevalence was elevated in spring (April and May) and fall (October) and reduced during summer (June through September), corresponding with seasonal precipitation. By logistic regression, the odds of human marker detection increased with percentage of adjacent catchment impervious surface, dissolved nitrate concentration, and abundance of low nucleic acid bacteria, but decreased with salinity and chlorophyll fluorescence. The odds of ruminant marker detection increased with dissolved ammonium concentration, mean flow rate for the nearest river, and adjacent shoreline length. These relationships are consistent with terrestrial to marine water flow as a transport mechanism. Thus, Bacteroidales markers traditionally used for identifying nearby sources can be used for assessing anthropogenic fecal inputs to regional marine ecosystems.
Collapse
Affiliation(s)
- Zack S Oyafuso
- Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, PO Box 355672, Seattle, WA 98195, USA Current address: Hawaii Institute of Marine Biology, University of Hawaii at Manoa, PO Box 1346, Kaneohe, HI 96744, USA
| | - Anne E Baxter
- Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Boulevard East, Seattle, WA 98112, USA E-mail:
| | - Jason E Hall
- Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Boulevard East, Seattle, WA 98112, USA E-mail:
| | - Sean M Naman
- Frank Orth and Associates, Under Contract to Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Boulevard East, Seattle, WA 98112, USA Current address: Department of Zoology, University of British Columbia, #4200-6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| | - Correigh M Greene
- Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Boulevard East, Seattle, WA 98112, USA E-mail:
| | - Linda D Rhodes
- Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Boulevard East, Seattle, WA 98112, USA E-mail:
| |
Collapse
|
39
|
Automated Sampling Procedures Supported by High Persistence of Bacterial Fecal Indicators and Bacteroidetes Genetic Microbial Source Tracking Markers in Municipal Wastewater during Short-Term Storage at 5°C. Appl Environ Microbiol 2015; 81:5134-43. [PMID: 26002900 DOI: 10.1128/aem.00998-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/15/2015] [Indexed: 11/20/2022] Open
Abstract
Because of high diurnal water quality fluctuations in raw municipal wastewater, the use of proportional autosampling over a period of 24 h at municipal wastewater treatment plants (WWTPs) to evaluate carbon, nitrogen, and phosphorus removal has become a standard in many countries. Microbial removal or load estimation at municipal WWTPs, however, is still based on manually recovered grab samples. The goal of this study was to establish basic knowledge regarding the persistence of standard bacterial fecal indicators and Bacteroidetes genetic microbial source tracking markers in municipal wastewater in order to evaluate their suitability for automated sampling, as the potential lack of persistence is the main argument against such procedures. Raw and secondary treated wastewater of municipal origin from representative and well-characterized biological WWTPs without disinfection (organic carbon and nutrient removal) was investigated in microcosm experiments at 5 and 21°C with a total storage time of 32 h (including a 24-h autosampling component and an 8-h postsampling phase). Vegetative Escherichia coli and enterococci, as well as Clostridium perfringens spores, were selected as indicators for cultivation-based standard enumeration. Molecular analysis focused on total (AllBac) and human-associated genetic Bacteroidetes (BacHum-UCD, HF183 TaqMan) markers by using quantitative PCR, as well as 16S rRNA gene-based next-generation sequencing. The microbial parameters showed high persistence in both raw and treated wastewater at 5°C under the storage conditions used. Surprisingly, and in contrast to results obtained with treated wastewater, persistence of the microbial markers in raw wastewater was also high at 21°C. On the basis of our results, 24-h autosampling procedures with 5°C storage conditions can be recommended for the investigation of fecal indicators or Bacteroidetes genetic markers at municipal WWTPs. Such autosampling procedures will contribute to better understanding and monitoring of municipal WWTPs as sources of fecal pollution in water resources.
Collapse
|
40
|
McCall CA, Jordan KS, Habash MB, Dunfield KE. Monitoring Bacteroides spp. markers, nutrients, metals and Escherichia coli in soil and leachate after land application of three types of municipal biosolids. WATER RESEARCH 2015; 70:255-265. [PMID: 25540839 DOI: 10.1016/j.watres.2014.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 11/02/2014] [Accepted: 12/03/2014] [Indexed: 06/04/2023]
Abstract
A lysimeter-based field study was done to monitor the transfer of culturable Escherichia coli, general (ALLBAC), human (Hf183) and swine (PIG-BAC-1) specific 16S rRNA Bacteroides spp. markers, nutrients and metals through soils and leachate over time following land application of a CP1/Class A as well as two CP2/Class B municipal biosolids (MBs). Hf183 markers were detected up to six days following application in soils receiving dewatered and liquid MBs, but not in leachate, suggesting their use in source tracking is better suited for recent pollution events. The CP2/Class B biosolids and swine manure contributed the highest microbial load with E. coli loads (between 2.5 and 3.7 log CFU (100 mL)(-1)) being greater than North American concentration recommendations for safe recreational water. ALLBAC persisted in soils and leachate receiving all treatments and was detected prior to amendment application demonstrating its unsuitability for identifying the presence of fecal pollution. A significant increase in NO₃-N (for Lystek and dewatered MBs) and total-P (for dewatered and liquid MBs) in leachate was observed in plots receiving the CP1/Class A and CP2/Class B type MBs which exceeded North American guidelines, suggesting impact to surface water. Metal (As, Cd, Cr, Co, Cu, Pb, Mo, Ni, Se, Zn and Hg) transfer was negligible in soil and leachate samples receiving all treatments. This study is one of the first to examine the fate of E. coli and Bacteroides spp. markers in situ following the land application of MBs where surface runoff does not apply.
Collapse
Affiliation(s)
- Crystal A McCall
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Katerina S Jordan
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Marc B Habash
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Kari E Dunfield
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
41
|
Bae S, Wuertz S. Decay of host-associated Bacteroidales cells and DNA in continuous-flow freshwater and seawater microcosms of identical experimental design and temperature as measured by PMA-qPCR and qPCR. WATER RESEARCH 2015; 70:205-213. [PMID: 25540834 DOI: 10.1016/j.watres.2014.10.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 06/04/2023]
Abstract
It is difficult to compare decay kinetics for genetic markers in an environmental context when they have been determined at different ambient temperatures. Therefore, we investigated the persistence of the host-associated genetic markers BacHum, BacCow and BacCan as well as the general Bacteroidales marker BacUni in both intact Bacteroidales cells and as total intracellular and extracellular marker DNA in controlled batch experiments at two temperatures using PMA-qPCR. Fecal Bacteroidales cells and DNA persisted longer at the lower temperature. Using the modified Arrhenius function to calculate decay constants for the same temperature, we then compared the decay of host-associated Bacteroidales cells and their DNA at 14 °C in field-based flow-through microcosms containing human, cow, and dog feces suspended in freshwater or seawater and previously operated with an identical experimental design. The time for a 2-log reduction (T₉₉) was used to characterize host-associated Bacteroidales decay. Host-associated genetic markers as determined by qPCR had similar T₉₉ values in freshwater and seawater at 14 °C when compared under both sunlight and dark conditions. In contrast, intact Bacteroidales cells measured by PMA-qPCR had shorter T₉₉ values in seawater than in freshwater. The decay constants of Bacteroidales cells were a function of physical (temperature) and chemical (salinity) parameters, suggesting that environmental parameters are key input variables for Bacteroidales survival in a predictive water quality model. Molecular markers targeting total Bacteroidales DNA were less susceptible to the variance of temperature, salinity and sunlight, implying that measurement of markers in both intact cells and DNA could enhance the predictive power of identifying fecal pollution across all aquatic environments. Monitoring Bacteroidales by qPCR alone rather than by PMA-qPCR does not always identify the contribution of recent fecal contamination because a signal may be detected that does not reflect a recent fecal event.
Collapse
Affiliation(s)
- Sungwoo Bae
- Department of Civil and Environmental Engineering, 2001 Ghausi Hall, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Stefan Wuertz
- Department of Civil and Environmental Engineering, 2001 Ghausi Hall, University of California, One Shields Avenue, Davis, CA 95616, USA; Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore.
| |
Collapse
|
42
|
Liu R, Cheng KHF, Wong K, Cheng SCS, Lau SCK. Differential utility of the Bacteroidales DNA and RNA markers in the tiered approach for microbial source tracking in subtropical seawater. Appl Microbiol Biotechnol 2015; 99:5669-81. [PMID: 25652655 DOI: 10.1007/s00253-015-6410-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 11/27/2022]
Abstract
Source tracking of fecal pollution is an emerging component in water quality monitoring. It may be implemented in a tiered approach involving Escherichia coli and/or Enterococcus spp. as the standard fecal indicator bacteria (FIB) and the 16S rRNA gene markers of Bacteroidales as source identifiers. The relative population dynamics of the source identifiers and the FIB may strongly influence the implementation of such approach. Currently, the relative performance of DNA and RNA as detection targets of Bacteroidales markers in the tiered approach is not known. We compared the decay of the DNA and RNA of the total (AllBac) and ruminant specific (CF128) Bacteroidales markers with those of the FIB in seawater spiked with cattle feces. Four treatments of light and oxygen availability simulating the subtropical seawater of Hong Kong were tested. All Bacteroidales markers decayed significantly slower than the FIB in all treatments. Nonetheless, the concentrations of the DNA and RNA markers and E. coli correlated significantly in normoxic seawater independent of light availability, and in hypoxic seawater only under light. In hypoxic seawater without light, the concentrations of RNA but not DNA markers correlated with that of E. coli. Generally, the correlations between Enterococcus spp. and Bacteroidales were insignificant. These results suggest that either DNA or RNA markers may complement E. coli in the tiered approach for normoxic or hypoxic seawater under light. When light is absent, either DNA or RNA markers may serve for normoxic seawater, but only the RNA markers are suitable for hypoxic seawater.
Collapse
Affiliation(s)
- Rulong Liu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | | | | |
Collapse
|
43
|
Villemur R, Imbeau M, Vuong MN, Masson L, Payment P. An environmental survey of surface waters using mitochondrial DNA from human, bovine and porcine origin as fecal source tracking markers. WATER RESEARCH 2015; 69:143-153. [PMID: 25463935 DOI: 10.1016/j.watres.2014.10.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/15/2014] [Accepted: 10/29/2014] [Indexed: 06/04/2023]
Abstract
Fecal contamination of surface waters is one the major sources of waterborne pathogens and consequently, is an important concern for public health. For reliable fecal source tracking (FST) monitoring, there is a need for a multi-marker toolbox as no single all-encompassing method currently exists. Mitochondrial DNA (mtDNA) as a source tracking marker has emerged as a promising animal-specific marker. However, very few comprehensive field studies were done on the occurrence of this marker in surface waters. In this report, water samples were obtained from 82 sites in different watersheds over a six year period. The samples were analyzed for the presence of human, bovine and porcine mtDNA by endpoint nested PCR, along with the human-specific Bacteroidales HF183 marker. These sites represented a mix of areas with different anthropogenic activities, natural, urban and agricultural. The occurrences of mitoHu (human), mitoBo (bovine), mitoPo (porcine) and HF183 specific PCR amplifications from the samples were 46%, 23%, 6% and 50%, respectively. The occurrence of mitoHu and HF183 was high in all environment types with higher occurrence in the natural and urban areas, whereas the occurrence of mitoBo was higher in agricultural areas. FST marker concentrations were measured by real-time PCR for samples positive for these markers. The concentration of the mitoHu markers was one order of magnitude lower than HF183. There was co-linearity between the concentrations of the mitoHu and HF183 markers. Co-linearity was also observed between HF183 concentration and fecal coliform levels. Such a relationship was not observed between the mitoHu concentration and fecal coliform levels. In summary, our results showed a high incidence of human fecal pollution throughout the environment while demonstrating the potential of mtDNA as suitable FST markers.
Collapse
Affiliation(s)
- Richard Villemur
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada.
| | - Marianne Imbeau
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Minh N Vuong
- National Research Council of Canada, 6100 Royalmount Ave, Montreal, QC, Canada
| | - Luke Masson
- National Research Council of Canada, 6100 Royalmount Ave, Montreal, QC, Canada; Université de Montréal, Dépt. Microbiologie et Immunologie, Montréal, QC, Canada
| | - Pierre Payment
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| |
Collapse
|
44
|
Odagiri M, Schriewer A, Hanley K, Wuertz S, Misra PR, Panigrahi P, Jenkins MW. Validation of Bacteroidales quantitative PCR assays targeting human and animal fecal contamination in the public and domestic domains in India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 502:462-470. [PMID: 25285421 DOI: 10.1016/j.scitotenv.2014.09.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 09/13/2014] [Accepted: 09/13/2014] [Indexed: 06/03/2023]
Abstract
We compared host-associated Bacteroidales qPCR assays developed in the continental United States and Europe for the purpose of measuring the effect of improved sanitation on human fecal exposure in rural Indian communities where both human and animal fecal loading are high. Ten candidate Bacteroidales qPCR assays were tested against fecal samples (human, sewage, cow, buffalo, goat, sheep, dog and chicken) from a test set of 30 individual human, 5 sewage, and 60 pooled animal samples collected in coastal Odisha, India. The two universal/general Bacteroidales assays tested (BacUni, GenBac3) performed equally well, achieving 100% sensitivity on the test set. Across the five human-associated assays tested (HF183 Taqman, BacHum, HumM2, BacH, HF183 SYBR), we found low sensitivity (17 to 49%) except for HF183 SYBR (89%), and moderate to high cross-reactivity with dog (20 to 80%) and chicken fecal samples (60 to 100%). BacHum had the highest accuracy (67%), amplified all sewage samples within the range of quantification (ROQ), and did not cross-react with any fecal samples from cows, the most populous livestock animal in India. Of the ruminant- and cattle-associated assays tested (BacCow, CowM2), BacCow was more sensitive in detecting the full range of common Indian livestock animal fecal sources, while CowM2 only detected cow sources with 50% sensitivity. Neither assay cross-reacted with human sources. BacCan, the dog-associated assay tested, showed no cross-reactivity with human sources, and high sensitivity (90%) for dog fecal samples. Overall, our results indicate BacUni, BacHum, HumM2, BacCan and BacCow would be the most suitable MST assays to distinguish and quantify relative amounts of human-associated and livestock/domestic animal-associated contributions to fecal contamination in Odisha, India.
Collapse
Affiliation(s)
- Mitsunori Odagiri
- Department of Civil and Environmental Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Alexander Schriewer
- Department of Civil and Environmental Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Kaitlyn Hanley
- Department of Civil and Environmental Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Stefan Wuertz
- Department of Civil and Environmental Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; Singapore Centre on Environmental Life Sciences Engineering (SCELSE), School of Biological Sciences, and School of Civil and Environmental Engineering, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore.
| | - Pravas R Misra
- Asian Institute of Public Health, Bhubaneswar, Odisha, India
| | - Pinaki Panigrahi
- Departments of Epidemiology and Pediatrics, Center for Global Health and Development, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Marion W Jenkins
- Department of Civil and Environmental Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
45
|
Rahube TO, Viana LS, Koraimann G, Yost CK. Characterization and comparative analysis of antibiotic resistance plasmids isolated from a wastewater treatment plant. Front Microbiol 2014; 5:558. [PMID: 25389419 PMCID: PMC4211555 DOI: 10.3389/fmicb.2014.00558] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/06/2014] [Indexed: 11/13/2022] Open
Abstract
A wastewater treatment plant (WWTP) is an environment high in nutrient concentration with diverse bacterial populations and can provide an ideal environment for the proliferation of mobile elements such as plasmids. WWTPs have also been identified as reservoirs for antibiotic resistance genes that are associated with human pathogens. The objectives of this study were to isolate and characterize self-transmissible or mobilizable resistance plasmids associated with effluent from WWTP. An enrichment culture approach designed to capture plasmids conferring resistance to high concentrations of erythromycin was used to capture plasmids from an urban WWTP servicing a population of ca. 210,000. DNA sequencing of the plasmids revealed diversity of plasmids represented by incompatibility groups IncU, col-E, IncFII and IncP-1β. Genes coding resistance to clinically relevant antibiotics (macrolide, tetracycline, beta-lactam, trimethoprim, chloramphenicol, sulphonamide), quaternary ammonium compounds and heavy metals were co-located on these plasmids, often within transposable and integrative mobile elements. Several of the plasmids were self-transmissible or mobilizable and could be maintained in the absence of antibiotic selection. The IncFII plasmid pEFC36a showed the highest degree of sequence identity to plasmid R1 which has been isolated in England more than 50 years ago from a patient suffering from a Salmonella infection. Functional conservation of key regulatory features of this F-like conjugation module were demonstrated by the finding that the conjugation frequency of pEFC36a could be stimulated by the positive regulator of plasmid R1 DNA transfer genes, TraJ.
Collapse
Affiliation(s)
- Teddie O Rahube
- Department of Biology, University of Regina Regina, SK, Canada ; Department of Biology and Biotechnological Sciences, Botswana International University of Science and Technology Palapye, Botswana
| | - Laia S Viana
- Institute of Molecular Biosciences, University of Graz Graz, Austria
| | - Günther Koraimann
- Institute of Molecular Biosciences, University of Graz Graz, Austria
| | | |
Collapse
|
46
|
Evidence for extraintestinal growth of bacteroidales originating from poultry litter. Appl Environ Microbiol 2014; 81:196-202. [PMID: 25326306 DOI: 10.1128/aem.02354-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Water quality monitoring techniques that target microorganisms in the order Bacteroidales are potential alternatives to conventional methods for detection of fecal indicator bacteria. Bacteroidales and members of the genus Bacteroides have been the focus of microbial source tracking (MST) investigations for discriminating sources of fecal pollution (e.g., human or cattle feces) in environmental waters. For accurate source apportionment to occur, one needs to understand both the abundance of Bacteroides in host feces and the survival of these host-associated microbial markers after deposition in the environment. Studies were undertaken to evaluate the abundance, persistence, and potential for growth of Bacteroidales originating from poultry litter under oxic and anoxic environmental conditions. Bacteroidales abundance, as determined by quantitative PCR (qPCR) with GenBac primers and probe, increased 2 to 5 log gene copies ml(-1) and 2 log gene copies g litter(-1) under most conditions during incubation of poultry litter in a variety of laboratory microcosm and field mesocosm studies. DNA sequencing of the Bacteroidales organisms in the litter identified taxa with sequences corresponding exactly to the GenBac primer and probe sequences and that were closely related to Bacteroides uniformis, B. ovatus, and B. vulgatus. These results suggest that MST studies using qPCR methods targeting Bacteroidales in watersheds that are affected by poultry litter should be interpreted cautiously. Growth of Bacteroidales originating from poultry litter in environmental waters may occur while Bacteroidales growth from other fecal sources declines, thus confounding the interpretation of MST results.
Collapse
|
47
|
Ridley CM, Jamieson RC, Truelstrup Hansen L, Yost CK, Bezanson GS. Baseline and storm event monitoring of Bacteroidales marker concentrations and enteric pathogen presence in a rural Canadian watershed. WATER RESEARCH 2014; 60:278-288. [PMID: 24862956 DOI: 10.1016/j.watres.2014.04.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 04/14/2014] [Accepted: 04/19/2014] [Indexed: 06/03/2023]
Abstract
Bacteroidales 16S rRNA gene markers were evaluated for their use as a microbial source tracking tool in a well characterized 750 ha agricultural watershed in Nova Scotia, Canada. Water quality monitoring was conducted following the validation of host-specific and universal Bacteroidales (AllBac) markers for their proficiency in this particular geographic region, which provided further evidence that these markers are geographically stable. Increasing Escherichia coli concentrations were positively correlated (p < 0.01) with concentrations of the AllBac marker in water samples, suggesting that this universal marker is more suited as a positive DNA control rather than as an indicator of recent fecal contamination. Ruminant (BacR) and bovine (CowM2) specific marker detection was associated with increased runoff due to precipitation in sub-watersheds putatively impacted by cattle farming, demonstrating that the BacR and CowM2 markers can be used to detect the recent introduction of fecal matter from cattle farming activities during rainfall events. However, the human associated marker (BacH) was only detected once in spite of numerous on-site residential wastewater treatment systems in the watershed, suggesting that this assay is not sensitive enough to detect this type of human sewage source. E. coli O157:H7 and Salmonella spp. DNA was not detected in any of the 149 watershed samples; however, 114 (76.5%) of those samples tested positive for Campylobacter spp. No significant correlation (p > 0.05) was found between Campylobacter spp. presence and either E. coli or AllBac marker levels. Further studies should be conducted to assess the origins of Campylobacter spp. in these types of watersheds, and to quantify pathogen cell numbers to allow for a human health risk assessment.
Collapse
Affiliation(s)
- C M Ridley
- Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, NS, Canada B3H 4R2
| | - R C Jamieson
- Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, NS, Canada B3H 4R2.
| | - L Truelstrup Hansen
- Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, NS, Canada B3H 4R2
| | - C K Yost
- Department of Biology, University of Regina, LB 244, 3737 Wascana Parkway, Regina, SK, Canada S4S 0A2
| | - G S Bezanson
- Agriculture and Agri-Food Canada, Atlantic Food and Horticulture Research Centre, 32 Main Street, Kentville, NS, Canada B4N 1J5
| |
Collapse
|
48
|
Ahmed W, Gyawali P, Sidhu J, Toze S. Relative inactivation of faecal indicator bacteria and sewage markers in freshwater and seawater microcosms. Lett Appl Microbiol 2014; 59:348-54. [DOI: 10.1111/lam.12285] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 11/28/2022]
Affiliation(s)
- W. Ahmed
- CSIRO Land and Water; Ecosciences Precinct; Brisbane Qld Australia
- Faculty of Science, Health and Education; University of the Sunshine Coast; Maroochydore DC Qld Australia
| | - P. Gyawali
- CSIRO Land and Water; Ecosciences Precinct; Brisbane Qld Australia
- School of Population Health; University of Queensland; Brisbane Qld Australia
| | - J.P.S. Sidhu
- CSIRO Land and Water; Ecosciences Precinct; Brisbane Qld Australia
- Faculty of Science, Health and Education; University of the Sunshine Coast; Maroochydore DC Qld Australia
| | - S. Toze
- CSIRO Land and Water; Ecosciences Precinct; Brisbane Qld Australia
- School of Population Health; University of Queensland; Brisbane Qld Australia
| |
Collapse
|
49
|
Piorkowski GS, Bezanson GS, Jamieson RC, Hansen LT, Yost CK. Effect of hillslope position and manure application rates on the persistence of fecal source tracking indicators in an agricultural soil. JOURNAL OF ENVIRONMENTAL QUALITY 2014; 43:450-458. [PMID: 25602646 DOI: 10.2134/jeq2013.07.0274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The influence of liquid dairy manure (LDM) application rates (12.5 and 25 kL ha) and soil type on the decay rates of library-independent fecal source tracking markers (host-associated and mitochondrial DNA) and persistent (>58 d) population structure was examined in a field study. The soils compared were an Aquic Haplorthod and a Typic Haplorthod in Nova Scotia, Canada, that differed according to landscape position and soil moisture regime. Soil type and LDM application rate did not influence decay rates (0.045-0.057 d). population structure, in terms of the occurrence of abundance of strain types, varied according to soil type ( = 0.012) but did not vary by LDM application rate ( = 0.121). Decay of ruminant-specific (BacR), bovine-specific (CowM2), and mitochondrial DNA (AcytB) markers was analyzed for 13 d after LDM application. The decay rates of BacR were greater under high-LDM application rates (0.281-0.358 d) versus low-LDM application rates (0.212-0.236 d) but were unaffected by soil type. No decay rates could be calculated for the CowM2 marker because it was undetectable within 6 d after manure application. Decay rates for AcytB were lower for the Aquic Haplorthod (0.088-0.100 d), with higher moisture status compared with the Typic Haplorthod (0.135 d). Further investigation into the decay of fecal source tracking indicators in agricultural field soils is warranted to assess the influence of soil type and agronomic practice on the differential decay of relevant markers and the likelihood of transport in runoff.
Collapse
|
50
|
North RL, Khan NH, Ahsan M, Prestie C, Korber DR, Lawrence JR, Hudson JJ. Relationship between water quality parameters and bacterial indicators in a large prairie reservoir: Lake Diefenbaker, Saskatchewan, Canada. Can J Microbiol 2014; 60:243-9. [PMID: 24693983 DOI: 10.1139/cjm-2013-0694] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lake Diefenbaker (LD) is a large reservoir on the South Saskatchewan River used for agricultural irrigation, drinking water, and recreation. Our objectives were to determine the distribution and abundance of bacterial indicators in embayments and the main channel of LD and to relate these to environmental factors. Total coliforms (TCs), fecal coliforms (FCs), and fecal indicator bacteria (i.e., Escherichia coli) were measured concurrently with water quality parameters. Although TCs, FCs, and E. coli were present in LD, they rarely exceeded the TC and FC Canadian Council of Ministers of the Environment (CCME) water quality standards for agricultural use (1000 colony-forming units (CFU) per 100 mL and 100 CFU per 100 mL, respectively). The correlation between the bacterial indicators in the sediments and the water column indicates that higher embayment abundances may be related to sediment loading and (or) resuspension events in these frequently mixed embayments. With higher water temperatures and water levels, as well as higher microbial activity, CCME bacterial limits may be exceeded. The greatest contributor to bacterial indicator abundance was water temperature. We predict that water quality standards will be exceeded more frequently with climate warming.
Collapse
Affiliation(s)
- R L North
- a Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | | | | | | | | | | | | |
Collapse
|