1
|
Ross TT, Alim MA, Rahman A. Simple and effective filtration system for drinking water production from harvested rainwater in rural areas. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123887. [PMID: 39752949 DOI: 10.1016/j.jenvman.2024.123887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/19/2024] [Accepted: 12/24/2024] [Indexed: 01/15/2025]
Abstract
Rainwater harvesting (RWH) for drinking water production has been a potential solution to mitigate water scarcity in rural areas. There was limited research focusing on the quality of treated rainwater. This study developed and tested the quality of a drinking water filtration system (DWFS) for treating harvested rainwater to support rural communities. Physiochemical and microbial quality assessments of first flush, pre-filtered and filtered rainwater over 12 months of the experiment were investigated. The findings are: (1) the first flush system used in this study (diameter of 90 mm and length of 1 m) showed a marked improvement in roof harvested rainwater quality (by about 75%), (2) the quality of the harvested rainwater could meet drinking water guidelines once treated by DWFS, which could eliminate harmful pathogens but bypass other essential constituents at permissible levels (e.g., suspended solids, dissolved compounds, metals and nutrients), and (3) the configured system offered a drinking water production capacity of 60 L/h. It should be noted that the configured filter would need adjustments to be adopted in a different region.
Collapse
Affiliation(s)
- Tara T Ross
- School of Engineering, Design and Built Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Mohammad A Alim
- School of Engineering, Design and Built Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| | - Ataur Rahman
- School of Engineering, Design and Built Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
2
|
Tuo J, Shen Y, Jia S, Liu S, Zhang Q, Wang D, He X, Liu P, Zhang XX. HPB-Chip: An accurate high-throughput qPCR-based tool for rapidly profiling waterborne human pathogenic bacteria in the environment. WATER RESEARCH 2024; 260:121927. [PMID: 38941866 DOI: 10.1016/j.watres.2024.121927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/30/2024]
Abstract
Waterborne pathogens are threatening public health globally, but profiling multiple human pathogenic bacteria (HPBs) in various polluted environments is still a challenge due to the absence of rapid, high-throughput and accurate quantification tools. This work developed a novel chip, termed the HPB-Chip, based on high-throughput quantitative polymerase chain reactions (HT-qPCR). The HPB-Chip with 33-nL reaction volume could simultaneously complete 10,752 amplification reactions, quantifying 27 HPBs in up to 192 samples with two technical replicates (including those for generating standard curves). Specific positive bands of target genes across different species and single peak melting curves demonstrated high specificity of the HPB-Chip. The mixed plasmid serial dilution test validated its high sensitivity with the limit of quantification (LoD) of averaged 82 copies per reaction for 25 target genes. PCR amplification efficiencies and R2 coefficients of standard curves of the HPB-Chip averaged 101 % and 0.996, respectively. Moreover, a strong positive correlation (Pearson' r: 0.961-0.994, P < 0.001) of HPB concentrations (log10 copies/L) between HPB-Chip and conventional qPCR demonstrated high accuracy of the HPB-Chip. Subsequently, the HPB-Chip has been successfully applied to absolutely quantify 27 HPBs in municipal and hospital wastewater treatment plants (WWTPs) after PMA treatment. A total of 17 HPBs were detected in the 6 full-scale WWTPs, with an additional 19 in the hospital WWTP. Remarkably, Acinetobacter baumannii, Legionella pneumophila, and Arcobacter butzler were present in the final effluent of each municipal WWTP. Overall, the HPB-Chip is an efficient and accurate high-throughput quantification tool to comprehensively and rapidly quantify 27 HPBs in the environment.
Collapse
Affiliation(s)
- Jinhua Tuo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yan Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shuyu Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengnan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qifeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Depeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Peng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
3
|
Diedrich A, Sivaganesan M, Willis JR, Sharifi A, Shanks OC. Genetic fecal source identification in urban streams impacted by municipal separate storm sewer system discharges. PLoS One 2023; 18:e0278548. [PMID: 36701383 PMCID: PMC9879488 DOI: 10.1371/journal.pone.0278548] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/17/2022] [Indexed: 01/27/2023] Open
Abstract
Municipal stormwater systems are designed to collect, transport, and discharge precipitation from a defined catchment area into local surface waters. However, these discharges may contain unsafe levels of fecal waste. Paired measurements of Escherichia coli, precipitation, three land use metrics determined by geographic information system (GIS) mapping, and host-associated genetic markers indicative of human (HF183/BacR287 and HumM2), ruminant (Rum2Bac), dog (DG3), and avian (GFD) fecal sources were assessed in 231 urban stream samples impacted by two or more municipal stormwater outfalls. Receiving water samples were collected twice per month (n = 24) and after rain events (n = 9) from seven headwaters of the Anacostia River in the District of Columbia (United States) exhibiting a gradient of impervious surface, residential, and park surface areas. Almost 50% of stream samples (n = 103) were impaired, exceeding the local E. coli single sample maximum assessment level (410 MPN/100 ml). Fecal scores (average log10 copies per 100 ml) were determined to prioritize sites by pollution source and to evaluate potential links with land use, rainfall, and E. coli levels using a recently developed censored data analysis approach. Dog, ruminant, and avian fecal scores were almost always significantly increased after rain or when E. coli levels exceeded the local benchmark. Human fecal pollution trends showed the greatest variability with detections ranging from 9.1% to 96.7% across sites. Avian fecal scores exhibited the closest connection to land use, significantly increasing in catchments with larger residential areas after rain events (p = 0.038; R2 = 0.62). Overall, results demonstrate that combining genetic fecal source identification methods with GIS mapping complements routine E. coli monitoring to improve management of urban streams impacted by stormwater outfalls.
Collapse
Affiliation(s)
- Adam Diedrich
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States of America
| | - Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States of America
| | - Jessica R. Willis
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States of America
| | - Amirreza Sharifi
- Department of Energy and Environment, Government of the District of Columbia, Washington, DC, United States of America
| | - Orin C. Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States of America
- * E-mail:
| |
Collapse
|
4
|
Gregson BH, Bani A, Steinfield L, Holt D, Whitby C. Anaerobes and methanogens dominate the microbial communities in water harvesting ponds used by Kenyan rural smallholder farmers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153040. [PMID: 35026246 DOI: 10.1016/j.scitotenv.2022.153040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Many rural smallholder farmers in Kenya use water-harvesting ponds, to collect rainwater, as sustainable sources of water for domestic and agricultural purposes. There is currently limited information regarding the microbial ecology in these ponds. Here, we used High Throughput Sequencing (HTS) to characterize the microorganisms present (including potential pathogens and indicator species) alongside ion chromatography to measure water chemistry (anion and cation concentration). Fluoride and magnesium concentration were the strongest predictor variables of the microbial community. Obligately or facultatively anaerobic bacterial genera (e.g. Spirochaeta and Opitutus) were abundant within the bacterial community, whilst Woesearchaeota and methanogens dominated the archaeal community. This suggests the water in the ponds is hypoxic or anoxic, and if used for irrigation, may potentially impact crop yield and viability. In addition, the opportunistic pathogen non-tuberculous mycobacteria (NTM), Mycobacterium fortuitum was found, comprising >1% of the bacterial community, suggesting a potential human health risk. Here we suggest low-cost changes to pond management, to improve or ameliorate pond anoxia and remove pathogens to benefit the livelihoods and welfare of these farms. This study also shows the applicability of HTS to broadly screen the microbial communities, assess water quality, and identify potentially pathogenic groups.
Collapse
Affiliation(s)
- Benjamin H Gregson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Alessia Bani
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | | | - Diane Holt
- Center for Enterprise and Entrepreneurship, Leeds University Business School, Leeds LS2 9JT, UK
| | - Corinne Whitby
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
| |
Collapse
|
5
|
Fiorentino A, Lofrano G, Cucciniello R, Carotenuto M, Motta O, Proto A, Rizzo L. Disinfection of roof harvested rainwater inoculated with E. coli and Enterococcus and post-treatment bacterial regrowth: Conventional vs solar driven advanced oxidation processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149763. [PMID: 34438135 DOI: 10.1016/j.scitotenv.2021.149763] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/15/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Solar driven advanced oxidation processes (AOPs) (an alternative solar photo Fenton like process (SPF), sunlight/H2O2 (SHP) and sunlight/chlorine (SCL)) and respective dark conditions, were compared for the first time to conventional (chlorination and UV-C radiation) disinfection processes, in the inactivation of E. coli and Entero strains inoculated in real roof-harvested rainwater (RHRW), to evaluate their possible safe use for crop irrigation. In this regard, bacterial regrowth was also evaluated 6, 12, 24 and 48 h after disinfection treatment. The SPF, using iminodisuccinic acid (IDS)-Cu complex as catalyst, was optimized (H2O2/IDS-Cu 55/1 best molar ratio) under mild conditions (spontaneous pH) and sunlight. The faster inactivation kinetics were observed for the SCL process (k = 1.473 min-1, t1/2 = 0.47 min for E. coli and k = 1.193 min-1, t1/2 = 0.57 min for Entero), while the most effective processes in controlling bacterial regrowth were SPF and SCL. Although UV-C radiation (0-1.3 × 104 μW s cm-2 dose range) was the second faster disinfection process (k = 1.242 min-1, t1/2 = 0.55 min for E. coli and k = 1.150 min-1, t1/2 = 0.60 min for Entero), it was the less effective process in controlling bacterial regrowth (>10 CFU 100 mL-1 already after 6 h post-treatment incubation). According to the bacterial inactivation and regrowth tests carried out in this work, SPF and SCL are interesting options for RHRW disinfection, in case of effluent use for crop irrigation.
Collapse
Affiliation(s)
- A Fiorentino
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - G Lofrano
- Centro Servizi Metereologici e Tecnologici Avanzati (CeSMA), University of Naples Federico II, Via Cinthia 21, 80126 Naples, Italy.
| | - R Cucciniello
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - M Carotenuto
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - O Motta
- Department of Medicine Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy
| | - A Proto
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - L Rizzo
- Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
6
|
Schwake DO, Alum A, Abbaszadegan M. Legionella Occurrence beyond Cooling Towers and Premise Plumbing. Microorganisms 2021; 9:microorganisms9122543. [PMID: 34946143 PMCID: PMC8706379 DOI: 10.3390/microorganisms9122543] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 11/18/2022] Open
Abstract
Legionella is an environmental pathogen that is responsible for respiratory disease and is a common causative agent of water-related outbreaks. Due to their ability to survive in a broad range of environments, transmission of legionellosis is possible from a variety of sources. Unfortunately, a disproportionate amount of research that is devoted to studying the occurrence of Legionella in environmental reservoirs is aimed toward cooling towers and premise plumbing. As confirmed transmission of Legionella has been linked to many other sources, an over-emphasis on the most common sources may be detrimental to increasing understanding of the spread of legionellosis. This review aims to address this issue by cataloguing studies which have examined the occurrence of Legionella in less commonly investigated environments. By summarizing and discussing reports of Legionella in fresh water, ground water, saltwater, and distribution system drinking water, future environmental and public health researchers will have a resource to aid in investigating these pathogens in relevant sources.
Collapse
Affiliation(s)
- David Otto Schwake
- Department of Natural Sciences, Middle Georgia State University, 100 University Pkwy, Macon, GA 31206, USA;
| | - Absar Alum
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA;
| | - Morteza Abbaszadegan
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA;
- Correspondence: ; Tel.: +1-480-965-3868
| |
Collapse
|
7
|
Influence of Simplified Microbial Community Biofilms on Bacterial Retention in Porous Media under Conditions of Stormwater Biofiltration. Microbiol Spectr 2021; 9:e0110521. [PMID: 34704792 PMCID: PMC8549730 DOI: 10.1128/spectrum.01105-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Porous media filters are used widely to remove bacteria from contaminated water, such as stormwater runoff. Biofilms that colonize filter media during normal function can significantly alter performance, but it is not clear how characteristics of individual populations colonizing porous media combine to affect bacterial retention. We assess how four bacterial strains isolated from stormwater and a laboratory strain, Pseudomonas aeruginosa PAO1, alter Escherichia coli retention in experimental sand columns under conditions of stormwater filtration relative to a clean-bed control. Our results demonstrate that these strains differentially affect E. coli retention, as was previously shown for a model colloid. To determine whether E. coli retention could be influenced by changes in relative abundance of strains within a microbial community, we selected two pairs of biofilm strains with the largest observed differences in E. coli retention and tested how changes in relative abundance of strain pairs in the biofilm affected E. coli retention. The results demonstrate that E. coli retention efficiency is influenced by the retention characteristics of the strains within biofilm microbial community, but individual strain characteristics influence retention in a manner that cannot be determined from changes in their relative abundance alone. This study demonstrates that changes in the relative abundance of specific members of a biofilm community can significantly alter filter performance, but these changes are not a simple function of strain-specific retention and the relative abundance. Our results suggest that the microbial community composition of biofilms should be considered when evaluating factors that influence filter performance. IMPORTANCE The retention efficiency of bacterial contaminants in biofilm-colonized biofilters is highly variable. Despite the increasing number of studies on the impact of biofilms in filters on bacterial retention, how individual bacterial strains within a biofilm community combine to influence bacterial retention is unknown. Here, we studied the retention of an E. coli K-12 strain, as a model bacterium, in columns colonized by four bacterial strains isolated from stormwater and P. aeruginosa, a model biofilm-forming strain. Simplified two-strain biofilm communities composed of combinations of the strains were used to determine how relative abundance of biofilm strains affects filter performance. Our results provide insight into how biofilm microbial composition influences bacterial retention in filters and whether it is possible to predict bacterial retention efficiency in biofilm-colonized filters from the relative abundance of individual members and the retention characteristics of cultured isolates.
Collapse
|
8
|
Zhang X, Xia S, Ye Y, Wang H. Opportunistic pathogens exhibit distinct growth dynamics in rainwater and tap water storage systems. WATER RESEARCH 2021; 204:117581. [PMID: 34461496 DOI: 10.1016/j.watres.2021.117581] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/09/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Opportunistic pathogens (OPs) are emerging microbial contaminants in engineered water systems, yet their growth potential in rainwater systems has not been evaluated. The purpose of this study was to compare the growth dynamics of bacterial OPs and related genera (Pseudomonas aeruginosa, Legionella spp., L. pneumophila, Mycobacterium spp., and M. avium), two amoebal hosts (Acanthamoeba spp. and Vermamoeba vermiformis), and the fecal indicator Escherichia coli in simulated rainwater and tap water storage systems (SWSSs). Quantitative polymerase chain reaction (q-PCR) analysis of target microorganisms in SWSS influents and effluents demonstrated that P. aeruginosa and Legionella thrived in rainwater, but not in tap water. V. vermiformis proliferated in both rainwater and tap water polyvinyl chloride (PVC) SWSSs, while mycobacteria were largely absent in rainwater SWSSs. Tank materials exerted stronger influence on target microorganisms in rainwater SWSSs relative to tap water SWSSs, with species-specific responses noted in bulk water and biofilm. For instance, P. aeruginosa and V. vermiformis had the highest gene copy numbers in PVC rainwater SWSS effluents and biofilm, while Legionella peaked in stainless steel rainwater SWSS effluents and PVC rainwater SWSS biofilm. These results highlighted the OP contamination risks in rainwater storage systems and provided insights into rainwater system design and operation in terms of OP control.
Collapse
Affiliation(s)
- Xiaodong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Chengtou Water Group Corporation, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yinyin Ye
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, New York 14260, USA
| | - Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
9
|
Yu Y, Chen X, Wang Y, Mao J, Ding Z, Lu Y, Wang X, Lian X, Shi Y. Producing and storing self-sustaining drinking water from rainwater for emergency response on isolated island. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144513. [PMID: 33453540 DOI: 10.1016/j.scitotenv.2020.144513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Drinking water on isolated islands includes treated rainwater, water shipped from the mainland, and desalinated seawater. However, marine transportation and desalination plants are vulnerable to emergencies, such as extreme weather, making self-sustaining stand-by water for emergency response essential. Rainwater is ideal for producing the stand-by water, and rainwater harvesting is sustainable and clean, and prolonged biostability can be ensured by managing biological and chemical parameters. The present study applied a stand-by drinking water purification system (primarily including nanofiltration and low-dose chlorination) to explore the feasibility of producing and storing cleaner drinking water from rainwater and the following conclusions were drawn. First, treatment of rainwaters ensures biosafety for seven days, which is longer than that for untreated rainwater; the proportion of opportunistic pathogens decreased from 23.40-7.77% after nanofiltration, and it was proposed that the microbial community converges after advanced water treatment. Second, chemical qualities were improved. Local resource coral sand prevents pH in rainwater from decreasing below 6.5, and treated rainwater had lower disinfection by-product potential and higher disinfection efficiency, allowing periodical rainwater recycling. Third, harvesting rainwater was extremely cost-effective, with an operation cost of 1.5-2.5 RMB/m3. From biosafety, chemical safety, and economic cost perspectives, self-sustaining water from rainwater can contributes to the development of sustainable and cost-effective water supply systems on isolated islands. Mixing treated rainwater and desalinated seawater reasonably guarantees sufficiency and safety.
Collapse
Affiliation(s)
- Yingjun Yu
- College of Defense Engineering, Peoples' Liberation Army Engineering University, Nanjing 210007, China
| | - Xiao Chen
- College of Defense Engineering, Peoples' Liberation Army Engineering University, Nanjing 210007, China
| | - Yi Wang
- College of Defense Engineering, Peoples' Liberation Army Engineering University, Nanjing 210007, China.
| | - Jinfeng Mao
- College of Defense Engineering, Peoples' Liberation Army Engineering University, Nanjing 210007, China.
| | - Zhibin Ding
- College of Defense Engineering, Peoples' Liberation Army Engineering University, Nanjing 210007, China
| | - Yaofeng Lu
- College of Defense Engineering, Peoples' Liberation Army Engineering University, Nanjing 210007, China
| | - Xiuchun Wang
- College of Defense Engineering, Peoples' Liberation Army Engineering University, Nanjing 210007, China
| | - Xiaoying Lian
- College of Defense Engineering, Peoples' Liberation Army Engineering University, Nanjing 210007, China
| | - Yue Shi
- College of Defense Engineering, Peoples' Liberation Army Engineering University, Nanjing 210007, China
| |
Collapse
|
10
|
Zhang L, Cheng Y, Qian C, Lu W. Bacterial community evolution along full-scale municipal wastewater treatment processes. JOURNAL OF WATER AND HEALTH 2020; 18:665-680. [PMID: 33095191 DOI: 10.2166/wh.2020.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Sewage pollution is a major threat to public health because sewage is always accompanied by pathogens. Generally, wastewater treatment plants (WWTP) receive and treat sewage to control pathogenic risks and improve environmental health. This study investigated the changes in the bacterial community over the course of treatment by a WWTP. Illumina MiSeq high-throughput sequencing was performed to characterize the bacterial communities in the WWTP. This study found that potential pathogens in the WWTP, especially the genera Arcobacter and Acinetobacter, were greatly reduced. In addition, high chemical oxygen demand levels provided excessive growth substrates for the genera Hyphomicrobium and Rhodoplanes, the abundance of which could exceed autotrophic bacteria, increasing the ammonium removal. According to the network analysis, the bacterial assemblage was not randomly arranged in the WWTP, and various defined processes led to higher intra-phylum (such as Proteobacteria) coexistence than expected. Moreover, the metabolic functions of bacterial communities significantly improved in the WWTP compared with the influent. Together, the data in this study emphasize the need to understand the bacterial community of WWTPs better. When analyzing the risks of WWTP drainage systems to the environment and human health, these data should be considered.
Collapse
Affiliation(s)
- Lei Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China E-mail:
| | - Yanan Cheng
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China E-mail:
| | - Chang Qian
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China E-mail:
| | - Wenxuan Lu
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| |
Collapse
|
11
|
Ley CJ, Proctor CR, Jordan K, Ra K, Noh Y, Odimayomi T, Julien R, Kropp I, Mitchell J, Nejadhashemi AP, Whelton AJ, Aw TG. Impacts of Municipal Water-Rainwater Source Transitions on Microbial and Chemical Water Quality Dynamics at the Tap. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11453-11463. [PMID: 32786341 DOI: 10.1021/acs.est.0c03641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
When rainwater harvesting is utilized as an alternative water resource in buildings, a combination of municipal water and rainwater is typically required to meet water demands. Altering source water chemistry can disrupt pipe scale and biofilm and negatively impact water quality at the distribution level. Still, it is unknown if similar reactions occur within building plumbing following a transition in source water quality. The goal of this study was to investigate changes in water chemistry and microbiology at a green building following a transition between municipal water and rainwater. We monitored water chemistry (metals, alkalinity, and disinfectant byproducts) and microbiology (total cell counts, plate counts, and opportunistic pathogen gene markers) throughout two source water transitions. Several constituents including alkalinity and disinfectant byproducts served as indicators of municipal water remaining in the system since the rainwater source does not contain these constituents. In the treated rainwater, microbial proliferation and Legionella spp. gene copy numbers were often three logs higher than those in municipal water. Because of differences in source water chemistry, rainwater and municipal water uniquely interacted with building plumbing and generated distinctively different drinking water chemical and microbial quality profiles.
Collapse
Affiliation(s)
- Christian J Ley
- Environmental and Ecological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Caitlin R Proctor
- Environmental and Ecological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn Jordan
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, Louisiana 70112, United States
| | - Kyungyeon Ra
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yoorae Noh
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tolulope Odimayomi
- Environmental and Ecological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ryan Julien
- Department of Biosystems Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Ian Kropp
- Department of Biosystems Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jade Mitchell
- Department of Biosystems Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - A Pouyan Nejadhashemi
- Department of Biosystems Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Andrew J Whelton
- Environmental and Ecological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tiong Gim Aw
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, Louisiana 70112, United States
| |
Collapse
|
12
|
Abstract
Burden of disease analyses can quantify the relative impact of different exposures on population health outcomes. Gastroenteritis where the causative pathogen was not determined and respiratory illness resulting from exposure to opportunistic pathogens transmitted by water aerosols have not always been considered in waterborne burden of disease estimates. We estimated the disease burden attributable to nine enteric pathogens, unspecified pathogens leading to gastroenteritis, and three opportunistic pathogens leading primarily to respiratory illness, in Ontario, Canada (population ~14 million). Employing a burden of disease framework, we attributed a fraction of annual (year 2016) emergency department (ED) visits, hospitalisations and deaths to waterborne transmission. Attributable fractions were developed from the literature and clinical input, and unattributed disease counts were obtained using administrative data. Our Monte Carlo simulation reflected uncertainty in the inputs. The estimated mean annual attributable rates for waterborne diseases were (per 100 000 population): 69 ED visits, 12 hospitalisations and 0.52 deaths. The corresponding 5th–95th percentile estimates were (per 100 000 population): 13–158 ED visits, 5–22 hospitalisations and 0.29–0.83 deaths. The burden of disease due to unspecified pathogens dominated these rates: 99% for ED visits, 63% for hospitalisations and 40% for deaths. However, when a causative pathogen was specified, the majority of hospitalisations (83%) and deaths (97%) resulted from exposure to the opportunistic pathogens Legionella spp., non-tuberculous mycobacteria and Pseudomonas spp. The waterborne disease burden in Ontario indicates the importance of gastroenteritis not traced back to a particular pathogen and of opportunistic pathogens transmitted primarily through contact with water aerosols.
Collapse
|
13
|
Zhang X, Xia S, Zhao R, Wang H. Effect of temperature on opportunistic pathogen gene markers and microbial communities in long-term stored roof-harvested rainwater. ENVIRONMENTAL RESEARCH 2020; 181:108917. [PMID: 31759642 DOI: 10.1016/j.envres.2019.108917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Roof-harvested rainwater (RHRW) has received increasing attention in recent years as an alternative water source for domestic use, yet its biological stability during storage is not fully understood. This study investigated the effects of temperature (4 °C, 20 °C and 30 °C) on the microbiological characteristics of RHRW over a storage period of 60 days by targeting different microbial groups including total bacteria and fecal indictor Escherichia coli, bacterial opportunistic pathogen genera and species (Legionella spp, Legionella pneumophila, Mycobacterium spp, Mycobacterium avium, Pseudomonas aeruginosa), and two amoebas (Acanthamoeba and Vermamoeba vermiformis). The rainwater chemistry demonstrated no obvious change during storage. The highest biomass was observed in RHRW stored at 30 °C, as measured by heterotrophic bacterial counts, adenosine triphosphate, and 16S rRNA gene numbers. Gene markers of E. coli, Legionella spp., P. aeruginosa, and V. vermiformis were detected in fresh RHRW and can persist during RHRW storage; whereas P. aeruginosa was the only species demonstrated significant regrowth at higher storage temperatures (P < 0.05). Acanthamoeba spp. was only detected in RHRW after 50 days of storage at three investigated temperatures, highlighting increased health risks in long-term stored RHRW. Bacterial community compositions were significantly different in RHRW stored at different temperatures, with increased variations among triplicate storage bottles noted at higher temperatures along with storage time. The results provide insights into RHRW storage practices in terms of mitigating microbial contamination risks.
Collapse
Affiliation(s)
- Xiaodong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Renzun Zhao
- Civil, Architectural and Environmental Engineering Department, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
14
|
Ahmed W, Hamilton K, Toze S, Cook S, Page D. A review on microbial contaminants in stormwater runoff and outfalls: Potential health risks and mitigation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:1304-1321. [PMID: 31539962 PMCID: PMC7126443 DOI: 10.1016/j.scitotenv.2019.07.055] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/27/2019] [Accepted: 07/04/2019] [Indexed: 04/14/2023]
Abstract
Demands on global water supplies are increasing in response to the need to provide more food, water, and energy for a rapidly growing population. These water stressors are exacerbated by climate change, as well as the growth and urbanisation of industry and commerce. Consequently, urban water authorities around the globe are exploring alternative water sources to meet ever-increasing demands. These alternative sources are primarily treated sewage, stormwater, and groundwater. Stormwater including roof-harvested rainwater has been considered as an alternative water source for both potable and non-potable uses. One of the most significant issues concerning alternative water reuse is the public health risk associated with chemical and microbial contaminants. Several studies to date have quantified fecal indicators and pathogens in stormwater. Microbial source tracking (MST) approaches have also been used to determine the sources of fecal contamination in stormwater and receiving waters. This review paper summarizes occurrence and concentrations of fecal indicators, pathogens, and MST marker genes in urban stormwater. A section of the review highlights the removal of fecal indicators and pathogens through water sensitive urban design (WSUD) or Best Management Practices (BMPs). We also discuss approaches for assessing and mitigating health risks associated with stormwater, including a summary of existing quantitative microbial risk assessment (QMRA) models for potable and non-potable reuse of stormwater. Finally, the most critical research gaps are identified for formulating risk management strategies.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia.
| | - Kerry Hamilton
- Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Simon Toze
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - Stephen Cook
- CSIRO Land and Water, Research way, Clayton South, VIC 3169, Australia
| | - Declan Page
- CSIRO Land and Water, Waite Laboratories, Waite Rd., Urrbrae, SA 5064, Australia
| |
Collapse
|
15
|
Iwu CD, Okoh AI. Preharvest Transmission Routes of Fresh Produce Associated Bacterial Pathogens with Outbreak Potentials: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4407. [PMID: 31717976 PMCID: PMC6888529 DOI: 10.3390/ijerph16224407] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023]
Abstract
Disease outbreaks caused by the ingestion of contaminated vegetables and fruits pose a significant problem to human health. The sources of contamination of these food products at the preharvest level of agricultural production, most importantly, agricultural soil and irrigation water, serve as potential reservoirs of some clinically significant foodborne pathogenic bacteria. These clinically important bacteria include: Klebsiella spp., Salmonella spp., Citrobacter spp., Shigella spp., Enterobacter spp., Listeria monocytogenes and pathogenic E. coli (and E. coli O157:H7) all of which have the potential to cause disease outbreaks. Most of these pathogens acquire antimicrobial resistance (AR) determinants due to AR selective pressure within the agroecosystem and become resistant against most available treatment options, further aggravating risks to human and environmental health, and food safety. This review critically outlines the following issues with regards to fresh produce; the global burden of fresh produce-related foodborne diseases, contamination between the continuum of farm to table, preharvest transmission routes, AR profiles, and possible interventions to minimize the preharvest contamination of fresh produce. This review reveals that the primary production niches of the agro-ecosystem play a significant role in the transmission of fresh produce associated pathogens as well as their resistant variants, thus detrimental to food safety and public health.
Collapse
Affiliation(s)
- Chidozie Declan Iwu
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa;
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa;
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
16
|
De Giglio O, Fasano F, Diella G, Lopuzzo M, Napoli C, Apollonio F, Brigida S, Calia C, Campanale C, Marzella A, Pousis C, Rutigliano S, Triggiano F, Caggiano G, Montagna MT. Legionella and legionellosis in touristic-recreational facilities: Influence of climate factors and geostatistical analysis in Southern Italy (2001-2017). ENVIRONMENTAL RESEARCH 2019; 178:108721. [PMID: 31541805 DOI: 10.1016/j.envres.2019.108721] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Legionella is the causative agent of Legionnaires' disease, a flu-like illness normally acquired following inhalation or aspiration of contaminated water aerosols. Our recent studies revealed that climatic parameters can increase the number of reported cases of community-acquired Legionnaires' disease. Here, we evaluated the presence of Legionella in water networks and the distribution of Legionnaires' disease cases associated with touristic-recreational facilities in the Apulia region (southern Italy) during the period 2001-2017 using geostatistical and climatic analyses. Geostatistical analysis data revealed that the area with the highest concentration of Legionella in water systems also had the greatest number of cases of Legionnaires' disease associated with touristic-recreational facilities. Climatic analysis showed that higher daily temperature excursion (difference between maximum and minimum temperature) on the day of sampling was more often associated with Legionella-positive samples than Legionella-negative samples. In addition, our data highlighted an increased risk of Legionnaires' disease with increases in precipitation and average temperature and with decreases in daily temperature excursion (difference between maximum and minimum temperature over the course of 24 h in the days of incubation period of disease) and minimum temperature. Healthcare professionals should be aware of this phenomenon and be particularly vigilant for cases of community-acquired pneumonia during such climatic conditions and among the tourist population. The innovative geo-statistical approach used in this study could be applied in other contexts when evaluating the effects of climatic conditions on the incidence of Legionella infections.
Collapse
Affiliation(s)
- Osvalda De Giglio
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Fabrizio Fasano
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Giusy Diella
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Marco Lopuzzo
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Christian Napoli
- Department of Medical Surgical Sciences and Translational Medicine, "Sapienza" University of Rome, Via di Grottarossa 1035/1039, 00189, Rome, Italy.
| | - Francesca Apollonio
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Silvia Brigida
- Water Research Institute-Italian National Research Council, Bari, Italy.
| | - Carla Calia
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Carmen Campanale
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Angelo Marzella
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Chrysovalentinos Pousis
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Serafina Rutigliano
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Francesco Triggiano
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Giuseppina Caggiano
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Maria Teresa Montagna
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
17
|
Monitoring Opportunistic Pathogens in Domestic Wastewater from a Pilot-Scale Anaerobic Biofilm Reactor to Reuse in Agricultural Irrigation. WATER 2019. [DOI: 10.3390/w11061283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Wastewater reuse for agricultural irrigation in many developing countries is an increasingly common practice. Regular monitoring of indicators can help to identify potential health risks; therefore, there is an urgent need to understand the presence and abundance of opportunistic pathogens in wastewater, as well as plant phyllosphere and rhizosphere. In this study, an anaerobic biofilm reactor (ABR) was developed to treat rural domestic wastewater; the performance of pollutants removal and pathogenic bacteria elimination were investigated. Additionally, we also assessed the physicochemical and microbiological profiles of soil and lettuces after wastewater irrigation. Aeromonas hydrophila, Arcobacter sp., Bacillus cereus, Bacteroides sp., Escherichia coli, Legionella sp., and Mycobacterium sp. were monitored in the irrigation water, as well as in the phyllosphere and rhizosphere of lettuces. Pathogens like B. cereus, Legionella sp. and Mycobacterium sp. were present in treated effluent with relatively high concentrations, and the levels of A. hydrophila, Arcobacter sp., and E. coli were higher in the phyllosphere. The physicochemical properties of soil and lettuce did not vary significantly. These data indicated that treated wastewater irrigation across a short time period may not alter the soil and crop properties, while the pathogens present in the wastewater may transfer to soil and plant, posing risks to human health.
Collapse
|
18
|
Liu L, Xing X, Hu C, Wang H. One-year survey of opportunistic premise plumbing pathogens and free-living amoebae in the tap-water of one northern city of China. J Environ Sci (China) 2019; 77:20-31. [PMID: 30573084 DOI: 10.1016/j.jes.2018.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 05/21/2023]
Abstract
In this study, qPCR was used to quantify opportunistic premise plumbing pathogens (OPPPs) and free-living amoebae in 11 tap water samples collected over four seasons from a city in northern China. Results demonstrated that the average numbers of gene copies of Legionella spp. and Mycobacterium spp. were significantly higher than those of Aeromonas spp. (p < 0.05). Legionella spp. and Mycobacterium spp. were 100% (44/44) positively detected while P. aeruginosa and Aeromonas spp. were 79.54% (35/44) and 77.27% (34/44) positively detected. Legionella pneumophila was only detected in 4 samples (4/44), demonstrating its occasional occurrence. No Mycobacterium avium or Naegleria fowleri was detected in any of the samples. The average gene copy numbers of target OPPPs were the highest in summer, suggesting seasonal prevalence of OPPPs. Average gene copy numbers of OPPPs in the taps of low-use-frequency were higher than in taps of high-use-frequency, but the difference was not significant for some OPPPs (p > 0.05). Moderate negative correlations between the chlorine concentration and the gene copy numbers of OPPPs were observed by Spearman analysis (rs ranged from -0.311 to -0.710, p < 0.05). However, no significant correlations existed between OPPPs and AOC, BDOC, or turbidity. Moderate positive correlations were observed between the target microorganisms, especially for Acanthamoeba spp., through Spearman analysis (p < 0.05). Based on our studies, it is proposed that disinfectant concentration, season, taps with different-use frequency, OPPP species, and potential microbial correlations should be considered for control of OPPPs in tap water.
Collapse
Affiliation(s)
- Lizhong Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueci Xing
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chun Hu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
19
|
Caicedo C, Rosenwinkel KH, Exner M, Verstraete W, Suchenwirth R, Hartemann P, Nogueira R. Legionella occurrence in municipal and industrial wastewater treatment plants and risks of reclaimed wastewater reuse: Review. WATER RESEARCH 2019; 149:21-34. [PMID: 30445393 DOI: 10.1016/j.watres.2018.10.080] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 05/22/2023]
Abstract
Wastewater treatment plants (WWTPs) have been identified as confirmed but until today underestimated sources of Legionella, playing an important role in local and community cases and outbreaks of Legionnaires' disease. In general, aerobic biological systems provide an optimum environment for the growth of Legionella due to high organic nitrogen and oxygen concentrations, ideal temperatures and the presence of protozoa. However, few studies have investigated the occurrence of Legionella in WWTPs, and many questions in regards to the interacting factors that promote the proliferation and persistence of Legionella in these treatment systems are still unanswered. This critical review summarizes the current knowledge about Legionella in municipal and industrial WWTPs, the conditions that might support their growth, as well as control strategies that have been applied. Furthermore, an overview of current quantification methods, guidelines and health risks associated with Legionella in reclaimed wastewater is also discussed in depth. A better understanding of the conditions promoting the occurrence of Legionella in WWTPs will contribute to the development of improved wastewater treatment technologies and/or innovative mitigation approaches to minimize future Legionella outbreaks.
Collapse
Affiliation(s)
- C Caicedo
- Leibniz University Hannover, Institute for Sanitary Engineering and Waste Management, Hannover, 30167, Germany.
| | - K-H Rosenwinkel
- Leibniz University Hannover, Institute for Sanitary Engineering and Waste Management, Hannover, 30167, Germany
| | - M Exner
- University of Bonn, Institute for Hygiene and Public Health, Bonn, Germany
| | - W Verstraete
- Ghent University, CMET, Ghent, and Avecom, Wondelgem, Belgium
| | - R Suchenwirth
- Public Health Office of Lower Saxony, Hannover, Germany
| | - P Hartemann
- Faculty of Medicine, Department of Environment and Public Health, Nancy University-CHU Nancy, Vandoeuvre Les Nancy, France
| | - R Nogueira
- Leibniz University Hannover, Institute for Sanitary Engineering and Waste Management, Hannover, 30167, Germany.
| |
Collapse
|
20
|
White Teeth and Healthy Skeletons for All: The Path to Universal Fluoride-Free Drinking Water in Tanzania. WATER 2019. [DOI: 10.3390/w11010131] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fluorosis has been prevalent in the great East African Rift Valley (EARV) since before this region was given a name. In the Tanganyika days, Germans reported elevated fluoride concentrations in natural waters. In the 1930s, the clear relationship between high fluoride level and mottling of teeth was established. Since then, the global research community has engaged in the battle to provide fluoride-free drinking water, and the battle is not yet won for low-income communities. An applicable concept for fluoride-free drinking water in the EARV was recently presented, using the Kilimanjaro as a rainwater harvesting park. The Kilimanjaro concept implies that rainwater is harvested, stored on the Kilimanjaro mountains, gravity-transported to the point of use, eventually blended with natural water and treated for distribution. This article provides a roadmap for the implementation of the Kilimanjaro concept in Tanzania. Specifically, the current paper addresses the following: (i) presents updated nationwide information on fluoride contaminated areas, (ii) discusses the quality and quantity of rainwater, and current rainwater harvesting practices in Tanzania, (iii) highlights how low-cost water filters based on Fe0/biochar can be integrating into rainwater harvesting (RWH) systems to provide clean drinking water, and (iv) discusses the need for strict regulation of RWH practices to optimize water collection and storage, while simplifying the water treatment chain, and recommends strict analytical monitoring of water quality and public education to sustain public health in the EARV. In summary, it is demonstrated that, by combining rainwater harvesting and low-cots water treatment methods, the Kilimanjaro concept has the potential to provide clean drinking water, and overcome fluorosis on a long-term basis. However, a detailed design process is required to determine: (i) institutional roles, and community contributions and participation, (ii) optimal location and sizing of conveyance and storage facilities to avoid excessive pumping costs, and (iii) project funding mechanisms, including prospects for government subsidy. By drawing attention to the Kilimanjaro concept, the article calls for African engineers and scientists to take the lead in translating this concept into reality for the benefit of public health, while simultaneously increasing their self-confidence to address other developmental challenges pervasive in Africa.
Collapse
|
21
|
Walker JT. The influence of climate change on waterborne disease and Legionella: a review. Perspect Public Health 2019; 138:282-286. [PMID: 30156484 DOI: 10.1177/1757913918791198] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Climate change is predicted to have a major impact on people's lives with the recent extreme weather events and varying abnormal temperature profiles across the world raising concerns. The impacts of global warming are already being observed, from rising sea levels and melting snow and ice to changing weather patterns. Scientists state unequivocally that these trends cannot be explained by natural variability in climate alone. Human activities, especially the burning of fossil fuels, have warmed the earth by dramatically increasing concentrations of heat-trapping gases in the atmosphere; as these concentrations increase, the more the earth will warm. Climate change and related extreme weather events are being exacerbated sooner than has previously been considered and are already adversely affecting ecosystems and human health by increasing the burden and type of disease at a local level. Changes to the marine environment and freshwater supplies already affect significant parts of the world's population and warmer temperatures, especially in more temperate regions, may see an increased spread and transmission of diseases usually associated with warmer climes including, for example, cholera and malaria; these impacts are likely to become more severe in a greater number of countries. This review discusses the impacts of climate change including changes in infectious disease transmission, patterns of waterborne diseases and the likely consequences of climate change due to warmer water, drought, higher rainfall, rising sea levels and flooding.
Collapse
Affiliation(s)
- J T Walker
- Public Health England, Porton, Salisbury SP1 3DX, UK
| |
Collapse
|
22
|
Seasonal Abundance of Fecal Indicators and Opportunistic Pathogens in Roof-Harvested Rainwater Tanks. OPEN HEALTH DATA 2018. [DOI: 10.5334/ohd.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
Keithley SE, Fakhreddine S, Kinney KA, Kirisits MJ. Effect of Treatment on the Quality of Harvested Rainwater for Residential Systems. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/awwa.1054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sarah E. Keithley
- Tighe & Bond; Westwood Mass
- Department of Civil, Architectural and Environmental Engineering; University of Texas; Austin Tex
| | - Sarah Fakhreddine
- Department of Civil, Architectural and Environmental Engineering; University of Texas; Austin Tex
- Department of Earth System Sciences; Stanford University; Stanford Calif
| | - Kerry A. Kinney
- Department of Civil, Architectural and Environmental Engineering; University of Texas; Austin Tex
| | - Mary Jo Kirisits
- Department of Civil, Architectural and Environmental Engineering; University of Texas; Austin Tex
| |
Collapse
|
24
|
Chubaka CE, Whiley H, Edwards JW, Ross KE. Microbiological Values of Rainwater Harvested in Adelaide. Pathogens 2018; 7:E21. [PMID: 29419793 PMCID: PMC5874747 DOI: 10.3390/pathogens7010021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/23/2018] [Accepted: 02/04/2018] [Indexed: 11/22/2022] Open
Abstract
In Australia, rainwater is an important source of water for many households. Unlike municipal water, rainwater is often consumed untreated. This study investigated the potential contamination of rainwater by microorganisms. Samples from 53 rainwater tanks across the Adelaide region were collected and tested using Colilert™ IDEXX Quanti-Tray*/2000. Twenty-eight out of the 53 tanks (53%) contained Escherichia coli. Samples collected from ten tanks contained E. coli at concentrations exceeding the limit of 150 MPN/100 mL for recreational water quality. A decline in E. coli was observed in samples collected after prolonged dry periods. Rainwater microbiological values depended on the harvesting environment conditions. A relationship was found between mounted TV antenna on rooftops and hanging canopies; and E. coli abundance. Conversely, there was no relationship between seasonality and E. coli or roof and tank structure materials and E. coli. In several tanks used for drinking water, samples collected prior to and after filtration showed that the filtration systems were not always successful at completely removing E. coli. These results differed from a study undertaken in the laboratory that found that a commercially available in-bench 0.45 µm filter cartridge successfully reduced E. coli in rainwater to 0 MPN/100 mL. After running a total of 265 L of rainwater which contained high levels of E. coli through the filter (half of the advertised filter lifespan), the filter cartridge became blocked, although E. coli remained undetected in filtered water. The difference between the laboratory study and field samples could be due to improper maintenance or installation of filters or recontamination of the faucet after filtration. The presence of E. coli in water that is currently used for drinking poses a potential health concern and indicates the potential for contamination with other waterborne pathogens.
Collapse
Affiliation(s)
- Chirhakarhula Emmanuel Chubaka
- Environmental Health, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide 5001, South Australia.
| | - Harriet Whiley
- Environmental Health, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide 5001, South Australia.
| | - John W Edwards
- Environmental Health, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide 5001, South Australia.
| | - Kirstin E Ross
- Environmental Health, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide 5001, South Australia.
| |
Collapse
|
25
|
Ahmed W, Zhang Q, Ishii S, Hamilton K, Haas C. Microfluidic quantification of multiple enteric and opportunistic bacterial pathogens in roof-harvested rainwater tank samples. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:105. [PMID: 29383497 DOI: 10.1007/s10661-018-6482-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/16/2018] [Indexed: 06/07/2023]
Abstract
Potable and non-potable uses of roof-harvested rainwater (RHRW) are increasing due to water shortages. To protect human health risks, it is important to identify and quantify disease-causing pathogens in RHRW so that appropriate treatment options can be implemented. We used a microfluidic quantitative PCR (MFQPCR) system for the quantitative detection of a wide array of fecal indicator bacteria (FIB) and pathogens in RHRW tank samples along with culturable FIB and conventional qPCR analysis of selected pathogens. Among the nine pathogenic bacteria and their associated genes tested with the MFQPCR, 4.86 and 2.77% samples were positive for Legionella pneumophila and Shigella spp., respectively. The remaining seven pathogens were absent. MFQPCR and conventional qPCR results showed good agreement. Therefore, direct pathogen quantification by MFQPCR systems may be advantageous for circumstances where a thorough microbial analysis is required to assess the public health risks from multiple pathogens that occur simultaneously in the target water source.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, Queensland, 4102, Australia.
| | - Qian Zhang
- BioTechnology Institute, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Satoshi Ishii
- BioTechnology Institute, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Kerry Hamilton
- Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Charles Haas
- Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
26
|
Assessment of Water Quality in Roof-Harvested Rainwater Barrels in Greater Philadelphia. WATER 2018. [DOI: 10.3390/w10020092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Jongman M, Chidamba L, Korsten L. Bacterial biomes and potential human pathogens in irrigation water and leafy greens from different production systems described using pyrosequencing. J Appl Microbiol 2017; 123:1043-1053. [PMID: 28795469 DOI: 10.1111/jam.13558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/14/2017] [Accepted: 07/24/2017] [Indexed: 11/30/2022]
Abstract
AIMS To investigate the influence of irrigation water microbial quality on leafy green vegetables produced in commercial and small-scale farms as well as homestead gardens using pyrosequencing. METHODS AND RESULTS Next generation sequencing analysis of the V1-V3 hypervariable region of bacterial 16S rDNA was used to compare bacterial diversity in irrigation water sources and on leafy vegetables. In all samples (12) analysed, the phylum Proteobacteria (64·5%), class Gammaproteobacteria (56·6%) and genus Aeromonas (14·4%) were found to be dominant. Of the total Escherichia sequences detected in tested samples, lettuce (16·3%) from the one commercial farm harboured more sequences than cabbage from the small-scale farm (1·3%) or homestead gardens (1·9%). Escherichia sequences were detected in both irrigation water (4·6%) and on cabbage (1·3%) samples from the small-scale farm. The genus Salmonella was absent in borehole water but was detected in the holding dam water (<1%) from commercial farm A. Salmonella sequences were present in river water (<1%) and on cabbages (1·9%) from the small-scale farm but were not detected on cabbage samples from the one commercial farm or the homestead gardens. CONCLUSION Water sources quality used for irrigation greatly influences the microbial dynamics of the irrigated crop. SIGNIFICANCE AND IMPACT OF THE STUDY Microbial biomes in irrigation water and on leafy greens were described with pyrosequencing and revealed insights into prevalence of potential and opportunistic pathogens across different production systems.
Collapse
Affiliation(s)
- M Jongman
- Department of Plant and Soil Sciences, University of Pretoria, P/Bag X20 Hatfield, Pretoria, South Africa
| | - L Chidamba
- Department of Plant and Soil Sciences, University of Pretoria, P/Bag X20 Hatfield, Pretoria, South Africa
| | - L Korsten
- Department of Plant and Soil Sciences, University of Pretoria, P/Bag X20 Hatfield, Pretoria, South Africa
| |
Collapse
|
28
|
Hamilton KA, Ahmed W, Toze S, Haas CN. Human health risks for Legionella and Mycobacterium avium complex (MAC) from potable and non-potable uses of roof-harvested rainwater. WATER RESEARCH 2017; 119:288-303. [PMID: 28500949 DOI: 10.1016/j.watres.2017.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/30/2017] [Accepted: 04/02/2017] [Indexed: 05/25/2023]
Abstract
A quantitative microbial risk assessment (QMRA) of opportunistic pathogens Legionella pneumophila (LP) and Mycobacterium avium complex (MAC) was undertaken for various uses of roof-harvested rainwater (RHRW) reported in Queensland, Australia to identify appropriate usages and guide risk management practices. Risks from inhalation of aerosols due to showering, swimming in pools topped up with RHRW, use of a garden hose, car washing, and toilet flushing with RHRW were considered for LP while both ingestion (drinking, produce consumption, and accidental ingestion from various activities) and inhalation risks were considered for MAC. The drinking water route of exposure presented the greatest risks due to cervical lymphadenitis and disseminated infection health endpoints for children and immune-compromised populations, respectively. It is therefore not recommended that these populations consume untreated rainwater. LP risks were up to 6 orders of magnitude higher than MAC risks for the inhalation route of exposure for all scenarios. Both inhalation and ingestion QMRA simulations support that while drinking, showering, and garden hosing with RHRW may present the highest risks, car washing and clothes washing could constitute appropriate uses of RHRW for all populations, and toilet flushing and consumption of lettuce irrigation with RHRW would be appropriate for non- immune-compromised populations.
Collapse
Affiliation(s)
- Kerry A Hamilton
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia; Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - Simon Toze
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - Charles N Haas
- Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Cui Q, Fang T, Huang Y, Dong P, Wang H. Evaluation of bacterial pathogen diversity, abundance and health risks in urban recreational water by amplicon next-generation sequencing and quantitative PCR. J Environ Sci (China) 2017. [PMID: 28647233 DOI: 10.1016/j.jes.2016.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The microbial quality of urban recreational water is of great concern to public health. The monitoring of indicator organisms and several pathogens alone is not sufficient to accurately and comprehensively identify microbial risks. To assess the levels of bacterial pathogens and health risks in urban recreational water, we analyzed pathogen diversity and quantified four pathogens in 46 water samples collected from waterbodies in Beijing Olympic Forest Park in one year. The pathogen diversity revealed by 16S rRNA gene targeted next-generation sequencing (NGS) showed that 16 of 40 genera and 13 of 76 reference species were present. The most abundant species were Acinetobacter johnsonii, Mycobacterium avium and Aeromonas spp. Quantitative polymerase chain reaction (qPCR) of Escherichia coli (uidA), Aeromonas (aerA), M. avium (16S rRNA), Pseudomonas aeruginosa (oaa) and Salmonella (invA) showed that the aerA genes were the most abundant, occurring in all samples with concentrations of 104-6 genome copies/100mL, followed by oaa, invA and M. avium. In total, 34.8% of the samples harbored all genes, indicating the prevalence of these pathogens in this recreational waterbody. Based on the qPCR results, a quantitative microbial risk assessment (QMRA) showed that the annual infection risks of Salmonella, M. avium and P. aeruginosa in five activities were mostly greater than the U.S. EPA risk limit for recreational contacts, and children playing with water may be exposed to the greatest infection risk. Our findings provide a comprehensive understanding of bacterial pathogen diversity and pathogen abundance in urban recreational water by applying both NGS and qPCR.
Collapse
Affiliation(s)
- Qijia Cui
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Tingting Fang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Huang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Peiyan Dong
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
30
|
Wang H, Bédard E, Prévost M, Camper AK, Hill VR, Pruden A. Methodological approaches for monitoring opportunistic pathogens in premise plumbing: A review. WATER RESEARCH 2017; 117:68-86. [PMID: 28390237 PMCID: PMC5693313 DOI: 10.1016/j.watres.2017.03.046] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/19/2017] [Accepted: 03/22/2017] [Indexed: 05/06/2023]
Abstract
Opportunistic premise (i.e., building) plumbing pathogens (OPPPs, e.g., Legionella pneumophila, Mycobacterium avium complex, Pseudomonas aeruginosa, Acanthamoeba, and Naegleria fowleri) are a significant and growing source of disease. Because OPPPs establish and grow as part of the native drinking water microbiota, they do not correspond to fecal indicators, presenting a major challenge to standard drinking water monitoring practices. Further, different OPPPs present distinct requirements for sampling, preservation, and analysis, creating an impediment to their parallel detection. The aim of this critical review is to evaluate the state of the science of monitoring OPPPs and identify a path forward for their parallel detection and quantification in a manner commensurate with the need for reliable data that is informative to risk assessment and mitigation. Water and biofilm sampling procedures, as well as factors influencing sample representativeness and detection sensitivity, are critically evaluated with respect to the five representative bacterial and amoebal OPPPs noted above. Available culturing and molecular approaches are discussed in terms of their advantages, limitations, and applicability. Knowledge gaps and research needs towards standardized approaches are identified.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Emilie Bédard
- Department of Civil Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Michèle Prévost
- Department of Civil Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Anne K Camper
- Center for Biofilm Engineering and Department of Civil Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Vincent R Hill
- Waterborne Disease Prevention Branch, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30329, USA
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
31
|
Kirs M, Moravcik P, Gyawali P, Hamilton K, Kisand V, Gurr I, Shuler C, Ahmed W. Rainwater harvesting in American Samoa: current practices and indicative health risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:12384-12392. [PMID: 28357803 DOI: 10.1007/s11356-017-8858-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/17/2017] [Indexed: 05/24/2023]
Abstract
Roof-harvested rainwater (RHRW) is an important alternative source of water that many island communities can use for drinking and other domestic purposes when groundwater and/or surface water sources are contaminated, limited, or simply not available. The aim of this pilot-scale study was to investigate current RHRW practices in American Samoa (AS) and to evaluate and compare the quality of water from common potable water sources including RHRW stored in tanks, untreated stream water, untreated municipal well water, and treated municipal tap water samples. Samples were analyzed using culture-based methods, quantitative polymerase chain reaction (qPCR), and 16S amplicon sequencing-based methods. Based on indicator bacteria (total coliform and Escherichia coli) concentrations, the quality of RHRW was slightly lower than well and chlorinated tap water but exceeded that of untreated stream water. Although no Giardia or Leptospira spp. were detected in any of the RHRW samples, 86% of the samples were positive for Cryptosporidium spp. All stream water samples tested positive for Cryptosporidium spp. Opportunistic pathogens (Pseudomonas aeruginosa and Mycobacterium intracellulare) were also detected in the RHRW samples (71 and 21% positive samples, respectively). Several potentially pathogenic genera of bacteria were also detected in RHRW by amplicon sequencing. Each RHRW system was characterized by distinct microbial communities, 77% of operational taxonomic units (OTUs) were detected only in a single tank, and no OTU was shared by all the tanks. Risk of water-borne illness increased in the following order: chlorinated tap water/well water < RHRW < stream water. Frequent detection of opportunistic pathogens indicates that RHRW should be treated before use. Stakeholder education on RHRW system design options as well as on importance of regular cleaning and proper management techniques could improve the quality of the RHRW in AS.
Collapse
Affiliation(s)
- Marek Kirs
- Water Resources Research Center, University of Hawaii, 2540 Dole Street, Holmes Hall 283, Honolulu, HI, 96822, USA.
| | - Philip Moravcik
- Water Resources Research Center, University of Hawaii, 2540 Dole Street, Holmes Hall 283, Honolulu, HI, 96822, USA
| | - Pradip Gyawali
- School of Public Health, The University of Queensland, Herston, QLD, 4006, Australia
| | - Kerry Hamilton
- Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Veljo Kisand
- Institute of Technology, Tartu University, Nooruse 1, 50411, Tartu, Estonia
| | - Ian Gurr
- American Samoa Community College, P.O. Box 2609, Pago Pago, 96799, American Samoa
| | - Christopher Shuler
- Department of Geology and Geophysics, University of Hawaii, 2540 Dole Street, Holmes Hall 283, Honolulu, HI, 96822, USA
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Brisbane, 4102, Australia
| |
Collapse
|
32
|
Jongman M, Korsten L. Irrigation water quality and microbial safety of leafy greens in different vegetable production systems: A review. FOOD REVIEWS INTERNATIONAL 2017. [DOI: 10.1080/87559129.2017.1289385] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mosimanegape Jongman
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
33
|
Hamilton KA, Ahmed W, Palmer A, Smith K, Toze S, Haas CN. Seasonal Assessment of Opportunistic Premise Plumbing Pathogens in Roof-Harvested Rainwater Tanks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1742-1753. [PMID: 28040888 DOI: 10.1021/acs.est.6b04814] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A seasonal study on the occurrence of six opportunistic premise plumbing pathogens (OPPPs) in 24 roof-harvested rainwater (RHRW) tanks repeatedly sampled over six monthly sampling events (n = 144) from August 2015 to March 2016 was conducted using quantitative qPCR. Fecal indicator bacteria (FIB) Escherichia coli (E. coli) and Enterococcus spp. were enumerated using culture-based methods. All tank water samples over the six events were positive for at least one OPPP (Legionella spp., Legionella pneumophila, Mycobacterium avium, Mycobacterium intracellulare, Pseudmonas aeruginosa, or Acanthamoeba spp.) during the entire course of the study. FIB were positively but weakly correlated with P. aeruginosa (E. coli vs P. aeruginosa τ = 0.090, p = 0.027; Enterococcus spp. vs P. aeruginosa τ = 0.126, p = 0.002), but not the other OPPPs. FIBs were more prevalent during the wet season than the dry season, and L. pneumophila was only observed during the wet season. However, concentrations of Legionella spp., M. intracellulare, Acanthamoeba spp., and M. avium peaked during the dry season. Correlations were assessed between FIB and OPPPs with meteorological variables, and it was determined that P. aeruginosa was the only OPPP positively associated with an increased antecedent dry period, suggesting stagnation time may play a role for the occurrence of this OPPP in tank water. Infection risks may exceed commonly cited benchmarks for uses reported in the rainwater usage survey such as pool top-up, and warrant further exploration through quantitative microbial risk assessment (QMRA).
Collapse
Affiliation(s)
- Kerry A Hamilton
- CSIRO Land and Water , Ecosciences Precinct, 41 Boggo Road, Dutton Park, Queensland 4102, Australia
- Drexel University , 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Warish Ahmed
- CSIRO Land and Water , Ecosciences Precinct, 41 Boggo Road, Dutton Park, Queensland 4102, Australia
| | - Andrew Palmer
- CSIRO Land and Water , Ecosciences Precinct, 41 Boggo Road, Dutton Park, Queensland 4102, Australia
| | - Kylie Smith
- CSIRO Land and Water , Ecosciences Precinct, 41 Boggo Road, Dutton Park, Queensland 4102, Australia
| | - Simon Toze
- CSIRO Land and Water , Ecosciences Precinct, 41 Boggo Road, Dutton Park, Queensland 4102, Australia
| | - Charles N Haas
- Drexel University , 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
34
|
Ahmed W, Staley C, Hamilton KA, Beale DJ, Sadowsky MJ, Toze S, Haas CN. Amplicon-based taxonomic characterization of bacteria in urban and peri-urban roof-harvested rainwater stored in tanks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 576:326-334. [PMID: 27792951 DOI: 10.1016/j.scitotenv.2016.10.090] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Abstract
Overall, 26% of Australian households use rainwater tanks as a source of potable and nonpotable water. Limited information is available on the total bacterial communities in tank water. Therefore, identification of dominant bacterial communities, diversity, and their distribution is important in understanding the microbial quality of tank water. In this study, the abundance and diversity of bacterial communities in 88 tank water samples collected from the urban areas of Brisbane (n=44) and the peri-urban center of Currumbin (n=44) in Southeast Queensland, Australia were determined using amplicon-based Illumina next-generation sequencing. In addition, the SourceTracker program was used to identify the sources of fecal contamination in tank water samples. Sequence reads were also analyzed to detect potential bacterial pathogenic genera in the tank water samples collected. Differences in sample coverage, alpha diversity, and richness did not differ significantly between the Brisbane and Currumbin tank water samples. Comamonadaceae and Planctomycetaceae were the most abundant families in all tank water samples. Curvibacter was the most abundant genus in all tank water samples. SourceTracker revealed that around 34% (Brisbane) and 43% (Currumbin) of tank water samples had a signature for bird fecal contamination. The potential opportunistic pathogenic genera including Burkholderia, Chromobacterium, Clostridium, Legionella, Mycobacterium, Nocardia, and Pseudomonas were most prevalent in tank water samples. Next-generation sequencing can be used as an initial screening tool to identify a wide array of potential pathogenic genera in tank water samples followed by quantifying specific pathogen(s) of interest using more sensitive molecular assays such as quantitative PCR (qPCR).
Collapse
Affiliation(s)
- W Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia.
| | - C Staley
- Biotechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - K A Hamilton
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia; Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - D J Beale
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - M J Sadowsky
- Biotechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - S Toze
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia; School of Public Health, University of Queensland, Herston, Qld 4006, Australia
| | - C N Haas
- Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| |
Collapse
|
35
|
Jongman M, Korsten L. Microbial quality and suitability of roof-harvested rainwater in rural villages for crop irrigation and domestic use. JOURNAL OF WATER AND HEALTH 2016; 14:961-971. [PMID: 27959874 DOI: 10.2166/wh.2016.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The study aimed at assessing the microbiological quality and suitability of roof-harvested rainwater (RHRW) for crop irrigation and domestic use. In total, 80 rainwater tanks (246 samples) across three rural villages (Ga-Molepane, Jericho and Luthngele) were visited. Culture-based techniques were used to isolate bacterial microbes and identities were confirmed using matrix-assisted laser desorption/ionization time of flight (MALDI-TOF-MS). Uncultured fungal populations were also identified using pyrosequencing. Salmonella spp. (3%), Listeria monocytogenes (22%), total coliforms (57.7%), Escherichia coli (30.5%), Enterococcus spp. (48.8%), Pseudomonas spp. (21.5%) were detected in RHRW samples after rainfall. Fungal sequences belonging to species known to cause fever, coughing and shortness of breath in humans (Cryptococcus spp.) were identified. This study indicates that RHRW quality can be affected by external factors such as faecal material and debris on rooftops. The use of untreated RHRW could pose a potential health risk if used for irrigation of crops or domestic use, especially in the case of a relative high population of immunocompromised individuals. This study does not dispute the fact that RHRW is an alternative irrigation water source but it recommends treatment before use for domestic purposes or for watering crops.
Collapse
Affiliation(s)
- Mosimanegape Jongman
- Department of Plant and Soil Sciences, University of Pretoria, Lynwood Road, Pretoria 0082, South Africa E-mail:
| | - Lise Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Lynwood Road, Pretoria 0082, South Africa E-mail:
| |
Collapse
|
36
|
Ho J, Seidel M, Niessner R, Eggers J, Tiehm A. Long amplicon (LA)-qPCR for the discrimination of infectious and noninfectious phix174 bacteriophages after UV inactivation. WATER RESEARCH 2016; 103:141-148. [PMID: 27450352 DOI: 10.1016/j.watres.2016.07.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 05/19/2023]
Abstract
Waterborne viruses are increasingly being considered in risk assessment schemes. In general, virus detection by culture methods is time consuming. In contrast, detection by quantitative polymerase chain reaction (qPCR) is more rapid and therefore, more suitable for monitoring. At present, qPCR lacks the essential ability for discriminating between infectious and non-infectious viruses, thus limiting its applicability for monitoring disinfection processes. In this study, a method was developed to quantify UV inactivation by long amplicon (LA)-qPCR. Bacteriophage phiX174 was used as a surrogate for human pathogenic viruses. A qPCR protocol was developed with new sets of primers, resulting in amplicon lengths of 108, 250, 456, 568, 955, 1063, 1544, and 1764 nucleotides. The log reduction of gene copies increased with increasing amplicon length. Additional treatment with the intercalating dye, PMA, had no effect, indicating that the bacteriophage capsids were not damaged by low pressure UV irradiation. A qPCR of nearly the complete genome (approx. 5000 nucleotides) showed similar results to the plaque assay. The log reduction in qPCR correlates with [specific amplicon length x UV dose]. The normalized DNA effect constant can be applied to calculate phiX174 inactivation based on qPCR detection.
Collapse
Affiliation(s)
- Johannes Ho
- DVGW-Technologiezentrum Wasser (TZW), Department Microbiology and Molecular Biology, Karlsruher Str. 84, Karlsruhe, Germany
| | - Michael Seidel
- Chair of Analytical Chemistry and Institute of Hydrochemistry, Technical University of Munich, Marchioninistr. 17, 81377 Munich, Germany
| | - Reinhard Niessner
- Chair of Analytical Chemistry and Institute of Hydrochemistry, Technical University of Munich, Marchioninistr. 17, 81377 Munich, Germany
| | - Jutta Eggers
- DVGW-Technologiezentrum Wasser (TZW), Department Technology and Economics, Karlsruher Str. 84, Karlsruhe, Germany
| | - Andreas Tiehm
- DVGW-Technologiezentrum Wasser (TZW), Department Microbiology and Molecular Biology, Karlsruher Str. 84, Karlsruhe, Germany.
| |
Collapse
|
37
|
Dobrowsky PH, Khan S, Cloete TE, Khan W. Molecular detection of Acanthamoeba spp., Naegleria fowleri and Vermamoeba (Hartmannella) vermiformis as vectors for Legionella spp. in untreated and solar pasteurized harvested rainwater. Parasit Vectors 2016; 9:539. [PMID: 27724947 PMCID: PMC5057267 DOI: 10.1186/s13071-016-1829-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/02/2016] [Indexed: 01/01/2023] Open
Abstract
Background Legionella spp. employ multiple strategies to adapt to stressful environments including the proliferation in protective biofilms and the ability to form associations with free-living amoeba (FLA). The aim of the current study was to identify Legionella spp., Acanthamoeba spp., Vermamoeba (Hartmannella) vermiformis and Naegleria fowleri that persist in a harvested rainwater and solar pasteurization treatment system. Methods Pasteurized (45 °C, 65 °C, 68 °C, 74 °C, 84 °C and 93 °C) and unpasteurized tank water samples were screened for Legionella spp. and the heterotrophic plate count was enumerated. Additionally, ethidium monoazide quantitative polymerase chain reaction (EMA-qPCR) was utilized for the quantification of viable Legionella spp., Acanthamoeba spp., V. vermiformis and N. fowleri in pasteurized (68 °C, 74 °C, 84 °C and 93 °C) and unpasteurized tank water samples, respectively. Results Of the 82 Legionella spp. isolated from unpasteurized tank water samples, Legionella longbeachae (35 %) was the most frequently isolated, followed by Legionella norrlandica (27 %) and Legionella rowbothamii (4 %). Additionally, a positive correlation was recorded between the heterotrophic plate count vs. the number of Legionella spp. detected (ρ = 0.710, P = 0.048) and the heterotrophic plate count vs. the number of Legionella spp. isolated (ρ = 0.779, P = 0.0028) from the tank water samples collected. Solar pasteurization was effective in reducing the gene copies of viable V. vermiformis (3-log) and N. fowleri (5-log) to below the lower limit of detection at temperatures of 68–93 °C and 74–93 °C, respectively. Conversely, while the gene copies of viable Legionella and Acanthamoeba were significantly reduced by 2-logs (P = 0.0024) and 1-log (P = 0.0015) overall, respectively, both organisms were still detected after pasteurization at 93 °C. Conclusions Results from this study indicate that Acanthamoeba spp. primarily acts as the vector and aids in the survival of Legionella spp. in the solar pasteurized rainwater as both organisms were detected and were viable at high temperatures (68–93 °C).
Collapse
Affiliation(s)
- Penelope H Dobrowsky
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Sehaam Khan
- Faculty of Health and Applied Sciences, Namibia University of Science and Technology, 13 Storch Street, Private Bag 13388, Windhoek, Namibia
| | - Thomas E Cloete
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa.
| |
Collapse
|
38
|
Tang J, Bu Y, Zhang XX, Huang K, He X, Ye L, Shan Z, Ren H. Metagenomic analysis of bacterial community composition and antibiotic resistance genes in a wastewater treatment plant and its receiving surface water. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 132:260-9. [PMID: 27340885 DOI: 10.1016/j.ecoenv.2016.06.016] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/23/2016] [Accepted: 06/14/2016] [Indexed: 05/23/2023]
Abstract
The presence of pathogenic bacteria and the dissemination of antibiotic resistance genes (ARGs) may pose big risks to the rivers that receive the effluent from municipal wastewater treatment plants (WWTPs). In this study, we investigated the changes of bacterial community and ARGs along treatment processes of one WWTP, and examined the effects of the effluent discharge on the bacterial community and ARGs in the receiving river. Pyrosequencing was applied to reveal bacterial community composition including potential bacterial pathogen, and Illumina high-throughput sequencing was used for profiling ARGs. The results showed that the WWTP had good removal efficiency on potential pathogenic bacteria (especially Arcobacter butzleri) and ARGs. Moreover, the bacterial communities of downstream and upstream of the river showed no significant difference. However, the increase in the abundance of potential pathogens and ARGs at effluent outfall was observed, indicating that WWTP effluent might contribute to the dissemination of potential pathogenic bacteria and ARGs in the receiving river.
Collapse
Affiliation(s)
- Junying Tang
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yuanqing Bu
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Kailong Huang
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Zhengjun Shan
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
39
|
Hamilton KA, Ahmed W, Palmer A, Sidhu JPS, Hodgers L, Toze S, Haas CN. Public health implications of Acanthamoeba and multiple potential opportunistic pathogens in roof-harvested rainwater tanks. ENVIRONMENTAL RESEARCH 2016; 150:320-327. [PMID: 27336236 DOI: 10.1016/j.envres.2016.06.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
A study of six potential opportunistic pathogens (Acanthamoeba spp., Legionella spp., Legionella longbeachae, Pseudomonas aeruginosa, Mycobacterium avium and Mycobacterium intracellulare) and an accidental human pathogen (Legionella pneumophila) in 134 roof-harvested rainwater (RHRW) tank samples was conducted using quantitative PCR (qPCR). All five opportunistic pathogens and accidental pathogen L. pneumophila were detected in rainwater tanks except Legionella longbeachae. Concentrations ranged up to 3.1×10(6) gene copies per L rainwater for Legionella spp., 9.6×10(5) gene copies per L for P. aeruginosa, 6.8×10(5) gene copies per L for M. intracellulare, 6.6×10(5) gene copies per L for Acanthamoeba spp., 1.1×10(5) gene copies per L for M. avium, and 9.8×10(3) gene copies per L for L. pneumophila. Among the organisms tested, Legionella spp. (99% tanks) were the most prevalent followed by M. intracellulare (78%). A survey of tank-owners provided data on rainwater end-uses. Fecal indicator bacteria (FIB) Escherichia coli and Enterococcus spp. were enumerated using culture-based methods, and assessed for correlations with opportunistic pathogens and L. pneumophila tested in this study. Opportunistic pathogens did not correlate well with FIB except E. coli vs. Legionella spp. (tau=0.151, P=0.009) and E. coli vs. M. intracellulare (tau=0.14, P=0.015). However, M. avium weakly correlated with both L. pneumophila (Kendall's tau=0.017, P=0.006) and M. intracellulare (tau=0.088, P=0.027), and Legionella spp. also weakly correlated with M. intracellulare (tau=0.128, P=0.028). The presence of these potential opportunistic pathogens in tank water may present health risks from both the potable and non-potable uses documented from the current survey data.
Collapse
Affiliation(s)
- K A Hamilton
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia; Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - W Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia.
| | - A Palmer
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - J P S Sidhu
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - L Hodgers
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - S Toze
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - C N Haas
- Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| |
Collapse
|
40
|
Evidence of Avian and Possum Fecal Contamination in Rainwater Tanks as Determined by Microbial Source Tracking Approaches. Appl Environ Microbiol 2016; 82:4379-4386. [PMID: 27208100 DOI: 10.1128/aem.00892-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/06/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Avian and possum fecal droppings may negatively impact roof-harvested rainwater (RHRW) water quality due to the presence of zoonotic pathogens. This study was aimed at evaluating the performance characteristics of a possum feces-associated (PSM) marker by screening 210 fecal and wastewater samples from possums (n = 20) and a range of nonpossum hosts (n = 190) in Southeast Queensland, Australia. The host sensitivity and specificity of the PSM marker were 0.90 and 0.95 (maximum value, 1.00), respectively. The mean concentrations of the GFD marker in possum fecal DNA samples (8.8 × 10(7) gene copies per g of feces) were two orders of magnitude higher than those in the nonpossum fecal DNA samples (5.0 × 10(5) gene copies per g of feces). The host sensitivity, specificity, and concentrations of the avian feces-associated GFD marker were reported in our recent study (W. Ahmed, V. J. Harwood, K. Nguyen, S. Young, K. Hamilton, and S. Toze, Water Res 88:613-622, 2016, http://dx.doi.org/10.1016/j.watres.2015.10.050). The utility of the GFD and PSM markers was evaluated by testing a large number of tank water samples (n = 134) from the Brisbane and Currumbin areas. GFD and PSM markers were detected in 39 of 134 (29%) and 11 of 134 (8%) tank water samples, respectively. The GFD marker concentrations in PCR-positive samples ranged from 3.7 × 10(2) to 8.5 × 10(5) gene copies per liter, whereas the concentrations of the PSM marker ranged from 2.0 × 10(3) to 6.8 × 10(3) gene copies per liter of water. The results of this study suggest the presence of fecal contamination in tank water samples from avian and possum hosts. This study has established an association between the degradation of microbial tank water quality and avian and possum feces. Based on the results, we recommend disinfection of tank water, especially for tanks designated for potable use. IMPORTANCE The use of roof-harvested rainwater (RHRW) for domestic purposes is a globally accepted practice. The presence of pathogens in rainwater tanks has been reported by several studies, supporting the necessity for the management of potential health risks. The sources of fecal pollution in rainwater tanks are unknown. However, the application of microbial source tracking (MST) markers has the potential to identify the sources of fecal contamination in a rainwater tank. In this study, we provide evidence of avian and possum fecal contamination in tank water samples using molecular markers. This study established a potential link between the degradation of the microbial quality of tank water and avian and possum feces.
Collapse
|
41
|
Stokdyk JP, Firnstahl AD, Spencer SK, Burch TR, Borchardt MA. Determining the 95% limit of detection for waterborne pathogen analyses from primary concentration to qPCR. WATER RESEARCH 2016; 96:105-13. [PMID: 27023926 DOI: 10.1016/j.watres.2016.03.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 05/04/2023]
Abstract
The limit of detection (LOD) for qPCR-based analyses is not consistently defined or determined in studies on waterborne pathogens. Moreover, the LODs reported often reflect the qPCR assay alone rather than the entire sample process. Our objective was to develop an approach to determine the 95% LOD (lowest concentration at which 95% of positive samples are detected) for the entire process of waterborne pathogen detection. We began by spiking the lowest concentration that was consistently positive at the qPCR step (based on its standard curve) into each procedural step working backwards (i.e., extraction, secondary concentration, primary concentration), which established a concentration that was detectable following losses of the pathogen from processing. Using the fraction of positive replicates (n = 10) at this concentration, we selected and analyzed a second, and then third, concentration. If the fraction of positive replicates equaled 1 or 0 for two concentrations, we selected another. We calculated the LOD using probit analysis. To demonstrate our approach we determined the 95% LOD for Salmonella enterica serovar Typhimurium, adenovirus 41, and vaccine-derived poliovirus Sabin 3, which were 11, 12, and 6 genomic copies (gc) per reaction (rxn), respectively (equivalent to 1.3, 1.5, and 4.0 gc L(-1) assuming the 1500 L tap-water sample volume prescribed in EPA Method 1615). This approach limited the number of analyses required and was amenable to testing multiple genetic targets simultaneously (i.e., spiking a single sample with multiple microorganisms). An LOD determined this way can facilitate study design, guide the number of required technical replicates, aid method evaluation, and inform data interpretation.
Collapse
Affiliation(s)
- Joel P Stokdyk
- Wisconsin Water Science Center, U.S. Geological Survey, Middleton, WI, USA; Laboratory for Infectious Disease and the Environment, Marshfield, WI, USA
| | - Aaron D Firnstahl
- Wisconsin Water Science Center, U.S. Geological Survey, Middleton, WI, USA; Laboratory for Infectious Disease and the Environment, Marshfield, WI, USA
| | - Susan K Spencer
- Environmentally Integrated Dairy Management Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Marshfield, WI, USA; Laboratory for Infectious Disease and the Environment, Marshfield, WI, USA
| | - Tucker R Burch
- Environmentally Integrated Dairy Management Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Marshfield, WI, USA; Laboratory for Infectious Disease and the Environment, Marshfield, WI, USA
| | - Mark A Borchardt
- Environmentally Integrated Dairy Management Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Marshfield, WI, USA; Laboratory for Infectious Disease and the Environment, Marshfield, WI, USA.
| |
Collapse
|
42
|
An KJ, Lam YF, Hao S, Morakinyo TE, Furumai H. Multi-purpose rainwater harvesting for water resource recovery and the cooling effect. WATER RESEARCH 2015; 86:116-121. [PMID: 26253864 DOI: 10.1016/j.watres.2015.07.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/25/2015] [Accepted: 07/21/2015] [Indexed: 06/04/2023]
Abstract
The potential use of rainwater harvesting in conjunction with miscellaneous water supplies and a rooftop garden with rainwater harvesting facility for temperature reduction have been evaluated in this study for Hong Kong. Various water applications such as toilet flushing and areal climate controls have been systematically considered depending on the availability of seawater toilet flushing using the Geographic Information System (GIS). For water supplies, the district Area Precipitation per Demand Ratio (APDR) has been calculated to quantify the rainwater utilization potential of each administrative district in Hong Kong. Districts with freshwater toilet flushing prove to have higher potential for rainwater harvest and utilization compared to the areas with seawater toilet flushing. Furthermore, the effectiveness of using rainwater harvesting for miscellaneous water supplies in Hong Kong and Tokyo has been analyzed and compared; this revives serious consideration of diurnal and seasonal patterns of rainfall in applying such technology. In terms of the cooling effect, the implementation of a rooftop rainwater harvesting garden has been evaluated using the ENVI-met model. Our results show that a temperature drop of 1.3 °C has been observed due to the rainwater layer in the rain garden. This study provides valuable insight into the applicability of the rainwater harvesting for sustainable water management practice in a highly urbanized city.
Collapse
Affiliation(s)
- Kyoung Jin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong.
| | - Yun Fat Lam
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong; Guy Carpenter Asia-Pacific Climate Impact Centre, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Song Hao
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Tobi Eniolu Morakinyo
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Hiroaki Furumai
- Research Center for Water Environment Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
43
|
Gwenzi W, Dunjana N, Pisa C, Tauro T, Nyamadzawo G. Water quality and public health risks associated with roof rainwater harvesting systems for potable supply: Review and perspectives. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.swaqe.2015.01.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Xue X, Schoen ME, Ma XC, Hawkins TR, Ashbolt NJ, Cashdollar J, Garland J. Critical insights for a sustainability framework to address integrated community water services: Technical metrics and approaches. WATER RESEARCH 2015; 77:155-169. [PMID: 25864006 DOI: 10.1016/j.watres.2015.03.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/21/2015] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
Planning for sustainable community water systems requires a comprehensive understanding and assessment of the integrated source-drinking-wastewater systems over their life-cycles. Although traditional life cycle assessment and similar tools (e.g. footprints and emergy) have been applied to elements of these water services (i.e. water resources, drinking water, stormwater or wastewater treatment alone), we argue for the importance of developing and combining the system-based tools and metrics in order to holistically evaluate the complete water service system based on the concept of integrated resource management. We analyzed the strengths and weaknesses of key system-based tools and metrics, and discuss future directions to identify more sustainable municipal water services. Such efforts may include the need for novel metrics that address system adaptability to future changes and infrastructure robustness. Caution is also necessary when coupling fundamentally different tools so to avoid misunderstanding and consequently misleading decision-making.
Collapse
Affiliation(s)
- Xiaobo Xue
- Oak Ridge Institute for Science and Engineering (ORISE), National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Mary E Schoen
- Soller Environmental, 312 NE 82nd St., Seattle, WA 98115, USA.
| | - Xin Cissy Ma
- National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Troy R Hawkins
- National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Nicholas J Ashbolt
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Jennifer Cashdollar
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Jay Garland
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| |
Collapse
|
45
|
Falcone-Dias MF, Centrón D, Pavan F, Moura ACDS, Naveca FG, de Souza VC, Farache Filho A, Leite CQF. Opportunistic pathogens and elements of the resistome that are common in bottled mineral water support the need for continuous surveillance. PLoS One 2015; 10:e0121284. [PMID: 25803794 PMCID: PMC4372423 DOI: 10.1371/journal.pone.0121284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/29/2015] [Indexed: 11/24/2022] Open
Abstract
Several differences concerning bacterial species, opportunistic pathogens, elements of the resistome as well as variations concerning the CFU/mL counts were identified in some of the five most marketed bottled mineral water from Araraquara city, São Paulo, Brazil. Two out of five brands tested were confirmed as potential source of opportunistic pathogens, including Mycobacterium gordonae, Ralstonia picketti and Burkholderia cepacia complex (Bcc). A total of one hundred and six isolates were recovered from four of these bottled mineral water brands. Betaproteobacteria was predominant followed by Alphaproteobacteria, Gammaproteobacteria and Firmicutes. Ninety percent of the bacteria isolated demonstrated resistance to seventeen of the nineteen antimicrobials tested. These antimicrobials included eight different classes, including 3rd and 4th generation cephalosporins, carbapenems and fluoroquinolones. Multidrug resistant bacteria were detected for fifty-nine percent of isolates in three water brands at counts up to 103 CFU/ml. Of major concern, the two bottled mineral water harboring opportunistic pathogens were also source of elements of the resistome that could be directly transferred to humans. All these differences found among brands highlight the need for continuous bacteriological surveillance of bottled mineral water.
Collapse
Affiliation(s)
- Maria Fernanda Falcone-Dias
- School of Pharmaceutical Sciences, UNESP- Univ Estadual Paulista, Araraquara, SP, Brazil
- Departamento de Microbiología, Facultad de Medicina, UBA, Buenos Aires, Argentina
- * E-mail:
| | - Daniela Centrón
- Departamento de Microbiología, Facultad de Medicina, UBA, Buenos Aires, Argentina
| | - Fernando Pavan
- School of Pharmaceutical Sciences, UNESP- Univ Estadual Paulista, Araraquara, SP, Brazil
| | | | | | | | | | | |
Collapse
|
46
|
Ma J, Wang Z, Zang L, Huang J, Wu Z. Occurrence and fate of potential pathogenic bacteria as revealed by pyrosequencing in a full-scale membrane bioreactor treating restaurant wastewater. RSC Adv 2015. [DOI: 10.1039/c4ra10220g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Efficient diagnosis based on pyrosequencing can address the highly likely pathogenic bacteria in wastewater.
Collapse
Affiliation(s)
- Jinxing Ma
- State Key Laboratory of Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
- P. R. China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
- P. R. China
| | - Lili Zang
- Shanghai Zizheng Environmental Technology Co Ltd
- Shanghai 200437
- P. R. China
| | - Jian Huang
- State Key Laboratory of Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
- P. R. China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
- P. R. China
| |
Collapse
|
47
|
Schoen ME, Xue X, Hawkins TR, Ashbolt NJ. Comparative human health risk analysis of coastal community water and waste service options. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:9728-36. [PMID: 24988142 DOI: 10.1021/es501262p] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
As a pilot approach to describe adverse human health effects from alternative decentralized community water systems compared to conventional centralized services (business-as-usual [BAU]), selected chemical and microbial hazards were assessed using disability adjusted life years (DALYs) as the common metric. The alternatives included: (1) composting toilets with septic system, (2) urine-diverting toilets with septic system, (3) low flush toilets with blackwater pressure sewer and on-site greywater collection and treatment for nonpotable reuse, and (4) alternative 3 with on-site rainwater treatment and use. Various pathogens (viral, bacterial, and protozoan) and chemicals (disinfection byproducts [DBPs]) were used as reference hazards. The exposure pathways for BAU included accidental ingestion of contaminated recreational water, ingestion of cross-connected sewage to drinking water, and shower exposures to DBPs. The alternative systems included ingestion of treated greywater from garden irrigation, toilet flushing, and crop consumption; and ingestion of treated rainwater while showering. The pathways with the highest health impact included the ingestion of cross-connected drinking water and ingestion of recreational water contaminated by septic seepage. These were also among the most uncertain when characterizing input parameters, particularly the scale of the cross-connection event, and the removal of pathogens during groundwater transport of septic seepage. A comparison of the health burdens indicated potential health benefits by switching from BAU to decentralized water and wastewater systems.
Collapse
Affiliation(s)
- Mary E Schoen
- Soller Environmental, Inc. , 3022 King Street, Berkeley, California 94703, United States
| | | | | | | |
Collapse
|