1
|
Li X, Wang S, Wang B, Dang M, Zhao Y. Dynamic transformation and mechanisms of volatile sulfur compound releasing during anaerobic digestion of sludge. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137786. [PMID: 40022927 DOI: 10.1016/j.jhazmat.2025.137786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Volatile sulfur compounds (VSCs) are important nodes of sulfur metabolism; their emission, transformation and corresponding mechanisms during the anaerobic digestion are influenced by physical, chemical and biological components during the dynamic process. This study investigated the dynamic sulfur flows and distributions in terms of various forms and phases in sludge with different solid contents, and revealed the effects of extracellular polymeric substances (EPS) on VSCs and their interactions with microbial metabolites. The generation of H2S and other VSCs from sludge with low solid content (3 %) was fast initially, and the accumulated sulfur distribution into VSCs was 1.21 μg·g-1 TS while sulfate decreased by 11.7 % during the period. With higher solid contents (e.g., 10 %), the sulfur distribution in VSCs was less than 0.1 μg·g-1 TS, and sulfate increased by 10 %. Higher solid contents favored the growth of sulfur-oxidizing microbes (SOB) in the initial stage, while their abundances decreased significantly when sulfur metabolism was less active. In contrast, sulfur-reducing microbes play important roles in sulfate reduction and H2S generation in sludge with low solid contents. EPS compositions and characteristics are important for both sulfur-related microorganisms and VSCs releasing from sludge, and their physical barrier effect is considered as a key factor of reducing VSCs emission from sludge with high solid contents. This study provides a comprehensive understanding of the mechanism of VSC generation and release from dynamic sulfur transformation, contributing to the potential management of VSCs during sludge management.
Collapse
Affiliation(s)
- Xiang Li
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shengwei Wang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Bowen Wang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Minghui Dang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yan Zhao
- School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
2
|
Qin Y, Yue S, Xu D, Yang M, Zhang L. Formation pathways of hydrogen polysulfides in sulfur-bearing natural gas reservoirs from density functional theory calculations. J Mol Model 2025; 31:157. [PMID: 40358720 DOI: 10.1007/s00894-025-06388-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025]
Abstract
CONTEXT The interaction mechanisms between a sulfur atom (S) and hydrogen sulfide (H2S), as well as the formation and stability of H2Sn (n = 2-9), are fundamental to understanding sulfur chemistry in natural gas reservoirs. Despite their importance, the abiogenic origins and reaction pathways of H2Sn in natural gas fields remain inadequately understood. Clarifying these mechanisms is essential for addressing sulfur deposition challenges, which have direct implications for extraction efficiency, operational safety, and reservoir management. METHODS This study utilized quantum chemistry calculations to systematically investigate the reaction mechanisms between sulfur atoms and hydrogen sulfide, with a particular focus on the formation of H2Sn. Transition state (TS) searches were conducted to identify energetically favorable reaction pathways, and intrinsic reaction coordinate (IRC) analyses were performed to validate the reaction trajectories. The kinetics and thermodynamics of H2S2 formation from elemental sulfur and H2S were comprehensively evaluated. Additionally, stability analyses were carried out to assess the relative stability of H2Sn under varying reservoir conditions, offering insights into their decomposition tendencies and subsequent formation of H2S and elemental sulfur (S8).
Collapse
Affiliation(s)
- Ying Qin
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, China
| | - Shuangli Yue
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, China
| | - Donghui Xu
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, China
| | - Mingli Yang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, China
| | - Li Zhang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
3
|
Chen J, Echigo S, Tada Y, Hinneh KDC, Itoh S. A new indirect method for the quantification of total organic iodine (TOI) in environmental waters by inductively coupled plasma with mass spectrometry and liquid chromatography with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1254:124489. [PMID: 39922017 DOI: 10.1016/j.jchromb.2025.124489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/02/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
The formation of emerging iodinated disinfection by-products (I-DBPs) is associated with iodine sources including organic compounds. Total organic iodine (TOI) was used as a bulk index of organic iodinated compounds because of the difficulty in identifying and quantifying individual organic iodinated compounds in environmental waters. Conventional methods for the direct quantification of TOI require complicated pretreatments, which has promoted many studies to attempt to simplify the quantification of TOI by an indirect measurement. In current indirect methods, TOI is mainly calculated as the differences between the concentration of total iodine (TI) and inorganic iodine (I- and [Formula: see text] ) by liquid chromatography-inductively coupled plasma with mass spectrometry (LC-ICP-MS). However, without accurate identification and discrimination by LC-ICP-MS, possible co-eluting iodinated compounds may be detected as I- and [Formula: see text] . To measure TOI more accurately, a simple method was developed by ICP-MS and liquid chromatography-tandem mass spectrometry (LC-MSMS). TI was measured by ICP-MS, and the spiked recoveries of tested iodinated compounds showed acceptable accuracy and repeatability in Milli-Q water and environmental waters, respectively. I- and [Formula: see text] were first simultaneously measured by LC-MSMS without redox pretreatments. The limits of quantification of I- and [Formula: see text] in this method were 0.05 μg I/L and 0.4 μg/L (0.3 μg I/L), respectively. The method is highly sensitive, and the actual concentration of I- and [Formula: see text] can be calculated by the spiked recovery. The method was successfully applied by measuring TOI concentration (2.2 to 17 μg I/L) in various types of environmental waters.
Collapse
Affiliation(s)
- Jinbo Chen
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Nishikyo, Kyoto 615-8540, Japan.
| | - Shinya Echigo
- Graduate School of Global Environmental Studies, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yuto Tada
- Graduate School of Global Environmental Studies, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Klon D C Hinneh
- Graduate School of Global Environmental Studies, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Sadahiko Itoh
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Nishikyo, Kyoto 615-8540, Japan
| |
Collapse
|
4
|
Matos Pereira Lima F, Laniel M, Balde H, Gordon R, VanderZaag A. Methane emission reduction by adding sulfate to liquid dairy manure. JOURNAL OF ENVIRONMENTAL QUALITY 2025; 54:349-358. [PMID: 39957420 PMCID: PMC11893280 DOI: 10.1002/jeq2.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 01/16/2025] [Indexed: 02/18/2025]
Abstract
Dairy farmers are interested in reducing the carbon footprint of milk. Reducing methane (CH4) emissions is a key part of this goal, and manure is a significant CH4 source. Technologies like anaerobic digesters for biogas production are effective; however, adoption rates are slowed by upfront costs and infrastructure needs. Achieving near-term emission reductions needs low-cost alternatives that can be quickly and widely adopted. Previous studies have shown that "acidification" of manure by adding sulfuric acid (H2SO4) suppressed CH4 emissions; however, widespread adoption may be hindered by the challenge of handling acid on farms. This laboratory study was performed for 157 days at 24°C, and compared the efficacy of a sulfate-based non-acidic fertilizer (CaSO4), and two rates of acidification, one at pH > 7 and one at pH < 7, for a sulfate-based acid (H2SO4) and a sulfate-free acid (H3PO4). Methane suppression by CaSO4 at multiple rates was also analyzed. Two mechanisms of suppression were observed: acidification had a demonstrable early effect, lowering cumulative CH4 emission within 40 days by up to 65% for H2SO4 and 54% for H3PO4, while sulfate-containing compounds showed increasing suppression after 50 days. Final cumulative CH4 suppression was up to 63% for CaSO4 and 91% for H2SO4, while H3PO4 was least effective. These results suggest H2SO4 is highly effective due to the combination of acidity and sulfate. Adding sulfate alone (CaSO4) was more effective than adding acid alone (H3PO4). Hence, sulfate-based additives-like gypsum-may hold promise as an alternative near-term solution for dairy farms to make large CH4 reductions.
Collapse
|
5
|
Wen R, Deng J, Yang H, Li YY, Cheng H, Liu J. A chemically enhanced primary treatment and anammox-based process for sustainable municipal wastewater treatment: The advantage and application prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124406. [PMID: 39914215 DOI: 10.1016/j.jenvman.2025.124406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
Low-carbon nitrogen removal, bioenergy production, and phosphorus recovery are key goals for sustainable municipal wastewater treatment. Traditional activated sludge processes face an energy demand conflict. Anaerobic ammonium oxidation (Anammox) offers a solution to this issue, with the A-B process providing a sustainable approach. Stable and cost-effective nitrite supply for mainstream anammox has gained attention, while the interactions between A-B stage processes are also crucial. This paper reviews the benefits and challenges of mainstream anammox, bioenergy, and phosphorus recovery. A combined process of chemically enhanced primary treatment, partial denitrification and anammox is identified as effective for sustainable treatment. Additionally, the stable nitrite supply from the sidestream partial nitrification provides a 54% nitrogen removal contribution to the mainstream anammox. Anaerobic digestion with sulfate reduction is proposed as an efficient method for simultaneous bioenergy and phosphorus recovery from iron-enhanced primary sludge. The recycling of iron and sulfate reduces excess sludge and cuts costs. A novel wastewater treatment scheme, supported by a mass balance analysis, is presented; the proposed process is capable of recovering >50% of the carbon and phosphorus, while reduced 40% dosing of Fe and S chemicals, reducing the cost of chemical dosing and treatment of the digestate while meeting the high-quality effluent. The paper also explores the potential for transitioning from conventional activated sludge processes and suggests directions for future research.
Collapse
Affiliation(s)
- Ruolan Wen
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Jiayuan Deng
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Huan Yang
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Hui Cheng
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China.
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China.
| |
Collapse
|
6
|
Al Mehrate J, Shaban S, Henni A. A Review of Sulfate Removal from Water Using Polymeric Membranes. MEMBRANES 2025; 15:17. [PMID: 39852258 PMCID: PMC11766897 DOI: 10.3390/membranes15010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025]
Abstract
Access to clean and reliable water has become a critical concern due to the global water crisis. High sulfate levels in drinking water raise health concerns for humans and animals and can cause serious corrosion in industrial systems. Sulfated waters represent a major challenge on the Canadian prairies, leading to many cattle deaths. While reverse osmosis (RO) membranes effectively remove sulfates, they are costly due to high-pressure requirements. Nanofiltration (NF) membranes present a more affordable alternative, outperforming traditional methods like adsorption, desalination, and ion exchange. Developing low-pressure ultrafiltration (UF) and microfiltration (MF) membranes could also reduce costs. This review explores advancements in polymeric materials and membrane technology to enhance sulfate removal, focusing on methods used to reduce fouling and improve permeate flux. Techniques discussed include phase inversion (PI), thin-film composite (TFC), and thin-film nanocomposite (TFN) membranes. The review also highlights recent fabrication methods for pristine and nanomaterial-enhanced membranes, acknowledging both benefits and limitations. Continued innovations in polymer-based membranes are expected to drive further performance and cost-efficiency improvements. This review found that studies in the literature dealt mainly with sulfate concentrations below 2000 mg/L, indicating a need to address higher concentrations in future studies.
Collapse
Affiliation(s)
| | | | - Amr Henni
- Industrial Systems Engineering, Produced Water Treatment Laboratory, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada; (J.A.M.); (S.S.)
| |
Collapse
|
7
|
Díaz-Muñiz CA, Nieto-Delgado C, IIhan ZE, Rittmann BE, Ontiveros-Valencia A. Lead removal by its precipitation with biogenic sulfide in a membrane biofilm reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177578. [PMID: 39579902 DOI: 10.1016/j.scitotenv.2024.177578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/11/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
We evaluated the feasibility of using hydrogen (H2)-based membrane biofilm reactors (MBfRs) to promote the growth of hydrogenotrophic sulfate-reducing bacteria (SRB) to remove lead (Pb) through its precipitation as lead sulfide (PbS) via biogenic sulfide (HS-) production. Two MBfRs (R1 and R2) were set-up to treat synthetic water rich in sulfate (SO42-) (585 mg/L) and Pb (50, 100, or 250 mg/L). R1 had one influent that had the Pb and synthetic media mixed together; R2 received the Pb solution and synthetic medium through separate influent lines. Oxygen (O2) and nitrate (NO3-) were secondary electron acceptors in R1 and R2, respectively. R1 and R2 produced enough HS- (> 73 mg/L) to precipitate Pb, and Pb removal reached >97 %. Chemical equilibrium calculations identified which solids were possible in each stage of operation. Precipitation of Pb with phosphate (PO43-) occurred in the feed solution in R1, but phosphate precipitation was avoided in the R2 influent. The predominant Pb precipitate inside R2 was PbS, which was confirmed by SEM-EDX analysis. The microbial communities of R1 and R2 were dominated by two SRB - Desulfomicrobium and Fusibacter - along with sulfur oxidizer Thiovirga and denitrifier Thauera. Although the presence of electron acceptors other than SO42- enabled other respiratory metabolisms, they did not prevent SO42- reduction to HS- or the precipitation of PbS.
Collapse
Affiliation(s)
- Christopher A Díaz-Muñiz
- Instituto Potosino de Investigación Científica y Tecnológica A.C., División de Ciencias Ambientales, Camino a la Presa San José 2055, Lomas 4a Sección, C.P. 78216, San Luis Potosí, SLP, Mexico
| | - Cesar Nieto-Delgado
- Instituto Potosino de Investigación Científica y Tecnológica A.C., División de Ciencias Ambientales, Camino a la Presa San José 2055, Lomas 4a Sección, C.P. 78216, San Luis Potosí, SLP, Mexico
| | - Zehra Esra IIhan
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Domaine de Vilvert, Jouy-en-Josas 78350, France
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287-5701, USA
| | - Aura Ontiveros-Valencia
- Instituto Potosino de Investigación Científica y Tecnológica A.C., División de Ciencias Ambientales, Camino a la Presa San José 2055, Lomas 4a Sección, C.P. 78216, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
8
|
Onodera T, Takemura Y, Aoki M, Syutsubo K. Application of an anaerobic reactor for the treatment of sulfide-rich wastewater using biogas for H 2S removal. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:3029-3040. [PMID: 39673317 DOI: 10.2166/wst.2024.383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/07/2024] [Indexed: 12/16/2024]
Abstract
Anaerobic treatment of sulfur-rich wastewater is challenging because sulfide greatly inhibits the activity of anaerobic microorganisms, especially methanogenic archaea. We developed an internal phase-separated reactor (IPSR) that removed sulfide prior to methanogenesis by gas stripping using biogas produced in the reactor. The IPSR was fed with synthetic wastewater containing a very high sulfide concentration of up to 6,000 mg S L-1 with a chemical oxygen demand (COD) of 30,000 mg L-1. The IPSR was operated at an organic loading rate of 5-12 kg COD m-3 day-1 at 35 °C. The results show that the sulfide concentration was reduced from 6,000 mg S L-1 in the influent to <700 mg S L-1 in the first-stage effluent. The second-stage effluent contained <400 mg S L-1. As a result of effective sulfide removal by its gas stripping function, the IPSR had a COD removal efficiency of >90% over the entire experimental period. High-throughput 16S rRNA gene sequencing revealed that the major anaerobic archaea were Methanobacterium and Methanosaeta, which are frequently found in high-rate anaerobic reactors. Thus, the IPSR maintains these microorganisms and achieves high-process performance even when fed wastewater with very high sulfide concentrations.
Collapse
Affiliation(s)
- Takashi Onodera
- Regional Environment Conservation Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan E-mail:
| | - Yasuyuki Takemura
- Regional Environment Conservation Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan; Present address Department of Civil Engineering, National Institute of Technology, Wakayama College, 77 Noshima, Nada, Gobo, Wakayama 644-0023, Japan
| | - Masataka Aoki
- Regional Environment Conservation Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Kazuaki Syutsubo
- Regional Environment Conservation Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan; Research Center of Water Environment Technology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
9
|
Wang Y, Fu Q, Yang F, Li X, Ma X, Xu Y, Liu X, Wang D. Mechanistic insights into Fe 3O 4-mediated inhibition of H 2S gas production in sludge anaerobic digestion. WATER RESEARCH 2024; 267:122464. [PMID: 39303578 DOI: 10.1016/j.watres.2024.122464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
The addition of iron-based conductive materials has been extensively validated as a highly effective approach to augment methane generation from anaerobic digestion (AD) process. In this work, it was additionally discovered that Fe3O4 notably suppressed the production of hazardous H2S gas during sludge AD. As the addition of Fe3O4 increased from 0 to 20 g/L, the accumulative H2S yields decreased by 89.2 % while the content of element sulfur and acid volatile sulfide (AVS) respectively increased by 55.0 % and 30.4 %. Mechanism analyses showed that the added Fe3O4 facilitated sludge conductive capacity, and boosted the efficiency of extracellular electron transfer, which accelerated the bioprocess of sulfide oxidation. Although Fe3O4 can chemically oxidize sulfide to elemental sulfur, microbial oxidation plays a major role in reducing H2S accumulation. Moreover, the released iron ions reacted with soluble sulfide, which promoted the chemical equilibrium of sulfide species from H2S to metal sulfide. Microbial analysis showed that some SRBs (i.e., Desulfomicrobium and Defluviicoccus) and SOB (i.e., Sulfuritalea) changed into keystone taxa (i.e., connectors and module hubs) in the reactor with Fe3O4 addition, showing that the functions of sulfate reduction and sulfur oxidation may play important roles in Fe3O4-present system. Fe3O4 presence also increased the content of functional genes encoding sulfide quinone reductase and flavocytochrome c sulfidedehydrogenase (e.g., Sqr and Fcc) that could oxidize sulfide to sulfur. The impact of other iron-based conductive material (i.e., zero-valent iron) was also verified, and the results showed that it could also significantly reduce H2S production. These findings provide new insights into the effect of iron-based conductive materials on anaerobic process, especially sulfur conversion.
Collapse
Affiliation(s)
- Yan Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qizi Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| | - Fan Yang
- RIOH High Science and Technology Group, Beijing 100088, PR China
| | - Xuemei Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xingyu Ma
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yunhao Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
10
|
Yan Y, Twible LE, Liu FYL, Arrey JLS, Colenbrander Nelson TE, Warren LA. Cascading sulfur cycling in simulated oil sands pit lake water cap mesocosms transitioning from oxic to euxinic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175272. [PMID: 39111438 DOI: 10.1016/j.scitotenv.2024.175272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/11/2024]
Abstract
Base Mine Lake (BML), the first full-scale demonstration of oil sands tailings pit lake reclamation technology, is experiencing expansive, episodic hypolimnetic euxinia resulting in greater sulfur biogeochemical cycling within the water cap. Here, Fluid Fine Tailings (FFT)-water mesocosm experiments simulating the in situ BML summer hypolimnetic oxic-euxinic transition determined sulfur biogeochemical processes and their controlling factors. While mesocosm water caps without FFT amendments experienced limited geochemical and microbial changes during the experimental period, FFT-amended mesocosm water caps evidenced three successive stages of S speciation in ∼30 days: (S1) rising expansion of water cap euxinia from FFT to water surface; enabling (S2) rapid sulfate (SO42-) reduction and sulfide production directly within the water column; fostering (S3) generation and subsequent consumption of sulfur oxidation intermediate compounds (SOI). Identified key SOI, elemental S and thiosulfate, support subsequent SOI oxidation, reduction, and/or disproportionation processes in the system. Dominant water cap microbes shifted from methanotrophs and denitrifying/iron-reducing bacteria to functionally versatile sulfur-reducing bacteria (SRB) comprising sulfate-reducing bacteria (Desulfovibrionales) and SOI-reducing/disproportionating bacteria (Campylobacterales and Desulfobulbales). The observed microbial shift is driven by decreasing [SO42-] and organic aromaticity, with putative hydrocarbon-degrading bacteria providing electron donors for SRB. Comparison between unsterile and sterile water treatments further underscores the biogeochemical readiness of the in situ water cap to enhance oxidant depletion, euxinia expansion and establishment of water cap SRB communities aided by FFT migration of anaerobes. Results here identify the collective influence of FFT and water cap microbial communities on water cap euxinia expansion associated with sequential S reactions that are controlled by concentrations of oxidants, labile organic substrates and S species. This emphasizes the necessity of understanding this complex S cycling in assessing BML water cap O2 persistence.
Collapse
Affiliation(s)
- Yunyun Yan
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Lauren E Twible
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Felicia Y L Liu
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - James L S Arrey
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Tara E Colenbrander Nelson
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Lesley A Warren
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada.
| |
Collapse
|
11
|
Li ZT, Zhao HP. Sulfate-driven microbial collaboration for synergistic remediation of chloroethene-heavy metal pollution. WATER RESEARCH 2024; 268:122738. [PMID: 39504699 DOI: 10.1016/j.watres.2024.122738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
The treatment of heavy metal(loid) (HM) composite pollution has long posed a challenge for the bioremediation of organohalide-contaminated sites. Given the prevalent cohabitation of sulfate-reducing bacteria (SRB) with organohalide-respiring bacteria (OHRB), we proposed a sulfate-amendment strategy to achieve synergistic remediation of trichloroethene and diverse HMs [50μM of As(III), Ni(II), Cu(II), Pb(II)]. Correspondingly, 50-75 μM sulfate was introduced to HM inhibitory batches to investigate the enhancement effect of sulfate amendment on bio-dechlorination. Dechlorination kinetics and MATLAB modeling indicated that sulfate amendment comprehensively improved the reductive dechlorination performance in the presence of As(III), Ni(II), Pb(II) and mixed HMs, while no enhancement was observed under Cu(II) exposure. Additionally, sulfate introduction effectively accelerated the detoxification of Ni(II), Pb(II), Cu(II), and As(III), achieving removal efficiencies of 76.87 %, 64.01 %, 86.37 %, and 95.50 % within the first three days, respectively. Meanwhile, propionate dynamics and acetogenesis indicated enhanced carbon source and e-donor supply. 16S rRNA gene sequencing and metagenomic analysis results demonstrated that HM sequestration was accomplished jointly by SRB and HM-resistant bacteria via extracellular precipitation (metal sulfide) and intracellular sequestration, while their contribution depended on the specific coexisting HM species present. This study highlights the critical role of sulfate in the concurrent bioremediation of HM-organohalide composite contamination and provides insights for developing a cost-effective in-situ bioremediation strategy.
Collapse
Affiliation(s)
- Zheng-Tao Li
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310030, PR China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310030, PR China.
| |
Collapse
|
12
|
Jin Z, Liang L, Zhao Z, Zhang Y. Enhancing assimilatory sulfate reduction with ferrihydrite-humic acid coprecipitate in anaerobic sulfate-containing wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 411:131308. [PMID: 39155018 DOI: 10.1016/j.biortech.2024.131308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/05/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024]
Abstract
Sulfide produced from dissimilatory sulfate reduction can combine with hydrogen to form hydrogen sulfide, causing odor issues and environmental pollution. To address this problem, ferrihydrite-humic acid coprecipitate was added to improve assimilatory sulfate reduction (ASR), resulting in a decrease in sulfide production (190.2 ± 14.6 mg/L in the Fh-HA group vs. 246.3 ± 8.1 mg/L in the Fh group) with high sulfate removal. Humic acid, adsorbed on the surface of ferrihydrite, delayed secondary mineralization of ferrihydrite under sulfate reduction condition. Therefore, more iron-reducing species (e.g. Trichococcus, Geobacter) were enriched with ferrihydrite-humic acid coprecipitate to transfer more electrons to other species, which led to more COD reduction, an increase in electron transfer capacity, and a decrease in the NADH/NAD+ ratio. Metagenomic analysis also indicated that functional genes related to ASR was enhanced with ferrihydrite-humic acid coprecipitate. Thus, the addition of ferrihydrite-humic acid coprecipitate can be considered as a promising candidate for anaerobic sulfate wastewater treatment.
Collapse
Affiliation(s)
- Zhen Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Lianfu Liang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
13
|
Zhang M, Dong P, Zhang X, Wang H, Zhang L, Wang H. Effects of filling substrates on remediation performance and sulfur transformation of sulfate reducing packed-bed bioreactors treating acid mine drainage. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123026. [PMID: 39447368 DOI: 10.1016/j.jenvman.2024.123026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
The filling substrate is one of key factors influencing effectiveness of sulfate reducing packed-bed bioreactor (SRPB) treating acid mine drainage (AMD). The effects of four substrates (i.e. quartz sand, steel residue, biochar, and peanut shell) on remediation performance and sulfur transformation of SRPB treating AMD was studied. The results showed that steel residue and biochar improved sulfate reduction efficiency (61% and 49%) compared to quartz sand (32%), whereas peanut shell inhibited sulfate reduction efficiency (19%), attributed to its decomposition process leading to a severe accumulation of acetic acid. More amounts of sulfides generated in steel residue bioreactor were converted into acid volatile sulfide and elemental sulfur, resulting in a significant decrease in dissolved sulfide in the effluent. Metals (Fe, Al, Zn, Cd and Cr) except for Mn were effectively immobilized in the bioreactors, particularly for Al and Cd. Sulfate reducing bacteria and sulfide oxidizing bacteria lived symbiotically in all bioreactors which exhibited similar heterogeneity in microbial distribution and function, i.e. bacterial sulfate reduction mainly occurring in bottom-middle layers and photoautotrophic sulfide oxidation in upper layer close to outlet. The microbial response mechanism to various substrate environments was revealed through co-occurrence networks analysis. This study suggests that attention should be paid to the inhibitory effect of acetic acid accumulation on sulfate reduction when using sole lignocellulosic waste (peanut shell), and steel residue and biochar could be utilized as filling substances to promote sulfate reduction.
Collapse
Affiliation(s)
- Mingliang Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Peng Dong
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xuhui Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Haixia Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Liandong Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Hui Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| |
Collapse
|
14
|
Li B, Liu C, Bai J, Huang Y, Su R, Wei Y, Ma B. Strategy to mitigate substrate inhibition in wastewater treatment systems. Nat Commun 2024; 15:7920. [PMID: 39256375 PMCID: PMC11387818 DOI: 10.1038/s41467-024-52364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
Global urbanization requires more stable and sustainable wastewater treatment to reduce the burden on the water environment. To address the problem of substrate inhibition of microorganisms during wastewater treatment, which leads to unstable wastewater discharge, this study proposes an approach to enhance the tolerance of bacterial community by artificially setting up a non-lethal high substrate environment. And the feasibility of this approach was explored by taking the inhibition of anammox process by nitrite as an example. It was shown that the non-lethal high substrate environment could enhance the nitrite tolerance of anammox bacterial community, as the specific anammox activity increasing up to 24.71 times at high nitrite concentrations. Moreover, the system composed of anammox bacterial community with high nitrite tolerance also showed greater resistance (two-fold) in response to nitrite shock. The antifragility of the system was enhanced without affecting the operation of the main reactor, and the non-lethal high nitrite environment changed the dominant anammox genera to Candidatus Jettenia. This approach to enhance tolerance of bacterial community in a non-lethal high substrate environment not only allows the anammox system to operate stably, but also promises to be a potential strategy for achieving stable biological wastewater treatment processes to comply with standards.
Collapse
Affiliation(s)
- Beiying Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Conghe Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jingjing Bai
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yikun Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Run Su
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yan Wei
- State Key Laboratory of Marine Resources Utilization in the South China Sea, Hainan University, Haikou, 570228, China
| | - Bin Ma
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China.
| |
Collapse
|
15
|
Wu ZH, Li F, Wang F, Jin R, Li Y, Li S, Zhou Z, Jia P, Li JT. A synthetic bacterial consortium improved the phytoremediation efficiency of ryegrass on polymetallic contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116691. [PMID: 38981391 DOI: 10.1016/j.ecoenv.2024.116691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Polymetallic contamination of soils caused by mining activities seriously threatens soil fertility, biodiversity and human health. Bioremediation is thought to be of low cost and has minimal environmental risk but its effectiveness needs to be improved. This study aimed to identify the combined effect of plant growth and microbial strains with different functions on the enhancement of bioremediation of polymetallic contaminated soil. The microbiological mechanism of bioremediation was explored by amplicon sequencing and gene prediction. Soil was collected from polymetallic mine wastelands and a non-contaminated site for use in a pot experiment. Remediation efficiency of this method was evaluated by planting ryegrass and applying a mixed bacterial consortium comprising P-solubilizing, N-fixing and SO4-reducing bacteria. The plant-microbe joint remediation method significantly enhanced the above-ground biomass of ryegrass and soil nutrient contents, and at the same time reduced the content of heavy metals in the plant shoots and soil. The application of the composite bacterial inoculum significantly affected the structure of soil bacterial communities and increased the bacterial diversity and complexity, and the stability of co-occurrence networks. The relative abundance of the multifunctional genera to which the strains belonged showed a significant positive correlation with the soil nutrient content. Genera related to carbon (C), nitrogen (N), phosphorus (P), and sulphur (S) cycling and heavy metal resistance showed an up-regulation trend in heavy metal-contaminated soils after the application of the mixed bacterial consortium. Also, bacterial strains with specific functions in the mixed consortium regulated the expression of genes involved in soil nutrient cycling, and thus assisted in making the soil self-sustainable after remediation. These results suggested that the remediation of heavy metal-contaminated soil needs to give priority to the use of multifunctional bacterial agents.
Collapse
Affiliation(s)
- Zhuo-Hui Wu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Fenglin Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Feifan Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Rongzhou Jin
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Yanying Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Shilin Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Zhuang Zhou
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China.
| | - Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| |
Collapse
|
16
|
Jiang Y, Gao X, Yang X, Gong P, Pan Z, Yi L, Ma S, Li C, Kong S, Wang Y. Sulfate-reducing bacteria (SRB) mediated carbonate dissolution and arsenic release: Behavior and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172572. [PMID: 38641113 DOI: 10.1016/j.scitotenv.2024.172572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/24/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Carbonate bound arsenic act as an important reservoir for arsenic (As) in nature aquifers. Sulfate-reducing bacteria (SRB), one of the dominant bacterial species in reductive groundwater, profoundly affects the biogeochemical cycling of As. However, whether and how SRB act on the migration and transformation of carbonate bound arsenic remains to be elucidated. Batch culture experiment was employed using filed collected arsenic bearing calcite to investigate the release and species transformation of As by SRB. We found that arsenic in the carbonate samples mostly exist as inorganic As(V) (93.92 %) and As(III). The present of SRB significantly facilitated arsenic release from carbonates with a maximum of 22.3 μg/L. The main release mechanisms of As by SRB include 1) calcite dissolution and the liberate of arsenic in calcite lattices, and 2) the break of H-bonds frees arsenic absorbed on carbonate surface. A redistribution of arsenic during culture incubation took place which may due to the precipitation of As2Sx or secondary FeAl minerals. To our best knowledge, it is the first experimental study focusing on the release of carbonate bound arsenic by SRB. This study provides new insights into the fate and transport of arsenic mediated by microorganism within high arsenic groundwater-sediment system.
Collapse
Affiliation(s)
- Yu Jiang
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, China
| | - Xubo Gao
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, China; Institute of Karst Geology, Chinese Academy of Geological Sciences, 50 Qixing Road, Guilin, Guangxi 541004, China.
| | - Xinwen Yang
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, China
| | - Peili Gong
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, China
| | - Zhendong Pan
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, China
| | - Ling Yi
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, China
| | - Siyuan Ma
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, China
| | - Chengcheng Li
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, China
| | - Shuqiong Kong
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, China
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, China
| |
Collapse
|
17
|
Berens MJ, Deen TW, Chun CL. Bioelectrochemical reactor to manage anthropogenic sulfate pollution for freshwater ecosystems: Mathematical modeling and experimental validation. CHEMOSPHERE 2024; 357:142054. [PMID: 38642774 DOI: 10.1016/j.chemosphere.2024.142054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/22/2024]
Abstract
Anthropogenic sulfate loading into otherwise low-sulfate freshwater systems can cause significant ecological consequences as a biogeochemical stressor. To address this challenge, in situ bioremediation technologies have been developed to leverage naturally occurring microorganisms that transform sulfate into sulfide rather than implementing resource-intensive physio-chemical processes. However, bioremediation technologies often require the supply of electron donors to facilitate biological sulfate reduction. Bioelectrochemical systems (BES) can be an alternative approach for supplying molecular hydrogen as an electron donor for sulfate-reducing bacteria through water electrolysis. Although the fundamental mechanisms behind BESs have been studied, limited research has evaluated the design and operational parameters of treatment systems when developing BESs on a scale relevant to environmental systems. This study aimed to develop an application-based mathematical model to evaluate the performance of BESs across a range of reactor configurations and operational modes. The model was based on sulfate transformation by hydrogenotrophic sulfate-reducing bacteria coupled with the recovery of solid iron sulfide species formed by the oxidative dissolution of dissolved ferrous iron from a stainless steel anode. Sulfate removal closely corresponded to the rate of electrolytic hydrogen production and hydraulic residence time but was less sensitive to specific microbial rate constants. The mathematical model results were compared to experimental data from a pilot-scale BES tested with nonacidic mine drainage as a case study. The close agreement between the mathematical model and the pilot-scale BES experiment highlights the efficacy of using a mathematical model as a tool to develop a conceptual design of a scaled-up treatment system.
Collapse
Affiliation(s)
- Matthew J Berens
- Natural Resources Research Institute, University of Minnesota Duluth, Duluth, MN, 55811, USA; Current Address: Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Tobin W Deen
- Natural Resources Research Institute, University of Minnesota Duluth, Duluth, MN, 55811, USA; Department of Civil Engineering, University of Minnesota Duluth, Duluth, MN, 55805, USA
| | - Chan Lan Chun
- Natural Resources Research Institute, University of Minnesota Duluth, Duluth, MN, 55811, USA; Department of Civil Engineering, University of Minnesota Duluth, Duluth, MN, 55805, USA.
| |
Collapse
|
18
|
Castro R, Gabriel G, Gabriel D, Gamisans X, Guimerà X. Development of a flow-cell bioreactor for immobilized sulfidogenic sludge characterization using electrochemical H 2S microsensors. CHEMOSPHERE 2024; 358:141959. [PMID: 38608772 DOI: 10.1016/j.chemosphere.2024.141959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
The sulfate-reduction process plays a crucial role in the biological valorization of SOx gases. However, a complete understanding of the sulfidogenic process in bioreactors is limited by the lack of technologies for characterizing the sulfate-reducing activity of immobilized biomass. In this work, we propose a flow-cell bioreactor (FCB) for characterizing sulfate-reducing biomass using H2S microsensors to monitor H2S production in real-time within a biofilm. To replace natural immobilization through extracellular polymeric substance production, sulfidogenic sludge was artificially immobilized using polymers. Physical and sulfate-reducing activity studies were performed to select a polymer-biomass matrix that maintained sulfate-reducing activity of biomass while providing strong microbial retention and mechanical strength. Several operational conditions of the sulfidogenic reactor allowed to obtain a H2S profiles under different inlet sulfate loads and, additionally, 3D mapping was assessed in order to perform a hydraulic characterization. Besides, the effects of artificial immobilization on biodiversity were investigated through the characterization of microbial communities. This study demonstrated the appropriateness of immobilized-biomass for characterization of sulfidogenic biomass in FCB using H2S electrochemical microsensors, and beneficial microbiological communities shifts as well as enrichment of sulfate-reducing bacteria have been confirmed.
Collapse
Affiliation(s)
- Rebeca Castro
- Department of Mining, Industrial and ICT Engineering (EMIT), Research Group on Intelligent and Sustainable Resources and Industries (RIIS), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), Av. Bases de Manresa 61-73, 08242, Manresa, Spain
| | - Gemma Gabriel
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), 08193, Bellaterra, Barcelona, Spain; CIBER, de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), ISCIII, Spain
| | - David Gabriel
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Xavier Gamisans
- Department of Mining, Industrial and ICT Engineering (EMIT), Research Group on Intelligent and Sustainable Resources and Industries (RIIS), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), Av. Bases de Manresa 61-73, 08242, Manresa, Spain
| | - Xavier Guimerà
- Department of Mining, Industrial and ICT Engineering (EMIT), Research Group on Intelligent and Sustainable Resources and Industries (RIIS), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), Av. Bases de Manresa 61-73, 08242, Manresa, Spain.
| |
Collapse
|
19
|
Ye Y, Yan X, Luo H, Kang J, Liu D, Ren Y, Ngo HH, Guo W, Cheng D, Jiang W. Comparative study of the removal of sulfate by UASB in light and dark environment. Bioprocess Biosyst Eng 2024; 47:943-955. [PMID: 38703203 DOI: 10.1007/s00449-024-03024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
At present, the application of sewage treatment technologies is restricted by high sulfate concentrations. In the present work, the sulfate removal was biologically treated using an upflow anaerobic sludge blanket (UASB) in the absence/presence of light. First, the start-up of UASB for the sulfate removal was studied in terms of COD degradation, sulfate removal, and effluent pH. Second, the impacts of different operation parameters (i.e., COD/SO42- ratio, temperature and illumination time) on the UASB performance were explored. Third, the properties of sludge derived from the UASB at different time were analyzed. Results show that after 28 days of start-up, the COD removal efficiencies in both the photoreactor and non-photoreactor could reach a range of 85-90% while such reactors could achieve > 90% of sulfate being removed. Besides, higher illumination time could facilitate the removal of pollutants in the photoreactor. To sum up, the present study can provide technical support for the clean removal of sulfate from wastewater using photoreactors.
Collapse
Affiliation(s)
- Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
- Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Xueyi Yan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
- Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Hui Luo
- Chengdu Garbage Sorting Management & Service Center, Chengdu, 610095, China
| | - Jianxiong Kang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
- Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Dongqi Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
- Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Yongzheng Ren
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
- Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
| | - Wei Jiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China.
- Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China.
| |
Collapse
|
20
|
Chen H, Jia Y, Li J, Ai Y, Zhang W, Han L, Chen M. Enhanced efficiencies on purifying acid mine drainage in constructed wetlands based on synergistic adsorption of attapulgite-soda residue composites and microbial sulfate reduction. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134221. [PMID: 38615651 DOI: 10.1016/j.jhazmat.2024.134221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Constructed wetlands (CWs) are a promising approach for treating acid mine drainage (AMD). However, the extreme acidity and high loads of heavy metals in AMD can easily lead to the collapse of CWs without proper pre-treatment. Therefore, it is considered essential to maintain efficient and stable performance for AMD treatment in CWs. In this study, pre-prepared attapulgite-soda residue (ASR) composites were used to improve the substrate of CWs. Compared with CWs filled with gravel (CWs-G), the removal efficiencies of sulfate and Fe, Mn, Cu, Zn Cd and Pb in CWs filled with ASR composites (CWs-ASR) were increased by 30% and 10-70%, respectively. These metals were mainly retained in the substrate in stable forms, such as carbonate-, Fe/Mn (oxide)hydroxide-, and sulfide-bound forms. Additionally, higher levels of photosynthetic pigments and antioxidant enzyme activities in plants, along with a richer microbial community, were observed in CWs-ASR than in CWs-G. The application of ASR composites alleviated the adverse effects of AMD stresses on wetland plants and microorganisms. In return, the increased bacteria abundance, particularly SRB genera (e.g., Thermodesulfovibrionia and Desulfobacca), promoted the formation of metal sulfides, enabling the saturated ASR adsorbed with metals to regenerate and continuously capture heavy metals. The synergistic adsorption of ASR composites and microbial sulfate reduction maintained the stable and efficient operation of CWs. This study contributes to the resource utilization of industrial alkaline by-products and promotes the breakthrough of new techniques for low-cost and passive treatment systems such as CWs.
Collapse
Affiliation(s)
- Hongping Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yufei Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Nanjing Jinghongze Environmental Technology Co Ltd, Nanjing 210000, China
| | - Yulu Ai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenying Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lu Han
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mengfang Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
21
|
Li H, Di J, Dong Y, Bao S, Fu S. Enhanced reduction of sulfate by iron-carbon microelectrolysis: interaction mechanism between microelectrolysis and microorganisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31577-31589. [PMID: 38635092 DOI: 10.1007/s11356-024-32993-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
Sulfate wastewater has a wide range of sources and greatly harms water, soil, and plants. Iron-carbon microelectrolysis (IC-ME) is a potentially sustainable strategy to improve the treatment of sulfate (SO42-) wastewater by sulfate-reducing bacteria (SRB). In this study, an iron-carbon mixed micro-electrolysis bioreactor (R1), iron-carbon layered bioreactor (R2), activated carbon bioreactor (R3), and scrap iron filing bioreactor (R4) were constructed by up-flow column experimental device. The performance and mechanism of removing high-concentration sulfate wastewater under different sulfate concentrations, hydraulic retention times (HRT), and chemical oxygen demand (COD)/SO42- were discussed. The results show that the iron-carbon microelectrolysis-enhanced SRB technology can remove high-concentration sulfate wastewater, and the system can still operate normally at low pH. In the high hydraulic loading stage (HRT = 12 h, COD/SO42- = 1.4), the SO42- removal rate of the R1 reactor reached 98.08%, and the ORP value was stable between - 350 and - 450 mV, providing a good ORP environment for SRB. When HRT = 12 h and influent COD/SO42- = 1.4, the R1 reactor sulfate removal rate reached 96.7%. When the influent COD/SO42- = 0.7, the sulfate removal rate was 52.9%, higher than the control group. Biological community analysis showed that the abundance of SRB in the R1 reactor was higher than that in the other three groups, indicating that the IC-ME bioreactor could promote the enrichment of SRB and improve its population competitive advantage. It can be seen that the synergistic effect between IC-ME and biology plays a vital role in the treatment of high-concentration sulfate wastewater and improves the biodegradability of sulfate. It is a promising process for treating high-concentration sulfate wastewater.
Collapse
Affiliation(s)
- Hanzhe Li
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Junzhen Di
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China.
| | - Yanrong Dong
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Sihang Bao
- College of Mining, Liaoning Technical University, Fuxin, 123000, China
| | - Saiou Fu
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| |
Collapse
|
22
|
Pasciucco F, Pasciucco E, Castagnoli A, Iannelli R, Pecorini I. Comparing the effects of Al-based coagulants in waste activated sludge anaerobic digestion: Methane yield, kinetics and sludge implications. Heliyon 2024; 10:e29282. [PMID: 38623244 PMCID: PMC11016704 DOI: 10.1016/j.heliyon.2024.e29282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
Due to its effectiveness and ease of application, the process of flocculation and coagulation is often used for pollution removal in wastewater treatment. Most of these coagulants precipitate and accumulate in waste activated sludge (WAS), and could negatively affect sludge treatments, as observed for anaerobic digestion. Nowadays, wastewater treatment plants (WWTPs) are widely discussed because of the current paradigm shift from linear to circular economy, and the treatments performed at the facility should be planned to avoid or reduce adverse effects on other processes. The aim of this study was to compare the impact of poly aluminum chloride (PAC) and aluminum sulfate (AS) on WAS anaerobic digestion, by feeding replicate serum reactors with different levels of coagulant (5, 10 and 20 mg Al/g TS). Reactors without the addition of any coagulants represented the control group. Results revealed that Al-based coagulants inhibited methane production, which decreased as the coagulant addition increased. The inhibition was much more severe in AS-conditioned reactors, showing average reductions in methane yield from 14.4 to 31.7%, compared to the control (167.76 ± 1.88 mL CH4/g VS). Analytical analysis, FTIR and SEM investigations revealed that the addition of coagulants affected the initial conditions of the anaerobic reactors, penalizing the solubilization, hydrolysis and acidogenesis phases. Furthermore, the massive formation of H2S in AS-conditioned reactors played a key role in the suppression of methane phase. On the other hand, the use of coagulant can promote the accumulation and recovery of nutrient in WAS, especially in terms of phosphorus. Our findings will expand research knowledge in this field and guide stakeholders in the choice of coagulants at full scale plant. Future research should focus on reducing the effect of coagulants on methane production by modifying or testing new types of flocculants.
Collapse
Affiliation(s)
- Francesco Pasciucco
- Department of Energy, Systems, Territory and Construction Engineering (DESTEC), University of Pisa, 56122, Pisa, Italy
| | - Erika Pasciucco
- Department of Energy, Systems, Territory and Construction Engineering (DESTEC), University of Pisa, 56122, Pisa, Italy
| | - Alessio Castagnoli
- Department of Energy, Systems, Territory and Construction Engineering (DESTEC), University of Pisa, 56122, Pisa, Italy
| | - Renato Iannelli
- Department of Energy, Systems, Territory and Construction Engineering (DESTEC), University of Pisa, 56122, Pisa, Italy
| | - Isabella Pecorini
- Department of Energy, Systems, Territory and Construction Engineering (DESTEC), University of Pisa, 56122, Pisa, Italy
| |
Collapse
|
23
|
Li Y, He Y, Guo H, Hou J, Dai S, Zhang P, Tong Y, Ni BJ, Zhu T, Liu Y. Sulfur-containing substances in sewers: Transformation, transportation, and remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133618. [PMID: 38335612 DOI: 10.1016/j.jhazmat.2024.133618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
Sulfur-containing substances in sewers frequently incur unpleasant odors, corrosion-related economic loss, and potential human health concerns. These observations are principally attributed to microbial reactions, particularly the involvement of sulfate-reducing bacteria (SRB) in sulfur reduction process. As a multivalent element, sulfur engages in complex bioreactions in both aerobic and anaerobic environments. Organic sulfides are also present in sewage, and these compounds possess the potential to undergo transformation and volatilization. In this paper, a comprehensive review was conducted on the present status regarding sulfur transformation, transportation, and remediation in sewers, including both inorganic and organic sulfur components. The review extensively addressed reactions occurring in the liquid and gas phase, as well as examined detection methods for various types of sulfur compounds and factors affecting sulfur transformation. Current remediation measures based on corresponding mechanisms were presented. Additionally, the impacts of measures implemented in sewers on the subsequent wastewater treatment plants were also discussed, aiming to attain better management of the entire wastewater system. Finally, challenges and prospects related to the issue of sulfur-containing substances in sewers were proposed to facilitate improved management and development of the urban water system.
Collapse
Affiliation(s)
- Yiming Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yanying He
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaqi Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Suwan Dai
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Peiyao Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
24
|
Yang Y, Zhan C, Li Y, Zeng J, Lin K, Sun J, Jiang F. In-situ reactivation and reuse of micronsized sulfidated zero-valent iron using SRB-enriched culture: A sustainable PRB technology. WATER RESEARCH 2024; 253:121270. [PMID: 38359598 DOI: 10.1016/j.watres.2024.121270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Sulfidated zero-valent iron (S-ZVI) is an attractive material of permeable reactive barriers (PRBs) for the remediation of contaminated groundwater. However, S-ZVI is prone to be passivated due to the oxidation of reactive and conductive iron sulfide (FeSx) shell and the formation of inactive and non-conductive ferric (hydr)oxides, which serve as electron transfer barriers to hinder the electron flow from Fe° core to contaminants. This study thus proposed a novel approach for in-situ reactivation and reuse of micronsized S-ZVI (S-mZVI) in PRB using sulfate-reducing bacteria (SRB) enriched culture to realize long-lasting remediation of Cr(VI)-contaminated groundwater. S-mZVI were passivated after reactions with Cr(VI) due to the formation of electron transfer barriers (mainly inactive and non-conductive Fe(III) (hyd)oxides, which increased the polarization resistance from 16.38 to 27.38 kΩ cm2 and hindered the electron transfer from the Fe° core. Interestingly, the passivated S-mZVI was efficiently reactivated by providing the SRB-enriched culture and organic carbon within 12 h, and the Cr(VI) removal capacity of S-mZVI in the three use cycles increased to 37.4 mg Cr/g, which was 2.1 times higher than that of the virgin S-mZVI. After biological reactivation, the Rp of reactivated S-mZVI decreased to 12.30 kΩ cm2. SRB-mediated reactivation removed the electron transfer barriers via biotic and abiotic reduction of Fe(III) (hyd)oxides. Especially, the microbial Fe(III) reduction mediated by FmnA-dmkA-fmnB-pplA-ndh2-eetAB-dmkB protein family enhanced the Fe2+ release from the surface and the subsequent re-formation of reactive and conductive FeSx shell. A long-term PRB column test further demonstrated the feasibility of in-situ biological reactivation and reuse of S-mZVI for enhanced Cr(VI)-contaminated groundwater remediation. Within 64 days, the Cr(VI) removal capacity of S-mZVI in the four use cycles increased by 3.2 times, compared to the virgin one. The bio-reactivation using the SRB-enriched culture and sulfate locally-available in groundwater will reduce the chemical and maintenance costs associated with the frequent replacement of reactive ZVI-based materials. The PRB technology based on the bio-renewable S-mZVI can be a sustainable alternative to the conventional PRBs for the long-lasting and low-cost remediation of groundwater contaminated by oxidative pollutants.
Collapse
Affiliation(s)
- Yanduo Yang
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Chungeng Zhan
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Yu Li
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Jiajia Zeng
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Keyue Lin
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Jianliang Sun
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Feng Jiang
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
25
|
Xiong B, Chen K, Ke C, Zhao S, Dang Z, Guo C. Prediction of heavy metal removal performance of sulfate-reducing bacteria using machine learning. BIORESOURCE TECHNOLOGY 2024; 397:130501. [PMID: 38417462 DOI: 10.1016/j.biortech.2024.130501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
A robust modeling approach for predicting heavy metal removal by sulfate-reducing bacteria (SRB) is currently missing. In this study, four machine learning models were constructed and compared to predict the removal of Cd, Cu, Pb, and Zn as individual ions by SRB. The CatBoost model exhibited the best predictive performance across the four subsets, achieving R2 values of 0.83, 0.91, 0.92, and 0.83 for the Cd, Cu, Pb, and Zn models, respectively. Feature analysis revealed that temperature, pH, sulfate concentration, and C/S (the mass ratio of chemical oxygen demand to sulfate) had significant impacts on the outcomes. These features exhibited the most effective metal removal at 35 °C and sulfate concentrations of 1000-1200 mg/L, with variations observed in pH and C/S ratios. This study introduced a new modeling approach for predicting the treatment of metal-containing wastewater by SRB, offering guidance for optimizing operational parameters in the biological sulfidogenic process.
Collapse
Affiliation(s)
- Beiyi Xiong
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Kai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Changdong Ke
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510535, China
| | - Shoushi Zhao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Lab of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
26
|
Xu H, Qin C, Zhang H, Zhao Y. New insights into long-lasting Cr(VI) removal from groundwater using in situ biosulfidated zero-valent iron with sulfate-reducing bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120488. [PMID: 38457892 DOI: 10.1016/j.jenvman.2024.120488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 03/10/2024]
Abstract
Sulfidation enhances the reactivity of zero-valent iron (ZVI) for Cr(VI) removal from groundwater. Current sulfidation methods mainly focus on chemical and mechanical sulfidation, and there has been little research on biosulfidation using sulfate-reducing bacteria (SRB) and its performance in Cr(VI) removal. Herein, the ability of the SRB-biosulfidated ZVI (SRB-ZVI) system was evaluated and compared with that of the Na2S-sulfidated ZVI system. The SRB-ZVI system forms a thicker and more porous FeSx layer than the Na2S-sulfidated ZVI system, resulting in more sufficient sulfidation of ZVI and a 2.5-times higher Cr(VI) removal rate than that of the Na2S-sulfidated ZVI system. The biosulfidated-ZVI granules and FeSx suspension are the major components of the SRB-ZVI system. The SRB-ZVI system exhibits a long-lasting (11 cycles) Cr(VI) removal performance owing to the regeneration of FeSx. However, the Na2S-sulfidated ZVI system can perform only two Cr(VI) removal cycles. SRB attached to biosulfidated-ZVI can survive in the presence of Cr(VI) because of the protection of the biogenic porous structure, whereas SRB in the suspension is inhibited. After Cr(VI) removal, SRB repopulates in the suspension from biosulfidated-ZVI and produce FeSx, thus providing conditions for subsequent Cr(VI) removal cycles. Overall, the synergistic effect of SRB and ZVI provides a more powerful and environmentally friendly sulfidation method, which has more advantageous for Cr(VI) removal than those of chemical sulfidation. This study provides a visionary in situ remediation strategy for groundwater contamination using ZVI-based technologies.
Collapse
Affiliation(s)
- Huichao Xu
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China.
| | - Chuanyu Qin
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China.
| | - Hui Zhang
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China.
| | - Yongsheng Zhao
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China.
| |
Collapse
|
27
|
Welz PJ, De Jonge N, Lilly M, Kaira W, Mpofu AB. Integrated biological system for remediation and valorization of tannery wastewater: Focus on microbial communities responsible for methanogenesis and sulfidogenesis. BIORESOURCE TECHNOLOGY 2024; 395:130411. [PMID: 38309670 DOI: 10.1016/j.biortech.2024.130411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Microbial communities in hybrid linear flow channel reactors and anaerobic sequencing batch reactors operated in series for remediation and beneficiation of tannery wastewater were assessed. Despite concurrent sulfidogenesis, more intensive pre-treatment in hybrid linear flow channel reactors reduced methanogenic inhibition usually associated with anaerobic digestion of tannery effluent and promoted efficiency (max 321 mLCH4/gCODconsumed, 59% biogas CH4). Nitrification and biological sulfate reduction were key metabolic pathways involved in overall and sulfate reducing bacterial community selection, respectively, during pre-treatment. Taxonomic selection could be explained by the proteinaceous and saline character of tannery effluent, with dominant genera being protein and/or amino acid degrading, halotolerant and/or ammonia tolerant. Complete oxidizers dominated the sulfidogenic populations during pre-treatment, while aceticlastic genera dominated the methanogenic populations during anaerobic digestion. With more intensive pre-treatment, the system shows promise for remediation and recovery of biogas and sulfur from tannery wastewater in support of a bio-circular economy.
Collapse
Affiliation(s)
- P J Welz
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Symphony way, Bellville, Cape Town 7535, South Africa.
| | - N De Jonge
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers vej 7H, Aalborg DK-9220, Denmark.
| | - M Lilly
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Symphony way, Bellville, Cape Town 7535, South Africa.
| | - W Kaira
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Symphony way, Bellville, Cape Town 7535, South Africa
| | - A B Mpofu
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Symphony way, Bellville, Cape Town 7535, South Africa; Department of Chemical Engineering, Cape Peninsula University of Technology, Symphony way, Bellville, Cape Town 7535, South Africa.
| |
Collapse
|
28
|
Marbehan X, Roger M, Fournier F, Infossi P, Guedon E, Delecourt L, Lebrun R, Giudici-Orticoni MT, Delaunay S. Combining metabolic flux analysis with proteomics to shed light on the metabolic flexibility: the case of Desulfovibrio vulgaris Hildenborough. Front Microbiol 2024; 15:1336360. [PMID: 38463485 PMCID: PMC10920352 DOI: 10.3389/fmicb.2024.1336360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/24/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction Desulfovibrio vulgaris Hildenborough is a gram-negative anaerobic bacterium belonging to the sulfate-reducing bacteria that exhibits highly versatile metabolism. By switching from one energy mode to another depending on nutrients availability in the environments" it plays a central role in shaping ecosystems. Despite intensive efforts to study D. vulgaris energy metabolism at the genomic, biochemical and ecological level, bioenergetics in this microorganism remain far from being fully understood. Alternatively, metabolic modeling is a powerful tool to understand bioenergetics. However, all the current models for D. vulgaris appeared to be not easily adaptable to various environmental conditions. Methods To lift off these limitations, here we constructed a novel transparent and robust metabolic model to explain D. vulgaris bioenergetics by combining whole-cell proteomic analysis with modeling approaches (Flux Balance Analysis). Results The iDvu71 model showed over 0.95 correlation with experimental data. Further simulations allowed a detailed description of D. vulgaris metabolism in various conditions of growth. Altogether, the simulations run in this study highlighted the sulfate-to-lactate consumption ratio as a pivotal factor in D. vulgaris energy metabolism. Discussion In particular, the impact on the hydrogen/formate balance and biomass synthesis is discussed. Overall, this study provides a novel insight into D. vulgaris metabolic flexibility.
Collapse
Affiliation(s)
| | - Magali Roger
- BIP-UMR 7281, Laboratoire de Bioénergétique et Ingénierie des Protéines, Aix-Marseille Université, CNRS, Marseille, France
| | | | - Pascale Infossi
- BIP-UMR 7281, Laboratoire de Bioénergétique et Ingénierie des Protéines, Aix-Marseille Université, CNRS, Marseille, France
| | | | - Louis Delecourt
- BIP-UMR 7281, Laboratoire de Bioénergétique et Ingénierie des Protéines, Aix-Marseille Université, CNRS, Marseille, France
- LISM-UMR 7255, Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Aix-Marseille Université, CNRS, Marseille, France
| | - Régine Lebrun
- IMM-FR3479, Marseille Protéomique, Aix-Marseille Université, CNRS, Marseille, France
| | - Marie-Thérèse Giudici-Orticoni
- BIP-UMR 7281, Laboratoire de Bioénergétique et Ingénierie des Protéines, Aix-Marseille Université, CNRS, Marseille, France
| | | |
Collapse
|
29
|
Schwarz A, Aybar M, Suárez J, Rittmann B. A steady-state pH-control model for the biological production of elemental sulfur from sulfate in mining-influenced water. WATER RESEARCH 2024; 250:121067. [PMID: 38150861 DOI: 10.1016/j.watres.2023.121067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/11/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
We developed a model to predict pH, alkalinity, and the Langelier Saturation Index (LSI) in coupled systems of hydrogen-based autotrophic sulfate reduction and aerobic oxidation of sulfide to elemental sulfur. To neutralize the biologically generated base, the model allows for the addition of CO2 as part of the gas mixture, the independent addition of HCl or CO2, or a combination of the alternatives. The model was evaluated against the results from a laboratory system for the production of elemental sulfur from sulfate present in mine-tailings water, which is characterized by the presence of elevated sulfate and calcium concentrations. Model results were consistent with measurements of pH, alkalinity, and LSI. The model showed how the acid demands of the coupled reactors vary with pH, being approximately equivalent at pH over 8, when ionized sulfide predominates. Also, while the sulfidogenic reactor was well buffered due to the production of ionized sulfide, the sulfidotrophic reactor in the absence of sulfide and carbonate alkalinity was prone to pH declines. Considering that both reactors operated in the positive range of LSI, the model also indicated that addition of CO2 should be minimized due to increase in the bicarbonate concentration and its effect on increasing the LSI. Furthermore, the model also showed that exclusive reliance on HCl for pH control can be incompatible with Cl- effluent standards, which means that a compromise must be reached between CO2 and HCl additions.
Collapse
Affiliation(s)
- Alex Schwarz
- Civil Engineering Department, Universidad de Concepción, P.O. Box 160-C, Concepción 4070386, Chile.
| | - Marcelo Aybar
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile
| | - José Suárez
- Civil Engineering Department, Universidad de Concepción, P.O. Box 160-C, Concepción 4070386, Chile
| | - Bruce Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA
| |
Collapse
|
30
|
Wang H, Zhang M, Dong P, Xue J, Liu L. Bioremediation of acid mine drainage using sulfate-reducing wetland bioreactor: Filling substrates influence, sulfide oxidation and microbial community. CHEMOSPHERE 2024; 349:140789. [PMID: 38013025 DOI: 10.1016/j.chemosphere.2023.140789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
Two sulfate-reducing wetland bioreactors (SRB-1 filled with lignocellulosic wastes and SRB-2 with river sand) were applied for synthetic acid mine drainage treatment with bio-waste fermentation liquid as electron donor, and the influence of filling substrates on sulfate reduction, sulfur transformation and microbial community was studied. The presence of lignocellulosic wastes (mixture of cow manure, bark, sawdust, peanut shell and straw) in SRB-1 promoted sulfate reduction efficiency (68.9%), sulfate reduction rate (42.1 ± 11 mg S/(L·d)), dissolved sulfide production rate (27.4 ± 7 mg S/(L·d)), and particularly caused high conversion ratio of sulfate reduction into dissolved sulfide (66.4%). In comparison, the relatively low sulfate reduction efficiency (42.9%), sulfate reduction rate (27.0 ± 10 mg S/(L·d)), dissolved sulfide production rate (5.6 ± 3 mg S/(L·d)) and low dissolved sulfide conversion efficiency (21.2%) occurred in SRB-2. Mixed organic substrates including easily assimilated electron donors (in manure) and lignocellulosic matter were effective to promote quick start and long-term microbial sulfate reduction. More than 98% of produced dissolved sulfide was oxidized dominantly by photoautotrophic green sulfur bacteria (genera Chlorobium and Chlorobaculum), of which 64.6% and 54.5% was converted into elemental sulfur for SRB-1 and SRB-2. The oxidation of sulfide into elemental sulfur for potential recovery rather than sulfate is preferred. Diverse sulfate reducing bacteria and sulfide oxidizing bacteria co-existed in the treatment system, which led to a sustainable sulfur transformation. High metal removal efficiency for Fe (99.6%, 92.5%), Cd (99.9%, 99.9%), Zn (99.4%, 98.5%), Cu (94.5%, 94.6%) except for Mn (9.3%, 3.6%) was achieved, and effluent pH increased to 6.5-7.7 and 6.7-7.7 for SRB-1 and SRB-2, respectively. Microbial community was regulated by filling substrates. Synergism between lignocellulosic decomposing bacteria and sulfate reducing bacteria played a vital role in lignocellulosic bioreactor treating AMD, in addition to fermentation liquid serving as effective electron donor.
Collapse
Affiliation(s)
- Haixia Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Mingliang Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Peng Dong
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Junbing Xue
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Lele Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| |
Collapse
|
31
|
Sun YL, Zhang JZ, Ngo HH, Shao CY, Wei W, Zhang XN, Guo W, Cheng HY, Wang AJ. Optimized start-up strategies for elemental sulfur packing bioreactor achieving effective autotrophic denitrification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168036. [PMID: 37890632 DOI: 10.1016/j.scitotenv.2023.168036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
The start-up efficiency of the elemental sulfur packing bioreactor (S0PB) is constrained by the slow growth kinetics of autotrophic microorganisms, which is essentially optimized. This study aims to optimize start-up procedures and offer scientific guidance for the practical applications of S0PB. Through comparing the start-up efficiencies under various conditions related to inoculation, backwashing, and EBCT, it was found that these conditions did not significantly influence start-up time, but they did impact denitrification performance in detail. Using activated sludge as the inoculum was not recommended as the 2.5 ± 0.2 mg-N/L higher nitrite accumulation and 26.0 ± 5.1 % lower TN removal rate, compared to self-enrichment. Starting with a long-to-short EBCT (1 → 0.33 h) achieved higher nitrate removal of 11.5 ± 0.6 mg-N/L and eliminated nitrite accumulation compared to constantly short EBCT (0.33 h) conditions. Daily and postponed backwashing were suggested for long-to-short EBCT and constantly short EBCT start-up, respectively. Enrichment of Sulfurimonas was beneficial for the effective nitrite reduction process.
Collapse
Affiliation(s)
- Yi-Lu Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing-Zhe Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Chen-Yang Shao
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Xue-Ning Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
32
|
An W, Hu X, Chen H, Wang Q, Zheng Y, Wang J, Di J. Experimental study on the treatment of AMD by SRB immobilized particles containing "active iron" system. PLoS One 2023; 18:e0295616. [PMID: 38079416 PMCID: PMC10712877 DOI: 10.1371/journal.pone.0295616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
The inhibition and toxicity of high acidity and heavy metals on sulfate-reducing bacteria in acid mine drainage (AMD) were targeted. Highly active SRB immobilized particles were prepared using SRB, warm sticker wastes (iron powders), corncobs, and Maifan stones as the main matrix materials, employing microbial immobilization technology. The repair ability and reusability of highly active immobilized particles for AMD were explored. The results indicate that the adaptability of immobilized particles to AMD varied under different initial conditions, such as pH, Mn2+, and SO42-. The adsorption process of immobilized particles on Mn2+ follows the quasi-second-order kinetic model, suggesting that it involves both physical and chemical adsorption. The maximum adsorption capacity of immobilized particles for Mn2+ is 3.878 mg/g at a concentration of 2.0 mg/L and pH 6. On the other hand, the reduction process of immobilized particles on SO42- adheres to the first-order reaction kinetics, indicating that the reduction of SO42- is primarily driven by the dissimilation reduction of SRB. The maximum reduction rate of SO42- by immobilized particles is 94.23% at a concentration of 800 mg/L and pH 6. A layered structure with a flocculent appearance formed on the surface of the immobilized particles. The structure's characteristics were found to be consistent with sulfate green rust (FeII4FeIII2(OH)12SO4·8H2O). The chemisorption, ion exchange, dissimilation reduction, and surface complexation occurring between the matrices in the immobilized particles can enhance the alkalinity of AMD and decrease the concentration of heavy metals and sulfates. These results are expected to offer novel insights and materials for the treatment of AMD using biological immobilization technology, as well as improve our understanding of the mechanisms behind biological and abiotic enhanced synergistic decontamination.
Collapse
Affiliation(s)
- Wenbo An
- School of Civil Engineering, Liaoning Technical University, Fuxin, China
- School of Mining Engineering, China University of Mining and Technology, Xuzhou, China
| | - Xuechun Hu
- School of Civil Engineering, Liaoning Technical University, Fuxin, China
| | - He Chen
- School of Mechanics and Engineering, Liaoning Technical University Fuxin, Fuxin, China
| | - Qiqi Wang
- School of Civil Engineering, Liaoning Technical University, Fuxin, China
| | - Yonglin Zheng
- School of Civil Engineering, Liaoning Technical University, Fuxin, China
| | - Jiahui Wang
- School of Civil Engineering, Liaoning Technical University, Fuxin, China
| | - Junzhen Di
- School of Civil Engineering, Liaoning Technical University, Fuxin, China
| |
Collapse
|
33
|
Wu ZH, Yang XD, Huang LY, Li SL, Xia FY, Qiu YZ, Yi XZ, Jia P, Liao B, Liang JL, Shu WS, Li JT. In situ enrichment of sulphate-reducing microbial communities with different carbon sources stimulating the acid mine drainage sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165584. [PMID: 37467988 DOI: 10.1016/j.scitotenv.2023.165584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
The applications of sulphate-reducing microorganisms (SRMs) in acid mine drainage (AMD) treatment systems have received extensive attention due to their ability to reduce sulphate and stabilize metal(loid)s. Despite great phylogenetic diversity of SRMs, only a few have been used in AMD treatment bioreactors. In situ enrichment could be an efficient approach to select new effective SRMs for AMD treatment. Here, we performed in situ enrichment of SRMs in highly stratified AMD sediment cores using different kinds of carbon source mixture. The dsrAB (dissimilatory sulfite reductase) genes affiliated with nine phyla (two archaeal and seven bacterial phyla) and 26 genera were enriched. Remarkably, those genes affiliated with Aciduliprofundum and Vulcanisaeta were enriched in situ in AMD-related environments for the first time, and their relative abundances were negatively correlated with pH. Furthermore, 107 dsrAB-containing metagenome-assembled genomes (MAGs) were recovered from metagenomic datasets, with 14 phyla (two archaeal and 12 bacterial phyla) and 15 genera. The relative abundances of MAGs were positively correlated with total carbon and sulphate contents. Our findings expanded the diversity of SRMs that can be enriched in AMD sediment, and revealed the physiochemical properties that might affect the growth of SRMs, which provided guidance for AMD treatment bioreators.
Collapse
Affiliation(s)
- Zhuo-Hui Wu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Xiao-Dan Yang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Li-Ying Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shi-Lin Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Fei-Yun Xia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Yong-Zhi Qiu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Xin-Zhu Yi
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China.
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| |
Collapse
|
34
|
Wu T, Ding J, Zhong L, Sun HJ, Pang JW, Zhao L, Bai SW, Ren NQ, Yang SS. Sulfate-reducing ammonium oxidation: A promising novel process for nitrogen and sulfur removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 893:164997. [PMID: 37336410 DOI: 10.1016/j.scitotenv.2023.164997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Sulfate-reducing ammonium oxidation (sulfammox), a novel and promising process that has emerged in recent years, is essential to nitrogen and sulfur cycles and offers significant potential for the elimination of ammonium and sulfate. This review discussed the development of sulfammox process, the mechanism, characteristics of microbes, potential influencing factors, applicable bioreactors, and proposed the research needs and future perspective. The sulfammox process could be affected by many factors, such as the NH4+/SO42- ratio, carbon source, pH, and temperature. However, these potential influencing factors were only obtained based on what has been seen in papers studying related processes such as denitrification, sulfate-reduction, etc., and have to be further tested in bioreactors carrying out the sulfammox process in the future. Currently, sulfammox is predominantly used in granular activated carbon anaerobic fluidized beds, up-flow anaerobic sludge blanket reactors, anaerobic expanded granular bed reactors, rotating biological contact reactors, and moving bed biofilm reactors. In the future, the operating parameters of sulfammox should be further optimized to improve the processing performance, and the system can be further scaled up for actual wastewater treatment. In addition, the isolation, identification, and characterization of key functional microbes and the analysis of microbial interrelationships will also be focused on in future studies to enable an in-depth analysis of the sulfammox mechanism.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Han-Jun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Talroad Technology Co., Ltd., Beijing 100096, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shun-Wen Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
35
|
Cheng Y, Dong H, Hao T. From liquid to solid: A novel approach for utilizing sulfate reduction effluent through phase transition - Effluent-induced nanoscale zerovalent iron sulfidation. BIORESOURCE TECHNOLOGY 2023; 385:129440. [PMID: 37399956 DOI: 10.1016/j.biortech.2023.129440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
This study investigated the use of sulfate reduction effluent (SR-effluent) to induce sulfidation on nanoscale zerovalent iron (nZVI). SR-effluent-modified nZVI achieved a 100% improvement in Cr(VI) removal from simulated groundwater, a result comparable to cases where other, more typical sulfur precursors (Na2S2O4, Na2S2O3, Na2S, K2S6, and S0) were used. Through a structural equation model analysis, amendment of nanoparticles' agglomeration (standardized path coefficient (std. path coeff.) = -0.449, p < 0.05) and hydrophobicity (std. path coeff. = 0.100, p < 0.05) and direct reaction between iron-sulfur compounds and Cr(VI) (std. path coeff. ranged from -0.195 to 0.322, p < 0.05) were primarily contributing to sulfidation-induced Cr(VI) removal enhancement. Regarding the property improvement of nZVI, the SR-effluent's corrosion radius played a crucial role in tuning the content and distribution of the iron-sulfur compounds based on the core-shell structure of the nZVI and the redox processes at the aqueous-solid interface.
Collapse
Affiliation(s)
- Yujun Cheng
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China.
| |
Collapse
|
36
|
Zhao B, Sun H, Jiang P, Rizwan M, Zhou M, Zhou X. Study on the treatment of sulfite wastewater by Desulfovibrio. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02895-0. [PMID: 37418179 DOI: 10.1007/s00449-023-02895-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023]
Abstract
In the wet flue gas desulfurization (WFGD) process, SO2 is adsorbed by alkaline liquor to produce alkaline wastewater containing sulfate and sulfite. Although the traditional chemical treatment method can achieve a high removal rate, it consumes a large number of chemicals and yields a large number of low-value by-products. The biological treatment process is a greener and more environmentally friendly treatment method. The current work studies microbial flue gas desulfurization directly using sulfite as the electron acceptor in the reduction process. Desulfovibrio were obtained by isolation and purification, and their growth conditions in sulfite wastewater and desulfurization process conditions were investigated by intermittent and continuous experiments. The results of intermittent experiments indicated that the optimal growth conditions of Desulfovibrio were a temperature of 38 °C, a pH value of 8.0, a COD/SO32- of 2 and that the growth of bacteria would be inhibited at a pH above 9.0 or below 7.3. Furthermore, Desulfovibrio could grow in simulated wastewater with a high SO32- concentration of 8000 mg/L. The results of continuous experiments showed that the removal of sulfite and the recovery of elemental sulfur was realized by a micro-oxygen depletion process, and the removal rate of sulfite of 99%, the yield of elemental sulfur is more than 80% and can reach 90% under the condition of low influent concentration. The bacteria grew well at a temperature of 40 °C and a pH value of the influent water of 7.5. To ensure the treatment effect, the hydraulic retention time (HRT) should be more than doubled for each 1000 mg/L increase in the influent sulfite concentration under the same reflux ratio. When the influent sulfite concentration was 1000 mg/L, 2000 mg/L, 3000 mg/L, and 4000 mg/L, the corresponding HRT was 3.01 h, 6.94 h, 17.4 h, and 31.9 h, respectively. The dominant species in the reactor was Desulfovibrio bacteria at 63.9% abundance. This study demonstrated the feasibility of using sulfite as an electron acceptor for microbial desulfurization, which can optimize the initial process and provide the possibility of treating high-concentration sulfite wastewater.
Collapse
Affiliation(s)
- Baofu Zhao
- International Joint Research Center of Green Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hui Sun
- International Joint Research Center of Green Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Peng Jiang
- International Joint Research Center of Green Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Muhammad Rizwan
- International Joint Research Center of Green Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Mengke Zhou
- International Joint Research Center of Green Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaolong Zhou
- International Joint Research Center of Green Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
37
|
Du J, Zhou X, Yin Q, Zuo J, Wu G. Revealing impacts of operational modes on anaerobic digestion systems coupling with sulfate reduction. BIORESOURCE TECHNOLOGY 2023:129431. [PMID: 37394044 DOI: 10.1016/j.biortech.2023.129431] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Anaerobic digestion (AD) is promising for treating high-strength wastewater. However, the effect of operational parameters on microbial communities of AD with sulfate is not yet fully understood. To explore this, four reactors were operated under rapid- and slow-filling modes with different organic carbons. Reactors in the rapid-filling mode generally exhibited a fast kinetic property. For example, the degradation of ethanol was 4.6 times faster in ASBRER than in ASBRES, and the degradation of acetate was 11.2 times faster in ASBRAR than in ASBRAS. Nevertheless, reactors in the slow-filling mode could mitigate propionate accumulation when using ethanol as organic carbon. Taxonomic and functional analysis further supported that rapid- and slow-filling modes were suitable for the growth of r-strategists (e.g., Desulfomicrobium) and K-strategists (e.g., Geobacter), respectively. Overall, this study provides valuable insights into microbial interactions of AD processes with sulfate through the application of the r/K selection theory.
Collapse
Affiliation(s)
- Jin Du
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Xingzhao Zhou
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Qidong Yin
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou 51000, Guangdong, China
| | - Jiane Zuo
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Guangxue Wu
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland.
| |
Collapse
|
38
|
Zhan M, Zeng W, Liu H, Li J, Meng Q, Peng Y. Simultaneous nitrogen and sulfur removal through synergy of sulfammox, anammox and sulfur-driven autotrophic denitrification in a modified bioreactor enhanced by activated carbon. ENVIRONMENTAL RESEARCH 2023:116341. [PMID: 37290623 DOI: 10.1016/j.envres.2023.116341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Anaerobic ammonium (NH4+ - N) oxidation coupled with sulfate (SO42-) reduction (sulfammox) is a new pathway for the autotrophic removal of nitrogen and sulfur from wastewater. Sulfammox was achieved in a modified up-flow anaerobic bioreactor filled with granular activated carbon. After 70 days of operation, the NH4+ - N removal efficiency almost reached 70%, with activated carbon adsorption and biological reaction accounting for 26% and 74%, respectively. Ammonium hydrosulfide (NH4SH) was found in sulfammox by X-ray diffraction analysis for the first time, which confirmed that hydrogen sulfide (H2S) was one of the sulfammox products. Microbial results indicated that NH4+ - N oxidation and SO42- reduction in sulfammox were carried out by Crenothrix and Desulfobacterota, respectively, in which activated carbon may operate as electron shuttle. In the 15NH4+ labeled experiment, 30N2 were produced at a rate of 34.14 μmol/(g sludge·h) and no 30N2 was detected in the chemical control group, proving that sulfammox was present and could only be induced by microorganisms. The 15NO3- labeled group produced 30N2 at a rate of 88.77 μmol/(g sludge·h), demonstrating the presence of sulfur-driven autotrophic denitrification. In the adding 14NH4+ and 15NO3- group, it was confirmed that NH4+ - N was removed by the synergy of sulfammox, anammox and sulfur-driven autotrophic denitrification, where the main product of sulfammox was nitrite (NO2-) and anammox was the main cause of nitrogen loss. The findings showed that SO42- as a non-polluting species to environment may substitute NO2- to create a new "anammox" process.
Collapse
Affiliation(s)
- Mengjia Zhan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China.
| | - Hong Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Jianmin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Qingan Meng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
39
|
Onodera T, Takemura Y, Aoki M, Syutsubo K. Enhanced sulfide removal by gas stripping in a novel reactor for anaerobic wastewater treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2223-2232. [PMID: 37186626 PMCID: wst_2023_120 DOI: 10.2166/wst.2023.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Removal of sulfide by gas stripping using biogas produced in an internal phase-separated reactor (IPSR) was evaluated during anaerobic treatment. The IPSR consisted of upper and lower segments with a gas-liquid partitioning (GLP) valve between the sections. Wastewater was fed to the upper segment in the first stage and then to the lower segment in the second stage. The GLP valve separated the liquid phase from the gaseous phase and supplied biogas from the lower segment to the upper segment. The IPSR and a control reactor were fed with synthetic wastewater and operated in parallel under an organic loading rate of 12 kg COD/(m3 day) at 35 °C. The sulfide concentration increased to 400-600 mg S/L, which is above the previously reported 50% inhibition level for methanogenic activity. The IPSR showed higher H2S removal performance than the control reactor and removed approximately twice the H2S as the control reactor at 400 mg S/L, indicating that it can be used for the stable treatment of wastewater containing high concentrations of sulfide.
Collapse
Affiliation(s)
- Takashi Onodera
- Regional Environmental Conservation Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan E-mail:
| | - Yasuyuki Takemura
- Regional Environmental Conservation Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan E-mail:
| | - Masataka Aoki
- Regional Environmental Conservation Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan E-mail:
| | - Kazuaki Syutsubo
- Regional Environmental Conservation Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan E-mail: ; Research Center of Water Environment Technology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
40
|
Santos AMD, Costa JM, Sancinetti GP, Rodriguez RP. Impacts of phosphorus and nitrogen absence on microbial diversity and sulfate removal in anaerobic batch reactors. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:563-569. [PMID: 37085964 DOI: 10.1080/10934529.2023.2203638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sulfate-rich effluents have been successfully treated in anaerobic reactors using sulfate-reducing bacteria (SRB). Many authors have demonstrated that these systems require nitrogen and phosphorous supplementation to achieve high sulfate removal rates. However, the resource ratio theory assumes that some species can be dominant according to the nutritional relations used or even without external nutrient supplementation. Thus, this study evaluated the SRB communities in batch reactors without external nitrogen and phosphorus sources based on most probable number (MPN) quantification, denaturing gradient gel electrophoresis (DGGE) analyses and sequencing. The sulfate and chemical oxygen demand (COD) removal and kinetic parameters were also determined. After 100 days of operation, the sulfate and COD removal achieved 71.8 ± 10% and 86.5 ± 10%, respectively. The SRB population increased from 8.106 to 4 × 1012 MPN 100 mL-1, and the richness of SRB bands was much higher at the end of the experiment compared to the inoculum. In addition, the sequenced bands from SRB-DGGE showed similarities to Desulfacinum infernum, Desulfobulbus sp, Syntrophobacter and Desulfomicrobium aestuarii-related sequences. Therefore, biological treatment of acid mine drainage wastewater was effective in the absence of nutrients, lowering costs and providing high sulfate removal efficiency.
Collapse
Affiliation(s)
- Angélica Marcia Dos Santos
- Laboratory of Anaerobic Biotechnology - Science and Technology Institute, Federal University of Alfenas (UNIFAL-MG), Poços de Caldas, MG, Brazil
| | - Josiel Martins Costa
- School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Giselle Patrícia Sancinetti
- Laboratory of Anaerobic Biotechnology - Science and Technology Institute, Federal University of Alfenas (UNIFAL-MG), Poços de Caldas, MG, Brazil
| | - Renata Piacentini Rodriguez
- Laboratory of Anaerobic Biotechnology - Science and Technology Institute, Federal University of Alfenas (UNIFAL-MG), Poços de Caldas, MG, Brazil
| |
Collapse
|
41
|
Xin X, Li B, Liu X, Yang W, Liu Q. Starting-up performances and microbial community shifts in the coupling process (SAPD-A) with sulfide autotrophic partial denitrification (SAPD) and anammox treating nitrate and ammonium contained wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117298. [PMID: 36669311 DOI: 10.1016/j.jenvman.2023.117298] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
A novel coupling process (SAPD-A) with sulfide autotrophic partial denitrification (SAPD) (NO3--N→NO2--N) and anaerobic ammonium oxidation (Anammox) was developed using anaerobic sequencing batch reactor (ASBR) in this work. The integrated process comprised two stages. Firstly, the starting-up of SAPD process succeeded by gradually increasing the influent nitrate and sulfide in 95 days. The average nitrate removal efficiency (NRE) and NO2--N accumulation rates were 71.24% ± 0.21% and 46.44% ± 0.53% at SAPD process (days 75-95). Then, successful coupling process (SAPD-A) was implemented in two stages (stage I and stage II of SAPD-A). In stage I, it is feasible to promote the successful construction of SAPD-A process by elevating influent ammonium only based on SAPD system, making the NRE increased from 44.45% ± 0.46% (day 95) to 64.62% ± 0.12% at the end of stage I in SAPD-A system (day 126). Meanwhile, the ammonium nitrogen removal efficiency (ARE) and total nitrogen removal efficiency (TN-RE) also rose up to 42.46% ± 2.02% and 63.28% ± 0.54% respectively. Furthermore, the average ARE, NRE and TN-RE during the stage II in the bioreactor could reach 65.17% ± 1.45%, 74.50% ± 0.81% and 77.81% ± 0.37% by loading some biofilters (with of approximate 10% of the volume of the bioreactor) attached anaerobic ammonium oxidation bacteria (AnAOB). High-throughput sequencing results showed that the dominant genera concerning nitrogen removal were norank_f_norank_o_Fimbriimonadates (with the abundance of 2.88-8.54%), norank_ o_ norank _ c_ OM190 (2.48-4.41%), norank_f_norank_o_norank_c_WWE3 (11.01-17.69%), subgroup_10 (1.97-3.81%), Limnobacter(2.17-3.49%), norank_f_n orank_ o_norank_ c_OLB14 (2.03-5.23%), norank-f-PHOS-HE36 (2.18-5.5%), Ellin6067 (1.34-2.24%) and Candidatus_ Brocadia (1.95-2.42%) during the whole starting-up period of coupling SAPD-A process. Batch experiments revealed that the sulfide was fully oxidized within 2 h, with the maximum reaction rate of 38.30 ± 1.53 mg (L h)-1 in the first 1 h. Simultaneously, the concentration of nitrate sharply decreased from 53.08 ± 0.23 mg L-1 to 24.16 ± 0.42 mg L-1 with the reaction rate of 66.41 ± 2.12 mg (L h)-1 in 0.5 h. Also, the ammonium concentration significantly declined from 47.88 ± 0.34 mg L-1 to 10.98 ± 0.39 mg L-1 in 8 h. Anammox process was responsible for the dominant nitrogen removal in the coupling SAPD-A system.
Collapse
Affiliation(s)
- Xin Xin
- School of Resources and Environment, Chengdu University of Information Technology,Chengdu, 610225, China.
| | - BaiXue Li
- School of Resources and Environment, Chengdu University of Information Technology,Chengdu, 610225, China
| | - Xin Liu
- School of Resources and Environment, Chengdu University of Information Technology,Chengdu, 610225, China
| | - Wenyu Yang
- School of Resources and Environment, Chengdu University of Information Technology,Chengdu, 610225, China
| | - Qin Liu
- School of Resources and Environment, Chengdu University of Information Technology,Chengdu, 610225, China
| |
Collapse
|
42
|
Fan K, Wang W, Xu X, Yuan Y, Ren N, Lee DJ, Chen C. Recent Advances in Biotechnologies for the Treatment of Environmental Pollutants Based on Reactive Sulfur Species. Antioxidants (Basel) 2023; 12:antiox12030767. [PMID: 36979016 PMCID: PMC10044940 DOI: 10.3390/antiox12030767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The definition of reactive sulfur species (RSS) is inspired by the reactivity and variable chemical valence of sulfur. Sulfur is an essential element for life and is a part of global geochemical cycles. Wastewater treatment bioreactors can be divided into two major categories: sulfur reduction and sulfur oxidation. We review the origins of the definition of RSS and related biotechnological processes in environmental management. Sulfate reduction, sulfide oxidation, and sulfur-based redox reactions are key to driving the coupled global carbon, nitrogen, and sulfur co-cycles. This shows the coupling of the sulfur cycle with the carbon and nitrogen cycles and provides insights into the global material-chemical cycle. We also review the biological classification and RSS metabolic mechanisms of functional microorganisms involved in the biological processes, such as sulfate-reducing and sulfur-oxidizing bacteria. Developments in molecular biology and genomic technologies have allowed us to obtain detailed information on these bacteria. The importance of RSS in environmental technologies requires further consideration.
Collapse
Affiliation(s)
- Kaili Fan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuan Yuan
- College of Biological Engineering, Beijing Polytechnic, Beijing 100176, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
43
|
Dai S, Harnisch F, Bin-Hudari MS, Keller NS, Vogt C, Korth B. Improving the performance of bioelectrochemical sulfate removal by applying flow mode. Microb Biotechnol 2023; 16:595-604. [PMID: 36259447 PMCID: PMC9948226 DOI: 10.1111/1751-7915.14157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Treatment of wastewater contaminated with high sulfate concentrations is an environmental imperative lacking a sustainable and environmental friendly technological solution. Microbial electrochemical technology (MET) represents a promising approach for sulfate reduction. In MET, a cathode is introduced as inexhaustible electron source for promoting sulfate reduction via direct or mediated electron transfer. So far, this is mainly studied in batch mode representing straightforward and easy-to-use systems, but their practical implementation seems unlikely, as treatment capacities are limited. Here, we investigated bioelectrochemical sulfate reduction in flow mode and achieved removal efficiencies (Esulfate , 89.2 ± 0.4%) being comparable to batch experiments, while sulfate removal rates (Rsulfate , 3.1 ± 0.2 mmol L-1 ) and Coulombic efficiencies (CE, 85.2 ± 17.7%) were significantly increased. Different temperatures and hydraulic retention times (HRT) were applied and the best performance was achieved at HRT 3.5 days and 30°C. Microbial community analysis based on amplicon sequencing demonstrated that sulfate reduction was mainly performed by prokaryotes belonging to the genera Desulfomicrobium, Desulfovibrio, and Desulfococcus, indicating that hydrogenotrophic and heterotrophic sulfate reduction occurred by utilizing cathodically produced H2 or acetate produced by homoacetogens (Acetobacterium). The advantage of flow operation for bioelectrochemical sulfate reduction is likely based on higher absolute biomass, stable pH, and selection of sulfate reducers with a higher sulfide tolerance, and improved ratio between sulfate-reducing prokaryotes and homoacetogens.
Collapse
Affiliation(s)
- Shixiang Dai
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Falk Harnisch
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Mohammad Sufian Bin-Hudari
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Nina Sophie Keller
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Carsten Vogt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Benjamin Korth
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| |
Collapse
|
44
|
Pan JJ, Tan LY, Fan QQ, Cao XY, Huang J, Gu YK, Chen TM. Effect of different carbon sources on sulfate reduction and microbial community structure in bioelectrochemical systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18312-18324. [PMID: 36207637 DOI: 10.1007/s11356-022-23487-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Microbial electrolysis cells (MECs) have rapidly developed into a promising technology to treat sulfate-rich wastewater that lacks electron donors. Hence, a better understanding of the effect on the microbial community structure caused by different sources in bioelectrochemical systems is required. This study sought to investigate the effect of different carbon sources (NaHCO3, ethanol, and acetate were employed as sole carbon source respectively) on the performance of sulfate-reducing biocathodes. The sulfate reduction efficiency enhanced by the bioelectrochemical systems was 8.09 - 11.57% higher than that of open-circuit reference experiments. Furthermore, the optimum carbon source was ethanol with a maximum sulfate reduction rate of 170 mg L-1 d-1 in the bioelectrochemical systems. The different carbon sources induced significant differences in sulfate reduction efficiency as demonstrated by the application of a micro-electrical field. Microbial community structure and network analysis revealed that all three kinds of carbon source systems enriched large proportions of sulfate-reducing bacteria and electroactive bacteria but were significantly distinct in composition. The dominant sulfate-reducing bacteria that use NaHCO3 and acetate as carbon sources were Desulfobacter and Desulfobulbus, whereas those that use ethanol as carbon source were Desulfomicrobium and Desulfovibrio. Our results suggest that ethanol is a more suitable carbon source for sulfate reduction in bioelectrochemical systems.
Collapse
Affiliation(s)
- Jing-Jing Pan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Jiangsu Province, Yancheng, 224051, China
| | - Lu-Yu Tan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Jiangsu Province, Yancheng, 224051, China
| | - Qing-Qing Fan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Jiangsu Province, Yancheng, 224051, China
| | - Xiang-Yang Cao
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Jiangsu Province, Yancheng, 224051, China
| | - Jun Huang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Jiangsu Province, Yancheng, 224051, China
| | - Yu-Kang Gu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Jiangsu Province, Yancheng, 224051, China
| | - Tian-Ming Chen
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Jiangsu Province, Yancheng, 224051, China.
- Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
45
|
Dong Y, Wang J, Gao Z, Di J, Wang D, Guo X, Hu Z, Gao X, Wang Y. Study on Growth Influencing Factors and Desulfurization Performance of Sulfate Reducing Bacteria Based on the Response Surface Methodology. ACS OMEGA 2023; 8:4046-4059. [PMID: 36743035 PMCID: PMC9893483 DOI: 10.1021/acsomega.2c06931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Sulfate reducing bacteria (SRB) can simultaneously and efficiently remove SO4 2- and heavy metal ions from acid mine drainage (AMD). Environmental factors have a great influence on AMD treated by SRB metabolic reducing sulfate. Providing a suitable growth environment can improve the effect of SRB on AMD. In this paper, the wet soil around the tailings reservoir was used as seed mud to enrich SRB. Based on the single factor experiment method and the response surface methodology (RSM), the effects of temperature, environmental pH value, S2- concentration, and COD/SO4 2- on the growth of SRB were analyzed. The effects of environmental factors such as temperature and pH on the desulfurization performance of SRB were investigated. The results showed that the growth curve of SRB was "S" type. SRB was in the logarithmic phase when cultured for 14-86 h, with high activity and vigorous growth metabolism. When the temperature is 32∼35 °C, the activity of SRB is the highest. With the gradual increase of the S2- concentration in the culture system, SRB activity will be inhibited and even lead to SRB cell death. The environmental pH value that SRB can tolerate is 5∼8, and when the environmental pH value is 7∼8, the SRB activity is the strongest. The chemical oxygen demand (COD)/SO4 2- that is most suitable for SRB growth is 2. The optimal growth conditions of SRB obtained from RSM were as follows: culture temperature at 34.74 °C, initial pH being 8.00, and initial COD/SO4 2- being 1.98. Under these conditions, the OD600 value was 1.45, the pH value was 9.37, the oxidation reduction potential (ORP) value was -399 mV, and the removal percentage of SO4 2- was 88.74%. The results of RSM showed that the effects of culture temperature, environmental pH, and COD/SO4 2- on the desulfurization performance of SRB were extremely significant. The order of affecting the removal of SO4 2- by SRB was environmental pH > temperature > COD/SO4 2-.
Collapse
Affiliation(s)
- Yanrong Dong
- College
of Civil Engineering, Liaoning Technical
University, Fuxin123000, China
- College
of Mining, Liaoning Technical University, Fuxin123000, China
| | - Jingbo Wang
- College
of Civil Engineering, Liaoning Technical
University, Fuxin123000, China
| | - Ziqing Gao
- College
of Civil Engineering, Liaoning Technical
University, Fuxin123000, China
| | - Junzhen Di
- College
of Civil Engineering, Liaoning Technical
University, Fuxin123000, China
| | - Dong Wang
- College
of Mining, Liaoning Technical University, Fuxin123000, China
| | - Xuying Guo
- College
of Science, Liaoning Technical University, Fuxin123000, China
| | - Zhiyong Hu
- College
of Mining, Liaoning Technical University, Fuxin123000, China
| | - Xinle Gao
- College
of Mining, Liaoning Technical University, Fuxin123000, China
| | - Yunfeng Wang
- College
of Civil Engineering, Liaoning Technical
University, Fuxin123000, China
| |
Collapse
|
46
|
Xue J, Yao Y, Li W, Shi K, Ma G, Qiao Y, Cheng D, Jiang Q. Insights into the effects of operating parameters on sulfate reduction performance and microbial pathways in the anaerobic sequencing batch reactor. CHEMOSPHERE 2023; 311:137134. [PMID: 36343737 DOI: 10.1016/j.chemosphere.2022.137134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/07/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Sulfate-reducing bacteria (SRB)-based anaerobic process has aroused wide concern in the treatment of sulfate-containing wastewater. Chemical oxygen demand-to-sulfate ratio (COD/SO42-) and HRT are two key factors that affect not only the anaerobic treatment performance but also the activity of SRB. In this study, an anaerobic sequencing batch reactor was constructed, and the effects of different operating parameters (COD/SO42-, HRT) on the relationship of sulfate (SO42-) reduction performance, microbial communities, and metabolic pathways were comprehensively investigated. The results indicated that the SO42- removal rates could achieve above 95% under different operating parameters. Bioinformatics analysis revealed that microbial community changed with reactor operation. At the genus level, the enrichment of Propionicclava and Peptoclostridium contributed to the establishment of a homotrophic relationship with Desulfobulbus, the dominant SRB in the reactor, which indicated that they took vital part in maintaining the structural and functional stability of the bacterial community under different operating parameters. In particular, an increasing trend of the relative abundance of functional genes encoding dissimilatory sulfate reduction was detected with the increase of COD/SO42-, which indicated high SO42- reduction potentials. This knowledge will help to reveal the mechanism of the effect of operating parameters on the anaerobic sulfate removal process, thus providing effective guidance for the targeted regulation of anaerobic sequencing batch bioreactors treating SO42--containing wastewater.
Collapse
Affiliation(s)
- Jianliang Xue
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, China; Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, Shandong, 256600, China
| | - Yuehong Yao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Weisi Li
- Shandong Ecological Environment Monitoring Center, Jinan, Shandong, 250102, China
| | - Ke Shi
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Guanbao Ma
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Yanlu Qiao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, China; Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, Shandong, 256600, China
| | - Dongle Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Qing Jiang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, China; Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, Shandong, 256600, China.
| |
Collapse
|
47
|
Horn EJ, van Hille RP, Oyekola OO, Welz PJ. Functional Microbial Communities in Hybrid Linear Flow Channel Reactors for Desulfurization of Tannery Effluent. Microorganisms 2022; 10:2305. [PMID: 36422375 PMCID: PMC9695182 DOI: 10.3390/microorganisms10112305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2024] Open
Abstract
Recent research has demonstrated that hybrid linear flow channel reactors (HLFCRs) can desulfurize tannery effluent via sulfate reduction and concurrent oxidation of sulfide to elemental sulfur. The reactors can be used to pre-treat tannery effluent to improve the efficiency of downstream anaerobic digestion and recover sulfur. This study was conducted to gain insight into the bacterial communities in HLFCRs operated in series and identify structure-function relationships. This was accomplished by interpreting the results obtained from amplicon sequencing of the 16S rRNA gene and quantification of the dissimilatory sulfite reducing (dsrB) gene. In an effort to provide a suitable inoculum, microbial consortia were harvested from saline estuaries and enriched. However, it was found that bioaugmentation was not necessary because native communities from tannery wastewater were selected over exogenous communities from the enriched consortia. Overall, Dethiosulfovibrio sp. and Petrimonas sp. were strongly selected (maximum relative abundances of 29% and 26%, respectively), while Desulfobacterium autotrophicum (57%), and Desulfobacter halotolerans (27%) dominated the sulfate reducing bacteria. The presence of elemental sulfur reducing genera such as Dethiosulfovibrio and Petrimonas is not desirable in HLFCRs, and strategies to counter their selection need to be considered to ensure efficiency of these systems for pre-treatment of tannery effluent.
Collapse
|
48
|
Hao T. Adaptive response mechanisms of granular and flocculent sulfate-reducing sludge toward acidic multi-metal-laden wastewater. WATER RESEARCH 2022; 226:119227. [PMID: 36240714 DOI: 10.1016/j.watres.2022.119227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Dissimilatory sulfate reduction-based processes have long been a viable option for treating acidic metal-laden wastewater (AMW). Such processes can be optimized through enhancing sulfidogenic activity and the microbial consortia's resilience against a harsh environment. This study investigated how granular and flocculent sulfate-reducing bacteria (SRB) sludge respond to AMW as well as the mechanisms through which they adapt to the wastewater, with particular focuses on the stability of the sulfidogenic activities, metal removal, and the bacteria's resistance over the long-term: the flocculent SRB lost more than 50% of their treatment capacity after 35 days of treating AMW with the presence of Cd2+, Cu2+, Zn2+, and Ni2+ at 30 mg/L each, under pH = 4.5. In contrast, the granular SRB maintained its metal removal rate at 91% throughout the 161-day trial. Despite the SRB abundance remaining at approximate 40%, organics-partial oxidizing genera (Desulfobulbus and Desulfobacter) began to dominate due to their kinetic advantage. The extracellular glycosyl compositions were revealed to be critical for the stability of the granular structure and microbial activity as the extracellular proteins disintegrated irreversible. Usage the molecular dynamic simulation, the mobility of the metal ions in the SRB granular system was suppressed by the presence of a more diverse glycosyl composition compared with the flocculent system (10-50% diffusion coefficients differences). All of the identified glycosyls (especially xylose and rhamnose) exhibited strong interactions with Cu2+ (-470 kJ mol-1), while the maximum binding strength of Cd2+ to glycosyls was greater than -40 kJ mol-1, suggesting a low Cd2+complexation efficiency. The findings of this study shed light on the defensive mechanisms of SRB granules against multi-metal stress, and provide clues for efficient AMW treatment.
Collapse
Affiliation(s)
- Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China.
| |
Collapse
|
49
|
Marais TS, Huddy RJ, Harrison STL. Elemental sulphur recovery from a sulphate-rich aqueous stream in a single hybrid linear flow channel reactor is mediated through microbial community dynamics and adaptation to reactor zones. FEMS Microbiol Ecol 2022; 98:6763417. [PMID: 36259757 DOI: 10.1093/femsec/fiac059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/20/2022] [Accepted: 10/03/2022] [Indexed: 01/21/2023] Open
Abstract
The coupled application of biological sulphate reduction (BSR) and partial sulphide oxidation to treat sulphate-rich wastewater is an effective strategy to mitigate pollution and recover elemental sulphur for repurposing. The recent development of the hybrid linear flow channel reactor (LFCR) achieves simultaneous BSR and partial sulphide oxidation with biosulphur recovery via a floating sulphur biofilm (FSB). Here, we explore the microbial community zoning and dynamics facilitating the process. A total of three continuous LFCRs were used to evaluate the effect of reactor zones, hydraulic residence time (HRT), carbon source, namely lactate and acetate, as well as reactor geometry and scale on process performance and microbial community dynamics. Community composition of sessile and planktonic microbial consortia were resolved at a 5- and 2-day HRT through 16S rRNA amplicon sequencing. Preferential attachment and prevalence of specific phylotypes within the sessile and planktonic communities revealed clear adaptation of key microorganisms to different microenvironments. Key microbial taxa affiliated with sulphate reduction and sulphide oxidation as well as those implicated in fermentation and syntrophic metabolism, fluctuated in response to changes in HRT and process performance. Through understanding the relationship between microbial community dynamics and process performance, this research will inform better process design and optimization of the hybrid LFCR.
Collapse
Affiliation(s)
- T S Marais
- Centre for Bioprocess Engineering Research, Department of Chemical Engineering, University of Cape Town, Private Bag X1, Rondebosch 7701, South Africa.,Future Water Institute, 1 Madiba Circle, University of Cape Town, 7700, South Africa
| | - R J Huddy
- Centre for Bioprocess Engineering Research, Department of Chemical Engineering, University of Cape Town, Private Bag X1, Rondebosch 7701, South Africa.,Future Water Institute, 1 Madiba Circle, University of Cape Town, 7700, South Africa
| | - S T L Harrison
- Centre for Bioprocess Engineering Research, Department of Chemical Engineering, University of Cape Town, Private Bag X1, Rondebosch 7701, South Africa.,Future Water Institute, 1 Madiba Circle, University of Cape Town, 7700, South Africa
| |
Collapse
|
50
|
Zhang H, Quan H, Zhou S, Sun L, Lu H. Enhanced performance and electron transfer of sulfur-mediated biological process under polyethylene terephthalate microplastics exposure. WATER RESEARCH 2022; 223:119038. [PMID: 36067605 DOI: 10.1016/j.watres.2022.119038] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Microplastics are ubiquitous in estuaries, coasts, sewage and wastewater treatment plants (WWTPs), which could arouse unexpected effects on critical microbial processes in wastewater treatment. In this study, polyethylene terephthalate microplastics (PET-MPs) were selected to investigate the mechanism of its influence on the performance of sulfur-mediated biological process from the perspective of microbial metabolic activity, electron transfer capacity and microbial community. The results indicated that the exposure of 50 particles/L PET-MPs improved the chemical oxygen demand (COD) and sulfate removal efficiencies by 6.6 ± 0.5% and 4.5 ± 0.3%, respectively, due to the stimulation of microbial metabolic activity and the enrichment of sulfate-reducing bacteria (SRB) species, such as Desulfobacter. In addition, we found that the PET-MPs promoted Cytochrome C (Cyt C) production and improved the direct electron transfer (DET) capacity mediated by Cyt C. The long-term presence of PET-MPs stimulated the secretion of extracellular polymeric substance (EPS), especially the proteins and humic substances, which have been verified to be electroactive polymers to act as electron shuttles to promote the interspecies electron transfer pathway in sulfur-mediated biological process. Meanwhile, the transformation products (bis-(2-hydroxyethyl) terephthalate (BHET) and Mono (2-hydroxyethyl) terephthalic acid (MHET) of PET-MPs were detected in sulfur-mediated biological process. These findings indicate that the sulfur-mediated biological process has good adaptability to the toxicity of PET-MPs, which strengthens a deeper understanding of the dual function of microplastics in WWTPs.
Collapse
Affiliation(s)
- Huiqun Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China; Guangdong Yuehai Water Investment Co., Ltd., Shenzhen, 518021, PR China
| | - Haoting Quan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Sining Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China.
| |
Collapse
|