1
|
Zhou D, Chen X, Ren M, Qing W, Xia Y, Huang Y, Wang Y, Li S, Qi J. The trigger mechanisms and the gene regulatory pathways of organic acid secretion during the vanadium-titanium magnetite tailing bioleaching. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136883. [PMID: 39700950 DOI: 10.1016/j.jhazmat.2024.136883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
The long-term mining of vanadium-titanium (V-Ti) magnetite has generated a large accumulation of tailings, which can lead to metal pollution via microbial bioleaching. Current research has focused on the bioleaching of minerals, and a few studies have explored microbial responses to metals only through limited metabolite concentrations. However, the trigger mechanisms of metal release during the V-Ti magnetite tailing bioleaching and key gene regulatory pathways for organic acid metabolism are still unclear. This study screened a bioleaching fungus from the V-Ti magnetite tailing pond groundwater. The fungus promoted tailing dissolution by secreting more organic acids (808.99 mg L-1) than without tailings (671.11 mg L-1). The released metals were responsible for the difference in organic acid metabolism. The tailing-released Fe, Zn, and V were the triggers for the organic acid secretion via up-regulating the functional genes of citric, formic, and succinic acids in the TCA cycle, Methane metabolism, and D-arginine and D-ornithine metabolisms. Fe and V also led to the accumulation of malic acid through up-regulating functional genes during the conversion of phenylalanine, tyrosine, and glycine. Ni and Cu were the inhibitors by up-regulating related functional genes and promoting the conversion of acetyl-CoA to acetoacetyl-CoA, resulting in a decrease in organic acid concentrations. This study demonstrated the triggering metals of bioleaching and fungal gene regulation pathways, which provide a novel strategy for fungi domestication by considering the up-regulating metals to improve the bioleaching efficiency.
Collapse
Affiliation(s)
- Dan Zhou
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| | - Xiaoyan Chen
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Meng Ren
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Wen Qing
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Yonglian Xia
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China; The 5th Geological Brigade of Sichuan, Chengdu 610059, China
| | - Yi Huang
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| | - Yi Wang
- The 5th Geological Brigade of Sichuan, Chengdu 610059, China
| | - Sen Li
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Jingxian Qi
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| |
Collapse
|
2
|
Yang J, Guo Z, Al-Dhabi NA, Shi J, Peng Y, Miao B, Liu H, Liang Y, Yin H, Liu X, Tang W, Jiang L. The succession of microbial community and distribution resistance gene in response to enrichment cultivation derived from a long-term toxic metal(loid)s polluted soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176385. [PMID: 39304162 DOI: 10.1016/j.scitotenv.2024.176385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Microbial communities as the most important and active component of soil play a crucial role in the geochemical cycling of toxic metal(loid)s in the Pb and Zn smelting site soils. However, the relationships between soil microbial communities and the fractions of toxic metal(loid)s and the succession of soil microbial community and functions after enrichment cultivation have rarely been analyzed. In this study, the diversity and composition of microbial communities in soils before and after enrichment cultivation were investigated by high-throughput sequencing. And the co-occurrence relationships between soil microbial community after enrichment cultivation and MRGs genes were also analyzed through the BacMet database. Results showed that the dominant genus in the soils was Lactobacillus and Stenotrophomonas. The soil microbial community exhibited a notable correlation with Cd, Pb, and As, among which Cd exerted the most profound impact. Alishewanella, Pseudomonas, Massilia and Roseibacillus were significantly correlated with the fraction of Cd. After enrichment cultivation, the number of genera decrease to 96. And the dominant genus changed to Acinetobacter, Bacillus, Comamonas, Lysobacter, and Pseudoxanthomonas. High abundance of metal resistance genes (MRGs) including zntA, fpvA, zipB, cadA, czcA, czcB, czcC, zntA, arsR, pstS and pstB was found in the microbial community after enrichment cultivation. The potential host genus for MRGs was Acinetobacter, Comamonas, Lysinibacillus, Azotobacter, Bacillus, Lysobacter, Cupriavidus, Pseudoxanthomonas, and Thermomonas. Additionally, these microbial community after enrichment cultivation possessing pathways of bacterial chemotaxis and two-component systems was enabled them to adapt to the polluted environment. These observations provided potential guidance for microbe isolation and the development of strategies for the bioremediation of toxic metal(loid)s polluted soils.
Collapse
Affiliation(s)
- Jiejie Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Ziwen Guo
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jiaxin Shi
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yulong Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Bo Miao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China.
| |
Collapse
|
3
|
Shi J, Qian W, Zhou Z, Jin Z. Response of bacterial communities in desert grassland soil profiles to acid mine drainage pollution. CHEMOSPHERE 2024; 369:143831. [PMID: 39608651 DOI: 10.1016/j.chemosphere.2024.143831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024]
Abstract
Acid mine drainage (AMD) causes serious environmental pollution, which imposes stresses on soil ecosystems. Therefore, it is critical to study the responses of soil bacterial communities to AMD pollution in ecologically fragile desert grasslands. Here, the bacterial community composition, structure, and assembly processes in vertical soil profiles of an AMD contaminated desert grassland were explored using 16S rRNA high-throughput sequencing. The results showed that the surface layers of the profiles exhibited lower pH and higher heavy metals (HMs) content due to AMD influence. The AMD contamination led to reduced bacterial diversity in the surface soil layer of the profiles and significantly changed the bacterial community composition and structure. Gradients in pH, TK, TN, and HMs were the main factors driving bacterial community variability. In contrast to the uncontaminated profile, deterministic processes were important in shaping soil bacterial community in the AMD contaminated profiles. These findings will enhance understanding about the responses of soil bacteria in desert grassland soil to the environmental changes caused by AMD contamination and will improve the remediation of AMD contaminated soil.
Collapse
Affiliation(s)
- Jianfei Shi
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Science/National Desert-Oasis Ecology Construction Engineering Technology Research Center, Urumqi, 830011, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Wenting Qian
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Public Technology Service Center, Urumqi, 830011, China
| | - Zhibin Zhou
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Science/National Desert-Oasis Ecology Construction Engineering Technology Research Center, Urumqi, 830011, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Zhengzhong Jin
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Science/National Desert-Oasis Ecology Construction Engineering Technology Research Center, Urumqi, 830011, China; University of Chinese Academy of Science, Beijing, 100049, China; Taklimakan Desert Ecosystem Field Observation and Research Station of Xinjiang, Urumqi, 830011, China.
| |
Collapse
|
4
|
Wu P, Chen B, Li R, Li R. Prediction of heavy metal ion distribution and Pb and Zn ion concentrations in the tailing pond area. PLoS One 2024; 19:e0308916. [PMID: 39325765 PMCID: PMC11426534 DOI: 10.1371/journal.pone.0308916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/01/2024] [Indexed: 09/28/2024] Open
Abstract
The pollution caused by tailings ponds has resulted in ecological damage, with soil contamination significantly impacting the daily lives of residents in the vicinity of mining areas and the future development of mining areas. This study assesses the transport status of heavy metal pollution in tailings areas and predicts its impact on future pollution levels. This study focused on lead-zinc tailing ponds, exploring the spatial and chemical distribution characteristics of heavy metals based on the distributions of Pb, Zn, As, Cu, Cr, Cd, Hg, and Ge ions. The concentrations of the major heavy metal ions Pb and Zn in tailings ponds were predicted via the exponential smoothing method. ① The total accumulation of Pb and Zn in the mine tailings ranges from 936.74~1212.61 mg/kg and 1611.85~2191.47 mg/kg, much greater than the total accumulation of the remaining six heavy metals. The total accumulation of associated heavy metal Cu was high, and the lowest total heavy metals were Hg and Ge at only 0.19 mg/kg and 1.05 mg/kg. ② The analyses of soil heavy metal chemical forms reveal that the heavy metals Pb and Zn had the highest exchangeable state content and state ratio and the strongest transport activity in the industrial plaza and village soils. Pb and Zn are the heavy metals with the greatest eco-environmental impacts in the mining area. ③ The predicted results show that the soil concentrations of the heavy metals Pb and Zn around the tailings area in 2026 are 1.335 and 1.191 times the predicted time starting values. The concentrations of the heavy metals Pb and Zn at the starting point of the forecast are already 3.34 and 3.02 times the upper limits of the environmental standard (according to environmental standards for gravelly grey calcium soils). These results have significant implications for heavy metal pollution risk management.
Collapse
Affiliation(s)
- Pengfei Wu
- School of Civil Engineering, Liaoning Technical University, Fuxin, Liaoning, China
- School of Mechanics and Engineering, Liaoning Technical University, Fuxin, Liaoning, China
| | - Bowen Chen
- School of Civil Engineering, Liaoning Technical University, Fuxin, Liaoning, China
| | - Runzhi Li
- China Coal Technology and Engineering Group Shenyang Research Institute, Shenyang, Liaoning, China
| | - Ruochen Li
- Triumph Science & Technology Co., Ltd, Bengbu, Anhui, China
| |
Collapse
|
5
|
Zhou G, Qiao H, Liu Y, Yu X, Niu X. High phenanthrene degrading efficiency by different microbial compositions construction. Front Microbiol 2024; 15:1439216. [PMID: 39282554 PMCID: PMC11392898 DOI: 10.3389/fmicb.2024.1439216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024] Open
Abstract
Microbial remediation has become the most promising technical means for the remediation of polycyclic aromatic hydrocarbons (PAHs) non-point source contaminated soil due to its low cost of treatment, complete degradation of pollutants, and in-situ remediation. In this study, in order to demonstrate the phenanthrene degrading microbial diversity, phenanthrene was chosen as the representative of PAHs and strains capable of degrading phenanthrene were isolated and screened from the sedimentation sludge and the bottom sludge of oil tank trucks, and high throughput sequencing was used to check the dominant strains with a good degrading effect on phenanthrene. Results showed even more than 50% of phenanthrene was degraded in all samples, the composition of PAH-degrading bacteria was diverse, and different environments constructed different functional microbial groups, which resulted in the microbial adapting to the diversity of the environment. Finally, a series of bacterial species with phenanthrene-degrading functions such as Achromobacter, Pseudomonas, Pseudochelatococcus, Bosea was enriched after nine transferring process. Overall, our study offers value information for the enrichment of functional degrading microbes of phenanthrene or other pollutants that more concern should be paid in not only the degradation rate, but also the diversity variation of microbial community composition.
Collapse
Affiliation(s)
- Guoyan Zhou
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, China
- Department of Biology, Xinzhou Normal University, Xinzhou, Shanxi, China
| | - Hongtao Qiao
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, China
- Department of Biology, Xinzhou Normal University, Xinzhou, Shanxi, China
| | - Yandong Liu
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, China
- Department of Biology, Xinzhou Normal University, Xinzhou, Shanxi, China
| | - Xiongsheng Yu
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, China
- Department of Biology, Xinzhou Normal University, Xinzhou, Shanxi, China
| | - Xiang Niu
- Shaoxing Academy of Agricultural Sciences, Shaoxing, China
| |
Collapse
|
6
|
Li Y, Wang J, Liu C, Wang L, Zhang P, Zhao Q, Xiong Z, Zhang G, Zhang W. Remediation of arsenic-contaminated soil using nanoscale schwertmannite synthesized by persulfate oxidation with carboxymethyl cellulose stabilization. ENVIRONMENTAL RESEARCH 2024; 244:117937. [PMID: 38109958 DOI: 10.1016/j.envres.2023.117937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Schwertmannite (SCH) is a promising material for adsorbing inorganic arsenic (As). We synthesized SCH nanoparticles (nano-SCH) via a modified chemical oxidation method and investigated the application of nano-SCH for the remediation of As-contaminated soils. The production of nano-SCH was successfully prepared using the persulfate oxidation method with carboxymethyl cellulose stabilization. The spherical structure of the nano-SCH particles had an average hydrodynamic diameter of 296 nm with high specific surface areas (108.9 m2/g). Compared with SCH synthesized via the H2O2 oxidation method, the percentage of Fe3+ precipitation in nano-SCH synthesis increased from 63.2% to 84.1%. The inorganic As adsorption capacity of nano-SCH improved by 2.27 times at solution pH = 6. After remediation of heavily As-contaminated soils by using 5% nano-SCH, the leachability of inorganic As rapidly decreased to 0.01% in 30 d. Correspondingly, the immobilization efficiencies of inorganic As in soil reached >99.9%. The inorganic As fractions in treated soil shifted from specifically and nonspecifically bound forms to amorphous and crystalline hydrous oxide-bound fractions. After treatment with 5% nano-SCH for 60 d, soil pH slightly decreased from 5.47 to 4.94; by contrast, soil organic matter content increased by 20.9%. Simultaneously, dehydrogenase concentration in soil decreased by 22.4%-34.7% during the remediation process. These changes in soil properties and As immobilization jointly decreased microbial activity and initiated the re-establishment of bacterial communities in the soil. In summary, this study presents a novel and high-productivity technology for nano-SCH synthesis and confirms the high As immobilization effectiveness of nano-SCH in the remediation of As-contaminated soils.
Collapse
Affiliation(s)
- Yujie Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China; Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Jia Wang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Chao Liu
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Long Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Peng Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Qianyu Zhao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Zhu Xiong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Gaosheng Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Wei Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
7
|
Peng S, Li Z, Zhang D, Lu P, Zhou S. Changes in community structure and microbiological risks in a small stream after receiving treated shale gas wastewater for two years. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122799. [PMID: 37918774 DOI: 10.1016/j.envpol.2023.122799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
Discharge of treated shale gas wastewater is becoming prevalent in the Sichuan Basin in China, and the resulting potential environmental impacts have raised concern. In this study, the responses of microbial community in the receiving water to discharge of treated shale gas wastewater were assessed during a two-year study period, covering two wet seasons and one dry season. The results showed that the discharge of treated shale gas wastewater had no significant effects on alpha diversity in the two wet seasons, but had significant effects in the dry season after 15 months of discharge. Obvious changes in microbial community structure were observed in all three seasons at the downstream sites near the wastewater outfall, as compared to the control site. Multimetric indices indicated that the impacts of wastewater discharge on microbial ecosystem occurred with the extension of the discharge period. Moreover, special attention was given to the microbiological risks associated with antibiotic resistance genes (ARGs), virulence factor genes (VFGs), and pathogenic antibiotic resistant bacteria (PARBs) in the dry season in sediments of the receiving water. At downstream sites near the outfall, five subtypes of ARGs and seven VFGs showed a significant increase in relative abundance. Forty-two PARBs carrying ARGs and VFGs were detected, and three PARBs (Pseudomonas aeruginosa, Pseudomonas stutzeri and Pseudomonas fluorescens) increased obviously in relative abundance at the downstream site near the outfall. In conclusion, long-term wastewater discharge had effects on the microbial community, and limited microbiological risks existed in the receiving waters.
Collapse
Affiliation(s)
- Shuchan Peng
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Zhiqiang Li
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Daijun Zhang
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Peili Lu
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Shangbo Zhou
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
8
|
Wang H, Du X, Zhang Z, Feng F, Zhang J. Rhizosphere interface microbiome reassembly by arbuscular mycorrhizal fungi weakens cadmium migration dynamics. IMETA 2023; 2:e133. [PMID: 38868220 PMCID: PMC10989832 DOI: 10.1002/imt2.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 06/14/2024]
Abstract
The prevalence of cadmium (Cd)-polluted agricultural soils is increasing globally, and arbuscular mycorrhizal fungi (AMF) can reduce the absorption of heavy metals by plants and improve mineral nutrition. However, the immobilization of the rhizosphere on cadmium is often overlooked. In this study, Glomus mosseae and Medicago sativa were established as symbiotes, and Cd migration and environmental properties in the rhizosphere were analyzed. AMF reduced Cd migration, and Cd2+ changed to an organic-bound state. AMF symbiosis treatment and Cd exposure resulted in microbial community variation, exhibiting a distinct deterministic process (|βNTI| > 2), which ultimately resulted in a core microbiome function of heavy metal resistance and nutrient cycling. AMF increased available N and P, extracellular enzyme activity (LaC, LiP, and CAT), organic matter content (TOC, EOC, and GRSP), and Eh of the rhizosphere soil, significantly correlating with decreased Cd migration (p < 0.05). Furthermore, AMF significantly affected root metabolism by upregulating 739 metabolites, with flavonoids being the main factor causing microbiome variation. The structural equation model and variance partial analysis revealed that the superposition of the root metabolites, microbial, and soil exhibited the maximum explanation rate for Cd migration reduction (42.4%), and the microbial model had the highest single explanation rate (15.5%). Thus, the AMF in the rhizosphere microenvironment can regulate metabolite-soil-microbial interactions, reducing Cd migration. In summary, the study provides a new scientific explanation for how AMF improves plant Cd tolerance and offers a sustainable solution that could benefit both the environment and human health.
Collapse
Affiliation(s)
- Hong‐Rui Wang
- College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Xin‐Ran Du
- College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Zhuo‐Yun Zhang
- College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Fu‐Juan Feng
- College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Jia‐Ming Zhang
- College of Life ScienceNortheast Forestry UniversityHarbinChina
| |
Collapse
|
9
|
Katsina AU, Mihai S, Matei D, Cursaru DL, Şomoghi R, Nistor CL. Construction of Pt@BiFeO 3 Xerogel-Supported O-g-C 3N 4 Heterojunction System for Enhanced Visible-Light Activity towards Photocatalytic Degradation of Rhodamine B. Gels 2023; 9:471. [PMID: 37367142 DOI: 10.3390/gels9060471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Synthetic organic pigments from the direct discharge of textile effluents are considered as colossal global concern and attract the attention of scholars. The efficient construction of heterojunction systems involving precious metal co-catalysis is an effective strategy for obtaining highly efficient photocatalytic materials. Herein, we report the construction of a Pt-doped BiFeO3/O-g-C3N4 (Pt@BFO/O-CN) S-scheme heterojunction system for photocatalytic degradation of aqueous rhodamine B (RhB) under visible-light irradiation. The photocatalytic performances of Pt@BFO/O-CN and BFO/O-CN composites and pristine BiFeO3 and O-g-C3N4 were compared, and the photocatalytic process of the Pt@BFO/O-CN system was optimized. The results exhibit that the S-scheme Pt@BFO/O-CN heterojunction has superior photocatalytic performance compared to its fellow catalysts, which is due to the asymmetric nature of the as-constructed heterojunction. The as-constructed Pt@BFO/O-CN heterojunction reveals high performance in photocatalytic degradation of RhB with a degradation efficiency of 100% achieved after 50 min of visible-light irradiation. The photodegradation fitted well with pseudo-first-order kinetics proceeding with a rate constant of 4.63 × 10-2 min-1. The radical trapping test reveals that h+ and •O2- take the leading role in the reaction, while the stability test reveals a 98% efficiency after the fourth cycle. As established from various interpretations, the considerably enhanced photocatalytic performance of the heterojunction system can be attributed to the promoted charge carrier separation and transfer of photoexcited carriers, as well as the strong photo-redox ability established. Hence, the S-scheme Pt@BFO/O-CN heterojunction is a good candidate in the treatment of industrial wastewater for the mineralization of organic micropollutants, which pose a grievous threat to the environment.
Collapse
Affiliation(s)
- Abubakar Usman Katsina
- Faculty of Petroleum Technology and Petrochemistry, Petroleum-Gas University of Ploiești, 100680 Ploiești, Romania
- Department of Pure and Industrial Chemistry, Bayero University, Kano PMB 3011, Nigeria
| | - Sonia Mihai
- Faculty of Petroleum Technology and Petrochemistry, Petroleum-Gas University of Ploiești, 100680 Ploiești, Romania
| | - Dănuţa Matei
- Faculty of Petroleum Technology and Petrochemistry, Petroleum-Gas University of Ploiești, 100680 Ploiești, Romania
| | - Diana-Luciana Cursaru
- Faculty of Petroleum Technology and Petrochemistry, Petroleum-Gas University of Ploiești, 100680 Ploiești, Romania
| | - Raluca Şomoghi
- Faculty of Petroleum Technology and Petrochemistry, Petroleum-Gas University of Ploiești, 100680 Ploiești, Romania
- National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 060021 Bucharest, Romania
| | - Cristina Lavinia Nistor
- National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 060021 Bucharest, Romania
| |
Collapse
|
10
|
Zhou Y, Lian Y, Liu T, Jin X, Wang Z, Liu X, Zhou M, Jing D, Yin W, Feng J, Wang H, Zhang D. Impacts of high-quality coal mine drainage recycling for replenishment of aquatic ecosystems in arid regions of China: Bacterial community responses. ENVIRONMENTAL RESEARCH 2023; 223:115083. [PMID: 36529333 DOI: 10.1016/j.envres.2022.115083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Coal mine water is usually recycled as supplementary water for aquatic ecosystems in arid and semiarid mining regions of China. To ensure ecosystem health, the coal mine water is rigorously treated using several processes, including reverse osmosis, to meet surface water quality standards. However, the potential environmental impacts of this management pattern on the ecological function of receiving water bodies are unclear. In this study, we built several microcosm water ecosystems to simulate the receiving water bodies. High-quality treated coal mine drainage was mixed into the model water bodies at different concentrations, and the sediment bacterial community response and functional changes were systematically investigated. The results showed that the high-quality coal mine drainage could still shape bacterial taxonomic diversity, community composition and structure, with a concentration threshold of approximately 50%. Moreover, both the Mantel test and the structural equation model indicated that the salinity fluctuation caused by the receiving of coal mine drainage was the primary factor shaping the bacterial communities. 10 core taxa in the molecular ecological network influenced by coal mine drainage were identified, with the most critical taxa being patescibacteria and g_Geothermobacter. Furthermore, the pathway of carbohydrate metabolism as well as signaling molecules and interactions was up-regulated, whereas amino acid metabolism showed the opposite trend. All results suggested that the complex physical-chemical and biochemical processes in water ecosystems may be affected by the coal mine drainage. The bacterial community response and underlying functional changes may accelerate internal nutrient cycling, which may have a potential impact on algal bloom outbreaks.
Collapse
Affiliation(s)
- Yaqian Zhou
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, PR China
| | - Ying Lian
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Tengxiang Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Xian Jin
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Zhigang Wang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Xin Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Mengling Zhou
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Dan Jing
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Weiwen Yin
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Jiaying Feng
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Heli Wang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, PR China.
| | - Daxin Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China; School of Soil & Water Conservation, Beijing Forestry University, Beijing, 100083, PR China.
| |
Collapse
|
11
|
Hu X, Song J, Ji Y, Li C, Wei J, Lyu W, Wang B, Guo W, Chen R, Wang H, Zhou D, Zhang Q. Stable partial nitritation of mature landfill leachate in a continuous flow bioreactor: Long-term performance, microbial community evolution, and mechanisms. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
12
|
Stoica C, Dinu LR, Lucaciu IE, Oncu V, Gheorghe S, Nita-Lazar M. Sensitivity of Pathogenic Bacteria Strains to Treated Mine Water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15535. [PMID: 36497609 PMCID: PMC9739636 DOI: 10.3390/ijerph192315535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Mine water as a result of meteoric and/or underground water's contact with tailings and underground workings could have an elevated content of metals associated with sulfate, often acidic, due to the bio-oxidation of sulfides. When entering aquatic ecosystems, the mine water can cause significant changes in the species' trophic levels, therefore a treatment is required to adjust the alkalinity and to remove the heavy metals and metalloids. The conventional mine water treatment removes metals, but in many cases it does not reduce the sulfate content. This paper aimed to predict the impact of conventionally treated mine water on the receiving river by assessing the genotoxic activity on an engineered Escherichia coli and by evaluating the toxic effects generated on two Gram-negative bacterial strains, Pseudomonas aeruginosa and Escherichia coli. Although the main chemical impact is the severe increases of calcium and sulfate concentrations, no significant genotoxic characteristics were detected on the Escherichia coli strain and on the cell-viability with a positive survival rate higher than 80%. Pseudomonas aeruginosa was more resistant than Escherichia coli in the presence of 1890 mg SO42-/L. This paper reveals different sensitivities and adaptabilities of pathogenic bacteria to high concentrations of sulfates in mine waters.
Collapse
Affiliation(s)
- Catalina Stoica
- National Research and Development Institute for Industrial Ecology–ECOIND, 57-73 Drumul Podu Dambovitei, Sector 6, 060652 Bucharest, Romania
| | - Laurentiu Razvan Dinu
- National Research and Development Institute for Industrial Ecology–ECOIND, 57-73 Drumul Podu Dambovitei, Sector 6, 060652 Bucharest, Romania
| | - Irina Eugenia Lucaciu
- National Research and Development Institute for Industrial Ecology–ECOIND, 57-73 Drumul Podu Dambovitei, Sector 6, 060652 Bucharest, Romania
| | - Voicu Oncu
- SC CEPROMIN S.A., 22 Decembrie 37A Boulevard, 330166 Deva, Romania
| | - Stefania Gheorghe
- National Research and Development Institute for Industrial Ecology–ECOIND, 57-73 Drumul Podu Dambovitei, Sector 6, 060652 Bucharest, Romania
| | - Mihai Nita-Lazar
- National Research and Development Institute for Industrial Ecology–ECOIND, 57-73 Drumul Podu Dambovitei, Sector 6, 060652 Bucharest, Romania
| |
Collapse
|
13
|
Ramos-Perez D, Alcántara-Hernández RJ, Romero FM, González-Chávez JL. Changes in the prokaryotic diversity in response to hydrochemical variations during an acid mine drainage passive treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156629. [PMID: 35691343 DOI: 10.1016/j.scitotenv.2022.156629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/07/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Acid mine drainage (AMD) causes major environmental problems and consequently, several treatments are proposed, favoring the passive systems because of their many advantages. The main goal of these procedures is the neutralization and removal of potentially toxic elements (PTE), yet little is known about the changes in the microbial assemblages in response to the hydrochemical variations during the treatments. Therefore, the main objective of this research was to determine the changes in the diversity and structure of the prokaryotic assemblages in a hybrid abiotic and biological (wetland) passive treatment system. The 16S rRNA gene survey showed that the AMD coming from the mine (pH 2.6) was mainly composed of acidophilic genera such as Acidithiobacillus, Leptospirillum, Ferritrophicum, and Cuniculiplasma (up to 76 % relative abundance). In the abiotic treatment, Acidiphilium was dominant in the sections with limestone filters (pH 2.2-4.8), followed by Limnobacter in the subsequent dolomite/limestone and phosphoric rock filters (pH 5.2-5.8). In these abiotic passive treatment sections, the microbial assemblage showed a limited diversity and richness. However, when the treated AMD reached the two final wetlands (pH ~6.8), the microbial diversity and richness increased, suggesting that further bioattenuation mechanisms might be occurring. Limnobacter and Novosphingobium were the main bacterial genera in the water samples of the wetland sections (Arundo donax). These changes in the composition of the microbial assemblages were highly correlated with the pH and Eh values during the treatment (p-value <0.001); however, the concentration of metal(loid)s such as Al, Cd, Fe, Mn, Ni, and Zn were also significantly related (p-value <0.05). In conclusion, the studied passive AMD treatment system enhanced the chemical quality of the treated AMD, showing high removal efficiencies for Al and Fe (> 99 %), and increasing the microbial diversity and richness in the effluent.
Collapse
Affiliation(s)
- Daniel Ramos-Perez
- Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Rocio J Alcántara-Hernández
- Instituto de Geología, Ciudad Universitaria, Universidad Nacional Autónoma de México (UNAM), 04510 Ciudad de México, México.
| | - Francisco M Romero
- Instituto de Geología, Ciudad Universitaria, Universidad Nacional Autónoma de México (UNAM), 04510 Ciudad de México, México; Laboratorio Nacional de Geoquímica y Mineralogía, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, México
| | - José Luz González-Chávez
- Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (UNAM), 04510 Ciudad de México, México
| |
Collapse
|
14
|
Fan T, Yang M, Li Q, Zhou Y, Xia F, Chen Y, Yang L, Ding D, Zhang S, Zhang X, Yu R, Deng S. A new insight into the influencing factors of natural attenuation of chlorinated hydrocarbons contaminated groundwater: A long-term field study of a retired pesticide site. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129595. [PMID: 35850066 DOI: 10.1016/j.jhazmat.2022.129595] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Natural attenuation of contaminants has been increasingly applied as a strategy to manage the retired pesticide manufacturing sites due to the increasing restrictions on the reuse of contaminated sites in China. However, the influencing factors to enhance natural attenuation for chlorinated hydrocarbons in retired pesticide sites were not well studied. In this paper, monitoring of pollutants, environmental factors and microbial community was conducted from 2016 to 2021 in a retired pesticide site in Jiangsu Province undergoing natural attenuation, where the groundwater was severely contaminated with chlorinated hydrocarbons. The spatial variation of main pollutants, including chlorinated ethenes and ethanes, indicated that the site could be divided into the source area, diffusion area, and the end of diffusion area, where organohalide-respiring bacteria (OHRB) were detected. Pollutants and environmental factors influenced the OHRB community structure, which explained 7.6% and 33.2% of the variation, respectively. The abundances of obligate and facultative OHRB were affected in opposite ways by pollutants and environmental factors. Dehalococcoides and Dehalogenimonas in obligate OHRB were significantly inhibited by sulfate (r = -0.448, p < 0.05). The spatial-temporal characteristics of pollutants and the reveal of microbial community structure and its restricting factors in different areas make the foundation for strengthening the implementation of natural attenuation.
Collapse
Affiliation(s)
- Tingting Fan
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Soil Environmental Management and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Min Yang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Soil Environmental Management and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Qun Li
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Soil Environmental Management and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yan Zhou
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Soil Environmental Management and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Feiyang Xia
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Soil Environmental Management and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yun Chen
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Soil Environmental Management and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Lu Yang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Soil Environmental Management and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Da Ding
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Soil Environmental Management and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Shengtian Zhang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Soil Environmental Management and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiaodong Zhang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Soil Environmental Management and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China; Department of Environmental Science and Engineering, School of Energy and Environment, Southeast University, No.2 Sipailou Street, Nanjing 210096, China
| | - Ran Yu
- Department of Environmental Science and Engineering, School of Energy and Environment, Southeast University, No.2 Sipailou Street, Nanjing 210096, China
| | - Shaopo Deng
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China; Key Laboratory of Soil Environmental Management and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
15
|
Chang W, Zhu X, Sun J, Pang Y, Zhang S. Effects of lead pollution on bacterial communities in biofilm attached to submerged plants. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1358-1372. [PMID: 36178811 DOI: 10.2166/wst.2022.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Submerged plants and biofilms have significant advantages in hydro-ecology rehabilitation, but their tolerance and physiological responses to heavy metal stress have thus far been under-investigated. This study investigated the influence of lead on physiological and biochemical responses, as well as variation in bacterial communities and functional characteristics of submerged plant biofilms. The results showed that chlorophyll a content of two submerged plants decreased with increased lead concentration. The concentration of malondialdehyde of both submerged plants was higher under high lead concentrations than under low lead concentrations, and the concentrations of malondialdehyde and hydrogen peroxide in Vallisneria natans were more stable. The antioxidant enzyme systems of the two plants played protective roles against lead stress. High lead concentration can inhibit the bacterial community and lead to decreased diversity. The most abundant bacterial phyla were Proteobacteria (40.9%), Cyanobacteria (21.5%), and Bacteroidetes (14.3%). Proteobacteria abundance decreased with increased lead concentration, while Cyanobacteria abundance increased. The lead concentration in plants (19.7%, P < 0.01) and the lead concentration in aquatic environment (17.7%, P < 0.01) were significantly correlated with variation in bacterial communities. High lead concentration inhibits the activity of these bacteria related to the conversion of nitrogen and sulfur.
Collapse
Affiliation(s)
- Wenjie Chang
- Jiangsu Provincial Environmental Engineering Technology Co., Ltd., Nanjing 210000, China E-mail: ; Jiangsu Province Engineering Research Center of Synergistic Control of Pollution and Carbon Emissions in Key Industries, Nanjing 210000, China; College of Environment, Hohai University, Nanjing 210098, China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China
| | - Xiaoxiao Zhu
- Jiangsu Provincial Environmental Engineering Technology Co., Ltd., Nanjing 210000, China E-mail: ; Jiangsu Province Engineering Research Center of Synergistic Control of Pollution and Carbon Emissions in Key Industries, Nanjing 210000, China
| | - Jieli Sun
- College of Environment, Hohai University, Nanjing 210098, China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China
| | - Yong Pang
- College of Environment, Hohai University, Nanjing 210098, China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China
| | - Songhe Zhang
- College of Environment, Hohai University, Nanjing 210098, China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China
| |
Collapse
|
16
|
Wang H, Zhang M, Lv Q, Xue J, Yang J, Han X. Effective co-treatment of synthetic acid mine drainage and domestic sewage using multi-unit passive treatment system supplemented with silage fermentation broth as carbon source. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114803. [PMID: 35240564 DOI: 10.1016/j.jenvman.2022.114803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/04/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
A multi-unit passive treatment system was constructed for co-treatment of synthetic acid mine drainage (AMD) and domestic sewage supplemented with silage fermentation broth as carbon source. AMD and domestic sewage mixing pretreatment (unit 1) improved influent quality with pH increase, metals removal and nutrients supplement. The generated metal-rich sludge in unit 1 retained the metals (69.95% of Fe, 97.36% of Cu, 96.53% of Cd, 72.52% of Zn, and 8.59% of Mn) of influent prior to entering subsequent bioreactors. Silage fermentation broth performed well to promote bacterial sulfate reduction in sulfate reducing bioreactor system (unit 2). Residual metals (Mn) and organic/nutrient pollutants were further polished in surface-flow aerobic wetland (unit 3), where relatively high pH (7.4-8.6), aerobic condition, potential Mn-oxidizing bacteria, limestone layer and low concentrations of Fe(II) (0.04-3.5 mg/L) favored the efficient removal of Mn. After 210-day continuous flow-through experiment, this passive treatment system demonstrated the efficient performance, increasing pH from 2.5 to 8.0 with removal of metals (99%), sulfate and organic/nutrient pollutants. Diverse sulfate reducing bacteria including complete organic oxidizers (e.g. Desulfobacter) and incomplete organic oxidizers (e.g. Desulfovibrio) promoted sulfate reduction and organic/nutrient pollutants removal. Ammonia oxidizing bacteria (e.g. Nitrosomonas) and nitrite oxidizing bacteria (e.g. unidentified_Nitrospiraceae) were the potential nitrifiers for ammonia removal. Collaboration of anaerobic denitrifiers (e.g. Denitratisoma) and potential heterotrophic nitrifying and aerobic denitrifiers (HN-AD) achieved effective nitrate removal. This multi-unit treatment system with domestic sewage and silage fermentation broth as stimulation substrates provided an attractive option for AMD treatment.
Collapse
Affiliation(s)
- Haixia Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Mingliang Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Qi Lv
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Junbing Xue
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Jie Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xuemei Han
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| |
Collapse
|
17
|
Cai S, Zhou S, Cheng J, Wang Q, Dai Y. Heavy metals speciation and distribution of microbial communities in sediments from the abandoned Mo-Ni polymetallic mines, southwest of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35350-35364. [PMID: 35060049 DOI: 10.1007/s11356-022-18697-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Chemical fractions of heavy metals (Mo, Ni, Cu, Zn, Fe, Mn, Pb, Cd, and Cr) and compositions of bacteria and fungi in surface sediments from the Mo-Ni polymetallic mine area were analyzed. The results indicated that the mean concentrations of Mo, Ni, Cu, Zn, and Cd were higher than their background values. The mean percentage of Cr in residual fraction was much higher than that of other heavy metals. Mo, Cu, Zn, Fe, and Pb were mainly associated with oxidizable fraction. The dominant proportions of Mn and Cd were found in exchangeable fraction with mean percentages of 93.46% and 54.50%, respectively. According to RAC classification and potential ecological risk index (PERI), the Cd with high bioavailability had a very high environmental risk. The MisSeq sequencing results of bacteria and fungi revealed that microbial communities discrepantly respond to different sampling sites. The most abundant phylum of bacteria and fungi were Proteobacteria and Ascomycota, respectively. The bioavailable heavy metals including Mo-B, Pb-B, and Cd-B were recognized to have important influences on both dominant bacterial and fungal communities. The present study manifested that the bioavailability of heavy metal is very important to assess the potential environmental risk and plays a key role in shaping microbial structure.
Collapse
Affiliation(s)
- Shenwen Cai
- College of Resources and Environment, Zunyi Normal University, Zunyi, People's Republic of China.
| | - Shaoqi Zhou
- College of Resources and Environment Engineering, Guizhou University, Guiyang, People's Republic of China
| | - Junwei Cheng
- College of Resources and Environment, Zunyi Normal University, Zunyi, People's Republic of China
| | - Qinghe Wang
- College of Resources and Environment, Zunyi Normal University, Zunyi, People's Republic of China
| | - Ying Dai
- College of Resources and Environment, Zunyi Normal University, Zunyi, People's Republic of China
| |
Collapse
|
18
|
Liu H, Cui Y, Zhou J, Penttinen P, Liu J, Zeng L, Chen Q, Gu Y, Zou L, Zhao K, Xiang Q, Yu X. Nickel mine soil is a potential source for soybean plant growth promoting and heavy metal tolerant rhizobia. PeerJ 2022; 10:e13215. [PMID: 35474688 PMCID: PMC9035279 DOI: 10.7717/peerj.13215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/13/2022] [Indexed: 01/12/2023] Open
Abstract
Mine soil is not only barren but also contaminated by some heavy metals. It is unclear whether some rhizobia survived under extreme conditions in the nickel mine soil. Therefore, this study tries to isolate some effective soybean plant growth promoting and heavy metal resistant rhizobia from nickel mine soil, and to analyze their diversity. Soybean plants were used to trap rhizobia from the nickel mine soil. A total of 21 isolates were preliminarily identified as rhizobia, which were clustered into eight groups at 87% similarity level using BOXA1R-PCR fingerprinting technique. Four out of the eight representative isolates formed nodules on soybean roots with effectively symbiotic nitrogen-fixing and plant growth promoting abilities in the soybean pot experiment. Phylogenetic analysis of 16S rRNA, four housekeeping genes (atpD-recA-glnII-rpoB) and nifH genes assigned the symbiotic isolates YN5, YN8 and YN10 into Ensifer xinjiangense and YN11 into Rhizobium radiobacter, respectively. They also showed different tolerance levels to the heavy metals including cadmium, chromium, copper, nickel, and zinc. It was concluded that there were some plant growth promoting and heavy metal resistant rhizobia with the potential to facilitate phytoremediation and alleviate the effects of heavy metals on soybean cultivation in nickel mine soil, indicating a novel evidence for further exploring more functional microbes from the nickel mine soil.
Collapse
Affiliation(s)
- Han Liu
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yongliang Cui
- Sichuan Provincial Academy of Natural Resource and Sciences, Chengdu, Sichuan, China
| | - Jie Zhou
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Petri Penttinen
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiahao Liu
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lan Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiang Chen
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Li H, Yao J, Min N, Liu J, Chen Z, Zhu X, Zhao C, Pang W, Li M, Cao Y, Liu B, Duran R. Relationships between microbial activity, enzyme activities and metal(loid) form in NiCu tailings area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152326. [PMID: 34906578 DOI: 10.1016/j.scitotenv.2021.152326] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Here we combined microcalorimetry, enzyme activity measurements, and characterization of metal form in order to evaluate the effect of metal(loid)s on the activity of microbial community inhabiting tailings area with high toxic metal(loid)s concentration. Chromium (Cr), nickel (Ni), copper (Cu) and manganese (Mn) were the main pollutants. The exchangeable fractions (bioavailability) of Cu, Ni and Mn were higher in the tailings sample (Site Z), indicating a higher environmental risk. The total heat Qtotal (17,726.87 J/g), peak power Ppeak (541.42 μW/g) and growth rate constant k (0.11 h-1) of Site Z were higher than that of the polluted soil around tailings (Site Y). Such observation may be explained by physiological changes within the microbial community in response to high levels of heavy metal stress, thereby increasing respiration and improving microbial activity. In contrast, enzyme activities and enzyme activities index (GmeA) of Site Z were lower than the Site Y, which is strongly influenced by changes on physical-chemical properties (TN and TOC) and the presence of Cr, Mn, and Ni. Correlation coefficient and principal component analysis (PCA) indicate that GmeA is significantly correlated (p < 0.05 or p < 0.01) with environmental factors (EC, TOC and TN), Mn and Ni concentration, Ni bioavailability, and peak time (Tpeak). Therefore, GmeA represents a potential biological indicator for reporting the pollution degree in tailings area. Our results provide a theoretical basis for the prevention and control of pollution in non-ferrous metal(loid) tailings area.
Collapse
Affiliation(s)
- Hao Li
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Jun Yao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China.
| | - Ning Min
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Jianli Liu
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Zhihui Chen
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Xiaozhe Zhu
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Chenchen Zhao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Wancheng Pang
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Miaomiao Li
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Ying Cao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Bang Liu
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Robert Duran
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China; Universite de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, 64013 Pau Cedex, France
| |
Collapse
|
20
|
Lin Y, Zhang Y, Liang X, Duan R, Yang L, Du Y, Wu L, Huang J, Xiang G, Bai J, Zhen Y. Assessment of rhizosphere bacterial diversity and composition in a metal hyperaccumulator (
Boehmeria nivea
) and a non‐accumulator (
Artemisia annua
) in an antimony mine. J Appl Microbiol 2022; 132:3432-3443. [DOI: 10.1111/jam.15486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/12/2022] [Accepted: 02/08/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Yuxiang Lin
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Yaqi Zhang
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Xin Liang
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Renyan Duan
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Li Yang
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Yihuan Du
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Lianfu Wu
- Key Laboratory of Biodiversity Research and Ecological Conservation in Southwest Anhui Province Anqing Normal University Anqing Anhui China
| | - Jiacheng Huang
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Guohong Xiang
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Jing Bai
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Yu Zhen
- College of Agriculture and Biotechnology Loudi Hunan China
| |
Collapse
|
21
|
Jin L, Gerson JR, Rocca JD, Bernhardt ES, Simonin M. Alkaline mine drainage drives stream sediment microbial community structure and function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150189. [PMID: 34818783 DOI: 10.1016/j.scitotenv.2021.150189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/24/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
With advances in eDNA metabarcoding, environmental microbiomes are increasingly used as cost-effective tools for monitoring ecosystem health. Stream ecosystems in Central Appalachia, heavily impacted by alkaline drainage from mountaintop coal mining, present ideal opportunities for biomonitoring using stream microbiomes, but the structural and functional responses of microbial communities in different environmental compartments are not well understood. We investigated sediment microbiomes in mining impacted streams to determine how community composition and function respond to mining and to look for potential microbial bioindicators. Using 16s rRNA gene amplicon sequencing, we found that mining leads to shifts in microbial community structure, with the phylum Planctomycetes enriched by 1-6% at mined sites. We observed ~51% increase in species richness in bulk sediments. In contrast, of the 31 predicted metabolic pathways that changed significantly with mining, 23 responded negatively. Mining explained 15-18% of the variance in community structure and S, Se, %C and %N were the main drivers of community and functional pathway composition. We identified 12 microbial indicators prevalent in the ecosystem and sensitive to mining. Overall, alkaline mountaintop mining drainage causes a restructuration of the sediment microbiome, and our study identified promising microbial indicators for the long-term monitoring of these impacted streams.
Collapse
Affiliation(s)
- Lingrong Jin
- Department of Biology, Duke University, Durham, NC 27708, United States.
| | | | - Jennifer D Rocca
- Department of Biology, Duke University, Durham, NC 27708, United States
| | - Emily S Bernhardt
- Department of Biology, Duke University, Durham, NC 27708, United States.
| | - Marie Simonin
- Department of Biology, Duke University, Durham, NC 27708, United States.
| |
Collapse
|
22
|
Wan J, Hu L, Zhang C, Cheng M, Xiong W, Zhou C. Response of microorganisms to phosphate nanoparticles in Pb polluted sediment: Implications of Pb bioavailability, enzyme activities and bacterial community. CHEMOSPHERE 2022; 286:131643. [PMID: 34311395 DOI: 10.1016/j.chemosphere.2021.131643] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
In recent years, various phosphate nanoparticles (PNPs) have been synthesized and applied for in situ Pb remediation in laboratory investigations. Here, three kinds of PNPs, CMC-nClAP (carboxymethyl cellulose stabilized nano-chlorapatite), SDS-nClAP (sodium dodecyl sulfate stabilized nano-chlorapatite) and Rha-nClAP (rhamnolipid stabilized nano-chlorapatite) were used to investigate the influence of PNPs on Pb bioavailability, enzyme activities and bacterial community in Pb polluted sediment. Pb bioavailability can be reduced by the application of CMC-nClAP, SDS-nClAP and Rha-nClAP with the maximum increases of residual fraction to 57.2 %, 58.3 % and 61.4 %, respectively. Alternatively, catalase activity, urease activity and protease activity also changed with the remediation of PNPs. Microbes responded quickly to PNPs in different ways: bacterial richness was all increased while bacterial diversity was only increased with the application of SDS-nClAP. Three dominant species, Proteobacteria, Firmicutes and Bacteroidetes were redistributed differentially during the treatment of PNPs. Interestingly, PNPs didn't significantly change the bacterial community structure in treated samples and CMC-nClAP induced fewer changes in microbial activity and community as compared with SDS-nClAP and Rha-nClAP. Overall, our findings suggested that long-term exposure to PNPs would decrease Pb bioavailability, regulate enzyme activities and affect bacterial community in sediments. The Pb bioavailability, physical-chemical properties of PNPs and properties of chemical/bio-surfactant may determine the response of microorganisms to PNPs in Pb polluted sediment.
Collapse
Affiliation(s)
- Jia Wan
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Liang Hu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|
23
|
Tang P, Shi M, Li X, Zhang Y, Lin D, Li T, Zhang W, Tiraferri A, Liu B. Can pre-ozonation be combined with gravity-driven membrane filtration to treat shale gas wastewater? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149181. [PMID: 34311379 DOI: 10.1016/j.scitotenv.2021.149181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/10/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Low-cost gravity-driven membrane (GDM) filtration has the potential to efficiently manage highly decentralized shale gas wastewater (SGW). In this work, the feasibility of combining low dosage pre-ozonation with the GDM process was evaluated in the treatment of SGW. The results showed that pre-ozonation significantly increased the stable flux (372%) of GDM filtration, while slightly deteriorating the quality of the effluent water in terms of organic content (-14%). These results were mainly attributed to the conversion of macromolecular organics to low-molecular weight fractions by pre-ozonation. Interestingly, pre-ozonation markedly increased the flux (198%) in the first month of operation also for a GDM process added with granular activated carbon (GGDM). Nevertheless, the flux of O3-GGDM systems dropped sharply around the 25th day of operation, which might be due to the rapid accumulation of pollutants in the high flux stage and the formation of a dense fouling layer. Pre-ozonation remarkably influenced the microbial community structure. And O3-GDM systems were characterized by distinct core microorganisms, which might degrade specific organics in SGW. Furthermore, O3-GDM outperformed simple GDM as a pretreatment for RO. These findings can provide valuable references for combining oxidation technologies with the GDM process in treating refractory wastewater.
Collapse
Affiliation(s)
- Peng Tang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Mengchao Shi
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Xin Li
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Yongli Zhang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China
| | - Dong Lin
- PetroChina Southwest Oil and Gas field Company, No.5 Fuqing Rd., Chengdu, Sichuan 610051, PR China
| | - Tong Li
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China.
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Alberto Tiraferri
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Baicang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China.
| |
Collapse
|
24
|
Singh S, Chakraborty S. Zinc removal from highly acidic and sulfate-rich wastewater in horizontal sub-surface constructed wetland. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:3403-3414. [PMID: 34850736 DOI: 10.2166/wst.2021.477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study demonstrated the successful use of a laboratory-scale baffled horizontal constructed wetland substituted with mixed organic media for zinc removal from high acidity (∼610 mg L-1 as CaCO3), sulfate-rich (∼1,300 mg L-1) wastewater. The wetland was planted with Typha latifolia. The mean zinc concentration in the influent was gradually increased from 0.56 ± 0.02 mg L-1 to 5.3 ± 0.42 mg L-1. The mean zinc concentration in the outflow was 0.22 ± 0.19 mg L-1, which accounted for 95% zinc removal throughout the study. However, total zinc uptake by the plants was 533 mg kg-1, accounting for only 1.2% of total zinc removal; therefore, major zinc retention occurred within wetland media (83%). The overall activity and specific sulfidogenic activity decreased at the end of the study to 1.43 mg chemical oxygen demand removed per mg of TVS per day and 0.60 mg sulfate reduced per mg of TVS per day, respectively. Additionally, 16S rRNA sequencing revealed major dominant phyla present: Firmicutes (36%), Proteobacteria (16%), Actinobacteria (8.8%), Planctomycetes (7.8%), Chloroflexi (3.5%), Acidobacteria (1.9%) and Fibrobacteres (1.5%).
Collapse
Affiliation(s)
- Shweta Singh
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Assam 781039, India E-mail:
| | - Saswati Chakraborty
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Assam 781039, India E-mail:
| |
Collapse
|
25
|
Deng R, Huang D, Lei L, Zhou C, Yin L, Liu X, Chen S, Li R, Tao J. Stabilization of lead in polluted sediment based on an eco-friendly amendment strategy: Microenvironment response mechanism. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125534. [PMID: 33730642 DOI: 10.1016/j.jhazmat.2021.125534] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Stabilization is the most important remediation mechanisms for sediment polluted heavy metals. However, little research has been done on the identification of microenvironmental response and internal correlation, as well as synergistic mechanisms during heavy metal remediation. This study aims to investigate the inner response mechanisms of microenvironment after the lead (Pb) are gradually stabilized in sediment. An eco-friendly amendment strategy which firstly used 100% biodegradable sophorolipids (SOP) to modify chlorapatite (ClAP) for the fabrication of SOP@nClAP was applied in this study. The stabilization efficiency of Pb was significantly improved by SOP@nClAP compared with ClAP. Most importantly, the high-throughput sequencing showed that the dominant species in the sediment changed with the stabilization of Pb. The decrease of Proteobacteria and increase of Firmicutes, especially the Sedimentibacter within the phylum Firmicute directly suggested that large amounts of Pb were stabilized. This research is not only devoted to stabilize Pb in sediment by eco-friendly amendment strategy, but also keep a watchful eye on microenvironment response mechanisms during the Pb stabilization in sediment. Therefore, this study lays a foundation for the future application of more heavy metal amendment strategies in the sediment environment and improves the possibility of large-scale site amendment.
Collapse
Affiliation(s)
- Rui Deng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Lei Lei
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Lingshi Yin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xigui Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Sha Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Jiaxi Tao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
26
|
Han X, Qu Y, Li D, Qiu Y, Yu Y, Feng Y. Remediation of saline-sodic soil by plant microbial desalination cell. CHEMOSPHERE 2021; 277:130275. [PMID: 33774245 DOI: 10.1016/j.chemosphere.2021.130275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/18/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Saline-sodic soil is widely distributed around the world and has induced severe impacts on ecosystems and agriculture. Plant microbial desalination cell (PMDC) and soil microbial desalination cell (SMDC) were constructed to migrate excessive salt in the soil in this study. Compared with SMDC, PMDCs generated higher voltage ranging from 150 mV to 410 mV (500Ω) and the maximum power density reached 34 mW/m2. Higher desalinization efficiency was obtained by PMDCs, the soil conductivity reduced from initial 2.4 mS/cm to 0.4 ± 0.1 mS/cm and pH decreased from initial 10.4 to 8.2 ± 0.1. Soils desalination in PMDCs was achieved through multiple pathways, including ion migration in PMDCs driven by electrokinetic process, plant absorption and bioremediation by plant roots and anode microorganism activity. Geobacter was the dominant electrogenic bacteria at the PMDC anode. The electrochemical and desalinating performance of PMDCs was enhanced by plants and provided a new method for remediation of saline-sodic soil.
Collapse
Affiliation(s)
- Xiaoyu Han
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin, 150090, China
| | - Youpeng Qu
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin, 150090, China; School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yikuang Street, Nangang District, Harbin, 150080, China.
| | - Da Li
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin, 150090, China
| | - Ye Qiu
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin, 150090, China
| | - Yanlig Yu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 Xidazhi Street, Nangang District, Harbin, 150001, China
| | - Yujie Feng
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin, 150090, China.
| |
Collapse
|
27
|
Chen Z, Liu WS, Zhong X, Zheng M, Fei YH, He H, Ding K, Chao Y, Tang YT, Wang S, Qiu R. Genome- and community-level interaction insights into the ecological role of archaea in rare earth element mine drainage in South China. WATER RESEARCH 2021; 201:117331. [PMID: 34153824 DOI: 10.1016/j.watres.2021.117331] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Microbial communities play crucial roles in mine drainage generation and remediation. Despite the wide distribution of archaea in the mine ecosystem, their diversity and ecological roles remain less understood than bacteria. Here, we retrieved 56 archaeal metagenome-assembled genomes from a river impacted by rare earth element (REE) mining activities in South China. Genomic analysis showed that archaea represented four distinct lineages, including phyla of Thaumarchaeota, Micrarchaeota, Nanoarchaeota and Thermoplasmata. These archaea represented a considerable fraction (up to 40%) of the total prokaryote community, which might contribute to nitrogen and sulfur cycling in the REE mine drainage. Reconstructed metabolic potential among diverse archaea taxa revealed that archaea were involved in the network of ammonia oxidation, denitrification, sulfate redox reaction, and required substrates supplied by other community members. As the dominant driver of ammonia oxidation, Thaumarchaeota might provide substrates to support the survival of two nano-sized archaea belonging to Micrarchaeota and Nanoarchaeota. Despite the absence of biosynthesis pathways for amino acids and nucleotides, the potential capacity for nitrite reduction (nirD) was observed in Micrarchaeota, indicating that these nano-sized archaea encompassed diverse metabolisms. Moreover, Thermoplasmata, as keystone taxa in community, might be the main genetic donor for the other three archaeal phyla, transferring many environmental resistance related genes (e.g., V/A-type ATPase and Vitamin B12-transporting ATPase). The genetic interactions within archaeal community through horizontal gene transfer might be the key to the formation of archaeal resistance and functional partitioning. This study provides putative metabolic and genetic insights into the diverse archaea taxa from community-level perspectives, and highlights the ecological roles of archaea in REE contaminated aquatic environment.
Collapse
Affiliation(s)
- Ziwu Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Wen-Shen Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Xi Zhong
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Mengyuan Zheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Ying-Heng Fei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Huan He
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Kengbo Ding
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China.
| | - Ye-Tao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
28
|
Li S, Wu J, Huo Y, Zhao X, Xue L. Profiling multiple heavy metal contamination and bacterial communities surrounding an iron tailing pond in Northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141827. [PMID: 32889271 DOI: 10.1016/j.scitotenv.2020.141827] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Northwest China is abundant in iron ore reserves and has become one of the important iron ore mining bases in China. However, the contamination and microbial community structure of iron tailing ponds in Northwest China have not been extensively investigated. In the present study, we characterized the main physicochemical properties, the multiple heavy metal contamination, and the bacterial community structure of the soils surrounding an iron tailing pond in Linze County, Zhangye city, Gansu Province. The tailing-associated soils were barren, exhibiting alkaline pH and low organic matter (OM), total nitrogen (TN) and total potassium (TK) compared with the control areas. There was considerable multiple heavy metal pollution in the iron tailing pond, mainly including lead (Pb), manganese (Mn), arsenic (As), cadmium (Cd), zinc (Zn), iron (Fe) and copper (Cu). Among the 303 identified core operational taxonomic units (OTUs), Actinobacteria, Proteobacteria and Deinococcus-Thermus were predominant at the phylum level, and Blastococcus, Arthrobacter, Marmoricola, Kocuria, Truepera, and Sphingomonadaceae were prevalent at a finer taxonomic level. The bacterial richness and diversity of the tailing samples were significantly lower than those of the reference samples. RDA, VPA and Spearman correlation analyses showed that the soil pH, CEC, OM, TP, TK, Cd, Pb, Ni, Zn, As and Mn had significant effects on the bacterial community composition and distribution. This work profiles the basic features of the soil physicochemical properties, the multiple heavy metal contamination and the bacterial community structure in an iron tailing pond in Northwest China, thereby providing a foundation for the future ecological remediation of the iron tailing environment in the area.
Collapse
Affiliation(s)
- Sha Li
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730070, China
| | - Juanli Wu
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yanli Huo
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730070, China
| | - Xu Zhao
- Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Lingui Xue
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730070, China.
| |
Collapse
|
29
|
Li W, Liu J, Hudson-Edwards KA. Seasonal variations in arsenic mobility and bacterial diversity: The case study of Huangshui Creek, Shimen Realgar Mine, Hunan Province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:142353. [PMID: 33370914 DOI: 10.1016/j.scitotenv.2020.142353] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 06/12/2023]
Abstract
Rivers throughout the world have been contaminated by arsenic dispersed from mining activities. The biogeochemical cycling of this arsenic has been shown to be due to factors such as pH, Eh, ionic strength and microbial activity, but few studies have examined the effects of both seasonal changes and microbial community structure on arsenic speciation and flux in mining-affected river systems. To address this research gap, a study was carried out in Huangshui Creek, Hunan province, China, which has been severely impacted by long-term historic realgar (α-As4S4) mining. Water and sediment sampling, and batch experiments at different temperatures using creek sediment, were used to determine the form, source and mobility of arsenic. Pentavalent (AsO43) and trivalent arsenic (AsO33-) were the dominant aqueous species (70-89% and 30-11%, respectively) in the creek, and the maximum concentration of inorganic arsenic in surface water was 10,400 μg/L. Dry season aqueous arsenic concentrations were lower than those in the wet season samples. The sediments contained both arsenate and arsenite, and relative proportions of these varied with season. 8.3 tons arsenic per annum were estimated to be exported from Huangshui Creek. Arsenic release from sediment increased by 3 to 5 times in high water temperature batch experiments (25 and 37 °C) compared to those carried out at low temperature (8 °C). Our data suggest that the arsenic-containing sediments were the main source of arsenic contamination in Huangshui Creek. Microbial community structured varied at the different sample sites along the creek. Redundancy analysis (RDA) showed that both temperature and arsenic concentrations were the main controlling factors on the structure of the microbial community. Protecbacteria, Bacteroidetes, Cyanobacteria, Firmicutes, Verrucomicrobia, and Planctomycetes were the stable dominant phyla in both dry and wet seasons. The genera Flavobacterium, Hydrogenophaga and Sphingomonas occurred in the most highly arsenic contaminated sites, which removed arsenic by related metabolism.Our findings indicate that seasonal variations profoundly control arsenic flux and species, microbial community structure and ultimately, the biogeochemical fate of arsenic.
Collapse
Affiliation(s)
- Wenxu Li
- The Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jing Liu
- College of Resources and Environment, Southwest University, Chongqing 400716, China.
| | - Karen A Hudson-Edwards
- Environment & Sustainability Institute and Camborne School of Mines, University of Exeter, Penryn, Cornwall TR10 9DF, UK.
| |
Collapse
|
30
|
Deng R, Huang D, Xue W, Lei L, Zhou C, Chen S, Wen X, Liu X. How does the microenvironment change during the stabilization of cadmium in exogenous remediation sediment? JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122836. [PMID: 32512439 DOI: 10.1016/j.jhazmat.2020.122836] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/15/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
The pollution degree of heavy metals is closely related to the sediment microenvironment. This study aims to give a comprehensive account of the changes of microenvironment in sediment during the stabilization of cadmium (Cd) by the sodium lignosulphonate (SLS) modified chlorapatites (SLS@nClAP). Chemical speciation change demonstrated that SLS@nClAP possessed better stabilizing capacity (65.84 %-76.66 %) for Cd than unmodified chlorapatites (ClAP) (45.88 %). It might be since that the surface of SLS@nClAP presented a more dispersive thin sheet structure with sulfonate groups compared with the aggregate block structure of ClAP. High-throughput sequencing results displayed that succession of microbial community occurred after remediation in sediment. Most importantly, the dominant genus changed from massilia to phosphate-solubilizing bacterium-pseudomonas which might be due to the remediation of chlorapatites and the stabilization of Cd. Moreover, enzyme activity changes showed that the activity of catalase and urease were highly influenced by the stability and bioavailability of Cd during the incubation. This study not only provided a novel remediation technology for Cd-polluted sediment but also confirmed that the change of microenvironment was closely related to the stability and bioavailability of Cd in sediment.
Collapse
Affiliation(s)
- Rui Deng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Wenjing Xue
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Lei Lei
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Sha Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Xiaofeng Wen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Xigui Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
31
|
Zhao X, Huang J, Zhu X, Chai J, Ji X. Ecological Effects of Heavy Metal Pollution on Soil Microbial Community Structure and Diversity on Both Sides of a River around a Mining Area. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17165680. [PMID: 32781566 PMCID: PMC7460318 DOI: 10.3390/ijerph17165680] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 01/24/2023]
Abstract
The objectives of this study were to understand the characteristics of heavy metal pollution caused by mining activities on the two sides of the Shun'an river and the response of soil microorganisms to the habitats by different contamination levels and vegetation. This paper selected soil samples from the banks of the Shun'an River near the Shizishan mining area, which is at the left of the river, in Tongling, Anhui Province, China. Using Illumina MiSeq 2500 technology, we analyzed the relationship between environmental factors and microbial communities. As the distance from the mining area increased, the heavy metal comprehensive pollution and potential risk value decreased. Additionally, the pollution severity and risk value of the left bank, where the mining area lies, were generally higher than those of the right bank. Because the symmetric sampling points on both banks of the river had similar planting types, their environmental factors and microbial community structure were similar and clustered. However, under different vegetation, the paddy soils tended to have a higher nutrient content and community richness and diversity than the vegetable fields or the abandoned land. It was found that soil microbial communities in this area were mostly affected by pH and Nemerow pollution index (PN). The pH significantly affected the abundance and structure of most microorganisms. In addition, Proteobacteria, Acidobacteria, and Bacteroidetes had significant tolerance to Zn, Pb, and Cd. By exploring the potential use of these tolerant microorganisms, we seek to provide strains and the theoretical basis for the bioremediation of areas contaminated by heavy metal.
Collapse
Affiliation(s)
- Xingqing Zhao
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China; (J.H.); (X.Z.)
- Correspondence: (X.Z.); (X.J.)
| | - Jian Huang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China; (J.H.); (X.Z.)
| | - Xuyan Zhu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China; (J.H.); (X.Z.)
| | - Jinchun Chai
- Department of Civil Engineering and Architecture, Saga University, Saga 8408502, Japan;
| | - Xiaoli Ji
- School of Economics, Changzhou University, Changzhou 213164, China
- Correspondence: (X.Z.); (X.J.)
| |
Collapse
|
32
|
Zhong S, Chen Q, Hu J, Liu S, Qiao S, Ni J, Sun W. Vertical distribution of microbial communities and their response to metal(loid)s along the vadose zone-aquifer sediments. J Appl Microbiol 2020; 129:1657-1673. [PMID: 32533753 DOI: 10.1111/jam.14742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/20/2020] [Accepted: 06/03/2020] [Indexed: 01/30/2023]
Abstract
AIMS This study attempted to demonstrate the vertical shift in bacterial, archaeal and fungal communities along the vadose zone-aquifer sediments and their respective responses to environmental factors. METHODS AND RESULTS We collected samples from the vadose zone and three aquifer sediments along a 42·5 m bore of a typical agricultural land. The results showed that the bacterial community shifted greatly with depth. The classes of Actinobacteria (19·5%) and NC10 (11·0%) were abundant in the vadose zone while Alphaproteobacteria (22·3%) and Gammaproteobacteria (20·1%) were enriched in the aquifer. Archaeal and fungal communities were relatively more homogeneous with no significant trend as a function of depth. Process analyses further indicated that selection dominated in the bacterial community, whereas stochastic processes governed archaeal and fungal communities. Moreover environment-bacteria interaction analysis showed that metal(loid)s, especially alkali metal, had a closer correlation with the bacterial community than physicochemical variables. CONCLUSIONS Depth strongly affected bacterial rather than archaeal and fungal communities. Metal(loid)s prevailed over physicochemical variables in shaping the bacterial community in the vadose zone-aquifer continuum. SIGNIFICANCE AND IMPACT OF THE STUDY Our study provides a new perspective on the structure of microbial communities from the vadose zone to the deep aquifers.
Collapse
Affiliation(s)
- S Zhong
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, China
| | - Q Chen
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, China
| | - J Hu
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, China
| | - S Liu
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, China
| | - S Qiao
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, China
| | - J Ni
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, China
| | - W Sun
- State Key Lab Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, People's Republic of China
| |
Collapse
|
33
|
Niu X, Zhou J, Wang X, Su X, Du S, Zhu Y, Yang J, Huang D. Indigenous Bacteria Have High Potential for Promoting Salix integra Thunb. Remediation of Lead-Contaminated Soil by Adjusting Soil Properties. Front Microbiol 2020; 11:924. [PMID: 32508771 PMCID: PMC7248224 DOI: 10.3389/fmicb.2020.00924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 04/20/2020] [Indexed: 01/25/2023] Open
Abstract
Salix integra Thunb., a fast-growing woody plant species, has been used for phytoremediation in recent years. However, little knowledge is available regarding indigenous soil microbial communities associated with the S. integra phytoextraction process. In this study, we used an Illumina MiSeq platform to explore the indigenous microbial composition after planting S. integra at different lead (Pb) contamination levels: no Pb, low Pb treatment (Pb 500 mg kg–1), and high Pb treatment (Pb 1500 mg kg–1). At the same time, the soil properties and their relationship with the bacterial communities were analyzed. The results showed that Pb concentration was highest in the root reaching at 3159.92 ± 138.98 mg kg–1 under the high Pb treatment. Planting S. integra decreased the total Pb concentration by 84.61 and 29.24 mg kg–1, and increased the acid-soluble Pb proportion by 1.0 and 0.75% in the rhizosphere and bulk soil under the low Pb treatment compared with unplanted soil, respectively. However, it occurred only in the rhizosphere soil under the high Pb treatment. The bacterial community structure and microbial metabolism were related to Pb contamination levels and planting of S. integra, while the bacterial diversity was only affected by Pb contamination levels. The dominant microbial species were similar, but their relative abundance shifted in different treatments. Most of the specific bacterial assemblages whose relative abundances were promoted by root activity and/or Pb contamination were suitable for use in plant-microbial combination remediation, especially many genera coming from Proteobacteria. Redundancy analysis (RDA) showed available nitrogen and pH having a significant effect on the bacteria relating to phytoremediation. The results indicated that indigenous bacteria have great potential in the application of combined S. integra-microbe remediation of lead-contaminated soil by adjusting soil properties.
Collapse
Affiliation(s)
- Xiaoyun Niu
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Jian Zhou
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Xiaona Wang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Xiaoyu Su
- College of Forestry, Hebei Agricultural University, Baoding, China
| | - Shaohua Du
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Yufei Zhu
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Jinyu Yang
- College of Forestry, Hebei Agricultural University, Baoding, China
| | - Dazhuang Huang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| |
Collapse
|
34
|
Zou X, Li P, Wang X, Zheng S, Dai F, Zhang H. Silver nanoparticle and Ag +-induced shifts of microbial communities in natural brackish waters: Are they more pronounced under oxic conditions than anoxic conditions? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113686. [PMID: 31812524 DOI: 10.1016/j.envpol.2019.113686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
With the burst of silver nanoparticles (AgNPs) applications, their potential entry into the environment has attracted increasing concern. To date, researches about the impacts of AgNPs on microbial communities have been scarcely conducted in the brackish waters. Here, the effects of interactions of AgNPs and Ag+ (as a positive control) with dissolved oxygen on natural brackish water microbial communities were investigated for 30 d. The introduction of AgNPs and Ag+ in natural brackish waters resulted in distinct bacterial community composition and structure as well as reduction of the richness and diversity, effects that were not eliminated completely during the tested periods. Anoxic conditions could attenuate the effects of AgNPs and Ag+ on the community, and dissolved oxygen made more contributions to community compositions for short-term exposure. High doses of AgNPs had more pronounced long-term impacts than Ag+ amendment. Compared with the controls, two general AgNP and Ag+ responses, namely, sensitivity and resistance, were observed. Sensitive species mainly included those of the genera Synechococcus and unclassified_f_Rhodobacteraceae, while resistant species mostly belonged to the phylum Bacteroidetes and participated in carbon metabolic processes. Our results indicated that the microbial communities that were involved in nutrient cycles (such as carbon, nitrogen, and sulfide) and photoautotrophic bacteria that contained bacteriochlorophyll were adversely affected by AgNPs and Ag+. In addition, dissolved oxygen could further change the microbial communities. These results implied that under different oxygen conditions AgNPs possibly resulted in varying microbial survival strategies and affected the biogeochemical cycling of nutrients in natural brackish waters.
Collapse
Affiliation(s)
- Xiaoyan Zou
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Penghui Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Xiaodan Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Shenghui Zheng
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Fuqiang Dai
- College of Harbour and Environmental Engineering, Jimei University, Xiamen, China
| | - Hongwu Zhang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China; Ningbo Research Center for Urban Environment, Chinese Academy of Sciences, Ningbo, China.
| |
Collapse
|
35
|
Argudo M, Gich F, Bonet B, Espinosa C, Gutiérrez M, Guasch H. Responses of resident (DNA) and active (RNA) microbial communities in fluvial biofilms under different polluted scenarios. CHEMOSPHERE 2020; 242:125108. [PMID: 31669992 DOI: 10.1016/j.chemosphere.2019.125108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/24/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
Pollution from human activities is a major threat to the ecological integrity of fluvial ecosystems. Microbial communities are the most abundant organisms in biofilms, and are key indicators of various pollutants. We investigated the effects some human stressors (nutrients and heavy metals) have on the structure and activity of microbial communities in seven sampling sites located in the Ter River basin (NE Spain). Water and biofilm samples were collected in order to characterize physicochemical and biofilm parameters. The 16S rRNA gene was analysed out from DNA and RNA extracts to obtain α and β diversity. Principal coordinates analyses (PCoA) of the operational taxonomic units (OTUs) in the resident microbial community revealed that nutrients and conductivity were the main driving forces behind the diversity and composition. The effects of mining have had mainly seen on the taxonomic composition of the active microbial community, but also at the OTUs level. Remarkably, metal-impacted communities were very active, which would indicate a close link with the stress faced, that is probably related to the stimulation of detoxification.
Collapse
Affiliation(s)
- María Argudo
- Institute of Aquatic Ecology, University of Girona, Campus de Montilivi, 17071, Girona, Spain; Center for Advanced Studies of Blanes (CEAB-CSIC), Accés a La Cala Sant Francesc 14, 17300, Blanes, Girona, Spain
| | - Frederic Gich
- Institute of Aquatic Ecology, University of Girona, Campus de Montilivi, 17071, Girona, Spain
| | - Berta Bonet
- School of Geography, Earth and Environmental Sciences (GEES), University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Carmen Espinosa
- BETA Tech Center. TECNIO Network, U Science Tech, University of Vic - Central University of Catalonia, de La Laura 13, 08500, Vic, Spain; Centre d'Estudis dels Rius Mediterranis, Museu Industrial del Ter. Passeig del Ter, 2, 08560, Manlleu, Spain
| | - Marina Gutiérrez
- Department of Engineering, University of Ferrara, Via Saragat 1, I-44122 Ferrara, Italy
| | - Helena Guasch
- Institute of Aquatic Ecology, University of Girona, Campus de Montilivi, 17071, Girona, Spain; Center for Advanced Studies of Blanes (CEAB-CSIC), Accés a La Cala Sant Francesc 14, 17300, Blanes, Girona, Spain.
| |
Collapse
|
36
|
Li Y, Fan L, Zhang W, Zhu X, Lei M, Niu L. How did the bacterial community respond to the level of urbanization along the Yangtze River? ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:161-172. [PMID: 31803891 DOI: 10.1039/c9em00399a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bacterial communities in the sediment of the Yangtze River influenced by rapid urbanization have thus far been under-investigated despite the importance of microorganisms as mass transporters. Here, the response patterns of the bacterial community along the Yangtze River to different levels of urbanization were generated using 16S rRNA Miseq sequencing. The results reveal that economic aspects have made the largest contribution (41.8%) to the urbanization along the Yangtze River. A clear declining tendency in the abundance of Chloroflexi and Acidobacteria and a significant increase in the abundance of Bacteroidetes were observed with an elevated urbanization level gradient. Bacterial diversity showed a negative relevance (P < 0.01) to the demographic, economic and social urbanization index. Per capita gross domestic product (GDP) (PCGDP) and the GDP of tertiary industry (GDP3) exhibited significantly (P < 0.05) negative correlations with the bacterial diversity, while a positive relationship between the pH and α-diversity (P < 0.05) was observed. Redundancy analysis revealed that PCGDP was significantly correlated (13.9%, P < 0.01) with the overall bacterial compositions, followed by temperature (10.8%, P < 0.01) and GDP3 (8.4%, P < 0.05). Meanwhile, the GDP3 (35.9%), the ratio of total nitrogen and total phosphorus (N/P) (12.9%) and the PCGDP (8.8%) were revealed to be most significantly related to the metabolic bacteria (P < 0.05). The metabolic functions of the bacteria related to the N-cycle and S-cycle were significant in the sediment of the Yangtze River. The variations of the bacterial community and metabolic function responding to the rapid urbanization were related to the economic development via the influence of the 'mass effect'. In brief, the tertiary industry was significantly correlated with the variations in the composition of the metabolic community and the variations in the overall bacteria were both related to the tertiary and secondary industry.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Luhuan Fan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Xiaoxiao Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Mengting Lei
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
37
|
Wang X, Gao P, Li D, Liu J, Yang N, Gu W, He X, Tang W. Risk assessment for and microbial community changes in Farmland soil contaminated with heavy metals and metalloids. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109685. [PMID: 31541947 DOI: 10.1016/j.ecoenv.2019.109685] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/09/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Food security and human health can be seriously affected by heavy metal and metalloid (HM) pollution of soil. In this study, the risks posed by HMs and microbial community responses to HM pollution of agricultural soil in southwestern China were investigated. The C, N, P, and S (nutrients) concentrations were 12040.7-15912.7, 1298.06-1832.01, 750.91-2050.35, and 269.17-2115.52 mg/kg, respectively. The As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn concentrations were 3.11-8.20, 1.85-6.56, 22.83-43.96, 11.21-23.30, 0.08-0.81, 11.02-22.97, 24.07-42.96, and 193.63-698.39 mg/kg, respectively. Interpolation analysis indicated that the nutrient and HM concentrations varied spatially rather strongly. The concentrations of all of the elements were higher in soil from the northern sampling sites than in soil from the other sites. HMs in soil were found to pose high levels of risk (RI 898.85, i.e., >600). Cd contributed more than the other HMs to the risk assessment values (ErCd 293.72-1031.94), so was the most serious contaminant. Microbial diversity decreased over time in soil with high HM concentrations (plot S2) and was lower than in soil with low HM concentrations (plot S8). The nutrient and HM concentrations correlated with the microbial community characteristics. Proteobacteria, Acidobacteria, and Chloroflexi were (in decreasing order) the dominant bacterial phyla. We speculate that these phyla may be strongly resistant to HMs. The fourth most common phylum was Actinobacteria. Bacteria in this phylum could be used as biological indicators of the HM pollution status. Soil micro-ecosystems can self-regulate. HM stress will affect the evolution of soil microorganisms and relevant functional genes. The spatiotemporal variability in the microbial community responses to HMs and the spatial analysis and ecological risk assessment results will be useful reference data for the remediation of HM-polluted soil.
Collapse
Affiliation(s)
- Xu Wang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Gao
- College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Daping Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ju Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Nuan Yang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, China
| | - Wenzhi Gu
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong He
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, China
| | - Wenzhong Tang
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory on Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 10085, China
| |
Collapse
|
38
|
The Spatial Distribution of the Microbial Community in a Contaminated Aquitard below an Industrial Zone. WATER 2019. [DOI: 10.3390/w11102128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The industrial complex Neot Hovav, in Israel, is situated above an anaerobic fractured chalk aquitard, which is polluted by a wide variety of hazardous organic compounds. These include volatile and non-volatile, halogenated, organic compounds. In this study, we characterized the indigenous bacterial population in 17 boreholes of the groundwater environment, while observing the spatial variations in the population and structure as a function of distance from the polluting source. In addition, the de-halogenating potential of the microbial groundwater population was tested through a series of lab microcosm experiments, thus exemplifying the potential and limitations for bioremediation of the site. In all samples, the dominant phylum was Proteobacteria. In the production plant area, the non-obligatory organo-halide respiring bacteria (OHRB) Firmicutes Phylum was also detected in the polluted water, in abundancies of up to 16 %. Non-metric multidimensional scaling (NMDS) analysis of the microbial community structure in the groundwater exhibited clusters of distinct populations following the location in the industrial complex and distance from the polluting source. Dehalogenation of halogenated ethylene was demonstrated in contrast to the persistence of brominated alcohols. Persistence is likely due to the chemical characteristics of brominated alcohols, and not because of the absence of active de-halogenating bacteria.
Collapse
|
39
|
Wu Z, Gao G, Wang Y. Effects of soil properties, heavy metals, and PBDEs on microbial community of e-waste contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:705-714. [PMID: 31151067 DOI: 10.1016/j.ecoenv.2019.05.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/29/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Heavy metals and polybrominated diphenyl ethers (PBDEs) are ubiquitous pollutants at electronic waste (e-waste) contaminated sites, their individual impacts on soil microbial community has attracted wide attention, however, limited research is available on the combined effects of heavy metals and PBDEs on microbial community of e-waste contaminated. Therefore, combined effects of heavy metals and PBDEs on the microbial community in the e-waste contaminated soil were investigated in this study. Samples were collected from Ziya e-waste recycling area in Tianjin, northern China, and the soil microbial communities were then analyzed by the high-throughput MiSeq 16S rRNA sequencing to assess the effects of soil properties, heavy metals, and PBDEs on the soil microbial community. Candidatus Nitrososphaera, Steroidobacter and Kaistobacter were the dominant microbial species in the soils. Similar microbial metabolic functions, including amino acid metabolism, carbohydrate metabolism and membrane transport, were found in all soil samples. Redundancy analysis and variation partition analysis revealed that the microbial community was mainly influenced by PBDEs (including BDE 183, BDE 99, BDE 100 and BDE 154) in horizontal soil samples. However, TN, biomass, BDE 100, BDE 99 and BDE 66 were the major drivers shaping the microbial community in vertical soil samples.
Collapse
Affiliation(s)
- Zhineng Wu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Xinxiang Medical University, School of Public Health, Xinxiang, 453003, China
| | - Guanghai Gao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; State Key Laboratory of Hydroscience and Engineering, Tsinghua University, China.
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
40
|
NO and N2O accumulation during nitrite-based sulfide-oxidizing autotrophic denitrification. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Liu JL, Yao J, Wang F, Min N, Gu JH, Li ZF, Sunahara G, Duran R, Solevic-Knudsen T, Hudson-Edwards KA, Alakangas L. Bacterial diversity in typical abandoned multi-contaminated nonferrous metal(loid) tailings during natural attenuation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:98-107. [PMID: 30669085 DOI: 10.1016/j.envpol.2018.12.045] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/08/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
Abandoned nonferrous metal(loid) tailings sites are anthropogenic, and represent unique and extreme ecological niches for microbial communities. Tailings contain elevated and toxic content of metal(loid)s that had negative effects on local human health and regional ecosystems. Microbial communities in these typical tailings undergoing natural attenuation are often very poorly examined. The diversity and inferred functions of bacterial communities were examined at seven nonferrous metal(loid) tailings sites in Guangxi (China), which were abandoned between 3 and 31 years ago. The acidity of the tailings sites rose over 31 years of site inactivity. Desulfurivibrio, which were always coupled with sulfur/sulfide oxidation to dissimilate the reduction of nitrate/nitrite, were specific in tailings with 3 years abandonment. However, genus beneficial to plant growth (Rhizobium), and iron/sulfur-oxidizing bacteria and metal(loid)-related genera (Acidiferrobacter and Acidithiobacillus) were specific within tailings abandoned for 23 years or more. The increased abundance of acid-generating iron/sulfur-oxidizing and metal(loid)-related bacteria and specific bacterial communities during the natural attenuation could provide new insights for understanding microbial ecosystem functioning in mine tailings. OTUs related to Sulfuriferula, Bacillus, Sulfurifustis, Gaiella, and Thiobacillus genera were the main contributors differentiating the bacterial communities between the different tailing sites. Multiple correlation analyses between bacterial communities and geochemical parameters indicated that pH, TOC, TN, As, Pb, and Cu were the main drivers influencing the bacterial community structures. PICRUSt functional exploration revealed that the main functions were related to DNA repair and recombination, important functions for bacterial adaptation to cope with the multi-contamination of tailings. Such information provides new insights to guide future metagenomic studies for the identification of key functions beyond metal-transformation/resistance. As well, our results offers novel outlooks for the management of bacterial communities during natural attenuation of multi-contaminated nonferrous metal(loid) tailings sites.
Collapse
Affiliation(s)
- Jian-Li Liu
- School of Energy and Environment Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jun Yao
- School of Water Resource and Environment Engineering, China University of Geosciences (Beijing), 100083, China.
| | - Fei Wang
- School of Energy and Environment Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ning Min
- School of Water Resource and Environment Engineering, China University of Geosciences (Beijing), 100083, China
| | - Ji-Hai Gu
- School of Water Resource and Environment Engineering, China University of Geosciences (Beijing), 100083, China
| | - Zi-Fu Li
- School of Energy and Environment Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Geoffrey Sunahara
- School of Water Resource and Environment Engineering, China University of Geosciences (Beijing), 100083, China; Department of Natural Resource Sciences, McGill University, Montreal, Quebec, H9X3V9, Canada
| | - Robert Duran
- School of Water Resource and Environment Engineering, China University of Geosciences (Beijing), 100083, China; Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| | - Tatjana Solevic-Knudsen
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoseva 12, PO Box 473, 11001, Belgrade, Serbia
| | - Karen A Hudson-Edwards
- Environment & Sustainability Institute and Camborne School of Mines, University of Exeter, Penryn, Cornwall, TR10 9DF, UK
| | - Lena Alakangas
- Department of Chemical Engineering and Geosciences, Luleå University of Technology, SE-97187 Luleå, Sweden
| |
Collapse
|
42
|
Zhao MM, Chen YP, Xue LG, Fan TT, Emaneghemi B. Greater health risk in wet season than in dry season in the Yellow River of the Lanzhou region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:873-883. [PMID: 30743885 DOI: 10.1016/j.scitotenv.2018.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/01/2018] [Accepted: 07/01/2018] [Indexed: 06/09/2023]
Abstract
The Yellow River flows through Lanzhou city and is the only drinking water source for 3.6 million residents. Yet, little is known regarding the safety and quality of the Yellow River for resident consumption. To address this knowledge-gap, water samples were collected from different sites within this section during the dry and wet seasons. Physico-chemical parameters and microbial community metrics were analyzed to assess the health risk associated with this Chinese mother river. Water quality of the river was better during the dry season (March-April) than in the wet season (September-October). Fifteen conventional physico-chemical and biological indices, such as NH3-N, NO2--N, total nitrate (TN), five day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), volatile phenol (VP), and coliform abundances, generally exceeded acceptable standards. The average abundance of coliforms was 2.8 times that of acceptable standards in the dry season and 4.6 times the standards in the wet season. The concentration of the toxic metal As was more than two times than that of the national standard in waters from the wet season. Microbial community analysis also indicated that community diversity and species richness were positively correlated with the concentrations of several physico-chemical parameters. The results indicate that As and Cr6+ pose potential risk for human health through consumption by residents. Further, the results indicated that human activities are the main causes of water pollution, and that long-term strict monitoring should be conducted to ensure the safety of drinking water consumption and the health of the environment.
Collapse
Affiliation(s)
- Meng M Zhao
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yi-Ping Chen
- SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China.
| | - Lin-Gui Xue
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Tao T Fan
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Brown Emaneghemi
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
43
|
Fan M, Liu Z, Nan L, Wang E, Chen W, Lin Y, Wei G. Isolation, characterization, and selection of heavy metal-resistant and plant growth-promoting endophytic bacteria from root nodules of Robinia pseudoacacia in a Pb/Zn mining area. Microbiol Res 2018; 217:51-59. [DOI: 10.1016/j.micres.2018.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/14/2018] [Accepted: 09/05/2018] [Indexed: 11/26/2022]
|
44
|
Persistent Bacterial and Fungal Community Shifts Exhibited in Selenium-Contaminated Reclaimed Mine Soils. Appl Environ Microbiol 2018; 84:AEM.01394-18. [PMID: 29915105 PMCID: PMC6070768 DOI: 10.1128/aem.01394-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 11/20/2022] Open
Abstract
Mining and other industrial activities worldwide have resulted in Se-enriched surface soils, which pose risks to human and environmental health. Although not well studied, microbial activity can alter Se bioavailability and distribution, even in oxic environments. We used high-throughput sequencing to profile bacterial and fungal communities inhabiting mine soils in southeastern Idaho, comparing mined and unmined locations within two reclaimed phosphate mine areas containing various Se concentrations. The goal was to determine whether microbial communities differed in (i) different mines, (ii) mined areas compared to unmined areas, and (iii) various soil Se concentrations. Though reclamation occurred 20 to 30 years ago, microbial community structures in mined soils were significantly altered compared to unmined soils, suggesting persistent mining-related impacts on soil processes. Additionally, operational taxonomic unit with a 97% sequence similarity cutoff (OTU0.03) richness and diversity were significantly diminished with increasing Se, though not with other geochemical parameters, suggesting that Se contamination shapes communities in favor of Se-tolerant microorganisms. Two bacterial phyla, Actinobacteria and Gemmatimonadetes, were enriched in high-Se soils, while for fungi, Ascomycota dominated all soils regardless of Se concentration. Combining diversity analyses and taxonomic patterns enables us to move toward connecting physiological function of microbial groups to Se biogeochemical cycling in oxic soil environments.IMPORTANCE Selenium contamination in natural environments is of great concern globally, and microbial processes are known to mediate Se transformations. Such transformations alter Se mobility, bioavailability, and toxicity, which can amplify or mitigate Se pollution. To date, nearly all studies investigating Se-microbe interactions have used culture-based approaches with anaerobic bacteria despite growing knowledge that (i) aerobic Se transformations can occur, (ii) such transformations can be mediated by microorganisms other than bacteria, and (iii) microbial community dynamics, rather than individual organismal activities, are important for metal(loid) cycling in natural environments. We examined bacterial and fungal communities in Se-contaminated reclaimed mine soils and found significant declines in diversity at high Se concentrations. Additionally, we identified specific taxonomic groups that tolerate excess Se and may be useful for bioremediation purposes. These patterns were similar across mines of different ages, suggesting that microbial community impacts may persist long after physicochemical parameters indicate complete site recovery.
Collapse
|
45
|
Liu J, Li C, Jing J, Zhao P, Luo Z, Cao M, Ma Z, Jia T, Chai B. Ecological patterns and adaptability of bacterial communities in alkaline copper mine drainage. WATER RESEARCH 2018; 133:99-109. [PMID: 29367051 DOI: 10.1016/j.watres.2018.01.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/31/2017] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
Environmental gradient have strong effects on community assembly processes. In order to reveal the effects of alkaline mine drainage (AlkMD) on bacterial and denitrifying bacterial community compositions and diversity in tailings reservoir, here we conducted an experiment to examine all and core bacterial taxa and denitrifying functional genes's (nirS, nirK, nosZΙ) abundance along a chemical gradient in tailings water in Shibahe copper tailings in Zhongtiaoshan, China. Differences in bacterial and denitrifying bacterial community compositions in different habitats and their relationships with environmental parameters were analyzed. The results showed that the richness and diversity of bacterial community in downstream seeping water (SDSW) were the largest, while that in upstream tailings water (STW1) were the lowest. The diversity and abundance of bacterial communities tended to increase from STW1 to SDSW. The variation of bacterial community diversity was significantly related to electroconductibility (EC), nitrate (NO3-), nitrite (NO2-), total carbon (TC), inorganic carbon (IC) and sulfate (SO42-), but was not correlated with geographic distance in local scale. Core taxa from class to genus were all significantly related to NO3- and NO2-. Core taxa Rhodobacteraceae, Rhodobacter, Acinetobacter and Hydrogenophaga were typical denitrifying bacteria. The variation trends of these groups were consistent with the copy number of nirS, nirK and nosZΙ, demonstrating their importance in the process of nitrogen reduction. The copy number of nirK, nosZΙ and nirS/16S rDNA, nirK/16Sr DNA correlated strongly with NO3-, NO2- and IC, but nirS and nosZI/16SrDNA had no significant correlation with NO3- and NO2-. The copy numbers of denitrifying functional genes (nirS, nirK and nosZΙ) were negatively correlated with heavy metal plumbum (Pb) and zinc (Zn). It showed that heavy metal contamination was an important factor affecting the structure of denitrifying bacterial community in AlkMD. In this study we have identified the distribution pattern of bacterial community along physiochemical gradients in alkaline tailings reservoir and displayed the driving force of shaping the structure of bacterial community. The influence of NO3-, NO2-, IC and heavy metal Pb and Zn on bacterial community might via their influence on the functional groups involving nitrogen, carbon and metal metabolisms.
Collapse
Affiliation(s)
- Jinxian Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan, 030006, China
| | - Cui Li
- Faculty of Environment Economics, Shanxi University of Finance and Economics, Taiyuan, 030006, China
| | - Juhui Jing
- Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Pengyu Zhao
- Institute of Loess Plateau, Shanxi University, Taiyuan, 030006, China
| | - Zhengming Luo
- Institute of Loess Plateau, Shanxi University, Taiyuan, 030006, China
| | - Miaowen Cao
- Institute of Loess Plateau, Shanxi University, Taiyuan, 030006, China
| | - Zhuanzhuan Ma
- Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Tong Jia
- Institute of Loess Plateau, Shanxi University, Taiyuan, 030006, China
| | - Baofeng Chai
- Institute of Loess Plateau, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
46
|
Fan M, Xiao X, Guo Y, Zhang J, Wang E, Chen W, Lin Y, Wei G. Enhanced phytoremdiation of Robinia pseudoacacia in heavy metal-contaminated soils with rhizobia and the associated bacterial community structure and function. CHEMOSPHERE 2018; 197:729-740. [PMID: 29407837 DOI: 10.1016/j.chemosphere.2018.01.102] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 05/05/2023]
Abstract
Heavy metals can cause serious contamination of soils, especially in mining regions. A detailed understanding of the effects of heavy metals on plants and root-associated microbial communities could help to improve phytoremediation systems. In this study, black locust (Robinia pseudoacacia) seedlings with or without rhizobial inoculation were planted in soils contaminated with different levels of heavy metals. Bacterial communities in rhizosphere and bulk soil samples were analyzed using 16S rRNA gene sequencing on the Illumina MiSeq platform and shotgun metagenome sequencing on the Illumina HiSeq platform. Soil bacterial communities varied significantly depending on the level of soil contamination, and planting also had some influence. Although inoculation of Mesorhizobium loti HZ76 (a natural microsymbiont of R. pseudoacacia) was a relatively minor factor, it did influence the soil bacterial community. Under the selective pressure, plant growth promotion-related biomarkers in the rhizosphere increased after inoculation compared with non-inoculated controls, especially those associated with Mesorhizobium, Variovorax, Streptomyces, and Rhodococcus genera. Genes encoding ATP-binding cassette transporters were up-regulated in the rhizosphere after inoculation compared with genes related to sulfur/nitrogen metabolism. These results provide insight into soil bacterial communities and their functions in the R. pseudoacacia rhizosphere in response to rhizobial inoculation and heavy metal contamination. This knowledge may prove useful for improving phytoremediation of metal-contaminated soils.
Collapse
Affiliation(s)
- Miaochun Fan
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiao Xiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yanqing Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jun Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, México D.F., Mexico
| | - Weimin Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yanbing Lin
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
47
|
Pei Y, Yu Z, Ji J, Khan A, Li X. Microbial Community Structure and Function Indicate the Severity of Chromium Contamination of the Yellow River. Front Microbiol 2018; 9:38. [PMID: 29472897 PMCID: PMC5810299 DOI: 10.3389/fmicb.2018.00038] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 01/09/2018] [Indexed: 11/30/2022] Open
Abstract
The Yellow River is the most important water resource in northern China. In the recent past, heavy metal contamination has become severe due to industrial processes and other anthropogenic activities. In this study, riparian soil samples with varying levels of chromium (Cr) pollution severity were collected along the Gansu industrial reach of the Yellow River, including samples from uncontaminated sites (XC, XGU), slightly contaminated sites (LJX, XGD), and heavily contaminated sites (CG, XG). The Cr concentrations of these samples varied from 83.83 mg⋅kg-1 (XGU) to 506.58 mg⋅kg-1 (XG). The chromate [Cr (VI)] reducing ability in the soils collected in this study followed the sequence of the heavily contaminated > slightly contaminated > the un-contaminated. Common Cr remediation genes chrA and yieF were detected in the XG and CG samples. qRT-PCR results showed that the expression of chrA was up-regulated four and threefold in XG and CG samples, respectively, whereas the expression of yieF was up-regulated 66- and 7-fold in the same samples after 30 min treatment with Cr (VI). The copy numbers of chrA and yieF didn’t change after 35 days incubation with Cr (VI). The microbial communities in the Cr contaminated sampling sites were different from those in the uncontaminated samples. Especially, the relative abundances of Firmicutes and Bacteroidetes were higher while Actinobacteria was lower in the contaminated group than uncontaminated group. Further, potential indicator species, related to Cr such as Cr-remediation genera (Geobacter, PSB-M-3, Flavobacterium, and Methanosarcina); the Cr-sensitive genera (Skermanella, Iamia, Arthrobacter, and Candidatus Nitrososphaera) were also identified. These data revealed that Cr shifted microbial composition and function. Further, Cr (VI) reducing ability could be related with the expression of Cr remediation genes.
Collapse
Affiliation(s)
- Yaxin Pei
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhengsheng Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jing Ji
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
48
|
Wang N, Zhang S, He M. Bacterial community profile of contaminated soils in a typical antimony mining site. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:141-152. [PMID: 28039624 DOI: 10.1007/s11356-016-8159-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
The soils around the world's largest antimony mine have been contaminated by high concentrations of Sb and As, which might influence microbial diversity in the surrounding soils. The ecological effects of bioavailable Sb and As on the composition and diversity of microbial community in soils remain unknown. In this study, the relative abundance, taxonomic diversity and composition of bacterial community in soils from a typical Sb mine area, and the relationship between the bacterial community and bioavailable concentrations as well as environmental factors have been investigated comprehensively using high-throughput sequencing (HTS) and diffusive gradients in thin films (DGT). The results indicated that Proteobacteria, Acidobacteria, Chloroflexi, Bacteroidetes, Actinobacteria, Gemmatimonadetes, and Cyanobacteria were the dominant bacterial populations at phylum level in all soil samples, accounting for more than 80% of the bacteria sequenced. The abundance and diversity of bacterial community vary along a metal contamination gradient. Redundancy discriminate analysis (RDA) revealed that 74.74% of bacterial community variation in the contaminated soils was explained by six environmental factors (pH, SbDGT, AsDGT, potential ecological risk index (RI), TC, TN), among which pH, SbDGT, and AsDGT were dominant factors influencing the composition and diversity of bacteria. This study contributes to our understanding of microbial diversity in a local ecosystem and introduces the option of studying bioavailable Sb and As using DGT.
Collapse
Affiliation(s)
- Ningning Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Suhuan Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China.
| |
Collapse
|
49
|
Cai W, Li Y, Niu L, Zhang W, Wang C, Wang P, Meng F. New insights into the spatial variability of biofilm communities and potentially negative bacterial groups in hydraulic concrete structures. WATER RESEARCH 2017; 123:495-504. [PMID: 28689132 DOI: 10.1016/j.watres.2017.06.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/17/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
The composition and distribution characteristics of bacterial communities in biofilms attached to hydraulic concrete structure (HCS) surfaces were investigated for the first time in four reservoirs in the middle and lower reaches of the Yangtze River Basin using 16S rRNA Miseq sequencing. High microbial diversity was found in HCS biofilms, and notable differences were observed in different types of HCS. Proteobacteria, Cyanobacteria and Chloroflexi were the predominant phyla, with respective relative abundances of 35.3%, 25.4% and 13.0%. The three most abundant genera were Leptolyngbya, Anaerolineaceae and Polynucleobacter. The phyla Beta-proteobacteria and Firmicutes and genus Lyngbya were predominant in CGP, whereas the phyla Cyanobacteria and Chloroflexi and genera Leptolyngbya, Anaerolinea and Polynucleobacter survived better in land walls and bank slopes. Dissolved oxygen, ammonia nitrogen and temperature were characterized as the main factors driving the bacterial community composition. The most abundant groups of metabolic functions were also identified as ammonia oxidizers, sulphate reducers, and dehalogenators. Additionally, functional groups related to biocorrosion were found to account for the largest proportion (14.0% of total sequences) in gate piers, followed by those in land walls (11.5%) and bank slopes (10.2%). Concrete gate piers were at the greatest risk of biocorrosion with the most abundant negative bacterial groups, especially for sulphate reducers. Thus, it should be paid high attention to the biocorrosion prevention of concrete gate piers. Overall, this study contributed to the optimization of microbial control and the improvement of the safety management for water conservation structures.
Collapse
Affiliation(s)
- Wei Cai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China.
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| |
Collapse
|
50
|
El Houari A, Ranchou-Peyruse M, Ranchou-Peyruse A, Dakdaki A, Guignard M, Idouhammou L, Bennisse R, Bouterfass R, Guyoneaud R, Qatibi AI. Desulfobulbus oligotrophicus sp. nov., a sulfate-reducing and propionate-oxidizing bacterium isolated from a municipal anaerobic sewage sludge digester. Int J Syst Evol Microbiol 2017; 67:275-281. [DOI: 10.1099/ijsem.0.001615] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Abdelaziz El Houari
- Université de Pau et des Pays de l’Adour, CNRS, IPREM UMR 5254, Equipe Environnement et Microbiologie, 64013 Pau, France
- Anaerobic Microbiology Team (E02B26), Sciences and Techniques Faculty, Cadi Ayyad University PO Box 549, 40 000 Marrakech, Morocco
| | - Magali Ranchou-Peyruse
- Université de Pau et des Pays de l’Adour, CNRS, IPREM UMR 5254, Equipe Environnement et Microbiologie, 64013 Pau, France
| | - Anthony Ranchou-Peyruse
- Université de Pau et des Pays de l’Adour, CNRS, IPREM UMR 5254, Equipe Environnement et Microbiologie, 64013 Pau, France
| | - Adrien Dakdaki
- Université de Pau et des Pays de l’Adour, CNRS, IPREM UMR 5254, Equipe Environnement et Microbiologie, 64013 Pau, France
| | - Marion Guignard
- Université de Pau et des Pays de l’Adour, CNRS, IPREM UMR 5254, Equipe Environnement et Microbiologie, 64013 Pau, France
| | - Lahcen Idouhammou
- Anaerobic Microbiology Team (E02B26), Sciences and Techniques Faculty, Cadi Ayyad University PO Box 549, 40 000 Marrakech, Morocco
| | - Rhizlane Bennisse
- Anaerobic Microbiology Team (E02B26), Sciences and Techniques Faculty, Cadi Ayyad University PO Box 549, 40 000 Marrakech, Morocco
| | - Radia Bouterfass
- Anaerobic Microbiology Team (E02B26), Sciences and Techniques Faculty, Cadi Ayyad University PO Box 549, 40 000 Marrakech, Morocco
| | - Rémy Guyoneaud
- Université de Pau et des Pays de l’Adour, CNRS, IPREM UMR 5254, Equipe Environnement et Microbiologie, 64013 Pau, France
| | - Abdel-Illah Qatibi
- Anaerobic Microbiology Team (E02B26), Sciences and Techniques Faculty, Cadi Ayyad University PO Box 549, 40 000 Marrakech, Morocco
| |
Collapse
|