1
|
Wang N, Xu Y, Peng L, Liang C, Song S, Quintana M. Biotic and abiotic removal of acetaminophen during sidestream partial nitritation processes: Underlying mechanisms and transformation pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177836. [PMID: 39644630 DOI: 10.1016/j.scitotenv.2024.177836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Pharmaceutical residues in sidestream wastewater pose the hazardous threats to ecosystem and human health. In this work, the biotic and abiotic degradation of acetaminophen were investigated during the sidestream partial nitritation process. Results demonstrated that the abiotic removal efficiency of acetaminophen was positively correlated with nitrite concentration, whereas the biotransformation of acetaminophen was mainly dependent on metabolic types and free nitrous acid (FNA) concentrations. 91.6 % of acetaminophen, acting as the sole carbon and/or energy source to support the growth of ammonia-oxidizing bacteria (AOB) and heterotrophs, was removed by adsorption (6.2 %) and biotransformation (consisting of 49.4 % AOB-induced metabolism and 36.0 % heterotrophs-induced metabolism) when lacking nitrite and FNA. Increasing FNA from 0.03 mg N L-1 to 0.15 mg L-1 led to decrease in acetaminophen removal (from 78.8 % to 60.1 %) and ammonia oxidation, ascribed to the inhibitory effect of FNA on AOB activity. Nitro substitution occurred under AOB-induced cometabolism, while hydroxylation was conducted by heterotrophs. N-deacetylation, ring cleavage, hydroxylation, nitro-reduction, and deamination at lower FNA levels (0.03 mg N L-1) contributed to the formation of small molecular products, supporting the feasibility of sidestream partial nitritation in the effective elimination of acetaminophen. This work provides strategies for optimizing anti-inflammatory drugs removal via the regulation of FNA in the sidestream wastewater treatment process.
Collapse
Affiliation(s)
- Ning Wang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China; Doctorado Institucional de Ingeniería y Ciencia de Materiales, Universidad Autónoma de San Luís Potosí, Av, Sierra Leona 530, San Luis Potosí 78210, Mexico
| | - Yifeng Xu
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China.
| | - Lai Peng
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; Shenzhen Research Institute of Wuhan University of Technology, Shenzhen 518000, Guangdong, China
| | - Chuanzhou Liang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | - Shaoxian Song
- Instituto de Metalurgia, Universidad Autónoma de San Luís Potosí, Av. Sierra Leona 550, San Luis Potosí 78210, Mexico
| | - Mildred Quintana
- Facultad de Ciencias, Universidad Autónoma de San Luís Potosí, Av. Parque Chapultepec 1570, San Luis Potosi 78210, Mexico
| |
Collapse
|
2
|
Ezzariai A, Jimenez J, Barret M, Riboul D, Lacroix MZ, Fels LE, Kouisni L, Bousquet-Melou A, Pinelli E, Hafidi M, Patureau D. Potentialities of semi-continuous anaerobic digestion for mitigating antibiotics in sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:66067-66078. [PMID: 39613995 DOI: 10.1007/s11356-024-35664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
The behavior and removal of roxithromycin (ROX), oxytetracycline (OTC), chlortetracycline (CTC), and enrofloxacin (ENR) were investigated during the steady state of sludge anaerobic digestion (AD) in semi-continuous mode (37 °C). Sludge was spiked at realistic concentrations (50 μg/L of each antibiotic) and then used to feed the bioreactor for 80 days. Antibiotics were extracted from the substrate and digested sludge samples by accelerated solvent extraction (ASE). Accurate determination of antibiotics was obtained by the standard addition method (SAM) associated with the liquid chromatography-tandem mass spectrometry (LC-MS/MS). The presence of antibiotics at a concentration of 2.5 μg/g TS had no inhibitory effects on methane (CH4) production, total and volatile solids (TS and VS) removal as well as chemical oxygen demand (COD) removal. During the steady-state, antibiotics were removed significantly by 50, 100, and 59% respectively for the ROX, OTC, and CTC. Furthermore, ENR removal was not statistically significant and was estimated at 36%. This study highlighted that AD process could partially remove parent compounds, but ROX, CTC, and ENR persisted in the digested sludge. Hence, AD could be considered as a sludge treatment for mitigating, but not suppressing, the release of antibiotics through sludge application.
Collapse
Affiliation(s)
- Amine Ezzariai
- INRAE, Univ. Montpellier, LBE, 102 Avenue Des Étangs, 11100, Narbonne, France.
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco.
| | - Julie Jimenez
- INRAE, Univ. Montpellier, LBE, 102 Avenue Des Étangs, 11100, Narbonne, France
| | - Maialen Barret
- Laboratoire Ecologie Fonctionnelle Et Environnement, CNRS, INPT, UPS, Université de Toulouse, Avenue de L'Agrobiopôle, 31326, Castanet-Tolosan, France
| | - David Riboul
- Laboratoire Ecologie Fonctionnelle Et Environnement, CNRS, INPT, UPS, Université de Toulouse, Avenue de L'Agrobiopôle, 31326, Castanet-Tolosan, France
| | | | - Loubna El Fels
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMagE), Labelled Research Unit CNRST N°4, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
| | - Lamfeddal Kouisni
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco
| | | | - Eric Pinelli
- Laboratoire Ecologie Fonctionnelle Et Environnement, CNRS, INPT, UPS, Université de Toulouse, Avenue de L'Agrobiopôle, 31326, Castanet-Tolosan, France
| | - Mohamed Hafidi
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMagE), Labelled Research Unit CNRST N°4, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
| | - Dominique Patureau
- INRAE, Univ. Montpellier, LBE, 102 Avenue Des Étangs, 11100, Narbonne, France
| |
Collapse
|
3
|
Ciotola E, Sottorff I, Koch K, Cesaro A, Esposito G. Assessment of trace organic chemicals in anaerobically digested sludge and their partitioning behaviour: Simultaneous Soxhlet chemical extraction and quantification via LC-MS/MS analysis. WATER RESEARCH 2024; 268:122780. [PMID: 39556983 DOI: 10.1016/j.watres.2024.122780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/20/2024]
Abstract
The increasing number of trace organic contaminants (TrOCs) detected in anaerobically digested sludge (ADS) is triggering increasing concern on its circular-economy reuse practices. A large scientific effort has been performed to define their concentration limits, partition behaviour, and innovative technologies for their removal, which require the definition of versatile and economically sustainable analytical methodologies. In this study, a Soxhlet extraction method coupled with LC-MS/MS analysis was developed to simultaneously determine 32 TrOCs in ADS, 11 of them being quantified in this matrix for the first time. The targeted TrOCs were selected based on the European Urban Wastewater Treatment Directive, and on their frequency of detection in municipal wastewater and/or sludge and chemical diversity. The use of methanol as solvent allowed good recovery efficiencies from ADS solid phase, with an extraction time of 3.5 h and without the need for subsequent clean-up procedures. The targeted LC-MS/MS method enabled high-sensitivity quantification of TrOCs in the liquid phase. At least 25 out of the 32 target compounds were detected in ADS samples from two wastewater treatment plants in Germany, providing their concentration data and highlighting the influence of TrOCs characteristics and sludge properties on contaminant partition coefficients (KD). The experimental outcomes highlight the versatility of the Soxhlet method, which is effective in extracting compounds characterized by diverse properties and structures, and opens new perspectives for the analysis of various substrates. This could support the European Sewage Sludge Directive, expanding its application to soils and cultivated foods and offering insights into TrOCs transfer among different substrates and their influence when used as fertilizer, aiding in the efficient definition of risk assessment methodologies and regulatory concentration limits.
Collapse
Affiliation(s)
- Enrica Ciotola
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, via Claudio 21, 80125, Napoli, Italy.
| | - Ignacio Sottorff
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany; Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany.
| | - Konrad Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany.
| | - Alessandra Cesaro
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, via Claudio 21, 80125, Napoli, Italy.
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, via Claudio 21, 80125, Napoli, Italy.
| |
Collapse
|
4
|
Wang X, Wang Y, Zhang Z, Tian L, Zhu T, Zhao Y, Tong Y, Yang Y, Sun P, Liu Y. Effect, Fate and Remediation of Pharmaceuticals and Personal Care Products (PPCPs) during Anaerobic Sludge Treatment: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19095-19114. [PMID: 39428634 DOI: 10.1021/acs.est.4c06760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Biomass energy recovery from sewage sludge through anaerobic treatment is vital for environmental sustainability and a circular economy. However, large amounts of pharmaceutical and personal care products (PPCPs) remain in sludge, and their interactions with microbes and enzymes would affect resource recovery. This article reviews the effects and mechanisms of PPCPs on anaerobic sludge treatment. Most PPCPs posed adverse impacts on methane production, while certain low-toxicity PPCPs could stimulate volatile fatty acids and biohydrogen accumulation. Changes in the microbial community structure and functional enzyme bioactivities were also summarized with PPCPs exposure. Notably, PPCPs such as carbamazepine could bind with the active sites of the enzyme and induce microbial stress responses. The fate of various PPCPs during anaerobic sludge treatment indicated that PPCPs featuring electron-donating groups (e.g., ·-NH2 and ·-OH), hydrophilicity, and low molecular weight were more susceptible to microbial utilization. Key biodegrading enzymes (e.g., cytochrome P450 and amidase) were crucial for PPCP degradation, although several PPCPs remain refractory to biotransformation. Therefore, remediation technologies including physical pretreatment, chemicals, bioaugmentation, and their combinations for enhancing PPCPs degradation were outlined. Among these strategies, advanced oxidation processes and combined strategies effectively removed complex and refractory PPCPs mainly by generating free radicals, providing recommendations for improving sludge detoxification.
Collapse
Affiliation(s)
- Xiaomin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Zixin Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Lixin Tian
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
5
|
Błaszczyk W, Siatecka A, Tlustoš P, Oleszczuk P. Occurrence and dissipation mechanisms of organic contaminants during sewage sludge anaerobic digestion: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173517. [PMID: 38821290 DOI: 10.1016/j.scitotenv.2024.173517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Sewage sludge, a complex mixture of contaminants and pathogenic agents, necessitates treatment or stabilization like anaerobic digestion (AD) before safe disposal. AD-derived products (solid digestate and liquid fraction) can be used as fertilizers. During AD, biogas is also produced, and used for energy purposes. All these fractions can be contaminated with various compounds, whose amount depends on the feedstocks used in AD (and their mutual proportions). This paper reviews studies on the distribution of organic contaminants across AD fractions (solid digestate, liquid fraction, and biogas), delving into the mechanisms behind contaminant dissipation and proposing future research directions. AD proves to be a relatively effective method for removing polychlorinated biphenyls, polycyclic aromatic hydrocarbons, pharmaceuticals, antibiotic resistance genes and hydrocarbons. Contaminants are predominantly removed through biodegradation, but many compounds, especially hydrophobic (e.g. per- and polyfluoroalkyl substances), are also sorbed onto digestate particles. The process of sorption is suggested to reduce the bioavailability of contaminants. As a result of sorption, contaminants accumulate in the largest amount in the solid digestate, whereas in smaller amounts in the other AD products. Polar pharmaceuticals (e.g. metformin) are particularly leached, while volatile methylsiloxanes and polycyclic aromatic hydrocarbons, characterized by a high Henry's law constant, are volatilized into the biogas. The removal of compounds can be affected by AD operational parameters, the type of sludge, physicochemical properties of contaminants, and the sludge pretreatment used.
Collapse
Affiliation(s)
- Wiktoria Błaszczyk
- Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences, 15 Akademicka Street, 20-950 Lublin, Poland
| | - Anna Siatecka
- Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences, 15 Akademicka Street, 20-950 Lublin, Poland
| | - Pavel Tlustoš
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 129 Kamýcká Street, Praha 6 - Suchdol 165 00, Czech Republic
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 3 Maria Curie-Sklodowska Square, 20-031 Lublin, Poland.
| |
Collapse
|
6
|
Wang L, Lei Z, Zhang Z, Yang X, Chen R. Deciphering the role of extracellular polymeric substances in the adsorption and biotransformation of organic micropollutants during anaerobic wastewater treatment. WATER RESEARCH 2024; 257:121718. [PMID: 38723358 DOI: 10.1016/j.watres.2024.121718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024]
Abstract
Extracellular polymeric substances (EPS) participate in the removal of organic micropollutants (OMPs), but the primary pathways of removal and detailed mechanisms remain elusive. We evaluated the effect of EPS on removal for 16 distinct chemical classes of OMPs during anaerobic digestion (AD). The results showed that hydrophobic OMPs (HBOMPs) could not be removed by EPS, while hydrophilic OMPs (HLOMPs) were amenable to removal via adsorption and biotransformation of EPS. The adsorption and biotransformation of HLOMPs by EPS accounted up to 19.4 ± 0.9 % and 6.0 ± 0.8 % of total removal, respectively. Further investigations into the adsorption and biotransformation mechanisms of HLOMPs by EPS were conducted utilizing spectral, molecular dynamics simulation, and electrochemical analysis. The results suggested that EPS provided abundant binding sites for the adsorption of HLOMPs. The binding of HLOMPs to tryptophan-like proteins in EPS formed nonfluorescent complexes. Hydrogen bonds, hydrophobic interactions and water bridges were key to the binding processes and helped stabilize the complexes. The biotransformation of HLOMPs by EPS may be attributed to the presence of extracellular redox active components (c-type cytochromes (c-Cyts), c-Cyts-bound flavins). This study enhanced the comprehension for the role of EPS on the OMPs removal in anaerobic wastewater treatment.
Collapse
Affiliation(s)
- Lianxu Wang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Zhen Lei
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Zixin Zhang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Xiaohuan Yang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
7
|
Bertanza G, Abbà A, Alias C, Amatucci A, Binelli A, Castiglioni S, Fossati M, Cruzeiro C, Torre CD, Domini M, Feretti D, Gilioli G, Magni S, Mazzoleni G, Menghini M, Pedrazzani R, Schroeder P, Simonetto A, Steimberg N, Ventura V, Vezzoli S, Zerbini I. To spread or not to spread? Assessing the suitability of sewage sludge and other biogenic wastes for agriculture reuse. MethodsX 2024; 12:102599. [PMID: 38379723 PMCID: PMC10876616 DOI: 10.1016/j.mex.2024.102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024] Open
Abstract
Sewage sludge (biosolids) management represents a worldwide issue. Due to its valuable properties, approximately one half of the EU production is recovered in agriculture. Nevertheless, growing attention is given to potential negative effects deriving from the presence of harmful pollutants. It is recognized that a (even very detailed) chemical characterization is not able to predict ecotoxicity of a mixture. However, this can be directly measured by bioassays. Actually, the choice of the most suitable tests is still under debate. This paper presents a multilevel characterization protocol of sewage sludge and other organic residues, based on bioassays and chemical-physical-microbiological analyses. The detailed description of the experimental procedure includes all the involved steps: the criteria for selecting the organic matrices to be tested and compared; the sample pre-treatment required before the analyses execution; the chemical, physical and microbiological characterisation; the bioassays, grouped in three classes (baseline toxicity; specific mode of action; reactive mode of action); data processing. The novelty of this paper lies in the integrated use of advanced tools, and is based on three pillars:•the direct ecosafety assessment of the matrices to be reused.•the adoption of innovative bioassays and analytical procedures.•the original criteria for data normalization and processing.
Collapse
Affiliation(s)
- Giorgio Bertanza
- Dipartimento di Ingegneria Civile, Architettura, Territorio e Ambiente e di Matematica, Università degli Studi di Brescia. Via Branze 43, Brescia I-25123, Italy
- MISTRAL, Centro Interuniversitario di Ricerca, Milano Bicocca e Verona “Modelli Integrati di Studio per la Tutela della Salute e la Prevenzione negli Ambienti di Vita e di Lavoro”, Università di Brescia, Italy
| | - Alessandro Abbà
- Dipartimento di Ingegneria Civile, Architettura, Territorio e Ambiente e di Matematica, Università degli Studi di Brescia. Via Branze 43, Brescia I-25123, Italy
| | - Carlotta Alias
- Dipartimento di Specialità Medico-Chirurgiche, Scienze Radiologiche e Sanità Pubblica, Università degli Studi di Brescia, Viale Europa 11, Brescia I-25123, Italy
| | - Achille Amatucci
- Dipartimento di Ingegneria Civile, Architettura, Territorio e Ambiente e di Matematica, Università degli Studi di Brescia. Via Branze 43, Brescia I-25123, Italy
| | - Andrea Binelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano I-20133, Italy
| | - Sara Castiglioni
- Dipartimento Ambiente e Salute, Istituto di Ricerche Farmacologiche Mario Negri, IRCCS. Via Mario Negri 2, Milano I-20156, Italy
| | - Marco Fossati
- Dipartimento Ambiente e Salute, Istituto di Ricerche Farmacologiche Mario Negri, IRCCS. Via Mario Negri 2, Milano I-20156, Italy
| | - Catarina Cruzeiro
- Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, Neuherberg D-85764, Germany
| | - Camilla Della Torre
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano I-20133, Italy
| | - Marta Domini
- Dipartimento di Ingegneria Civile, Architettura, Territorio e Ambiente e di Matematica, Università degli Studi di Brescia. Via Branze 43, Brescia I-25123, Italy
| | - Donatella Feretti
- MISTRAL, Centro Interuniversitario di Ricerca, Milano Bicocca e Verona “Modelli Integrati di Studio per la Tutela della Salute e la Prevenzione negli Ambienti di Vita e di Lavoro”, Università di Brescia, Italy
- Dipartimento di Specialità Medico-Chirurgiche, Scienze Radiologiche e Sanità Pubblica, Università degli Studi di Brescia, Viale Europa 11, Brescia I-25123, Italy
| | - Gianni Gilioli
- Dipartimento di Ingegneria Civile, Architettura, Territorio e Ambiente e di Matematica, Università degli Studi di Brescia. Via Branze 43, Brescia I-25123, Italy
| | - Stefano Magni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano I-20133, Italy
| | - Giovanna Mazzoleni
- MISTRAL, Centro Interuniversitario di Ricerca, Milano Bicocca e Verona “Modelli Integrati di Studio per la Tutela della Salute e la Prevenzione negli Ambienti di Vita e di Lavoro”, Università di Brescia, Italy
- Dipartimento di Scienze Cliniche e Sperimentali, Università degli Studi di Brescia. Viale Europa 11, Brescia I-25123, Italy
| | - Michele Menghini
- Dipartimento di Ingegneria Meccanica e Industriale, Università degli Studi di Brescia. Via Branze 38, Brescia I-25123, Italy
| | - Roberta Pedrazzani
- MISTRAL, Centro Interuniversitario di Ricerca, Milano Bicocca e Verona “Modelli Integrati di Studio per la Tutela della Salute e la Prevenzione negli Ambienti di Vita e di Lavoro”, Università di Brescia, Italy
- Dipartimento di Ingegneria Meccanica e Industriale, Università degli Studi di Brescia. Via Branze 38, Brescia I-25123, Italy
| | - Peter Schroeder
- Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, Neuherberg D-85764, Germany
| | - Anna Simonetto
- Dipartimento di Ingegneria Civile, Architettura, Territorio e Ambiente e di Matematica, Università degli Studi di Brescia. Via Branze 43, Brescia I-25123, Italy
| | - Nathalie Steimberg
- Dipartimento di Scienze Cliniche e Sperimentali, Università degli Studi di Brescia. Viale Europa 11, Brescia I-25123, Italy
| | - Vera Ventura
- Dipartimento di Ingegneria Civile, Architettura, Territorio e Ambiente e di Matematica, Università degli Studi di Brescia. Via Branze 43, Brescia I-25123, Italy
| | - Simona Vezzoli
- Dipartimento di Ingegneria Civile, Architettura, Territorio e Ambiente e di Matematica, Università degli Studi di Brescia. Via Branze 43, Brescia I-25123, Italy
| | - Ilaria Zerbini
- Dipartimento di Specialità Medico-Chirurgiche, Scienze Radiologiche e Sanità Pubblica, Università degli Studi di Brescia, Viale Europa 11, Brescia I-25123, Italy
| |
Collapse
|
8
|
Pirete LDM, Camargo FP, Grosseli GM, Sakamoto IK, Fadini PS, Silva EL, Varesche MBA. Microbial diversity and metabolic inference of diclofenac removal in optimised batch heterotrophic-denitrifying conditions by means of factorial design. ENVIRONMENTAL TECHNOLOGY 2024; 45:2847-2866. [PMID: 36927407 DOI: 10.1080/09593330.2023.2192365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Using the Response Surface Methodology (RSM) and Rotational Central Composite Design (RCCD), this study evaluated the removal of DCF under denitrifying conditions, with ethanol as cosubstrate, in batch reactors, being 1 L Erlenmeyer flasks (330 mL of reactional volume) containing Dofing medium and kept under agitation at 130 rpm and incubated at mesophilic temperature (30 °C). It considered the individual and multiple effects of the variables: nitrate (130 - 230 mg NO3- L-1), DCF (60-100 µg DCF L-1) and ethanol (130 - 230 mg EtOH L-1). The highest drug removal efficiency (17.5%) and total nitrate removal were obtained at 176.6 ± 4.3 mg NO3 -L-1, 76.8 ± 3.7 µg DCF L-1, and 180.0 ± 2.5 mg EtOH L-1. Under such conditions, the addition of ethanol and nitrate was significant for the additional removal of diclofenac (p > 0.05). The prevalence of Rhodanobacter, Haliangium and Terrimonas in the inoculum biomass (activated sludge systems) was identified through the 16S rRNA gene sequencing. The potential of these genera to remove nitrate and degrade diclofenac was inferred, and the main enzymes potentially involved in this process were α-methylacyl-CoA racemase, long-chain fatty acid-CoA ligase, catalases and pseudoperoxidases.
Collapse
Affiliation(s)
- Luciana de Melo Pirete
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Franciele Pereira Camargo
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | | | - Isabel K Sakamoto
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | | | | | | |
Collapse
|
9
|
Xiang Y, Xiong W, Yang Z, Xu R, Zhang Y, Wu M, Ye Y, Peng H, Sun W, Wang D. Metagenomic insights into the toxicity of carbamazepine to functional microorganisms in sludge anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170780. [PMID: 38340855 DOI: 10.1016/j.scitotenv.2024.170780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Contaminants of emerging concern (CECs) contained in sludge, such as carbamazepine, may be toxic to microorganisms and affect the biogenesis of methane during anaerobic digestion. In this study, different scales of anaerobic digesters were constructed to investigate the inhibitory effect of carbamazepine. Results showed that carbamazepine reduced methane production by 11.3 % and 62.1 % at concentrations of 0.4 and 2 mg/g TS, respectively. Carbamazepine hindered the dissolution of organic matter and the degradation of protein. Carbamazepine inhibited some fermentative bacteria, especially uncultured Aminicenantales, whose abundance decreased by 9.5-93.4 % under carbamazepine stress. It is worth noting that most prior studies investigated the effects of CECs only based on well-known microorganisms, ignoring the metabolisms of uncultured microorganisms. Genome-predicted metabolic potential suggested that 54 uncultured metagenome-assembled genomes (MAGs) associated with acidogenesis or acetogenesis. Therein, uncultured Aminicenantales related MAGs were proved to be acetogenic fermenters, their significant reduction may be an important reason for the decrease of methane production under carbamazepine stress. The toxicity of carbamazepine to microorganisms was mainly related to the overproduction of reactive oxygen species. This study elucidates the inhibition mechanism of carbamazepine and emphasizes the indispensable role of uncultured microorganisms in anaerobic digestion.
Collapse
Affiliation(s)
- Yinping Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Rui Xu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Yanru Zhang
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350007, PR China
| | - Mengru Wu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yuhang Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Haihao Peng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Weimin Sun
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou 510650, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
10
|
Vo PHN, Ky Le G, Huy LN, Zheng L, Chaiwong C, Nguyen NN, Nguyen HTM, Ralph PJ, Kuzhiumparambil U, Soroosh D, Toft S, Madsen C, Kim M, Fenstermacher J, Hai HTN, Duan H, Tscharke B. Occurrence, spatiotemporal trends, fate, and treatment technologies for microplastics and organic contaminants in biosolids: A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133471. [PMID: 38266587 DOI: 10.1016/j.jhazmat.2024.133471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 01/06/2024] [Accepted: 01/06/2024] [Indexed: 01/26/2024]
Abstract
This review provides a comprehensive overview of the occurrence, fate, treatment and multi-criteria analysis of microplastics (MPs) and organic contaminants (OCs) in biosolids. A meta-analysis was complementarily analysed through the literature to map out the occurrence and fate of MPs and 10 different groups of OCs. The data demonstrate that MPs (54.7% occurrence rate) and linear alkylbenzene sulfonate surfactants (44.2% occurrence rate) account for the highest prevalence of contaminants in biosolids. In turn, dioxin, polychlorinated biphenyls (PCBs) and phosphorus flame retardants (PFRs) have the lowest rates (<0.01%). The occurrence of several OCs (e.g., dioxin, per- and polyfluoroalkyl substances, polycyclic aromatic hydrocarbons, pharmaceutical and personal care products, ultraviolet filters, phosphate flame retardants) in Europe appear at higher rates than in Asia and the Americas. However, MP concentrations in biosolids from Australia are reported to be 10 times higher than in America and Europe, which required more measurement data for in-depth analysis. Amongst the OC groups, brominated flame retardants exhibited exceptional sorption to biosolids with partitioning coefficients (log Kd) higher than 4. To remove these contaminants from biosolids, a wide range of technologies have been developed. Our multicriteria analysis shows that anaerobic digestion is the most mature and practical. Thermal treatment is a viable option; however, it still requires additional improvements in infrastructure, legislation, and public acceptance.
Collapse
Affiliation(s)
- Phong H N Vo
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia.
| | - Gia Ky Le
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Lai Nguyen Huy
- Environmental Engineering and Management, Asian Institute of Technology (AIT), Klong Luang, Pathumthani, Thailand
| | - Lei Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China; Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | - Chawalit Chaiwong
- Environmental Engineering and Management, Asian Institute of Technology (AIT), Klong Luang, Pathumthani, Thailand
| | - Nam Nhat Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hong T M Nguyen
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | - Peter J Ralph
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Unnikrishnan Kuzhiumparambil
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Danaee Soroosh
- Biotechnology Department, Iranian Research Organization for Science and Technology, Tehran 3353-5111, Iran
| | - Sonja Toft
- Urban Utilities, Level 10/31 Duncan St, Fortitude Valley, QLD 4006, Australia
| | - Craig Madsen
- Urban Utilities, Level 10/31 Duncan St, Fortitude Valley, QLD 4006, Australia
| | - Mikael Kim
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | | | - Ho Truong Nam Hai
- Faculty of Environment, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City 700000, Viet Nam
| | - Haoran Duan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ben Tscharke
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| |
Collapse
|
11
|
Perez-Bou L, Gonzalez-Martinez A, Gonzalez-Lopez J, Correa-Galeote D. Promising bioprocesses for the efficient removal of antibiotics and antibiotic-resistance genes from urban and hospital wastewaters: Potentialities of aerobic granular systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123115. [PMID: 38086508 DOI: 10.1016/j.envpol.2023.123115] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
The use, overuse, and improper use of antibiotics have resulted in higher levels of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs), which have profoundly disturbed the equilibrium of the environment. Furthermore, once antibiotic agents are excreted in urine and feces, these substances often can reach wastewater treatment plants (WWTPs), in which improper treatments have been highlighted as the main reason for stronger dissemination of antibiotics, ARB, and ARGs to the receiving bodies. Hence, achieving better antibiotic removal capacities in WWTPs is proposed as an adequate approach to limit the spread of antibiotics, ARB, and ARGs into the environment. In this review, we highlight hospital wastewater (WW) as a critical hotspot for the dissemination of antibiotic resistance due to its high level of antibiotics and pathogens. Hence, monitoring the composition and structure of the bacterial communities related to hospital WW is a key factor in controlling the spread of ARGs. In addition, we discuss the advantages and drawbacks of the current biological WW treatments regarding the antibiotic-resistance phenomenon. Widely used conventional activated sludge technology has proved to be ineffective in mitigating the dissemination of ARB and ARGs to the environment. However, aerobic granular sludge (AGS) technology is a promising technology-with broad adaptability and excellent performance-that could successfully reduce antibiotics, ARB, and ARGs in the generated effluents. We also outline the main operational parameters involved in mitigating antibiotics, ARB, and ARGs in WWTPs. In this regard, WW operation under long hydraulic and solid retention times allows better removal of antibiotics, ARB, and ARGs independently of the WW technology employed. Finally, we address the current knowledge of the adsorption and degradation of antibiotics and their importance in removing ARB and ARGs. Notably, AGS can enhance the removal of antibiotics, ARB, and ARGs due to the complex microbial metabolism within the granular biomass.
Collapse
Affiliation(s)
- Lizandra Perez-Bou
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain; Microbial Biotechnology Group, Microbiology and Virology Department, Faculty of Biology, University of Havana, Cuba
| | - Alejandro Gonzalez-Martinez
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain
| | - Jesus Gonzalez-Lopez
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain
| | - David Correa-Galeote
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain.
| |
Collapse
|
12
|
Qian J, Atallah Al-Asad H, Parniske J, Brandl A, Degenhardt M, Morck T. Influence of effluent particles and particle-bound micropollutants on the removal of micropollutants and UVA 254 in wastewater effluent ozonation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115915. [PMID: 38194809 DOI: 10.1016/j.ecoenv.2023.115915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
This study systematically investigated the influence of effluent particles and activated sludge (AS) particles on the removal of micropollutants via wastewater effluent ozonation within typical effluent total suspended solids (TSS) concentrations. A series of batch experiments revealed that particle concentrations up to 30 mg/L had a minor impact on the removal of organic micropollutants (OMPs) in the aqueous phase. Moreover, the reduction of UV absorbance at 254 nm (UVA254) was negatively correlated to the level of particle concentration at ozone doses higher than 0.5 gO3/gDOC. It indicates that UVA254 abatement was more sensitive to the presence of particles compared to OMP removal. Organic micropollutants (OMPs) sorbed on effluent particles and sludge particles were extracted before and after ozonation. OMP sorption in effluent particles was 2-5 times higher than that in sludge particles. During the ozonation of raw secondary effluent, particle-bound micropollutants were removed comparably to the micropollutants in the aqueous phase. This suggests that the boundary layer surrounding the particle didn't affect the removal of OMPs in the particle phase. Furthermore, the removal of existing OMPs (irbesartan, sulfamethoxazole, and metoprolol) in the effluent was used to assess the ozone and •OH exposure. In water samples with and without particles, the elimination of OMPs could be reliably predicted (R² > 0.95) by calculated ozone and •OH exposures.
Collapse
Affiliation(s)
- Jueying Qian
- University of Kassel, Chair of Urban Water Engineering, Kurt-Wolters-Street 3, 34125 Kassel, Germany
| | - Hana Atallah Al-Asad
- University of Kassel, Chair of Urban Water Engineering, Kurt-Wolters-Street 3, 34125 Kassel, Germany
| | - Janna Parniske
- University of Kassel, Chair of Urban Water Engineering, Kurt-Wolters-Street 3, 34125 Kassel, Germany
| | - Andrea Brandl
- University of Kassel, Chair of Urban Water Engineering, Kurt-Wolters-Street 3, 34125 Kassel, Germany
| | - Monika Degenhardt
- University of Kassel, Chair of Urban Water Engineering, Kurt-Wolters-Street 3, 34125 Kassel, Germany
| | - Tobias Morck
- University of Kassel, Chair of Urban Water Engineering, Kurt-Wolters-Street 3, 34125 Kassel, Germany.
| |
Collapse
|
13
|
Balasundaram G, Gahlot P, Ahmed B, Biswas P, Tyagi VK, Svensson K, Kumar V, Kazmi AA. Advanced steam-explosion pretreatment mediated anaerobic digestion of municipal sludge: Effects on methane yield, emerging contaminants removal, and microbial community. ENVIRONMENTAL RESEARCH 2023; 238:117195. [PMID: 37758117 DOI: 10.1016/j.envres.2023.117195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/05/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Advanced steam explosion pretreatment, i.e., the Thermal hydrolysis process (THP) is applied mainly to improve the sludge solubilization and subsequent methane yield in the downstream anaerobic digestion (AD) process. However, the potential of THP in pretreating the high solids retention time (SRT) sludges, mitigating the risk of emerging organic micropollutants and effects on anaerobic microbiome in digester remains unclear. In this study, sludge from a sequencing batch reactor (SBR) system operating at a SRT of 40 days was subjected to THP using a 5 L pilot plant at the temperature ranges of 120-180 °C for 30-120 min. The effect of THP on organics solubilization, methane yield, organic micropollutant removal, and microbial community dynamics was studied. The highest methane yield of 507 mL CH4/g VSadded and volatile solids (VS) removal of 54% were observed at 160°C- 30min THP condition, i.e., 4.1 and 2.6 times higher than the control (123 mL CH4/gVSadded, 20.7%), respectively. The experimental values of hydrolysis coefficient and methane yield have been predicted using Modified Gompertz, First order, and Logistics models. The observed values fitted well with all three models showing an R2 value between 0.96 and 1.0. THP pretreated sludges showed >80% removal of Trimethoprim, Enrofloxacin, Ciprofloxacin, and Bezafibrate. However, Carbamazepine, 17α-ethinylestradiol, and Progesterone showed recalcitrant behavior, resulting in less than 50% removal. Microbial diversity analysis showed the dominance of Proteobacteria, Firmicutes, Chloroflexi, and Bacteroidetes, collectively accounting for >70-80% of bacterial reads. They are mainly responsible for the fermentation of complex biomolecules like polysaccharides, proteins, and lipids. The THP-mediated anaerobic digestion of sludge shows better performance than the control digestion, improved methane yield, higher VS and micropollutants removal, and a diverse microbiome in the digester.
Collapse
Affiliation(s)
- Gowtham Balasundaram
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Pallavi Gahlot
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Banafsha Ahmed
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Pinakshi Biswas
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India.
| | | | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - A A Kazmi
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
14
|
Wang J, Xu S, Zhao K, Song G, Zhao S, Liu R. Risk control of antibiotics, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) during sewage sludge treatment and disposal: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162772. [PMID: 36933744 DOI: 10.1016/j.scitotenv.2023.162772] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 05/06/2023]
Abstract
Sewage sludge is an important reservoir of antibiotics, antibiotic resistance genes (ARGs), and antibiotic resistant bacteria (ARB) in wastewater treatment plants (WWTPs), and the reclamation of sewage sludge potentially threats human health and environmental safety. Sludge treatment and disposal are expected to control these risks, and this review summarizes the fate and controlling efficiency of antibiotics, ARGs, and ARB in sludge involved in different processes, i.e., disintegration, anaerobic digestion, aerobic composting, drying, pyrolysis, constructed wetland, and land application. Additionally, the analysis and characterization methods of antibiotics, ARGs, and ARB in complicate sludge are reviewed, and the quantitative risk assessment approaches involved in land application are comprehensively discussed. This review benefits process optimization of sludge treatment and disposal, with regard to environmental risks control of antibiotics, ARGs, and ARB in sludge. Furthermore, current research limitations and gaps, e.g., the antibiotic resistance risk assessment in sludge-amended soil, are proposed to advance the future studies.
Collapse
Affiliation(s)
- Jiaqi Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siqi Xu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kai Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ge Song
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunan Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Rios-Miguel AB, Jhm van Bergen T, Zillien C, Mj Ragas A, van Zelm R, Sm Jetten M, Jan Hendriks A, Welte CU. Predicting and improving the microbial removal of organic micropollutants during wastewater treatment: A review. CHEMOSPHERE 2023; 333:138908. [PMID: 37187378 DOI: 10.1016/j.chemosphere.2023.138908] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Organic micropollutants (OMPs) consist of widely used chemicals such as pharmaceuticals and pesticides that can persist in surface and groundwaters at low concentrations (ng/L to μg/L) for a long time. The presence of OMPs in water can disrupt aquatic ecosystems and threaten the quality of drinking water sources. Wastewater treatment plants (WWTPs) rely on microorganisms to remove major nutrients from water, but their effectiveness at removing OMPs varies. Low removal efficiency might be the result of low concentrations, inherent stable chemical structures of OMPs, or suboptimal conditions in WWTPs. In this review, we discuss these factors, with special emphasis on the ongoing adaptation of microorganisms to degrade OMPs. Finally, recommendations are drawn to improve the prediction of OMP removal in WWTPs and to optimize the design of new microbial treatment strategies. OMP removal seems to be concentration-, compound-, and process-dependent, which poses a great complexity to develop accurate prediction models and effective microbial processes targeting all OMPs.
Collapse
Affiliation(s)
- Ana B Rios-Miguel
- Department of Microbiology, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands.
| | - Tamara Jhm van Bergen
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands.
| | - Caterina Zillien
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Ad Mj Ragas
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Rosalie van Zelm
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Mike Sm Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - A Jan Hendriks
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
16
|
Bona D, Lucian M, Feretti D, Silvestri S, Zerbini I, Merzari F, Messineo A, Volpe M. Phytotoxicity and genotoxicity of agro-industrial digested sludge hydrochar: The role of heavy metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162138. [PMID: 36773912 DOI: 10.1016/j.scitotenv.2023.162138] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/27/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Hydrochar is a new carbonaceous product obtained via hydrothermal carbonization of wet biomass, such as sludges or digested sludges, which often have disposal problems, also due to the presence of contaminants such as heavy metals. The properties of the hydrochar led to an interest in using it as an amendment, but the agro-environmental properties must be considered for its safe use. Raw hydrochar produced by agro-industrial digestate and relative three acidic post-treated hydrochars (for heavy metals removal) have been assessed considering their effect on phytotoxicity, soil, plant growth, mutagenicity, and genotoxicity. The chemical characterization showed the effect of post-treatment on heavy metals contents reduction, except for Cu content (hydrochar, 650 mg/kg; post-treated hydrochars, 940 mg/kg, 287 mg/kg, and 420 mg/kg). The acidic post-treatment also reduces the phytotoxicity compared to raw hydrochar (the germination index at 16 % of hydrochar concentration was: hydrochar, 61.48 %; post-treated hydrochars, 82.27 %, 58.28 %, and 82.26 %), but the low pH and the impact on N-cycle probably have caused the detrimental effect on plant growth of post-treated hydrochar. No mutagenic activity was observed in bacteria using Ames test, while all the samples induced chromosomal aberrations in plant cells (Allium cepa test). The approach adopted, which considers phytotoxicity, plant growth-soil effects, and mutagenicity/genotoxicity bioassays has been proven effective for a proper evaluation of organic products derived from waste to promote a sustainable and circular recovery of materials.
Collapse
Affiliation(s)
- Daniela Bona
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010 San Michele a/A, Italy.
| | - Michela Lucian
- Carborem srl, Piazza Manifattura 1, 38060 Rovereto, TN, Italy
| | - Donatella Feretti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Silvia Silvestri
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010 San Michele a/A, Italy
| | - Ilaria Zerbini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Fabio Merzari
- Carborem srl, Piazza Manifattura 1, 38060 Rovereto, TN, Italy
| | - Antonio Messineo
- University of Enna Kore, Faculty of Engineering and Architecture, Viale delle Olimpiadi snc, 94100 Enna, Italy
| | - Maurizio Volpe
- Carborem srl, Piazza Manifattura 1, 38060 Rovereto, TN, Italy; University of Enna Kore, Faculty of Engineering and Architecture, Viale delle Olimpiadi snc, 94100 Enna, Italy
| |
Collapse
|
17
|
Mazzeo DEC, Dombrowski A, Oliveira FA, Levy CE, Oehlmann J, Marchi MRR. Endocrine disrupting activity in sewage sludge: Screening method, microbial succession and cost-effective strategy for detoxification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117207. [PMID: 36621316 DOI: 10.1016/j.jenvman.2022.117207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/19/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Sewage sludge (SS) presents a high agronomic potential due to high concentrations of organic matter and nutrients, encouraging its recycling as a soil conditioner. However, the presence of toxic substances can preclude this use. To enable the safe disposal of this waste in agriculture, SS requires additional detoxification to decrease the environmental risks of this practice. Although some alternatives have been proposed in this sense, little attention is provided to eliminating endocrine-disrupting chemicals (EDCs). To fill this gap, this study aimed to develop effective and low-cost technology to eliminate EDCs from SS. For this, a detoxification process combining microorganisms and biostimulating agents (soil, sugarcane bagasse, and coffee grounds) was performed for 2, 4, and 6 months with aerobic and anaerobic SSs. The (anti-)estrogenic, (anti-)androgenic, retinoic-like, and dioxin-like activities of SSs samples were verified using yeast-based reporter-gene assays to prove the effectiveness of the treatments. A fractionation procedure of samples, dividing the target sample extract into several fractions according to their polarity, was conducted to decrease the matrix complexity and facilitate the identification of EDCs. A decrease in the abundance and microbial diversity of the SS samples was noted along the biostimulation with the predominance of filamentous fungal species over yeasts and gram-positive bacteria and non-fermenting rods over enterobacteria. Among the 9 EDCs quantified by LC-ESI-MS/MS, triclosan and alkylphenols presented the highest concentrations in both SS. Before detoxification, the studied SSs induced significant agonistic activity, especially at the human estrogen receptor α (hERα) and the human aryl hydrocarbon receptor (AhR). The raw anaerobic sludge also activated the androgen (hAR), retinoic acid (RARα), and retinoid X (RXRα) receptors. However, no significant endocrine-disrupting activities were observed after the SS detoxification, showing that the technology applied here efficiently eliminates receptor-mediated toxicity.
Collapse
Affiliation(s)
- Dânia Elisa C Mazzeo
- Department of Biotechnology and Plant and Animal Production, Center for Agricultural Sciences, Federal University of São Carlos - UFSCAR, Araras, Brazil.
| | - Andrea Dombrowski
- Department Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Germany
| | - Flávio Andrade Oliveira
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas - UNICAMP, Rua Alexander Fleming, 105, 13081-970, Campinas, SP, Brazil
| | - Carlos Emílio Levy
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas - UNICAMP, Rua Alexander Fleming, 105, 13081-970, Campinas, SP, Brazil
| | - Jörg Oehlmann
- Department Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Germany
| | - Mary Rosa R Marchi
- Department of Analytical Chemistry, Institute of Chemistry, UNESP - Univ Estadual Paulista, Araraquara, SP, Brazil
| |
Collapse
|
18
|
Wolak I, Bajkacz S, Harnisz M, Stando K, Męcik M, Korzeniewska E. Digestate from Agricultural Biogas Plants as a Reservoir of Antimicrobials and Antibiotic Resistance Genes-Implications for the Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2672. [PMID: 36768038 PMCID: PMC9915926 DOI: 10.3390/ijerph20032672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Antimicrobials and antibiotic resistance genes (ARGs) in substrates processed during anaerobic digestion in agricultural biogas plants (BPs) can reach the digestate (D), which is used as fertilizer. Antimicrobials and ARGs can be transferred to agricultural land, which increases their concentrations in the environment. The concentrations of 13 antibiotics in digestate samples from biogas plants (BPs) were investigated in this study. The abundance of ARGs encoding resistance to beta-lactams, tetracyclines, sulfonamides, fluoroquinolones, macrolide-lincosamide-streptogramin antibiotics, and the integrase genes were determined in the analyzed samples. The presence of cadmium, lead, nickel, chromium, zinc, and mercury was also examined. Antimicrobials were not eliminated during anaerobic digestion. Their concentrations differed in digestates obtained from different substrates and in liquid and solid fractions (ranging from 62.8 ng/g clarithromycin in the solid fraction of sewage sludge digestate to 1555.9 ng/L doxycycline in the liquid fraction of cattle manure digestate). Digestates obtained from plant-based substrates were characterized by high concentrations of ARGs (ranging from 5.73 × 102 copies/gDcfxA to 2.98 × 109 copies/gDsul1). The samples also contained mercury (0.5 mg/kg dry mass (dm)) and zinc (830 mg/kg dm). The results confirmed that digestate is a reservoir of ARGs (5.73 × 102 to 8.89 × 1010 copies/gD) and heavy metals (HMs). In addition, high concentrations of integrase genes (105 to 107 copies/gD) in the samples indicate that mobile genetic elements may be involved in the spread of antibiotic resistance. The study suggested that the risk of soil contamination with antibiotics, HMs, and ARGs is high in farms where digestate is used as fertilizer.
Collapse
Affiliation(s)
- Izabela Wolak
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Sylwia Bajkacz
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka 2, 44-100 Gliwice, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Klaudia Stando
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka 2, 44-100 Gliwice, Poland
| | - Magdalena Męcik
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| |
Collapse
|
19
|
Characteristics of Solidified Carbon Dioxide and Perspectives for Its Sustainable Application in Sewage Sludge Management. Int J Mol Sci 2023; 24:ijms24032324. [PMID: 36768646 PMCID: PMC9916872 DOI: 10.3390/ijms24032324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
Appropriate management is necessary to mitigate the environmental impacts of wastewater sludge. One lesser-known technology concerns the use of solidified CO2 for dewatering, sanitization, and digestion improvement. Solidified CO2 is a normal byproduct of natural gas treatment processes and can also be produced by dedicated biogas upgrading technologies. The way solidified CO2 is sourced is fully in line with the principles of the circular economy and carbon dioxide mitigation. The aim of this review is to summarize the current state of knowledge on the production and application of solid CO2 in the pretreatment and management of sewage sludge. Using solidified CO2 for sludge conditioning causes effective lysis of microbial cells, which destroys activated sludge flocs, promotes biomass fragmentation, facilitates efficient dispersion of molecular associations, modifies cell morphology, and denatures macromolecules. Solidified CO2 can be used as an attractive tool to sanitize and dewater sludge and as a pretreatment technology to improve methane digestion and fermentative hydrogen production. Furthermore, it can also be incorporated into a closed CO2 cycle of biogas production-biogas upgrading-solidified CO2 production-sludge disintegration-digestion-biogas production. This feature not only bolsters the technology's capacity to improve the performance and cost-effectiveness of digestion processes, but can also help reduce atmospheric CO2 emissions, a crucial advantage in terms of environment protection. This new approach to solidified CO2 generation and application largely counteracts previous limitations, which are mainly related to the low cost-effectiveness of the production process.
Collapse
|
20
|
Pistocchi A, Andersen HR, Bertanza G, Brander A, Choubert JM, Cimbritz M, Drewes JE, Koehler C, Krampe J, Launay M, Nielsen PH, Obermaier N, Stanev S, Thornberg D. Treatment of micropollutants in wastewater: Balancing effectiveness, costs and implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157593. [PMID: 35914591 DOI: 10.1016/j.scitotenv.2022.157593] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
In this contribution, we analyse scenarios of advanced wastewater treatment for the removal of micropollutants. By this we refer to current mainstream, broad spectrum processes including ozonation and sorption onto activated carbon. We argue that advanced treatment requires properly implemented tertiary (nutrient removal) treatment in order to be effective. We review the critical aspects of the main advanced treatment options, their advantages and disadvantages. We propose a quantification of the costs of implementing advanced treatment, as well as upgrading plants from secondary to tertiary treatment when needed, and we illustrate what drives the costs of advanced treatment for a set of standard configurations. We propose a cost function to represent the total costs (investment, operation and maintenance) of advanced treatment. We quantify the implications of advanced treatment in terms of greenhouse gas emissions. Based on the indicators of total toxic discharge, toxicity at the discharge points and toxicity across the stream network discussed in Pistocchi et al. (2022), we compare costs and effectiveness of different scenarios of advanced treatment. In principle the total toxic load and toxicity at the points of discharge could be reduced by about 75 % if advanced treatment processes were implemented virtually at all wastewater treatment plants, but this would entail costs of about 4 billion euro/year for the European Union as a whole. We consider a "compromise" scenario where advanced treatment is required at plants of 100 thousand population equivalents (PE) or larger, or at plants between 10 and 100 thousand PE if the dilution ratio at the discharge point is 10 or less. Under this scenario, the length of the stream network exposed to high toxicity would not increase significantly compared to the previous scenario, and the other indicators would not deteriorate significantly, while the costs would remain at about 1.5 billion Euro/year. Arguably, costs could be further reduced, without a worsening of water quality, if we replace a local risk assessment to generic criteria of plant capacity and dilution in order to determine if a WWTP requires advanced treatment.
Collapse
Affiliation(s)
- A Pistocchi
- European Commission, Joint Research Centre, Ispra, Italy.
| | - H R Andersen
- Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | | | | | | | | | - J Krampe
- TU Wien, Institute for Water Quality and Resource Management, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
21
|
Sharma J, Joshi M, Bhatnagar A, Chaurasia AK, Nigam S. Pharmaceutical residues: One of the significant problems in achieving 'clean water for all' and its solution. ENVIRONMENTAL RESEARCH 2022; 215:114219. [PMID: 36057333 DOI: 10.1016/j.envres.2022.114219] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
With the rapid emergence of various metabolic and multiple-drug-resistant infectious diseases, new pharmaceuticals are continuously being introduced in the market. The excess production and use of pharmaceuticals and their untreated/unmetabolized release in the environment cause the contamination of aquatic ecosystem, and thus, compromise the environment and human-health. The present review provides insights into the classification, sources, occurrence, harmful impacts, and existing technologies to curb these problems. A comprehensive detail of various biological and nanotechnological strategies for the removal of pharmaceutical residues from water is critically discussed focusing on their efficiencies, and current limitations to design improved-technologies for their lab-to-field applications. Furthermore, the review highlights and suggests the scope of integrated bionanotechnological methods for enhanced removal of pharmaceutical residues from water to fulfill the United Nations Sustainable Development Goal (UN-SDG) for providing clean potable water for all.
Collapse
Affiliation(s)
- Jyoti Sharma
- Amity Institute of Biotechnology, Amity University, Noida, 201313, Uttar Pradesh, India
| | - Monika Joshi
- Amity Institute of Nanotechnology, Amity University, Noida, 201313, Uttar Pradesh, India.
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Akhilesh K Chaurasia
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea.
| | - Subhasha Nigam
- Amity Institute of Biotechnology, Amity University, Noida, 201313, Uttar Pradesh, India.
| |
Collapse
|
22
|
Bolesta W, Głodniok M, Styszko K. From Sewage Sludge to the Soil-Transfer of Pharmaceuticals: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10246. [PMID: 36011880 PMCID: PMC9408069 DOI: 10.3390/ijerph191610246] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/05/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Sewage sludge, produced in the process of wastewater treatment and managed for agriculture, poses the risk of disseminating all the pollutants contained in it. It is tested for heavy metals or parasites, but the concentration of pharmaceuticals in the sludge is not controlled. The presence of these micropollutants in sludge is proven and there is no doubt about their negative impact on the environment. The fate of these micropollutants in the soil is a new and important issue that needs to be known to finally assess the safety of the agricultural use of sewage sludge. The article will discuss issues related to the presence of pharmaceuticals in sewage sludge and their physicochemical properties. The changes that pharmaceuticals undergo have a significant impact on living organisms. This is important for the implementation of a circular economy, which fits perfectly into the agricultural use of stabilized sewage sludge. Research should be undertaken that clearly shows that there is no risk from pharmaceuticals or vice versa: they contribute to the strict definition of maximum allowable concentrations in sludge, which will become an additional criterion in the legislation on municipal sewage sludge.
Collapse
Affiliation(s)
- Wioleta Bolesta
- Faculty of Energy and Fuels, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland
- Water and Sewage Company in Żory, ul. Wodociągowa 10, 44-240 Zory, Poland
| | - Marcin Głodniok
- Central Mining Institute, Plac Gwarków 1, 40-166 Katowice, Poland
| | - Katarzyna Styszko
- Faculty of Energy and Fuels, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland
| |
Collapse
|
23
|
Chyoshi B, Gomes Coelho LH, García J, Subtil EL. Fate and removal of emerging contaminants in anaerobic fluidized membrane bioreactor filled with thermoplastic gel as biofilm support. CHEMOSPHERE 2022; 300:134557. [PMID: 35405192 DOI: 10.1016/j.chemosphere.2022.134557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
The Anaerobic Fluidized Membrane Bioreactor (AnFMBR) is a membrane-based hybrid technology that can overcome the limitations of conventional anaerobic sewage treatment. Although previous studies have demonstrated excellent performance in the removal of conventional organic pollutants, further research into the removal paths of emerging contaminants (ECs) under various operating conditions is required for proper design and development of the AnFMBR technology. Regarding this, the fate of four ECs in a lab-scale AnFMBR filled with thermoplastic gel for biofilm growth was investigated under various Hydraulic Retention Time (HRT) conditions. When the HRT was 13 h, diclofenac and 17β-estradiol were efficiently removed at 93% and 72% respectively. Even after an HRT reduction to 6.5 h, the system was still able to maintain high ECs removals (74% for diclofenac and 69% for 17β-estradiol). However, irrespective of HRT operational condition, smaller removals of 17a-ethinylestradiol (37-52%) were observed, while only marginal removals of amoxicillin were achieved (5-29%). Biotransformation was attributed as the main route for ECs removal. The results obtained in this study indicate that the membrane-based hybrid AnFMBR can be used to treat the target ECs without influence on anaerobic process. The technology had better removal efficiency for diclofenac and 17β-estradiol. However, the AnFMBR system exhibits high variability in EC removal and low capacity for amoxicillin removal, implying that a combination of other processes is still required to properly avoid the release of these contaminants into the environment.
Collapse
Affiliation(s)
- Bruna Chyoshi
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Av. dos Estados, 5001, Santo André/SP, 09210-580, Brazil.
| | - Lucia Helena Gomes Coelho
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Av. dos Estados, 5001, Santo André/SP, 09210-580, Brazil.
| | - Joan García
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain.
| | - Eduardo Lucas Subtil
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Av. dos Estados, 5001, Santo André/SP, 09210-580, Brazil.
| |
Collapse
|
24
|
Wang Y, Lu Y, Li X, Zhu G, Li N, Han J, Sun L, Yang Z, Zeng RJ. Light-dependent enhancement of sulfadiazine detoxification and mineralization by non-photosynthetic methanotrophs. WATER RESEARCH 2022; 220:118623. [PMID: 35665677 DOI: 10.1016/j.watres.2022.118623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Co-metabolism and photodegradation are two approaches for remediating trace organic compounds (TOrCs), however, interactions between the two with regards to TOrCs degradation have not been elucidated. In this study, sulfadiazine (SDZ) was chosen as a representative TOrC and Methylocystis bryophila as a typical strain. Under light conditions, about 80.6% of SDZ was removed by M. bryophila, but only 7.6% or 28.9% of SDZ was eliminated by either individual photodegradation or by co-metabolism. The SDZ stimulated more extracellular organic matter (EOM) production by M. bryophila. The enhanced SDZ degradation was attributed to indirect photolysis caused by the excited triplet state of EOM (3EOM*) and co-metabolism. The UPLC-QTOF-MS analysis showed that due to co-metabolism, the pyrimidine ring was broken and could further be oxidized into smaller molecules under light conditions, such as formic and acetic acids. The SDZ mineralization ratio increased from 9.9% under the co-metabolic condition alone to 36.5% under co-metabolism coupled with photodegradation. The Ames tests confirmed that the SDZ degradation products by co-metabolism were mutagenic, however, their toxicity was ameliorated by light during co-metabolism. In conclusion, light plays a crucial role in co-metabolic processes of TOrCs.
Collapse
Affiliation(s)
- Yongzhen Wang
- School of Energy and Environment, Southeast University, No.2, Sipailou, Nanjing, Jiangsu 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Yongze Lu
- School of Energy and Environment, Southeast University, No.2, Sipailou, Nanjing, Jiangsu 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China.
| | - Xin Li
- School of Energy and Environment, Southeast University, No.2, Sipailou, Nanjing, Jiangsu 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, No.2, Sipailou, Nanjing, Jiangsu 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Na Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jing Han
- School of Energy and Environment, Southeast University, No.2, Sipailou, Nanjing, Jiangsu 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Liwei Sun
- School of Energy and Environment, Southeast University, No.2, Sipailou, Nanjing, Jiangsu 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Zhonglian Yang
- School of Energy and Environment, Southeast University, No.2, Sipailou, Nanjing, Jiangsu 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
25
|
Li Y, Thompson J, Wang Z, Bräunig J, Zheng Q, Thai PK, Mueller JF, Yuan Z. Transformation and fate of pharmaceuticals, personal care products, and per- and polyfluoroalkyl substances during aerobic digestion of anaerobically digested sludge. WATER RESEARCH 2022; 219:118568. [PMID: 35598466 DOI: 10.1016/j.watres.2022.118568] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Post-anaerobic aerobic digestion (PAAD) is a promising strategy to further reduce the volume and improve the quality of anaerobically digested sludge (ADS). However, the effect of PAAD process on the fate of pharmaceuticals and personal care products (PPCPs) and per- and polyfluoroalkyl substances (PFAS) remains largely unknown. In this study, fourteen PPCPs and fifteen PFAS were detected in ADS and evaluated regarding their fate and transformation in a laboratory aerobic digester operated with a hydraulic retention time of 13 days under 22 ℃. Twelve PPCPs demonstrated significant (p < 0.05) decrease in their total concentrations (dissolved and adsorbed fractions combined) with six compounds presenting substantial transformation (> 80%) after aerobic digestion. On the contrary, PFAS were not removed and their concentrations were either increased (increasing ratio: 91 - 571%) or consistent in the sludge during PAAD process, suggesting their recalcitrance to post aerobic digestion. More than half of PPCPs and PFAS demonstrated medium to strong sorption onto solids with their solid fraction higher than 50% in the ADS. After PAAD process, sorption of four PPCPs and three PFAAs to solids was enhanced in sludge.
Collapse
Affiliation(s)
- Yijing Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jack Thompson
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Zhiyao Wang
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jennifer Bräunig
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Qiuda Zheng
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
26
|
Nguyen QA, Vu HP, McDonald JA, Nguyen LN, Leusch FDL, Neale PA, Khan SJ, Nghiem LD. Chiral Inversion of 2-Arylpropionic Acid Enantiomers under Anaerobic Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8197-8208. [PMID: 35675163 DOI: 10.1021/acs.est.2c01602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This work examined the chiral inversion of 2-arylpropionic acids (2-APAs) under anaerobic conditions and the associated microbial community. The anaerobic condition was simulated by two identical anaerobic digesters. Each digester was fed with the substrate containing 11 either pure (R)- or pure (S)-2-APA enantiomers. Chiral inversion was evidenced by the concentration increase of the other enantiomer in the digestate and the changes in the enantiomeric fraction between the two enantiomers. Both digesters showed similar and poor removal of 2-APAs (≤30%, except for naproxen) and diverse chiral inversion behaviors under anaerobic conditions. Four compounds exhibited (S → R) unidirectional inversion [flurbiprofen, ketoprofen, naproxen, and 2-(4-tert-butylphenyl)propionic acid], and the remaining seven compounds showed bidirectional inversion. Several aerobic and facultative anaerobic bacterial genera (Candidatus Microthrix, Rhodococcus, Mycobacterium, Gordonia, and Sphingobium) were identified in both digesters and predicted to harbor the 2-arylpropionyl-CoA epimerase (enzyme involved in chiral inversion) encoding gene. These genera presented at low abundances, <0.5% in the digester dosed with (R)-2-APAs and <0.2% in the digester dosed with (S)-2-APAs. The low abundances of these genera explain the limited extent of chiral inversion observed in this study.
Collapse
Affiliation(s)
- Quynh Anh Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
| | - Hang P Vu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
| | - James A McDonald
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Luong N Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland 4222, Australia
| | - Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland 4222, Australia
| | - Stuart J Khan
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
| |
Collapse
|
27
|
Li Y, Bräunig J, Thai PK, Rebosura M, Mueller JF, Yuan Z. Formation and fate of perfluoroalkyl acids (PFAAs) in a laboratory-scale urban wastewater system. WATER RESEARCH 2022; 216:118295. [PMID: 35316679 DOI: 10.1016/j.watres.2022.118295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/16/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
The fate and formation of perfluoroalkyl acids (PFAAs) have been investigated during wastewater treatment processes but studies for the entire urban wastewater system comprising the sewage transport and wastewater and sludge treatment processes are scarce. This work performs an integrated assessment of the formation and fate of PFAAs in the urban wastewater system together with their behavior in separate components of the system. To achieve this, PFAAs were monitored over five weeks in a laboratory-scale urban wastewater system comprising sewer reactors, a wastewater treatment reactor, and an anaerobic sludge digester. The system was fed with real domestic wastewater. The total mass of 11 PFAAs flowing out of the laboratory wastewater system significantly (p < 0.05) increased by 112 ± 14 (mean ± standard error)% compared to that entering the system. Formation of PFAAs was observed in all three biological processes of the system. In anaerobic sewer process, perfluoropentanoic acid (PFPeA), perfluoroheptanoic acid (PFHpA), and perfluorooctane sulfonate (PFOS) exhibited significant formation (p < 0.05) with the mass flow increased by 79 ± 24%, 109 ± 31%, and 57 ± 17%, respectively. During the wastewater treatment process, perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), and perfluorododecanoic acid (PFDoDA) demonstrated significant increase (p < 0.05) in their mass flows by 176 ± 56%, 92 ± 21%, and 516 ± 184%, respectively. In contrast, only PFHxA was found to significantly (p < 0.05) increase by 130 ± 40% during anaerobic digestion process. The total mass of 11 PFAAs discharged through the effluent (201 ± 24 ng day-1) was 5 times higher than that through the digested sludge (29 ± 6 ng day-1).
Collapse
Affiliation(s)
- Yijing Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jennifer Bräunig
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Mario Rebosura
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
28
|
Zahedi S, Gros M, Casabella O, Petrovic M, Balcazar JL, Pijuan M. Occurrence of veterinary drugs and resistance genes during anaerobic digestion of poultry and cattle manures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153477. [PMID: 35093343 DOI: 10.1016/j.scitotenv.2022.153477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
In the present paper, the mesophilic (35 °C) and thermophilic (55 °C) biomethanization of poultry and cattle manures were investigated using biochemical methane potential (BMP) tests. Specific methane production (SMP), 24 pharmaceutical compounds (PhACs), and five antibiotic resistance genes (ARGs) (blaKPC, ermB, qnrS, sul1 and tetW) together with the microbial community were analyzed. Mesophilic BMP tests resulted in the highest SMP when poultry manure was used (285.5 mL CH4/g VSS with poultry vs 239.6 mL CH4/g VSS with cattle manure) while thermophilic temperatures led to the highest SMP with cattle manure (231.2 mL CH4/g VSS with poultry vs 238.0 mL CH4/g VSS with cattle manure). Higher removals of veterinary pharmaceuticals were detected at 55 °C with both manures indicating that thermophilic digestion is better suited for the removal of these compounds. Tylosin, tilmicosin, chlortetracycline, and sulfamethoxazole presented removals higher than 50%, being the first two completely removed under mesophilic and thermophilic conditions. When comparing the relative abundance of ARGs at the end of each treatment, the most significant removal was found for qnrS which was not detected after the anaerobic treatment. The remaining ARGs did not suffer significant changes. Finally, microbial composition analysis showed that temperature affected the final microbial population more than the microorganisms present in the substrate or inoculum.
Collapse
Affiliation(s)
- Soraya Zahedi
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain
| | - Meritxell Gros
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain
| | - Oriol Casabella
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain
| | - Mira Petrovic
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Jose Luis Balcazar
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain
| | - Maite Pijuan
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain.
| |
Collapse
|
29
|
Zahedi S, Gros M, Petrović M, Balcazar JL, Pijuan M. Anaerobic treatment of swine manure under mesophilic and thermophilic temperatures: Fate of veterinary drugs and resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151697. [PMID: 34793799 DOI: 10.1016/j.scitotenv.2021.151697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/25/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
The effect of anaerobic treatment of swine manure at 35 °C (mesophilic) and 55 °C (thermophilic) on methane production, microbial community and contaminants of emerging concern was investigated. Pasteurization pretreatment and post treatment was also investigated in combination with anaerobic treatment at 35 °C. Specific methane production (SMP), 26 pharmaceutical compounds (PhACs) and five antibiotic resistance genes (ARGs) (qnrS, tetW, ermB, sul1 and blaTEM) were evaluated. Mesophilic treatment resulted in the highest SMP regardless of whether pasteurization was applied. Marbofloxacin was the most abundant antibiotic in swine manure. In general, all groups of PhACs showed higher removals under thermophilic temperatures as compared to mesophilic. In general, pasteurization pretreatment followed by mesophilic anaerobic digestion provided the highest removals of ARGs. Finally, the genera Streptococcus, Clostridium and Pseudomonas which contain pathogenic species, were present in the swine manure. Streptococcus, which was the most abundant, was decreased during all the treatments, while the others only decreased under certain treatments.
Collapse
Affiliation(s)
- S Zahedi
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain.
| | - M Gros
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain
| | - M Petrović
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - J L Balcazar
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain
| | - M Pijuan
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain.
| |
Collapse
|
30
|
Silva AR, Alves MM, Pereira L. Progress and prospects of applying carbon-based materials (and nanomaterials) to accelerate anaerobic bioprocesses for the removal of micropollutants. Microb Biotechnol 2022; 15:1073-1100. [PMID: 34586713 PMCID: PMC8966012 DOI: 10.1111/1751-7915.13822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 11/28/2022] Open
Abstract
Carbon-based materials (CBM), including activated carbon (AC), activated fibres (ACF), biochar (BC), nanotubes (CNT), carbon xenogels (CX) and graphene nanosheets (GNS), possess unique properties such as high surface area, sorption and catalytic characteristics, making them very versatile for many applications in environmental remediation. They are powerful redox mediators (RM) in anaerobic processes, accelerating the rates and extending the level of the reduction of pollutants and, consequently, affecting positively the global efficiency of their partial or total removal. The extraordinary conductive properties of CBM, and the possibility of tailoring their surface to address specific pollutants, make them promising as catalysts in the treatment of effluents containing diverse pollutants. CBM can be combined with magnetic nanoparticles (MNM) assembling catalytic and magnetic properties in a single composite (C@MNM), allowing their recovery and reuse after the treatment process. Furthermore, these composites have demonstrated extraordinary catalytic properties. Evaluation of the toxicological and environmental impact of direct and indirect exposure to nanomaterials is an important issue that must be considered when nanomaterials are applied. Though the chemical composition, size and physical characteristics may contribute to toxicological effects, the potential toxic impact of using CBM is not completely clear and is not always assessed. This review gives an overview of the current research on the application of CBM and C@MNM in bioremediation and on the possible environmental impact and toxicity.
Collapse
Affiliation(s)
- Ana Rita Silva
- CEB –Centre of Biological EngineeringUniversity of MinhoCampus de GualtarBraga4710‐057Portugal
| | - Maria Madalena Alves
- CEB –Centre of Biological EngineeringUniversity of MinhoCampus de GualtarBraga4710‐057Portugal
| | - Luciana Pereira
- CEB –Centre of Biological EngineeringUniversity of MinhoCampus de GualtarBraga4710‐057Portugal
| |
Collapse
|
31
|
Sellier A, Khaska S, Le Gal La Salle C. Assessment of the occurrence of 455 pharmaceutical compounds in sludge according to their physical and chemical properties: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128104. [PMID: 34996022 DOI: 10.1016/j.jhazmat.2021.128104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Sludge agronomical reuse is of major interest due to the beneficial contribution of nutrients. However, it implies the introduction of unregulated pharmaceuticals into amended-soils and creates a controversial issue about sludge management. To limit their dissemination, it is essential to identify the compounds of interest and understand their attenuation mechanisms through the sludge processes. This paper summarizes the knowledge on 455 investigated pharmaceuticals among 32 therapeutical categories in amendable sludge matrices. It contributes to enlarging the list of commonly quantified compounds to 305 residues including 84 additional compounds compared to previous reviews. It highlights that sorption appears as the main mechanism controlling the occurrence of pharmaceuticals in sludge matrices and shows the considerable residual levels of pharmaceuticals reaching several mg/kg in dry weight. Antibiotics, stimulants, and antidepressants show the highest concentrations up to 232 mg/kg, while diuretics, anti-anxieties or anticoagulants present the lowest concentrations reaching up to 686 µg/kg. Collected data show the increase in investigated compounds as antifungals or antihistamines, and underline emerging categories like antidiabetics, antivirals, or antiarrhythmics. The in-depth analysis of the substantial database guides onto the pharmaceuticals that are the most likely to occur in these amendable matrices to assist future research.
Collapse
Affiliation(s)
- Anastasia Sellier
- CHROME Détection, évaluation, gestion des risques CHROniques et éMErgents (CHROME) / Université de Nîmes, 30021 Nîmes Cedex 01 - FRANCE.
| | - Somar Khaska
- CHROME Détection, évaluation, gestion des risques CHROniques et éMErgents (CHROME) / Université de Nîmes, 30021 Nîmes Cedex 01 - FRANCE.
| | - Corinne Le Gal La Salle
- CHROME Détection, évaluation, gestion des risques CHROniques et éMErgents (CHROME) / Université de Nîmes, 30021 Nîmes Cedex 01 - FRANCE.
| |
Collapse
|
32
|
Papa M, Dogruer G, Bailey D, Leusch FDL. Anaerobic digestion of sewage sludge has no effect on glucocorticoid and anti-progestagenic activity but increases estrogenicity three-fold. CHEMOSPHERE 2022; 286:131753. [PMID: 34358896 DOI: 10.1016/j.chemosphere.2021.131753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/14/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Although the recovery and beneficial reuse of organic matter and nutrients from sludge represents an important move towards environmental sustainability, the accumulation of chemicals in biosolid-amended soils could pose serious environmental and human health risks. However, (eco)toxicological profiling of complex chemical mixtures in biosolids is currently limited. In particular, the effect of anaerobic digestion (AD), the most common stabilization process for sewage sludge, on the (eco)toxicity of those complex mixtures is poorly studied. In this work, we fill this research gap by applying an effect-based monitoring approach to screen sludge samples (n = 4) from a full-scale sewage treatment plant before and after conventional mesophilic (37 °C) AD using a battery of cell-based in vitro bioassays for four types of hormonal activity: estrogenic, androgenic, progestagenic and glucocorticoid activity, both in agonist and antagonist modes. We detected estrogenic, glucocorticoid and anti-progestagenic activity in all sludge samples. The glucocorticoid and anti-progestagenic activity remained mostly unchanged after AD treatment, but estrogenicity increased three-fold, likely as a result of bioactivation processes in the digestor. This study presents the first report on the concentration and fate of glucocorticoid and anti-progestagenic activity in AD. Future research should apply bioanalytical tools to a wider range of sludge samples to get a better understanding of the typical hormonal activity in sludge and develop effect-based trigger (EBT) values for biosolids to help interpret the risk posed by the hormonal activity detected in sludge.
Collapse
Affiliation(s)
- Matteo Papa
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD, 4222, Australia.
| | - Gulsah Dogruer
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD, 4222, Australia
| | - David Bailey
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD, 4222, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD, 4222, Australia
| |
Collapse
|
33
|
Kennes-Veiga DM, Gónzalez-Gil L, Carballa M, Lema JM. Enzymatic cometabolic biotransformation of organic micropollutants in wastewater treatment plants: A review. BIORESOURCE TECHNOLOGY 2022; 344:126291. [PMID: 34752884 DOI: 10.1016/j.biortech.2021.126291] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Biotransformation of trace-level organic micropollutants (OMPs) by complex microbial communities in wastewater treatment facilities is a key process for their detoxification and environmental impact reduction. Therefore, understanding the metabolic activities and mechanisms that contribute to their biotransformation is essential when developing approaches aiming to minimize their discharge. This review addresses the relevance of cometabolic processes and discusses the main enzymatic activities currently known to take part in OMPs removal under different redox environments in the compartments of wastewater treatment plants. Furthermore, the most common methodologies to decipher such enzymes are discussed, including the use of in vitro enzyme assays, enzymatic inhibitors, the analysis of transformation products and the application of several -omic techniques. Finally, perspectives on major challenges and future research requirements to improve OMPs biotransformation are proposed.
Collapse
Affiliation(s)
- David M Kennes-Veiga
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Lorena Gónzalez-Gil
- Defence University Centre, Spanish Naval Academy, Plaza de España, 36920 Marín, Spain
| | - Marta Carballa
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Juan M Lema
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
34
|
Košnář Z, Mercl F, Chane AD, Pierdonà L, Míchal P, Tlustoš P. Occurrence of synthetic polycyclic and nitro musk compounds in sewage sludge from municipal wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149777. [PMID: 34428658 DOI: 10.1016/j.scitotenv.2021.149777] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Synthetic musk compounds (SMCs) are widely used as fragrances that can be released from different sources and through the sewer system, finally reaching wastewater treatment plants (WWTPs). In this study, 6 synthetic polycyclic and 5 nitro musk compounds were screened in 55 sewage sludge (SS) samples from 43 different WWTPs in the Czech Republic, and the effect of WWTP technology parameters on SMC content in SS was assessed. Galaxolide and Tonalide were predominant synthetic polycyclic musk compounds (SPMCs) detected in all SS tested and accounted for 99.5% of the average content of sludge SMCs (5518 μg/kg dw). The amount of synthetic nitro musk compounds (SNMCs) in SS samples was negligible. The Tonalide content in SS correlated significantly with the WWTP design capacity (r = 0.32, P < 0.05). The significant correlation between chemical oxygen demand (COD) removal efficiency and SMCs (r = -0.37, P < 0.05) partly suggests the recalcitrance of SMCs, mainly of Celestolide, Galaxolide and Tonalide, to biodegradation in WWTPs. A statistically lower SNMC content was found in anaerobically digested sludges than in aerobic ones. There was no significant difference (P > 0.05) between the digestion technology as well as the temperature of anaerobic digestion on the SPMC content in sewage sludge. The wastewater (WW) load percentage or WW hydraulic retention time had no influence on the SMC content in the resulting SS. Musk compounds did not change over time when the SS samples were analysed with a gap of two years, suggesting that sewage sludge for soil applications only needs to be analysed for musk compounds once a year. Our study indicates that the currently common WWTP technologies have only very limited potential to affect the accumulation of musk compounds in sewage sludge.
Collapse
Affiliation(s)
- Zdeněk Košnář
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic.
| | - Filip Mercl
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic
| | - Abraham Demelash Chane
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic
| | - Lorenzo Pierdonà
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic
| | - Pavel Míchal
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic
| | - Pavel Tlustoš
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic
| |
Collapse
|
35
|
Granatto CF, Grosseli GM, Sakamoto IK, Fadini PS, Varesche MBA. Influence of cosubstrate and hydraulic retention time on the removal of drugs and hygiene products in sanitary sewage in an anaerobic Expanded Granular Sludge Bed reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113532. [PMID: 34614559 DOI: 10.1016/j.jenvman.2021.113532] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/24/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Diclofenac (DCF), ibuprofen (IBU), propranolol (PRO), triclosan (TCS) and linear alkylbenzene sulfonate (LAS) can be recalcitrant in Wastewater Treatment Plants (WWTP). The removal of these compounds was investigated in scale-up (69 L) Expanded Granular Sludge Bed (EGSB) reactor, fed with sanitary sewage from the São Carlos-SP (Brazil) WWTP and 200 mg L-1 of ethanol. The EGSB was operated in three phases: (I) hydraulic retention time (HRT) of 36±4 h; (II) HRT of 20±2 h and (III) HRT of 20±2 h with ethanol. Phases I and II showed no significant difference in the removal of LAS (63 ± 11-65 ± 12 %), DCF (37 ± 18-35 ± 11 %), IBU (43 ± 18-44 ± 16 %) and PRO (46 ± 25-51 ± 23 %) for 13±2-15 ± 2 mg L-1, 106 ± 32-462 ± 294 μg L-1, 166 ± 55-462 ± 213 μg L-1 and 201 ± 113-250 ± 141 μg L-1 influent, respectively. Higher TCS removal was obtained in phase I (72 ± 17 % for 127 ± 120 μg L-1 influent) when compared to phase II (51 ± 13 % for 135 ± 119 μg L-1 influent). This was due to its greater adsorption (40 %) in the initial phase. Phase III had higher removal of DCF (42 ± 10 % for 107 ± 26 μg L-1 influent), IBU (50 ± 15 % for 164 ± 47 μg L-1 influent) and TCS (85 ± 15 % for 185 ± 148 μg L-1 influent) and lower removal of LAS (35 ± 14 % for 12 ± 3 mg L-1 influent) and PRO (-142 ± 177 % for 188 ± 88 μg L-1 influent). Bacteria similar to Syntrophobacter, Smithella, Macellibacteroides, Syntrophus, Blvii28_wastewater-sludge_group and Bacteroides were identified in phase I with relative abundance of 3.1 %-4.7 %. Syntrophobacter was more abundant (15.4 %) in phase II, while in phase III, it was Smithella (12.7 %) and Caldisericum (15.1 %). Regarding the Archaea Domain, Methanosaeta was more abundant in phases I (84 %) and II (67 %), while in phase III it was Methanobacterium (86 %).
Collapse
Affiliation(s)
- Caroline F Granatto
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Ave Trabalhador São-Carlense, No. 400, Zipcode 13566-590, São Carlos, SP, Brazil.
| | - Guilherme M Grosseli
- Federal University of São Carlos, Washington LuizHighway, Km 235, Zipcode 13565-905, São Carlos, SP, Brazil.
| | - Isabel K Sakamoto
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Ave Trabalhador São-Carlense, No. 400, Zipcode 13566-590, São Carlos, SP, Brazil.
| | - Pedro S Fadini
- Federal University of São Carlos, Washington LuizHighway, Km 235, Zipcode 13565-905, São Carlos, SP, Brazil.
| | - Maria Bernadete A Varesche
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Ave Trabalhador São-Carlense, No. 400, Zipcode 13566-590, São Carlos, SP, Brazil.
| |
Collapse
|
36
|
Wang F, Yin Z, Liu Y, Sun H, Zhu H, Chen H, Zhang K. Changes and release risk of typical pharmaceuticals and personal care products in sewage sludge during hydrothermal carbonization process. CHEMOSPHERE 2021; 284:131313. [PMID: 34182285 DOI: 10.1016/j.chemosphere.2021.131313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/06/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Hydrochars were obtained by hydrothermal carbonization treatment of municipal sewage sludge. Effects of reaction temperature (180-300 °C) and reaction time (2-15 h) on structural characteristics of the hydrochars, and changes and release risk of typical pharmaceuticals and personal care products (PPCPs) in the hydrochars were investigated. Reaction temperature played a more important role than reaction time on hydrochar properties and decarboxylation reaction was the primary process during the converting of sludge to hydrochars. The sludge hydrochars had higher yields, carbon recovery rates, polarity and less aromaticity than biochars. Hydrothermal process reduced PPCPs' load in sludge hydrochars effectively except caffeine and acetaminophen. The hydrochars prepared at intermediate and high temperatures (240 and 300 °C) had higher caffeine concentrations than the original sludge, which can be ascribed to the transformation of N-containing precursors. The highest CaCl2 extracted caffeine concentration occurred at intermediate temperature of 240 °C (48.1 μg/kg) due to the stronger affinity of caffeine in the high-temperature hydrochars. Caffeine was not detected in hydroxypropyl-β-cyclodextrin (HPCD) extract. Hydrochars prepared at low temperature (180 °C) had a higher acetaminophen concentration than the original sludge, which was attributed to the high thermal stability temperature of acetaminophen. Low- and intermediate-temperature hydrochars had higher CaCl2 extracted acetaminophen concentrations. The HPCD extracted acetaminophen was low with a range of nd to 6.72 μg/kg. In conclusion, PPCPs are less likely to constitute a limiting factor on the farm application of sludge hydrochar. This study provides theoretical support for the safe application of sludge hydrochar in the farmland.
Collapse
Affiliation(s)
- Fei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zheyun Yin
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yarui Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; College of Environmental Science and Engineering, Tianjin University, Tianjin, 00350, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Hongkai Zhu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Hao Chen
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Kai Zhang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
37
|
Biopolymer transformation and antibiotics degradation of wastewater sludge using thermally activated persulfate oxidation for dewaterability enhancement. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Abbott T, Kor-Bicakci G, Eskicioglu C. Examination of single-stage anaerobic and anoxic/aerobic and dual-stage anaerobic-anoxic/aerobic digestion to remove pharmaceuticals from municipal biosolids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148237. [PMID: 34126479 DOI: 10.1016/j.scitotenv.2021.148237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/16/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Many trace contaminants of emerging concern (CECs) including a number of pharmaceutically active compounds are not effectively removed during conventional wastewater treatment processes and instead accumulate in wastewater sludge. Unfortunately, many existing sludge stabilization treatments such as anaerobic digestion (AD) also have limited effectiveness against many of these CECs including the four pharmaceuticals ibuprofen, diclofenac, carbamazepine, and azithromycin which can then enter the environment through the disposal or land application of biosolids. Single-stage AD, single-stage cycling aerobic-anoxic (AERO/ANOX) and sequential digesters (AD followed by an AERO/ANOX digester) at sludge retention times (SRT) of 5 to 20-days were evaluated side-by-side to assess their effectiveness in removing pharmaceuticals and conventional organic matter. Single-stage ADs (35 °C) and AERO/ANOX (22 °C) digesters effectively removed total solids while sequential AD + AERO/ANOX digesters offered further improvements. Ibuprofen was not effectively removed during AD and resulted in up to a 23 ± 8% accumulation. However, ibuprofen was completely removed during AERO/ANOX digestion and in several sequential digestion scenarios. Each type of digestion was less effective against carbamazepine with slight (3 ± 2%) accumulations to low levels (14 ± 1%) of removals in each type of digestion studied. Diclofenac was more effectively removed with up 30 ± 3% to 39 ± 4% reductions in the single-stage digesters (AD and AERO/ANOX, respectively). While sequential digestion scenarios with the longest aerobic SRTs significantly increased diclofenac removals from their first-stage digesters, scenarios with the longest anaerobic SRTs actually decreased removals from first-stage digesters, possibly due to reversible biotransformation of diclofenac conjugates/metabolites. Up to 43 ± 6% of azithromycin was removed in AERO/ANOX digesters, while the best performing sequential-digester scenario removed up to 63 ± 7% of azithromycin. This study shows that different digester configurations can reduce the CEC burden in biosolids while also greatly reducing their volumes for disposal, although none can remove CECs completely.
Collapse
Affiliation(s)
- Timothy Abbott
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia, Okanagan Campus, 1137 Alumni Avenue, Kelowna, BC V1V 1V7, Canada
| | - Gokce Kor-Bicakci
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia, Okanagan Campus, 1137 Alumni Avenue, Kelowna, BC V1V 1V7, Canada
| | - Cigdem Eskicioglu
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia, Okanagan Campus, 1137 Alumni Avenue, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
39
|
Zahedi S, Gros M, Balcazar JL, Petrovic M, Pijuan M. Assessing the occurrence of pharmaceuticals and antibiotic resistance genes during the anaerobic treatment of slaughterhouse wastewater at different temperatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147910. [PMID: 34058579 DOI: 10.1016/j.scitotenv.2021.147910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
This study investigates the effect of psychrophilic, mesophilic and thermophilic temperatures on the anaerobic treatment of slaughterhouse wastewater, in terms of biogas production, occurrence of 30 pharmaceutical compounds of veterinary use, 4 antibiotic resistance genes (ARGs) which provide resistance to tetracyclines (tetW), fluoroquinolones (qnrS), macrolide-lincosamide-streptogramin (ermB) and sulfonamides (sul1) antibiotics, as well as class I integron-integrase gene (intI1), related to horizontal gene transfer. The highest methane yield was obtained at a mesophilic temperature (35 °C) (323 mL CH4/g TCOD) followed by the yield obtained at thermophilic temperature (53 °C) (242 mL CH4/g TCOD). Regarding pharmaceuticals, chlortetracycline, oxytetracycline, tilmicosin, and lincomycin were the most abundant in the slaughterhouse wastewater, being detected predominantly in the solid phase (with median concentrations >200 μg/kg dry weight). On the other hand, ciprofloxacin, ofloxacin, norfloxacin, lincomycin and ibuprofen were the most predominant in the anaerobic digestate regardless of the treatment temperature. Psychrophilic temperatures (21 °C) exhibited moderate to low pharmaceuticals removal, while a large fraction of them were removed at a thermophilic temperature reaching 70-90% removals for tetracycline, macrolides and one sulfonamide (sulfapyridine). The highest relative abundance of the quantified ARGs was found at 53 °C, suggesting that thermophilic temperatures normally associated with better removals of pathogens do not necessarily show better removals of antibiotic resistance genes.
Collapse
Affiliation(s)
- S Zahedi
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain.
| | - M Gros
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain
| | - J L Balcazar
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain
| | - M Petrovic
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - M Pijuan
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain.
| |
Collapse
|
40
|
López-Velázquez K, Villanueva-Rodríguez M, Mejía-González G, Herrera-López D. Removal of 17α-ethinylestradiol and caffeine from wastewater by UASB-Fenton coupled system. ENVIRONMENTAL TECHNOLOGY 2021; 42:3771-3782. [PMID: 32155103 DOI: 10.1080/09593330.2020.1740799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
In aquatic systems, some substances considered as endocrine disruptors have been detected, which can be due to their incomplete elimination in wastewater treatment plants (WWTPs) and inadequate disposal of pharmaceuticals. Among these contaminants are 17α-ethinylestradiol (EE2) and caffeine (CAF). Moreover, it has been reported that this kind of contaminants may provoke different adverse effects in many aquatic organisms. Because of that, in the present study, up-flow anaerobic sludge blanket reactors (UASB) coupled with the Fenton process was evaluated for EE2 and CAF removal spiked in wastewater samples. First, the best reaction conditions were established in each process. For UASB reactor, two hydraulic retention times (HRT 8 and 24 h) were evaluated, achieving the highest chemical organic demand (COD) removal (70 %) and drug elimination (84 %-86 %) with HRT 24 h. Subsequently, Fenton process was conducted at pH 3 with different levels of Fe2+ (0.05-0.5 mmol/L) and molar ratios Fe2+:H2O2 (1:1-1:10). Better results were obtained with 0.5 mmol Fe2+/L, and 1:10 ratio molar Fe2+:H2O2. Finally, UASB-Fenton coupled system allowed 80 % of COD decrease, almost complete removal of drugs and the toxicity of samples on Vibrio fischeri was reduced from 73 % to 30 %, demonstrating that this coupled system is a promising and efficient system for pharmaceutical compounds removal from wastewater.
Collapse
Affiliation(s)
| | - Minerva Villanueva-Rodríguez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, Nuevo León, México
| | | | | |
Collapse
|
41
|
Hammer L, Palmowski L. Fate of selected organic micropollutants during anaerobic sludge digestion. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1910-1924. [PMID: 34196072 DOI: 10.1002/wer.1603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/15/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Organic micropollutants are incompletely removed from wastewater in Water Resource Recovery Facilities using conventional methods and can therefore enter the anaerobic sludge treatment together with primary and secondary sludge. This review compiles literature data on the fate of selected micropollutants (Carbamazepine [CBZ], Diclofenac [DCF], Ibuprofen [IBP], Sulfamethoxazole [SMX], and Triclosan [TCS]) during anaerobic sludge treatment and how the fate is affected by chemical properties, phase distribution and operating conditions. CBZ was found to be persistent to anaerobic degradation in most studies, with some exceptions reporting a degradation efficiency of 60%. Removal efficiencies for DCF, IBP, and TCS varied widely (from no to [very] high removal). For SMX, most studies reported a removal above 80%. A correlation was found between the fate during anaerobic digestion and physicochemical properties (hydrophobicity and molecular structure). Sorption to sludge, affected in some cases by pH changes during digestion, is suggested to reduce bioavailability. IBP and TCS were mainly present in the liquid phase or solid phase, respectively, CBZ and DCF were present in similar proportions in both phases, while statements were contradictory for SMX. Parameters such as temperature and sludge age did not significantly influence the fate of investigated micropollutants during anaerobic digestion. PRACTITIONER POINTS: Most studies report no significant removal of CBZ during anaerobic sludge digestion. Removal efficiencies of DCF, IBP, and TCS vary from study to study between no removal and high or very high removal. Considering such heterogeneous removal efficiencies, it is recommended to conduct digestion trials to find out in which range the values will be for a specific sludge. SMX is very highly removed during anaerobic digestion in most studies. Parameters such as temperature and SRT do not significantly influence the fate of the five investigated micropollutants. Hydrophobicity, which has some effect on the liquid/solid phase distribution of micropollutants, and molecular structure influence the removal efficiencies.
Collapse
Affiliation(s)
- Lisann Hammer
- Institute of Environmental Engineering (ISA), RWTH Aachen University, Aachen, Germany
| | - Laurence Palmowski
- Institute of Environmental Engineering (ISA), RWTH Aachen University, Aachen, Germany
| |
Collapse
|
42
|
Gallardo-Altamirano MJ, Maza-Márquez P, Montemurro N, Pérez S, Rodelas B, Osorio F, Pozo C. Insights into the removal of pharmaceutically active compounds from sewage sludge by two-stage mesophilic anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147869. [PMID: 34051504 DOI: 10.1016/j.scitotenv.2021.147869] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/22/2021] [Accepted: 05/14/2021] [Indexed: 05/23/2023]
Abstract
The removal efficiencies (REs) of twenty-seven pharmaceutically active compounds (PhACs) (eight analgesic/anti-inflammatories, six antibiotics, four β-blockers, two antihypertensives/diuretics, three lipid regulators and four psychiatric drugs) were evaluated in a pilot-scale two-stage mesophilic anaerobic digestion (MAD) system treating thickened sewage sludge from a pilot-scale A2O™ wastewater treatment plant (WWTP) which was fed with wastewater from the pre-treatment of the full-scale WWTP Murcia Este (Murcia, Spain). The MAD system was long-term operated using two different sets of sludge retention times (SRTs) for the acidogenic (AcD) and methanogenic (MD) digesters (phase I, 2 and 12 days; and phase II, 5 and 24 days, in AcD and MD, respectively). Quantitative PCR (qPCR) and Illumina MiSeq sequencing were used to estimate the absolute abundance of Bacteria, Archaea, and Fungi and investigate the structure, diversity and population dynamics of their communities in the AcD and MD effluents. The extension of the SRT from 12 (phase I) to 24 days (phase II) in the MD was significantly linked with an improved removal of carbamazepine, clarithromycin, codeine, gemfibrozil, ibuprofen, lorazepam, and propranolol. The absolute abundances of total Bacteria and Archaea were higher in the MD regardless of the phase, while the diversity of bacterial and archaeal communities was lower in phase II, in both digesters. Non-metric multidimensional scaling (MDS) plots showed strong negative correlations among phyla Proteobacteria and Firmicutes and between genera Methanosaeta and Methanosarcina throughout the full experimental period. Strong positive correlations were revealed between the relative abundances of Methanospirillum and Methanoculleus and the methanogenesis performance parameters (volatile solids removal, CH4 recovery rate and %CH4 in the biogas), which were also related to longer SRT. The REs of several PhACs (naproxen, ketoprofen, ofloxacin, fenofibrate, trimethoprim, and atenolol) correlated positively (r > 0.75) with the relative abundances of specific bacterial and archaeal groups, suggesting their participation in biodegradation/biotransformation pathways.
Collapse
Affiliation(s)
- M J Gallardo-Altamirano
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain; Department of Civil Engineering, University of Granada, Granada, Spain
| | - P Maza-Márquez
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain; Department of Microbiology, University of Granada, Granada, Spain
| | - N Montemurro
- Water, Environmental and Food Chemistry (ENFOCHEM), Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - S Pérez
- Water, Environmental and Food Chemistry (ENFOCHEM), Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - B Rodelas
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain; Department of Microbiology, University of Granada, Granada, Spain.
| | - F Osorio
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain; Department of Civil Engineering, University of Granada, Granada, Spain
| | - C Pozo
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain; Department of Microbiology, University of Granada, Granada, Spain
| |
Collapse
|
43
|
Syed Z, Sogani M, Dongre A, Kumar A, Sonu K, Sharma G, Gupta AB. Bioelectrochemical systems for environmental remediation of estrogens: A review and way forward. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146544. [PMID: 33770608 DOI: 10.1016/j.scitotenv.2021.146544] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Globally estrogenic pollutants are a cause of concern in wastewaters and water bodies because of their high endocrine disrupting activity leading to extremely negative impacts on humans and other organisms even at very low environmental concentrations. Bioremediation of estrogens has been studied extensively and one technology that has emerged with its promising capabilities is Bioelectrochemical Systems (BESs). Several studies in the past have investigated BESs applications for treatment of wastewaters containing toxic recalcitrant pollutants with a primary focus on improvement of performance of these systems for their deployment in real field applications. But the information is scattered and further the improvements are difficult to achieve for standalone BESs. This review critically examines the various existing treatment technologies for the effective estrogen degradation. The major focus of this paper is on the technological advancements for scaling up of these BESs for the real field applications along with their integration with the existing and conventional wastewater treatment systems. A detailed discussion on few selected microbial species having the unusual properties of heterotrophic nitrification and extraordinary stress response ability to toxic compounds and their degradation has been highlighted. Based on the in-depth study and analysis of BESs, microbes and possible benefits of various treatment methods for estrogen removal, we have proposed a sustainable Hybrid BES-centered treatment system for this purpose as a choice for wastewater treatment. We have also identified three pipeline tasks that reflect the vital parts of the life cycle of drugs and integrated treatment unit, as a way forward to foster bioeconomy along with an approach for sustainable wastewater treatment.
Collapse
Affiliation(s)
- Zainab Syed
- Department of Civil Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India; Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Monika Sogani
- Department of Civil Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India; Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India.
| | - Aman Dongre
- Department of Civil Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India; Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Anu Kumar
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), L&W, Waite Campus, Urrbrae, SA, 5064, Australia.
| | - Kumar Sonu
- Department of Civil Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Gopesh Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Akhilendra Bhushan Gupta
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur 302017, Rajasthan, India
| |
Collapse
|
44
|
Cavaillé L, Kim C, Bounouba M, Zind H, Claparols C, Riboul D, Pinelli E, Albasi C, Bessiere Y. Development and validation of QuEChERS-based extraction for quantification of nine micropollutants in wastewater treatment plant. Anal Bioanal Chem 2021; 413:5201-5213. [PMID: 34228133 DOI: 10.1007/s00216-021-03489-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 10/20/2022]
Abstract
A modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) method was established for simultaneous quantification of eight pharmaceutical molecules (2-hydroxyibuprofen, diclofenac, ibuprofen, propranolol, ofloxacin, oxazepam, sulfamethoxazole, carbamazepine) and caffeine in environmental matrices. Analysis was performed by ultra-high-performance liquid chromatography with tandem mass spectrometry (UHPLC-MS-MS). Quantification was performed by using the 13C internal standard method for each molecule. Two methods were firstly optimized on freeze-dried waste activated sludge and then applied and validated on real complex matrices, which have contrasted physicochemical properties, i.e., clarified wastewater and primary sludge. The combination of acetate buffer with MgSO4 (protocol A) and citrate buffer with Na2SO4 (protocol B) was found necessary to recover the nine targeted compounds. Adding a higher salts quantity of Na2SO4 (protocol B) compared to MgSO4 (protocol A) is crucial to increase the ionic strength of the aqueous solution and to obtain comparable extraction recoveries of the targeted molecules. Adding two times solvent volume to the aqueous phase leads to increased absolute recovery for all molecules and both protocols. After demonstration of the final protocol's performance on the control matrix, its robustness was tested on the matrices of interest. As a result, the two proposed detection methods exhibit good reproducibility, high sensitivity, and high reliability.
Collapse
Affiliation(s)
- L Cavaillé
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, CNRS, INPT, UPS, 31400, Toulouse, France
| | - C Kim
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - M Bounouba
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - H Zind
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - C Claparols
- Université de Toulouse, UPS, ICT, 118 route de Narbonne, 31062, Toulouse Cedex 9, France.,CNRS, LCC, 205 route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France
| | - D Riboul
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, CNRS, INPT, UPS, 31400, Toulouse, France.,UMR 5245 CNRS-INP-UPS, Laboratoire d'écologie fonctionnelle et Environnement, 31326, Castanet-Tolosan, France
| | - E Pinelli
- UMR 5245 CNRS-INP-UPS, Laboratoire d'écologie fonctionnelle et Environnement, 31326, Castanet-Tolosan, France
| | - C Albasi
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, CNRS, INPT, UPS, 31400, Toulouse, France
| | - Y Bessiere
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077, Toulouse, France.
| |
Collapse
|
45
|
Mannina G, Alliet M, Brepols C, Comas J, Harmand J, Heran M, Kalboussi N, Makinia J, Robles Á, Rebouças TF, Ni BJ, Rodriguez-Roda I, Victoria Ruano M, Bertanza G, Smets I. Integrated membrane bioreactors modelling: A review on new comprehensive modelling framework. BIORESOURCE TECHNOLOGY 2021; 329:124828. [PMID: 33621928 DOI: 10.1016/j.biortech.2021.124828] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Integrated Membrane Bioreactor (MBR) models, combination of biological and physical models, have been representing powerful tools for the accomplishment of high environmental sustainability. This paper, produced by the International Water Association (IWA) Task Group on Membrane Modelling and Control, reviews the state-of-the-art, identifying gaps for future researches, and proposes a new integrated MBR modelling framework. In particular, the framework aims to guide researchers and managers in pursuing good performances of MBRs in terms of effluent quality, operating costs (such as membrane fouling, energy consumption due to aeration) and mitigation of greenhouse gas emissions.
Collapse
Affiliation(s)
- Giorgio Mannina
- Engineering Department, Palermo University, Viale delle Scienze, Ed.8, 90128 Palermo, Italy.
| | - Marion Alliet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | | | - Joaquim Comas
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; LEQUiA, Laboratory of Chemical and Environmental Engineering, University of Girona, Campus Montilivi, 17071 Girona, Spain
| | | | - Marc Heran
- IEM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - Nesrine Kalboussi
- Université de Carthage, Institut National ds Sciences Appliquées et de Technologie & Université de Tunis El Manar, Ecole Nationale d'Ingénieurs de Tunis, Laboratoire de Modélisation Mathématique et Numérique dans les sciences d'ingénieur, Tunis, Tunisia
| | - Jacek Makinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Ángel Robles
- Departament d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria (ETSE-UV), Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, València, Spain
| | | | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Ignasi Rodriguez-Roda
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; LEQUiA, Laboratory of Chemical and Environmental Engineering, University of Girona, Campus Montilivi, 17071 Girona, Spain
| | - María Victoria Ruano
- Departament d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria (ETSE-UV), Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, València, Spain
| | - Giorgio Bertanza
- Departament of Civil, Environmental, Architectural Engineering and Mathematics, Brescia University, via Branze 43, 25123 Brescia, Italy
| | - Ilse Smets
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F Box 2424, 3001 Heverlee, Belgium
| |
Collapse
|
46
|
Duan X, Chen Y, Feng L, Zhou Q. Metagenomic analysis reveals nonylphenol-shaped acidification and methanogenesis during sludge anaerobic digestion. WATER RESEARCH 2021; 196:117004. [PMID: 33730545 DOI: 10.1016/j.watres.2021.117004] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Nonylphenol (NP) is widely known for its estrogenic activity on organisms, but its influence on biochemical processes executed by complex microbiota is still unclear. The dose-specific effects of NP on sludge anaerobic digestion by shaping acidification and methanogenesis were reported. Both low (50 mg/kg) and high (1000 mg/kg) NP doses were beneficial to acidification and aceticlastic methanogenesis (AM), and high NP dose further stimulated hydrogenotrophic methanogenesis (HM). Stable isotope probing analysis indicated that the predominant methanogenic pathway was shifted from AM to a combination of AM and HM as NP dose increased. Acidogenic and methanogenic consortia were accumulated and restructured by NP in favor of acidification and substrate-based methanogenesis. Acidification-related genes for bioconversion of substrates into acetate (glycolysis, stickland reaction and pyruvate metabolism), acetate transportation and microbial robust performance were enriched with both low and high NP doses. Methanogenesis-related genes encoding acetyl-CoA dehydrogenase/synthetase (CODH/ACS) in aceticlastic pathway and transporters for coenzyme synthesis were enhanced by both NP doses. Besides, high NP dose promoted a majority of genes in CO2-reduction pathway and key material transporters for coenzyme F420 and heterodisulfide reductase synthesis. This study shed light on complex microbial processes rather than certain organisms affected by NP with dose-specific pattern at genetic level and had implications in resource utilization of sludge containing refractory organics.
Collapse
Affiliation(s)
- Xu Duan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Qi Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
47
|
Patureau D, Mailler R, Delgenes N, Danel A, Vulliet E, Deshayes S, Moilleron R, Rocher V, Gasperi J. Fate of emerging and priority micropollutants during the sewage sludge treatment - Part 2: Mass balances of organic contaminants on sludge treatments are challenging. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 125:122-131. [PMID: 33684663 DOI: 10.1016/j.wasman.2021.02.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/30/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
This paper analyzes the fate of 71 priority and emerging organic contaminants all along the treatment trains of sewage sludge treatment facilities in Paris including dewatering by centrifugation, thermal drying and anaerobic digestion. It aimed at proposing and applying a mass balances calculation methodology to each process and pollutant. This data validation strategy demonstrated the complexity to perform representative inlet/outlet sampling and analysis campaigns at industrial scales regarding organic compounds and to propose options to overcome this issue. Centrifugation and drying processes only implied physical mechanisms as phase separation and water elimination. Hence, correct mass balance were expected observed for organic contaminants if sampling and analysis campaigns were representative. This was the case for hydrophobic and neutral compounds. For the other more hydrophilic and charged compounds, the mass balances were scarcely correct. Thus, the conventional sampling and analytical practices used with sludge should be questioned and adapted to better take into account the high heterogeneity of sludge and the evolution of matrix effect within sludge treatment processes on micropollutant determination. For the biological anaerobic digestion process where degradations can occur and removals can be observed, the mass balances were deeply interpreted for 60 contaminants. This process contributed to the elimination above 70% of 21 detected compounds including 16 pharmaceuticals, 2 phthalates, 2 hormones and 1 perfluorinated compound. Removals of domperidone, propranolol, escitalopram, lidocaine, verapamil and cefoperazone under this condition were reported for the first time.
Collapse
Affiliation(s)
- D Patureau
- INRAE, Univ Montpellier, LBE, 102 avenue des étangs, 11100 Narbonne, France.
| | - R Mailler
- SIAAP, Direction de l'Innovation, 82 avenue Kléber, 92700 Colombes, France.
| | - N Delgenes
- INRAE, Univ Montpellier, LBE, 102 avenue des étangs, 11100 Narbonne, France
| | - A Danel
- INRAE, Univ Montpellier, LBE, 102 avenue des étangs, 11100 Narbonne, France
| | - E Vulliet
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280 CNRS, Université Lyon 1, ENS-Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - S Deshayes
- LEESU (UMR MA 102, Université Paris-Est, Agro ParisTech), 61 avenue du Général De Gaulle, 94010 Créteil Cedex, France
| | - R Moilleron
- LEESU (UMR MA 102, Université Paris-Est, Agro ParisTech), 61 avenue du Général De Gaulle, 94010 Créteil Cedex, France
| | - V Rocher
- SIAAP, Direction de l'Innovation, 82 avenue Kléber, 92700 Colombes, France
| | - J Gasperi
- GERS-LEE, Université Gustave Eiffel, IFSTTAR, F-44344 Bouguenais, France
| |
Collapse
|
48
|
Silva AR, Cavaleiro AJ, Soares OSGP, Braga CS, Salvador AF, Pereira MFR, Alves MM, Pereira L. Detoxification of Ciprofloxacin in an Anaerobic Bioprocess Supplemented with Magnetic Carbon Nanotubes: Contribution of Adsorption and Biodegradation Mechanisms. Int J Mol Sci 2021; 22:ijms22062932. [PMID: 33805783 PMCID: PMC7999377 DOI: 10.3390/ijms22062932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 12/26/2022] Open
Abstract
In anaerobic bioreactors, the electrons produced during the oxidation of organic matter can potentially be used for the biological reduction of pharmaceuticals in wastewaters. Common electron transfer limitations benefit from the acceleration of reactions through utilization of redox mediators (RM). This work explores the potential of carbon nanomaterials (CNM) as RM on the anaerobic removal of ciprofloxacin (CIP). Pristine and tailored carbon nanotubes (CNT) were first tested for chemical reduction of CIP, and pristine CNT was found as the best material, so it was further utilized in biological anaerobic assays with anaerobic granular sludge (GS). In addition, magnetic CNT were prepared and also tested in biological assays, as they are easier to be recovered and reused. In biological tests with CNM, approximately 99% CIP removal was achieved, and the reaction rates increased ≈1.5-fold relatively to the control without CNM. In these experiments, CIP adsorption onto GS and CNM was above 90%. Despite, after applying three successive cycles of CIP addition, the catalytic properties of magnetic CNT were maintained while adsorption decreased to 29 ± 3.2%, as the result of CNM overload by CIP. The results suggest the combined occurrence of different mechanisms for CIP removal: adsorption on GS and/or CNM, and biological reduction or oxidation, which can be accelerated by the presence of CNM. After biological treatment with CNM, toxicity towards Vibrio fischeri was evaluated, resulting in ≈ 46% detoxification of CIP solution, showing the advantages of combining biological treatment with CNM for CIP removal.
Collapse
Affiliation(s)
- Ana R. Silva
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (A.R.S.); (A.J.C.); (C.S.N.B.); (A.F.S.); (M.M.A.)
| | - Ana J. Cavaleiro
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (A.R.S.); (A.J.C.); (C.S.N.B.); (A.F.S.); (M.M.A.)
| | - O. Salomé G. P. Soares
- Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; (O.S.G.P.S.); (M.F.R.P.)
| | - Cátia S.N. Braga
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (A.R.S.); (A.J.C.); (C.S.N.B.); (A.F.S.); (M.M.A.)
| | - Andreia F. Salvador
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (A.R.S.); (A.J.C.); (C.S.N.B.); (A.F.S.); (M.M.A.)
| | - M. Fernando R. Pereira
- Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; (O.S.G.P.S.); (M.F.R.P.)
| | - M. Madalena Alves
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (A.R.S.); (A.J.C.); (C.S.N.B.); (A.F.S.); (M.M.A.)
| | - Luciana Pereira
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (A.R.S.); (A.J.C.); (C.S.N.B.); (A.F.S.); (M.M.A.)
- Correspondence:
| |
Collapse
|
49
|
Moško J, Pohořelý M, Cajthaml T, Jeremiáš M, Robles-Aguilar AA, Skoblia S, Beňo Z, Innemanová P, Linhartová L, Michalíková K, Meers E. Effect of pyrolysis temperature on removal of organic pollutants present in anaerobically stabilized sewage sludge. CHEMOSPHERE 2021; 265:129082. [PMID: 33309446 DOI: 10.1016/j.chemosphere.2020.129082] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/19/2020] [Accepted: 11/19/2020] [Indexed: 05/26/2023]
Abstract
Sewage sludge was excluded from the list of component materials for the production of EU fertilizing products and it was banned as feedstock to produce pyrolysis & gasification materials in European Commission's technical proposals for selected new fertilizing materials under the Regulation 2019/1009 (STRUBIAS report). This exclusion of pyrolysis as a viable way to treat sewage sludge was mainly due to the lack of data on the fate of organic pollutants at pyrolysis conditions. In this work, we are addressing this knowledge gap. We studied slow pyrolysis as a potential process to efficiently treat organic pollutants present in stabilized sewage sludge. Sewage sludge was pyrolyzed in a quartz fixed bed reactor at temperatures of 400-800 °C for 2 h and the sludge and resulting sludge-chars were analyzed for the presence of four groups of organic pollutants, namely (i) polychlorinated biphenyls (PCBs), (ii) polycyclic aromatic hydrocarbons (PAHs), (iii) pharmaceuticals, and (iv) endocrine-disrupting and hormonal compounds. Pyrolysis at ≥ 400 °C effectively removed pharmaceuticals (group iii) to below detection limits, whereas pyrolysis at temperatures higher than 600 °C was required to remove more than 99.8% of the compounds from groups i, ii and iv. Based on these findings, we propose, that high temperature (>600 °C) slow pyrolysis can satisfactory remove organic pollutants from the resulting sludge-char, which could be safely applied as soil improver.
Collapse
Affiliation(s)
- Jaroslav Moško
- Department of Power Engineering & Department of Gaseous and Solid Fuels and Air Protection, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium; The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02, Prague 6, Czech Republic
| | - Michael Pohořelý
- Department of Power Engineering & Department of Gaseous and Solid Fuels and Air Protection, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic; The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02, Prague 6, Czech Republic.
| | - Tomáš Cajthaml
- The Czech Academy of Sciences, Institute of Microbiology, Vídeňská 1083, 142 20, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 128 01, Prague 2, Czech Republic
| | - Michal Jeremiáš
- Department of Power Engineering & Department of Gaseous and Solid Fuels and Air Protection, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic; The Czech Academy of Sciences, Institute of Plasma Physics, Za Slovankou 1782/3, 182 00, Prague 8, Czech Republic
| | - Ana A Robles-Aguilar
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Siarhei Skoblia
- Department of Power Engineering & Department of Gaseous and Solid Fuels and Air Protection, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Zdeněk Beňo
- Department of Power Engineering & Department of Gaseous and Solid Fuels and Air Protection, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Petra Innemanová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 128 01, Prague 2, Czech Republic
| | - Lucie Linhartová
- The Czech Academy of Sciences, Institute of Microbiology, Vídeňská 1083, 142 20, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 128 01, Prague 2, Czech Republic
| | - Klára Michalíková
- The Czech Academy of Sciences, Institute of Microbiology, Vídeňská 1083, 142 20, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 128 01, Prague 2, Czech Republic
| | - Erik Meers
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| |
Collapse
|
50
|
Dubey M, Mohapatra S, Tyagi VK, Suthar S, Kazmi AA. Occurrence, fate, and persistence of emerging micropollutants in sewage sludge treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116515. [PMID: 33493756 DOI: 10.1016/j.envpol.2021.116515] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/17/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Sludge generated at sewage treatment plants is of environmental concern due to the voluminous production and the presence of a high concentration of emerging contaminants (ECs). This review discusses the fate of ECs in sewage sludge treatment with an emphasis on fundamental mechanisms driving the degradation of compounds based on chemical properties of the contaminant and process operating conditions. The removal of ECs in sewage sludge through various treatment processes of sludge stabilization, such as anaerobic digestion (AD), composting, and pre-treatment methods (thermal, sonication, and oxidation) followed by AD, are discussed. Several transformation mechanisms and remediation strategies for the removal of ECs in sludge are summarized. The study concludes that pH, sludge type, and the types of functional groups are the key factors affecting the sorption of ECs to sludge. During conventional waste stabilization processes such as composting, the degradation of ECs depends on the type of feedstock (TOC, N, P, C/N, C/P) and the initial concentration of the contaminant. In AD, the degree of degradation depends on the hydrophilicity of the compound. The estrogenicity of the sludge may sometimes increase due to the conversion to estrogenic compounds. The pre-treatment techniques can increase the partitioning of ECs in the soluble fraction resulting in enhanced biodegradation up to 10-60%. However, the formation of by-products and loss of OH· to scavenging under high organic content during advanced oxidation processes can make the process uneconomical and require further research.
Collapse
Affiliation(s)
- Monika Dubey
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Sanjeeb Mohapatra
- NUS Environmental Research Institute, National University of Singapore, 1-Create Way, #15-02 Create Tower, 138602, Singapore
| | - Vinay Kumar Tyagi
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| | - Surindra Suthar
- School of Environment & Natural Resources, Doon University, Dehradun, 248001, Uttarakhand, India
| | - Absar Ahmad Kazmi
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| |
Collapse
|