1
|
Song Z, Yang J, Hua Y, Liu G, Yu G, Zhao J, Hu J, Wan X. Characteristics of phosphorus transformation from vivianite mediated by sulphide. J Environ Sci (China) 2025; 154:52-62. [PMID: 40049893 DOI: 10.1016/j.jes.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/03/2024] [Accepted: 08/04/2024] [Indexed: 05/13/2025]
Abstract
The release of phosphorus (P) from anaerobic sediments becomes the dominant source of P loading with effective control of external P pollution. As a crucial component responsible for binding P, vivianite (Fe3(PO4)2·8H2O) in sediment inevitably impacts the P level and transformation. The release of P from vivianite mediated by sulphide was investigated using simulated overlying water-sediment and chemical reaction systems. The percentage of redox-stable P in the sediments increased with vivianite input in the overlying water-sediment system. Increasing P concentrations in both the overlying water and interstitial water occurred before day 10, accompanied by a decreasing percentage of redox-sensitive P in the sediments driven by sulphide. The continuous release of P from vivianite clarifies the influence of sulphide on promoting vivianite dissolution in a chemical reaction system with vivianite and sulphide solution. Additionally, Mössbauer spectrum and nanoscale secondary ion mass spectrometry (NanoSIMS) images based on the chemical reaction with 57Fe isotope labelling demonstrated the presence of initial vivianite, newly produced vivianite, and FeS2.
Collapse
Affiliation(s)
- Zijun Song
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Yang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yumei Hua
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guanglong Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanghui Yu
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Jianwei Zhao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinlong Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoqiong Wan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Wei Q, Cui C, Wang Z, Chand H, Wang D, You S, Zhang C. Enhanced phosphate removal and recovery from wastewater by flow-electrode capacitive deionization (FCDI): Role of [Fe(CN) 6] 3-/4- redox couple. WATER RESEARCH 2025; 277:123304. [PMID: 40043485 DOI: 10.1016/j.watres.2025.123304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/26/2025] [Accepted: 02/14/2025] [Indexed: 03/16/2025]
Abstract
Flow-electrode capacitive deionization (FCDI) emerges as a promising technology for phosphorus (P) recovery from low/medium-strength wastewaters. Conventional activated carbon flow electrodes (ACFEs) face challenges in terms of poor dispersion and weak conductivity, which inhibits their cost-effectiveness, efficiency and stability. To address these issues, we introduce the [Fe(CN)6]3-/4- redox couple into ACFEs mixture to enhance the charge transfer rate and P recovery, achieving stable long-term operation. The results showed that the addition of 10 mM [Fe(CN)6]3-/4- significantly improved the average P removal rate (APRR) achieving 9.2 μg P min-1 cm-2 with low energy of 3.5 kWh kg-1 P. This improvement was particularly evident over 10 successive cycles, where a consistent 90 % P recovery was obtained in each cycle. The improved performance can be attributed to the formation of continuous conductive channels, reduced internal resistance, as well as fast and stable electron transfer facilitated by [Fe(CN)6]3-/4-, leading to more efficient P adsorption and desorption. Futhermore, a highpurity CaP product was extracted from P-rich electrolyte by using simple filtration and crystallization process. The FCDI with [Fe(CN)6]3-/4- redox couple achieved 84.2 % P recovery from real domestic wastewater, demonstrating the potential of FCDI process for waste-to-resource applications. This study provides a proof-of-concept demonstration of enhanced FCDI by introducing [Fe(CN)6]3-/4- redox couple. Application of redox couple in FCDI process overcomes the limitations of traditional ACFEs, by enhancing P recovery and reducing energy consumption, making resource recovery and wastewater treatment more efficient, more economic and more sustainable.
Collapse
Affiliation(s)
- Qiang Wei
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; School of Resources and Environment, Anqing Normal University, Anqing 246011, China
| | - Chuanjian Cui
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Zhanling Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hameer Chand
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dejin Wang
- School of Resources and Environment, Anqing Normal University, Anqing 246011, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Changyong Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
3
|
Bec S, Prot T, Dugulan IA, Korving L, Mänttäri M. The challenges and limitations of vivianite quantification with 2,2'-bipyridine extraction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 972:179112. [PMID: 40090242 DOI: 10.1016/j.scitotenv.2025.179112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025]
Abstract
Vivianite presents a significant phosphorus pool in iron-rich, reducing environments, necessitating the development of an affordable and routine quantification method. A novel extraction protocol using 2,2'-bipyridine (Bipy) was proposed as a promising approach. However, the efficacy of this protocol in achieving complete vivianite extraction remains uncertain and lacks robust analytical validation. This study systematically assessed the Bipy extraction protocol on known amount of synthetic and two magnetically recovered environmental vivianite samples, with varying oxidation levels, impurity content, and particle size. Extraction efficiencies of iron and phosphorus were 13-44 % and 13-55 %, respectively, indicating incomplete extraction under the original protocol conditions (0.2 % Bipy, 24 h). An initially rapid release of iron and phosphorus slowed down across all samples, indicating non-constant reaction rates, and suggesting that the extraction is governed by mechanisms beyond kinetic control. Extending the extraction time to 48 h and increasing the Bipy concentration to 1 % yielded marginal improvements, with efficiency gains of 14 % or less. Grinding, which reduced particle size, nearly doubled extraction efficiency. Conversely, the sample with the highest Fe2+ content showed the overall lowest overall extraction efficiencies. Similarly, recovered vivianite samples containing impurities, namely magnesium and calcium, were extracted less efficiently than synthetic vivianite. Additionally, the extracted iron-to‑phosphorus ratio exceeded the theoretical value of 0.67, indicating non-stoichiometric extraction. To establish Bipy extraction as a reliable analytical method, it is crucial to address incomplete extraction and determine whether vivianite can be fully extracted or only to a certain extent. A potential strategy involves reducing extraction time and repeating the extraction step.
Collapse
Affiliation(s)
- Sabina Bec
- Lappeenranta-Lahti University of Technology LUT, Department of Separation Science, Yliopistonkatu 34, 53850 Lappeenranta, Finland.
| | - Thomas Prot
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, The Netherlands
| | - Iulian A Dugulan
- Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629, JB, Delf, the Netherlands
| | - Leon Korving
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, The Netherlands
| | - Mika Mänttäri
- Lappeenranta-Lahti University of Technology LUT, Department of Separation Science, Yliopistonkatu 34, 53850 Lappeenranta, Finland
| |
Collapse
|
4
|
Bolujoko N, Duling A, Shashvatt U, Mangalgiri K. The fate of antibiotics during phosphate recovery processes - A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178829. [PMID: 39970556 DOI: 10.1016/j.scitotenv.2025.178829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 02/21/2025]
Abstract
The principles of circular economy encourage the recovery of phosphorus from nutrient-rich waste streams such as animal manure, domestic wastewater, and urine to supplement existing sources of raw phosphorus. However, these waste streams also contain a wide variety of contaminants of emerging concern including antibiotics, and the recovery of phosphorus from these waste streams results in the co-occurrence of antibiotics with the recovered phosphorus products. This paper provides a comprehensive overview of the fate of environmentally relevant antibiotics in three major existing and upcoming phosphorus recovery processes: precipitation-, membrane-, and adsorption-based treatment. In general, the co-occurrence of antibiotics in recovered phosphorus increases with the presence of dissolved organic matter (DOM) and cations due to π-π interaction and cationic bridge formation, respectively. Additionally, antibiotics display pH-based speciation resulting in electrostatic interactions with recovered phosphorus at pH > 7.0. Furthermore, this critical review establishes a new metric, the relative antibiotic-to‑phosphorus (RAP), defined as the ratio of the concentration of antibiotics to phosphorus in recovered phosphorus to that of the phosphorus-rich waste. Precipitation-based methods, particularly struvite, demonstrated the lowest RAP, while the RAP in carbon-based adsorbents was 1.8 × 108 times higher than in membrane-based processes. In reviewing literature on the fate of antibiotics in phosphorus recovery processes, several research needs are also highlighted: the fate of non-tetracycline antibiotics, simultaneous investigation of phosphorus and antibiotic fate in membrane- and adsorption-based methods, treatment methods to mitigate the co-occurrence of antibiotics in recovered phosphorus product, and the release of antibiotics from recovered phosphate products.
Collapse
Affiliation(s)
- Nathaniel Bolujoko
- Environmental Science Graduate Program, Oklahoma State University, 202 Whitehurst, Stillwater, OK 74078, USA
| | - Addison Duling
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, 215A Agricultural Hall, Stillwater, OK 74078, USA
| | - Utsav Shashvatt
- Department of Civil and Environmental Engineering, University of California, Berkeley, 760 Davis Hall, Berkeley, CA 94720, USA
| | - Kiranmayi Mangalgiri
- Environmental Science Graduate Program, Oklahoma State University, 202 Whitehurst, Stillwater, OK 74078, USA; Department of Biosystems and Agricultural Engineering, Oklahoma State University, 215A Agricultural Hall, Stillwater, OK 74078, USA.
| |
Collapse
|
5
|
Petersen JF, Valk LC, Verhoeven MD, Nierychlo MA, Singleton CM, Dueholm MKD, Nielsen PH. Diversity and physiology of abundant Rhodoferax species in global wastewater treatment systems. Syst Appl Microbiol 2025; 48:126574. [PMID: 39700725 DOI: 10.1016/j.syapm.2024.126574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Wastewater treatment plants rely on complex microbial communities for bioconversion and removal of pollutants, but many process-critical species are still poorly investigated. One of these genera is Rhodoferax, an abundant core genus in wastewater treatment plants across the world. The genus has been associated with many metabolic traits such as iron reduction and oxidation and denitrification. We used 16S rRNA gene amplicon data to uncover the diversity and abundance of Rhodoferax species in Danish and global treatment plants. Publicly available metagenome-assembled genomes were analyzed based on phylogenomics to delineate species and assign taxonomies based on the SeqCode. The phylogenetic analysis of "Rhodoferax" revealed that species previously assigned to Rhodoferax in wastewater treatment plants should be considered as at least eight different genera, with five representing previously undescribed genera. Genome annotation showed potential for several key-bioconversions in wastewater treatment, such as nitrate reduction, carbohydrate degradation, and accumulations of various storage compounds. Iron oxidation and reduction capabilities were not predicted for abundant species. Species-resolved FISH-Raman was performed to gain an overview of the morphology and ecophysiology of selected taxa to clarify their potential role in global wastewater treatment systems. Our study provides a first insight into the functional and ecological characteristics of several novel genera abundant in global wastewater treatment plants, previously assigned to the Rhodoferax genus.
Collapse
Affiliation(s)
- Jette F Petersen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Laura C Valk
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Maarten D Verhoeven
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Marta A Nierychlo
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Caitlin M Singleton
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Morten K D Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
6
|
Liu X, Huang D, Zhu C, Zhu F, Zhu X, Zhou D. Production of Reactive Oxygen Species during Redox Manipulation and Its Potential Impacts on Activated Sludge Wastewater Treatment Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:23042-23052. [PMID: 39689161 DOI: 10.1021/acs.est.4c11301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Reactive oxygen species (ROS) are ubiquitous in redox-fluctuating environments, exerting profound impacts on biogeochemical cycles. However, whether ROS can be generated during redox manipulation in activated sludge wastewater treatment processes (AS-WTPs) and the underlying impacts remain largely unknown. This study demonstrates that ROS production is ubiquitous in AS-WTPs due to redox manipulation and that the frequency and capacity of ROS production depend on the operating modes. The anaerobic/oxic continuous-flow reactor showed persistent ROS generation (0.8-2.1 μM of instantaneous H2O2), whereas the oxic/anoxic sequencing batch reactor (0.21-0.28 mM of H2O2 per cycle) and the anaerobic/anoxic digestion reactor (0.27-0.29 mM of H2O2 per cycle) exhibited periodic ROS production. Our results illustrated that ROS generated during redox manipulation can contribute to the removal of organic micropollutants. Due to their high activity, ROS can directly accelerate the abiotic oxidation of organic phenolics and Fe(II) minerals in sludges. ROS could also affect biotic nitrification by changing the microbial community composition and regulating the relative expression of functional genes, such as amoA, nrxA, and nrxB. This research demonstrates the ubiquitous production of ROS during redox manipulation in AS-WTPs, which provides new insights into pollutant removal and the abiotic and biotic elemental transformation in AS-WTPs.
Collapse
Affiliation(s)
- Xiantang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Danyu Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Changyin Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Fengxiao Zhu
- School of Environment, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xiangdong Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
7
|
Luo J, Zhao C, Huang W, Wang F, Fang F, Su L, Wang D, Wu Y. A holistic valorization of treasured waste activated sludge for directional high-valued products recovery: Routes, key technologies and challenges. ENVIRONMENTAL RESEARCH 2024; 262:119904. [PMID: 39270963 DOI: 10.1016/j.envres.2024.119904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Global energy shortages and environmental crises underscore the imperative for a circular economy to tackle resource scarcity and waste management. The circular economy model encourages the recovery and reuse of valuable materials, reducing reliance on finite natural resources and lessening the environmental impact of waste disposal. Among urban organic solid wastes, waste activated sludge (WAS) emerges as a potent reservoir of untapped resources (including various inorganic and organic ones) offering significant potential for recovery. This review delves into a comprehensive analysis of directional valorization of WAS to recover high-valued products, including the inorganic matters (i.e. phosphorus, ammonia nitrogen, and heavy metals), organic resources (i.e. extracellular polymers like alginate and protein, volatile fatty acid, methane, hydrogen, and plant growth hormones) and reutilization of WAS residues for the preparation of adsorbent materials - the biochar. Moreover, the main recovery methodologies associated influencing parameters, product application, and attendant challenges for those diverse recovered resources are unveiled. Future research are encouraged to prioritize the development of integrated multi-resource recovery approaches, the establishment of regulatory frameworks to support resource recovery and product utilization, and the systematic evaluation of disposal strategies to foster a more sustainable and resource-efficient future. This work illuminates avenues for sustainable WAS management with high-valued resource recovery towards circular economy.
Collapse
Affiliation(s)
- Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China.
| | - Chenxin Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Lianghu Su
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
8
|
Cui H, Yang X, Gao X, Sun D, Cheng X. Compatibility of vivianite-crystallization pathway of phosphorus recovery with anaerobic digestion systems of thermally hydrolyzed sludge. ENVIRONMENTAL RESEARCH 2024; 260:119640. [PMID: 39029727 DOI: 10.1016/j.envres.2024.119640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/13/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Phosphorus in sewage is mostly enriched in activated sludge in wastewater treatment plants, making excess sludge an appropriate material for phosphorus recovery. The potential of vivianite (Fe3(PO4)2·8H2O) crystallization-based phosphorus recovery during the anaerobic digestion of thermally hydrolyzed sludge was discussed with influences of organic compounds on the formation of vivianite crystals being investigated in detail. Bovine serum albumin, humic acids and alginate, as model compounds of proteins, humic acids and polysaccharides, all inhibited vivianite crystallization, with the influence of humic acids being the most significant. A sludge retention time of >12 d for effective degradation of organic compounds and a certain degree of FeII excess are suggested to decrease the organics resulting inhibition. The results demonstrate the compatibility of vivianite-crystallization pathway of phosphorus recovery with anaerobic sludge digesters, and reveal the complexity of vivianite formation in the sludge with further research warranted to minimize the inhibitory influences.
Collapse
Affiliation(s)
- Haoran Cui
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Xiaofan Yang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Xiaozhong Gao
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Xiang Cheng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
9
|
Cen X, Hu Z, Huang X, Yuan Z, Zheng M. Integrated urban wastewater management through on-site generation and application of ferrous carbonate. WATER RESEARCH 2024; 268:122732. [PMID: 39531799 DOI: 10.1016/j.watres.2024.122732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/05/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Integrated urban water management is an increasingly popular concept that cost-effectively maximizes system-wide performance by holistically considering all aspects of water and wastewater sectors. An innovative technology enabling production of high-quality bioenergy and an iron salt, ferrous carbonate (FeCO3), represents a significant opportunity for integrated urban water management. This study experimentally evaluates the effect of in-sewer FeCO3 dosing on the performance of sewers and the downstream wastewater treatment plants. Two continuous-flow laboratory-scale urban wastewater systems, each consisting of sewer reactors, a sequencing batch wastewater treatment reactor, and an anaerobic digester, were operated in parallel. After establishing comparable performance, one served as the control without any chemical dosing, while the other received a dosing of 10mgFe/L of FeCO3 in its sewer reactors. Compared to the control, the FeCO3-dosed experimental system reduced dissolved sulfide concentrations by 32.2±3.3% (at 0.58±0.05mgS/mgFe, or 1.0molFe/molS) in sewer reactors, decreased phosphate concentrations by 38.3%±3.2% (at 0.37±0.04mgP/mgFe, or 1.5molFe/molP) in sequencing batch reactors, and lowered dissolved sulfide concentrations by 72.0±4.2% (18.9±2.4mgS/L) in the anaerobic sludge digester. Iron accumulated in the sludge and improved sludge settleability by 33.9±5.5% and enhanced dewaterability of anaerobically digested sludge by 15.9±2.0%. The findings indicate multiple benefits from the integrated use of FeCO3, potentially being as a substitute for the currently used iron salts in urban wastewater systems.
Collapse
Affiliation(s)
- Xiaotong Cen
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhetai Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Xin Huang
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, PR China.
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia; Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
10
|
Guo P, Yan Y, Ngo KN, Peot C, Bollmeyer M, Yi S, Baldwin M, Reid M, Goldfarb JL, Lancaster K, De Clippeleir H, Gu AZ. Improving nutrients ratio in class A biosolids through vivianite recovery: Insights from a wastewater resource recovery facility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173560. [PMID: 38823710 DOI: 10.1016/j.scitotenv.2024.173560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Class A biosolids from water resource recovery facilities (WRRFs) are increasingly used as sustainable alternatives to synthetic fertilizers. However, the high phosphorus to nitrogen ratio in biosolids leads to a potential accumulation of phosphorus after repeated land applications. Extracting vivianite, an FeP mineral, prior to the final dewatering step in the biosolids treatment can reduce the P content in the resulting class A biosolids and achieve a P:N ratio closer to the 1:2 of synthetic fertilizers. Using ICP-MS, IC, UV-Vis colorimetric methods, Mössbauer spectroscopy, and SEM-EDX, a full-scale characterization of vivianite at the Blue Plains Advanced Wastewater Treatment Plant (AWTTP) was surveyed throughout the biosolids treatment train. Results showed that the vivianite-bound phosphorus in primary sludge thickening, before pre-dewatering, after thermal hydrolysis, and after anaerobic digestion corresponded to 8 %, 52 %, 40 %, and 49 % of the total phosphorus in the treatment influent. Similarly, the vivianite-bound iron concentration also corresponded to 8 %, 52 %, 40 %, and 49 % of the total iron present (from FeCl3 dosing), because the molar ratio between total iron and total incoming phosphorus was 1.5:1, which is the same stoichiometry of vivianite. Based on current P:N levels in the Class A biosolids at Blue Plains, a vivianite recovery target of 40 % to ideally 70 % is required in locations with high vivianite content to reach a P:N ratio in the resulting class A biosolid that matches synthetic fertilizers of 1:1.3 to 1:2, respectively. A financial analysis on recycling iron from the recovered vivianite had estimated that 14-25 % of Blue Plain's annual FeCl3 demand can potentially be met. Additionally, model simulations with Visual Minteq were used to evaluate the pre-treatment options that maximize vivianite recovery at different solids treatment train locations.
Collapse
Affiliation(s)
- Peibo Guo
- School of Civil and Environmental Engineering, Cornell University, NY, USA; District of Columbia Water and Sewer Authority, 5000 Overlook Ave. SW, Washington, DC, USA.
| | - Yuan Yan
- School of Civil and Environmental Engineering, Cornell University, NY, USA.
| | - Khoa Nam Ngo
- District of Columbia Water and Sewer Authority, 5000 Overlook Ave. SW, Washington, DC, USA.
| | - Chris Peot
- District of Columbia Water and Sewer Authority, 5000 Overlook Ave. SW, Washington, DC, USA.
| | - Melissa Bollmeyer
- Department of Chemistry and Chemical Biology, Cornell University, NY, USA.
| | - Sang Yi
- School of Civil and Environmental Engineering, Cornell University, NY, USA.
| | - Mathew Baldwin
- School of Civil and Environmental Engineering, Cornell University, NY, USA.
| | - Matthew Reid
- School of Civil and Environmental Engineering, Cornell University, NY, USA.
| | - Jillian L Goldfarb
- Smith School of Chemical and Biomolecular Engineering, Cornell University, NY, USA.
| | - Kyle Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, NY, USA.
| | - Haydée De Clippeleir
- District of Columbia Water and Sewer Authority, 5000 Overlook Ave. SW, Washington, DC, USA.
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, NY, USA.
| |
Collapse
|
11
|
Chang J, Liang D, Gao Y, Sun Y, Wang X, Ren NQ, Li N. Nano-magnetite enhances dissimilated iron reduction to vivianite from sewage by structuring an enormous and compact electron transfer network. WATER RESEARCH 2024; 268:122583. [PMID: 39393178 DOI: 10.1016/j.watres.2024.122583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/21/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
Acting as both terminal and conductor of extracellular electron transfer (EET), little studies were focused on how nano-magnetite participated in the dissimilated iron reduction (DIR), especially the synthesis of vivianite, which was the typical DIR products from sewage. In this study, nano-magnetite was confirmed to enhance DIR of ferrihydrite and akaganeite for vivianite recovery from sewage. Nano-magnetite incorporation enriched Comamonas and Geobacter in sewage, and microbial protein content was increased by 123 % and 57 % in ferrihydrite and akaganeite batches, respectively. In Geobacter sulfurreducens PCA pure culture, vivianite yield was promoted by 21 % and 37 % in ferrihydrite and akaganeite batches in the presence of nano-magnetite, respectively. Due to its nanoscale size and superior electrical conductivity, nano-magnetite embedded in the gaps formed by the microorganisms and electron acceptor, and architected coherent conductive pathways to promote EET. Simultaneously, the addition of nano-magnetite stimulated the secretion of proteins, polysaccharides, and humic acids in the extracellular polymeric substances. Nano-magnetite addition structured an enormous and compact electron transfer network, thus enhanced DIR and vivianite formation. Our study proposed a new strategy to promote iron-reduction-coupled phosphorus recovery with natural DIR products, and provided theoretical support for clarifying the interaction between minerals and microorganisms.
Collapse
Affiliation(s)
- Jifei Chang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Danhui Liang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yan Gao
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yitong Sun
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan Li
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
12
|
Xu Z, Huang Z, Li H, Zhu S, Lei Z, Liu C, Meng F, Chen JL, Chen TY, Feng C. Sulfidation-reoxidation enhances heavy metal immobilization by vivianite. WATER RESEARCH 2024; 263:122195. [PMID: 39116713 DOI: 10.1016/j.watres.2024.122195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Iron minerals in nature are pivotal hosts for heavy metals, significantly influencing their geochemical cycling and eventual fate. It is generally accepted that, vivianite, a prevalent iron phosphate mineral in aquatic and terrestrial environments, exhibits a limited capacity for adsorbing cationic heavy metals. However, our study unveils a remarkable phenomenon that the synergistic interaction between sulfide (S2-) and vivianite triggers an unexpected sulfidation-reoxidation process, enhancing the immobilization of heavy metals such as cadmium (Cd), copper (Cu), and zinc (Zn). For instance, the combination of vivianite and S2- boosted the removal of Cd2+ from the aqueous phase under anaerobic conditions, and ensured the retention of Cd stabilized in the solid phase when shifted to aerobic conditions. It is intriguing to note that no discrete FeS formation was detected in the sulfidation phase, and the primary crystal structure of vivianite largely retained its integrity throughout the whole process. Detailed molecular-level investigations indicate that sulfidation predominantly targets the Fe(II) sites at the corners of the PO4 tetrahedron in vivianite. With the transition to aerobic conditions, the exothermic oxidation of CdS and the S sites in vivianite initiates, rendering it thermodynamically favorable for Cd to form multidentate coordination structures, predominantly through the Cd-O-P and Cd-O-Fe bonds. This mechanism elucidates how Cd is incorporated into the vivianite structure, highlighting a novel pathway for heavy metal immobilization via the sulfidation-reoxidation dynamics in iron phosphate minerals.
Collapse
Affiliation(s)
- Zhangyi Xu
- Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Ziyuan Huang
- Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Han Li
- Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Shishu Zhu
- Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zhenchao Lei
- Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China.
| | - Fangyuan Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, ROC
| | - Tsung-Yi Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, ROC
| | - Chunhua Feng
- Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
13
|
Zhao L, Liu L, Liu X, Shu A, Zou W, Wang Z, Zhou Y, Huang C, Zhai Y, He H. Efficient phosphorus recovery from waste activated sludge: Pretreatment with natural deep eutectic solvent and recovery as vivianite. WATER RESEARCH 2024; 263:122161. [PMID: 39084092 DOI: 10.1016/j.watres.2024.122161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Recycling phosphorus from waste activated sludge (WAS) is an effective method to address the nonrenewable nature of phosphorus and mitigate environmental pollution. To overcome the challenge of low phosphorus recovery from WAS due to insufficient disintegration, a method using a citric acid-based natural deep eutectic solvent (CA-NADES) assisted with low-temperature pretreatment was proposed to efficiently release and recover phosphorus. The results of 31P nuclear magnetic resonance (NMR) confirmed that low-temperature pretreatment promoted the conversion of organic phosphorus (OP) to inorganic phosphorus (IP) and enhanced the effect of CA-NADES. Changes in the three-dimensional excitation-emission matrix (3D-EEM) and flow cytometry (FCM) indicated that the method of CA-NADES with low-temperature thermal simultaneously release IP and OP by disintegrating sludge flocs, dissolving extracellular polymeric substances (EPS) structure, and cracking cells. When 5 % (v/v) of CA-NADES was added and thermally treated at 60 °C for 30 min, 43 % of total phosphorus (TP) was released from the sludge. The concentrations of proteins and polysaccharides reached 826 and 331 mg/L, respectively, which were 6.30 and 14.43 times higher than those of raw sludge. The dewatering and settling of the sludge were also improved. Metals were either enriched in the solid phase or released into the liquid phase in small quantities (most efficiencies of less than 10 %) for subsequent clean recovery. The released phosphorus was successfully recovered as vivianite with a rate of 90 %. This study develops an efficient, green, and sustainable method for phosphorus recovery from sludge using NADES and provides new insights into the high-value conversion of sludge.
Collapse
Affiliation(s)
- Luna Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Liming Liu
- Department of Civil and Earth Resources Engineering, Kyoto University, Kyoto 612-8236, Japan
| | - Xiaoping Liu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Aoqiang Shu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Wei Zou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhexian Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yin Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Cheng Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Hongkui He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China; Anhui Risewell Technology Limited Company, Bozhou 236800, China.
| |
Collapse
|
14
|
Metz R, Kumar N, Schenkeveld WDC, Obst M, Voegelin A, Mangold S, Kraemer SM. Effect of Oxidation on Vivianite Dissolution Rates and Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39151023 PMCID: PMC11360369 DOI: 10.1021/acs.est.4c04809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/18/2024]
Abstract
The interest in the mineral vivianite (Fe3(PO4)2·8H2O) as a more sustainable P resource has grown significantly in recent years owing to its efficient recovery from wastewater and its potential use as a P fertilizer. Vivianite is metastable in oxic environments and readily oxidizes. As dissolution and oxidation occur concurrently, the impact of oxidation on the dissolution rate and mechanism is not fully understood. In this study, we disentangled the oxidation and dissolution of vivianite to develop a quantitative and mechanistic understanding of dissolution rates and mechanisms under oxic conditions. Controlled batch and flow-through experiments with pristine and preoxidized vivianite were conducted to systematically investigate the effect of oxidation on vivianite dissolution at various pH-values and temperatures. Using X-ray absorption spectroscopy and scanning transmission X-ray microscopy techniques, we demonstrated that oxidation of vivianite generated a core-shell structure with a passivating oxidized amorphous Fe(III)-PO4 surface layer and a pristine vivianite core, leading to diffusion-controlled oxidation kinetics. Initial (<1 h) dissolution rates and concomitant P and Fe release (∼48 h) decreased strongly with increasing degree of oxidation (0-≤ 100%). Both increasing temperature (5-75 °C) and pH (5-9) accelerated oxidation, and, consequently, slowed down dissolution kinetics.
Collapse
Affiliation(s)
- Rouven Metz
- Centre
for Microbiology and Environmental Systems Science, Department for
Environmental Geosciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Naresh Kumar
- Soil
Chemistry, Wageningen University and Research, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands
| | - Walter D. C. Schenkeveld
- Soil
Chemistry, Wageningen University and Research, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands
| | - Martin Obst
- Experimental
Biogeochemistry, BayCEER, University of
Bayreuth, Dr. Hans-Frisch-Straße 1-3, 95448 Bayreuth, Germany
| | - Andreas Voegelin
- Swiss
Federal Institute of Aquatic Science and Technology, Department of
Water Resources and Drinking Water, Eawag, Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland
| | - Stefan Mangold
- Karlsruhe
Institute of Technology, Institute for Photon
Science and Synchrotron Radiation, Hermann-von-Helmholtz Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stephan M. Kraemer
- Centre
for Microbiology and Environmental Systems Science, Department for
Environmental Geosciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
15
|
Bahgat NT, Siddiqui A, Wilfert P, Korving L, van Loosdrecht MCM. FePO 4.2H 2O recovery from acidic phosphate-rich waste streams. WATER RESEARCH 2024; 260:121905. [PMID: 38878308 DOI: 10.1016/j.watres.2024.121905] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/10/2024] [Accepted: 06/06/2024] [Indexed: 07/27/2024]
Abstract
Phosphorous not only needs to be removed to prevent eutrophication of wastewater effluent receiving surface water bodies, but it also has to be recovered as a scarce finite reserve. Phosphorus chemical precipitation as NH4MgPO4·6H2O, Ca3(PO4)2, or Fe3(PO4)2 ·8H2O is the most common method of phosphorus recovery from phosphorus-rich streams. These minerals ideally form under neutral to alkaline pH conditions, making acidic streams problematic for their formation due to the need for pH adjustments. This study proposes FePO4 .2H2O (strengite-like compounds) recovery from acidic streams due to its simplicity and high efficiency, while also avoiding the need for pH-adjusting chemicals. The effect of initial pH, temperature, Fe (III) dosing rates, and Fe (II) dosage under different oxidation conditions (pO2 = 0.2, 1, 1.5 bar, different H2O2 dosing rates) on phosphorus recovery percentage and product settleability were evaluated in this study. The precipitates formed were analyzed using optical microscopy, SEM, XRD, SQUID, Raman, and ICP. Experiments showed that Fe (III) dosing achieved phosphorus recovery of over 95 % at an initial pH of 3 or higher, and the product exhibited poor settleability in all initial pH (1.5-5), and temperature (20-80 °C) tests. On the other hand, Fe (II) dosage instead of Fe (III) resulted in good product settleability but varying phosphorus recovery percentages depending on the oxidation conditions. The novelty of the study lies in revealing that the Fe (II) oxidation rate serves as a crucial process-design parameter, significantly enhancing product settleability without the requirement of carrier materials or crystallizers. The study proposes a novel strategy with controlled Fe2+-H2O2 dosing, identifying an Fe (II) oxidation rate of 4.7 × 10-4 mol/l/min as the optimal rate for achieving over 95 % total phosphorus recovery, along with excellent settleability with a volumetric index equal to only 8 ml/gP.
Collapse
Affiliation(s)
- Nouran T Bahgat
- Wetsus, European Centre Of Excellence for Sustainable Water Technology, Oostergoweg 7, 8911 MA, Leeuwarden, The Netherlands; Department Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Aamash Siddiqui
- Wetsus, European Centre Of Excellence for Sustainable Water Technology, Oostergoweg 7, 8911 MA, Leeuwarden, The Netherlands
| | - Philipp Wilfert
- Department Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Leon Korving
- Wetsus, European Centre Of Excellence for Sustainable Water Technology, Oostergoweg 7, 8911 MA, Leeuwarden, The Netherlands
| | - Mark C M van Loosdrecht
- Department Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands; Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
16
|
Wimalaweera IP, Wei Y, Zuo F, Tang Q, Ritigala T, Wang Y, Zhong H, Weerasooriya R, Jinadasa S, Weragoda S. Enhancing Rubber Industry Wastewater Treatment through an Integrated AnMBR and A/O MBR System: Performance, Membrane Fouling Analysis, and Microbial Community Evolution. MEMBRANES 2024; 14:130. [PMID: 38921497 PMCID: PMC11205297 DOI: 10.3390/membranes14060130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
This study explores the effectiveness of an integrated anaerobic membrane bioreactor (AnMBR) coupled with an anoxic/oxic membrane bioreactor (A/O MBR) for the treatment of natural rubber industry wastewater with high sulfate, ammonia, and complex organic contents. This study was conducted at the lab-scale over a duration of 225 days to thoroughly investigate the efficiency and sustainability of the proposed treatment method. With a hydraulic retention time of 6 days for the total system, COD reductions were over 98%, which reduced the influent from 22,158 ± 2859 mg/L to 118 ± 74 mg/L of the effluent. The system demonstrates average NH3-N, TN, and total phosphorus (TP) removal efficiencies of 72.9 ± 5.7, 72.8 ± 5.6, and 71.3 ± 9.9, respectively. Despite an average whole biological system removal of 50.6%, the anaerobic reactor eliminated 44.9% of the raw WW sulfate. Analyses of membrane fouling revealed that organic fouling was more pronounced in the anaerobic membrane, whereas aerobic membrane fouling displayed varied profiles due to differential microbial and oxidative activities. Key bacterial genera, such as Desulfobacterota in the anaerobic stage and nitrifiers in the aerobic stage, are identified as instrumental in the biological processes. The microbial profile reveals a shift from methanogenesis to sulfide-driven autotrophic denitrification and sulfammox, with evidence of an active denitrification pathway in anaerobic/anoxic conditions. The system showcases its potential for industrial application, underpinning environmental sustainability through improved wastewater management.
Collapse
Affiliation(s)
- Ishanka Prabhath Wimalaweera
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (I.P.W.); (F.Z.); (Q.T.); (T.R.); (Y.W.); (H.Z.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China-Sri Lanka Joint Research and Demonstration Center for Water Technology, Ministry of Water Supply, Meewathura, Kandy 20400, Sri Lanka;
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (I.P.W.); (F.Z.); (Q.T.); (T.R.); (Y.W.); (H.Z.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China-Sri Lanka Joint Research and Demonstration Center for Water Technology, Ministry of Water Supply, Meewathura, Kandy 20400, Sri Lanka;
- National Institute of Fundamental Studies, Hanthana Road, Kandy 20000, Sri Lanka;
| | - Fumin Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (I.P.W.); (F.Z.); (Q.T.); (T.R.); (Y.W.); (H.Z.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qihe Tang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (I.P.W.); (F.Z.); (Q.T.); (T.R.); (Y.W.); (H.Z.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tharindu Ritigala
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (I.P.W.); (F.Z.); (Q.T.); (T.R.); (Y.W.); (H.Z.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawei Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (I.P.W.); (F.Z.); (Q.T.); (T.R.); (Y.W.); (H.Z.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (I.P.W.); (F.Z.); (Q.T.); (T.R.); (Y.W.); (H.Z.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rohan Weerasooriya
- National Institute of Fundamental Studies, Hanthana Road, Kandy 20000, Sri Lanka;
| | - Shameen Jinadasa
- Department of Civil Engineering, University of Peradeniya, Kandy 20400, Sri Lanka;
- School of Engineering and Technology, Central Queensland University, Bundaberg, QLD 4670, Australia
| | - Sujithra Weragoda
- China-Sri Lanka Joint Research and Demonstration Center for Water Technology, Ministry of Water Supply, Meewathura, Kandy 20400, Sri Lanka;
- National Water Supply and Drainage Board, Kandy 20800, Sri Lanka
| |
Collapse
|
17
|
Nie J, Wang X, Sun P, Yu D, Yu Z, Qiu Y, Zhao J. Inadvertently enriched cyanobacteria prompted bacterial phosphorus uptake without aeration in a conventional anaerobic/oxic reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172313. [PMID: 38593871 DOI: 10.1016/j.scitotenv.2024.172313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/30/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
The enhanced biological phosphorus removal (EBPR) process requires alternate anaerobic and aerobic conditions, which are regulated respectively by aeration off and on. Recently, in an ordinary EBPR reactor, an abnormal orthophosphate concentration (PO43--P) decline in the anaerobic stage (namely non-aerated phosphorus uptake) aroused attention. It was not occasionally but occurred in each cycle and lasted for 101 d and shared about 16.63 % in the total P uptake amount. After excluding bio-mineralization and surface re-aeration, indoor light conditions (180 to 260 lx) inducing non-aerated P uptake were confirmed. High-throughput sequencing analysis revealed that cyanobacteria could produce oxygen via photosynthesis and were inhabited inside wall biofilm. The cyanobacteria (Pantalinema and Leptolyngbya ANT.L52.2) were incubated in a feeding transparent silicone hose, entered the reactor along with influent, and outcompeted Chlorophyta, which existed in the inoculum. Eventually, this work deciphered the reason for non-aerated phosphorus uptake and indicated its potential application in reducing CO2 emissions and energy consumption via the cooperation of microalgal-bacterial and biofilm-sludge.
Collapse
Affiliation(s)
- Jiaxiang Nie
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiaoxia Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Peng Sun
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhengda Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanling Qiu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Ji Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
18
|
Saracanlao RJ, Saelens T, Voegelin A, Smolders E, Everaert M. Recycled Iron Phosphates: A New Phosphorus Fertilizer for Paddy Rice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9250-9260. [PMID: 38741559 DOI: 10.1021/acs.est.4c02111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The potential of recycled iron phosphates (FePs), e.g., vivianites (Fe3(PO4)2·8H2O) and Fe(III)-rich phosphorus (P) adsorbent materials, as phosphorus fertilizer is limited by the strong interaction between Fe and P. In this study, the efficiency of FePs as P fertilizer was explored by applying them as granules or powder in flooded strongly P-fixing soils (acid and calcareous), thereby taking advantage of increased P release induced by reductive dissolution of P-bearing Fe(III) minerals. First, no P diffusion from granular FeP fertilizers into flooded soils was detectable by the diffusive gradient in thin films (DGT) technique and microfocused X-ray fluorescence (μ-XRF) analysis of thin soil sections, in contrast to detectable P diffusion away from granules of soluble triple superphosphate (TSP) fertilizer. On the contrary, powdered FePs demonstrated an excellent increase in extractable P (1 mM CaCl2) in a 120-day incubation experiment in flooded soils. Second, a pot experiment was performed with rice (Oryza sativa) grown in flooded acid and calcareous soils. The fertilizer value of FePs was remarkable when dosed as powder, as it was even up to 3-fold higher than TSP in the acid soil and similar to TSP in the calcareous soil. The beneficial effect of FeP over TSP in the acid soil is attributed to the slow release of P from FePs, which allows to partly overcome P fixation. The promising results of FePs as P fertilizer applied as powders in flooded soils debunk the generally accepted idea that FePs are poor sources of P while demonstrating the importance of the timing of FeP fertilizer application.
Collapse
Affiliation(s)
| | - Toon Saelens
- Division of Soil and Water Management, KU Leuven, Heverlee B-3001, Belgium
| | - Andreas Voegelin
- Eawag Swiss Federal Institute of Aquatic Science and Technology, Duebendorf CH-8600, Switzerland
| | - Erik Smolders
- Division of Soil and Water Management, KU Leuven, Heverlee B-3001, Belgium
| | - Maarten Everaert
- Division of Soil and Water Management, KU Leuven, Heverlee B-3001, Belgium
| |
Collapse
|
19
|
He X, Fan X, Cao M, Zhang Y, Shi S, He L, Zhou J. Iron-electrolysis assisted anammox/denitrification system for intensified nitrate removal and phosphorus recovery in low-strength wastewater treatment. WATER RESEARCH 2024; 253:121312. [PMID: 38367383 DOI: 10.1016/j.watres.2024.121312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/17/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Two iron-electrolysis assisted anammox/denitrification (EAD) systems, including the suspended sludge reactor (ESR) and biofilm reactor (EMR) were constructed for mainstream wastewater treatment, achieving 84.51±4.38 % and 87.23±3.31 % of TN removal efficiencies, respectively. Sludge extracellular polymeric substances (EPS) analysis, cell apoptosis detection and microbial analysis demonstrated that the strengthened cell lysate/apoptosis and EPS production acted as supplemental carbon sources to provide new ecological niches for heterotrophic bacteria. Therefore, NO3--N accumulated intrinsically during anammox reaction was reduced. The rising cell lysis and apoptosis in the ESR induced the decline of anammox and enzyme activities. In contrast, this inhibition was scavenged in EMR because of the more favorable environment and the significant increase in EPS. Moreover, ESR and EMR achieved efficient phosphorus removal (96.98±5.24 % and 96.98±4.35 %) due to the continued release of Fe2+ by the in-situ corrosion of iron anodes. The X-ray diffraction (XRD) indicated that vivianite was the dominant P recovery product in EAD systems. The anaerobic microenvironment and the abundant EPS in the biofilm system showed essential benefits in the mineralization of vivianite.
Collapse
Affiliation(s)
- Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xing Fan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Meng Cao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Ying Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Shuohui Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
20
|
Deng S, Liu J, Yang X, Sun D, Wang A, van Loosdrecht MCM, Cheng X. Release of phosphorus through pretreatment of waste activated sludge differs essentially from that of carbon and nitrogen resources: Comparative analysis across four wastewater treatment facilities. BIORESOURCE TECHNOLOGY 2024; 396:130423. [PMID: 38341045 DOI: 10.1016/j.biortech.2024.130423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/14/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
The accumulation of phosphorus in activated sludge in wastewater treatment plants (WWTPs) provides potential for phosphorus recovery from sewage. This study delves into the potential for releasing phosphorus from waste activated sludge through two distinct treatment methods-thermal hydrolysis and pH adjustment. The investigation was conducted with activated sludge sourced from four WWTPs, each employing distinct phosphorus removal strategies. The findings underscore the notably superior efficacy of pH adjustment in solubilizing sludge phosphorus compared to the prevailing practice of thermal hydrolysis, widely adopted to enhance sludge digestion. The reversibility of phosphorus release within pH fluctuations spanning 2 to 12 implies that the release of sludge phosphorus can be attributed to the dissolution of phosphate precipitates. Alkaline sludge treatment induced the concurrent liberation of COD, nitrogen, and phosphorus through alkaline hydrolysis of sludge biomass and the dissolution of iron or aluminium phosphates, offering potential gains in resource recovery and energy efficiency.
Collapse
Affiliation(s)
- Shaoyu Deng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Jiaqi Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Xiaofan Yang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Aijie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, the Netherlands
| | - Xiang Cheng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
21
|
Amin L, Al-Juboori RA, Lindroos F, Bounouba M, Blomberg K, Viveros ML, Graan M, Azimi S, Lindén J, Mikola A, Spérandio M. Tracking the formation potential of vivianite within the treatment train of full-scale wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169520. [PMID: 38141995 DOI: 10.1016/j.scitotenv.2023.169520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Phosphorus recovery is a vital element for the circular economy. Wastewater, especially sewage sludge, shows great potential for recovering phosphate in the form of vivianite. This work focuses on studying the iron, phosphorus, and sulfur interactions at full-scale wastewater treatment plants (Viikinmäki, Finland and Seine Aval, France) with the goal of identifying unit processes with a potential for vivianite formation. Concentrations of iron(III) and iron(II), phosphorus, and sulfur were used to evaluate the reduction of iron and the formation potential of vivianite. Mössbauer spectroscopy and X-ray diffraction (XRD) analysis were used to confirm the presence of vivianite in various locations on sludge lines. The results show that the vivianite formation potential increases as the molar Fe:P ratio increases, the anaerobic sludge retention time increases, and the sulfate concentration decreases. The digester is a prominent location for vivianite recovery, but not the only one. This work gives valuable insights into the dynamic interrelations of iron, phosphorus, and sulfur in full-scale conditions. These results will support the understanding of vivianite formation and pave the way for an alternative solution for vivianite recovery for example in plants that do not have an anaerobic digester.
Collapse
Affiliation(s)
- Lobna Amin
- Department of Built Environment, Aalto University, FI-00076 Espoo, Finland; TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, 135 avenue de Rangueil, France.
| | - Raed A Al-Juboori
- Department of Built Environment, Aalto University, FI-00076 Espoo, Finland; NYUAD Water Research Center, New York University - Abu Dhabi Campus, Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Fredrik Lindroos
- Physics, Faculty of Science and Engineering, Åbo Akademi University, FI-20500 Turku, Finland
| | - Mansour Bounouba
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, 135 avenue de Rangueil, France
| | - Kati Blomberg
- Helsinki Region Environmental Services Authority HSY, Wastewater Treatment, P.O. Box 320, FI-00066 HSY, Finland
| | | | - Marina Graan
- Helsinki Region Environmental Services Authority HSY, Wastewater Treatment, P.O. Box 320, FI-00066 HSY, Finland
| | - Sam Azimi
- SIAAP, Direction Innovation, 92700 Colombes, France
| | - Johan Lindén
- Physics, Faculty of Science and Engineering, Åbo Akademi University, FI-20500 Turku, Finland
| | - Anna Mikola
- Department of Built Environment, Aalto University, FI-00076 Espoo, Finland
| | - Mathieu Spérandio
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, 135 avenue de Rangueil, France
| |
Collapse
|
22
|
Eshun LE, Coker VS, Shaw S, Lloyd JR. Strategies for optimizing biovivianite production using dissimilatory Fe(III)-reducing bacteria. ENVIRONMENTAL RESEARCH 2024; 242:117667. [PMID: 37980994 DOI: 10.1016/j.envres.2023.117667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Vivianite (Fe3(PO4)2·8H2O), a sink for phosphorus, is a key mineralization product formed during the microbial reduction of phosphate-containing Fe(III) minerals in natural systems, and also in wastewater treatment where Fe(III)-minerals are used to remove phosphate. As biovivianite is a potentially useful Fe and P fertiliser, there is much interest in harnessing microbial biovivianite synthesis for circular economy applications. In this study, we investigated the factors that influence the formation of microbially-synthesized vivianite (biovivianite) under laboratory batch systems including the presence and absence of phosphate and electron shuttle, the buffer system, pH, and the type of Fe(III)-reducing bacteria (comparing Geobacter sulfurreducens and Shewanella putrefaciens). The rate of Fe(II) production, and its interactions with the residual Fe(III) and other oxyanions (e.g., phosphate and carbonate) were the main factors that controlled the rate and extent of biovivianite formation. Higher concentrations of phosphate (e.g., P/Fe = 1) in the presence of an electron shuttle, at an initial pH between 6 and 7, were needed for optimal biovivianite formation. Green rust, a key intermediate in biovivianite production, could be detected as an endpoint alongside vivianite and metavivianite (Fe2+Fe3+2(PO4)2.(OH)2.6H2O), in treatments with G. sulfurreducens and S. putrefaciens. However, XRD indicated that vivianite abundance was higher in experiments containing G. sulfurreducens, where it dominated. This study, therefore, shows that vivianite formation can be controlled to optimize yield during microbial processing of phosphate-loaded Fe(III) materials generated from water treatment processes.
Collapse
Affiliation(s)
- Lordina E Eshun
- University of Manchester, Department of Earth and Environmental Sciences, Geomicrobiology Group, Williamson Building, M13 9QQ, Oxford Road, Manchester, UK.
| | - Victoria S Coker
- University of Manchester, Department of Earth and Environmental Sciences, Geomicrobiology Group, Williamson Building, M13 9QQ, Oxford Road, Manchester, UK.
| | - Samuel Shaw
- University of Manchester, Department of Earth and Environmental Sciences, Geomicrobiology Group, Williamson Building, M13 9QQ, Oxford Road, Manchester, UK.
| | - Jonathan R Lloyd
- University of Manchester, Department of Earth and Environmental Sciences, Geomicrobiology Group, Williamson Building, M13 9QQ, Oxford Road, Manchester, UK.
| |
Collapse
|
23
|
Bluteau S, Omelon S. Effects of sodium sulfide concentration on the solid and solution chemistry of a biosolids slurry for phosphorus recovery and reuse. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119257. [PMID: 37897904 DOI: 10.1016/j.jenvman.2023.119257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/30/2023]
Abstract
Municipal biosolids contain organic and inorganic phosphorus (P) that could be recovered for reuse as P fertilizer. Inorganic P compounds include iron phosphates that precipitate and/or adsorbed phosphate ions as a consequence of soluble iron addition in order not to exceed total phosphorus (TP) emission limits. The inorganic orthophosphate (o-Pi) minerals within biosolids can have low solubilities. One P recovery strategy is to maximize the dissolution of o-Pi from biosolids for reuse. Dissolving iron phosphates in biosolids by adding sodium sulfide was assessed as an o-Pi dissolution strategy. 10 % w/w biosolids slurries with a total phosphorus (TP) of 0.97 ± 0.03 mmol P/dry g were mixed with sulfide/TP (S2-/TP) molar ratios from 0 to 4 for up to 96 h. The maximum o-Pi concentration (48 ± 7 mM, or 42 ± 6 % of TP) was obtained for 4 S2-/TP after 24 h at room temperature (RT). Iron concentrations measured by colorimetry (ferrozine) reduced from 0.6 ± 0.1 mM to less than 0.01 mM (S2-/TP > 1). X-ray diffraction and FTIR suggest that sulfide treatment preferentially dissolved amorphous o-Pi-containing solids, vivianite, and minerals with iron, aluminum, phosphate, sulfate, and other subsitutions. Poorly crystalline erdite (NaFeS2 ·2H2O) was detected in products after S2-/TP treatment ratios ≥ 2. Incubation at RT or 37 °C did not affect the o-Pi concentrations for 0 or 4 S2-/TP over 47 h. Sulfide addition could also increase the risk of construction material corrosion, and reduce the efficiency of P recovery by precipitation. There are disadvantages to using sulfide to dissolve o-Pi from biosolids as a potential P recovery process.
Collapse
Affiliation(s)
- Sarah Bluteau
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec, H3A 0C5, Canada.
| | - Sidney Omelon
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec, H3A 0C5, Canada.
| |
Collapse
|
24
|
Alnimer AA, Smith DS, Parker WJ. Phosphorus release and recovery by reductive dissolution of chemically precipitated phosphorus from simulated wastewater. CHEMOSPHERE 2023; 345:140500. [PMID: 37866501 DOI: 10.1016/j.chemosphere.2023.140500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/26/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Chemically mediated recovery of phosphorous (P) as vivianite from the sludges generated by chemical phosphorus removal (CPR) is a potential means of enhancing sustainability of wastewater treatment. This study marks an initial attempt to explore direct P release and recovery from lab synthetic Fe-P sludge via reductive dissolution using ascorbic acid (AA) under acidic conditions. The effects of AA/Fe molar ratio, age of Fe-P sludge and pH were examined to find the optimum conditions for Fe-P reductive solubilization and vivianite precipitation. The performance of the reductive, chelating, and acidic effects of AA toward Fe-P sludge were evaluated by comparison with hydroxylamine (reducing agent), oxalic acid (chelating agent), and inorganic acids (pH effect) including HNO3, HCl, and H2SO4. Full solubilization of Fe-P sludge and reduction of Fe3+ were observed at pH values 3 and 4 for two Fe/AA molar ratios of 1:2 and 1:4. Sludge age (up to 11 days) did not affect the reductive solubilization of Fe-P with AA addition. The reductive dissolution of Fe-P sludge with hydroxylamine was negligible, while both P (95 ± 2%) and Fe3+ (90 ± 1%) were solubilized through non-reductive dissolution by oxalic acid treatment at an Fe/oxalic acid molar ratio 1:2 and a pH 3. With sludge treatment with inorganic acids at pH 3, P and Fe release was very low (<10%) compared to AA and oxalic acid treatment. After full solubilization of Fe-P sludge by AA treatment at pH 3 it was possible to recover the phosphorus and iron as vivianite by simple pH adjustment to pH 7; P and Fe recoveries of 88 ± 2% and 90 ± 1% respectively were achieved in this manner. XRD analysis, Fe/P molar ratio measurements, and magnetic attraction confirmed vivianite formation. PHREEQC modeling showed a reasonable agreement with the measured release of P and Fe from Fe-P sludge and vivianite formation.
Collapse
Affiliation(s)
- Aseel A Alnimer
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, N2L 3C5, ON, Canada.
| | - D Scott Smith
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, N2L 3C5, ON, Canada
| | - Wayne J Parker
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Ave. W., Waterloo, N2L 3G1, ON, Canada
| |
Collapse
|
25
|
Metz R, Kumar N, Schenkeveld WDC, Kraemer SM. Rates and Mechanism of Vivianite Dissolution under Anoxic Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17266-17277. [PMID: 37924285 PMCID: PMC10653223 DOI: 10.1021/acs.est.3c04474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/06/2023]
Abstract
The iron phosphate mineral vivianite Fe(II)3(PO4)2·8H2O has emerged as a potential renewable P source. Although the importance of vivianite as a potential P sink in the global P cycle had previously been recognized, a mechanistic understanding of vivianite dissolution at the molecular level, critical to its potential application, is still elusive. The potential of vivianite as a P sink or source in natural or engineered systems is directly dependent on its dissolution kinetics under environmentally relevant conditions. To understand the thermodynamic and kinetic controls on bioavailability, the oxidation and dissolution processes of vivianite must be disentangled. In this study, we conducted controlled batch and flow-through experiments to quantitatively determine the dissolution rates and mechanisms of vivianite under anoxic conditions as a function of pH and temperature. Our results demonstrate that vivianite solubility and dissolution rates strongly decreased with increasing solution pH. Dissolution was nonstoichiometric at alkaline pH (>7). The rapid initial dissolution rate of vivianite is related to the solution saturation state, indicating a thermodynamic rather than a kinetic control. A defect-driven dissolution mechanism is proposed. Dissolution kinetics over pH 5-9 could be described with a rate law with a single rate constant and a reaction order of 0.61 with respect to {H+}: R exp = 36.0 · e - 1.41 · pH · [ 1 - e ( 0.2 · Δ G / RT ) ] 4.7 The activation energy of vivianite dissolution proved low (Ea = 20.3 kJ mol-1), suggesting hydrogen bridge dissociation as the rate-determining step.
Collapse
Affiliation(s)
- Rouven Metz
- Centre
for Microbiology and Environmental Systems Science, Department for
Environmental Geosciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Naresh Kumar
- Soil
Chemistry and Chemical Soil Quality Group, Wageningen University and Research, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands
| | - Walter D. C. Schenkeveld
- Soil
Chemistry and Chemical Soil Quality Group, Wageningen University and Research, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands
| | - Stephan M. Kraemer
- Centre
for Microbiology and Environmental Systems Science, Department for
Environmental Geosciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
26
|
Xu JM, Sun YL, Yao XD, Zhang GJ, Zhang N, Wang HC, Wang S, Wang A, Cheng HY. Highly Efficient Coremoval of Nitrate and Phosphate Driven by a Sulfur-Siderite Composite Reactive Filler toward Secondary Effluent Polishing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16522-16531. [PMID: 37844031 DOI: 10.1021/acs.est.3c03665] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Reactive fillers consisting of reduced sulfur and iron species (SFe-ReFs) have received increasing attention in tertiary wastewater treatment for nitrate and phosphate coremoval. However, the existing SFe-ReFs suffer from either low performance (e.g., pyrrhotite and pyrite) or unsatisfactory use in terms of combustible risk and residual nonreactive impurities (e.g., sulfur mixing with natural iron ores). Here, we developed a new type of sulfur-siderite composite ReF (SSCReF) with a structure of natural siderite powders eventually embedded into sulfur. SSCReFs exhibited many excellent properties, including higher mechanical strengths and hardness and especially much poorer ignitability compared to pure sulfur. By using SSCReF to construct packed-bed reactors, the highest denitrification and dephosphorization rates reached 829.70 gN/m3/d (25 wt % siderite) and 36.70 gP/m3/d (75 wt % siderite), respectively. Dephosphorization was demonstrated to be dependent on sulfur-driven denitrification, in which the acid produced from the later process promoted Fe(II) dissolution, which then directly combined with phosphate to form vivianite or further converted into phosphate adsorbents (ferrihydrite, a green rust-like compound). Water flush was an effective way to finally wash out these surface deposited Fe-P compounds, as well as those nonreactive impurities (Si and Al-bearing compounds) detached from SSCReF. Such a highly efficient and safe SSCReF holds considerable application potential in secondary effluent polishing.
Collapse
Affiliation(s)
- Jia-Min Xu
- State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Yi-Lu Sun
- Cas Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiao-Dong Yao
- State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Gui-Jiao Zhang
- State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Na Zhang
- State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hong-Cheng Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Shusen Wang
- Cas Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
- Cas Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| |
Collapse
|
27
|
Kang L, Haasler S, Mucci M, Korving L, Dugulan AI, Prot T, Waajen G, Lürling M. Comparison of dredging, lanthanum-modified bentonite, aluminium-modified zeolite, and FeCl 2 in controlling internal nutrient loading. WATER RESEARCH 2023; 244:120391. [PMID: 37544119 DOI: 10.1016/j.watres.2023.120391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023]
Abstract
The eutrophic Bouvigne pond (Breda, The Netherlands) regularly suffers from cyanobacterial blooms. To improve the water quality, the external nutrient loading and the nutrient release from the pond sediment have to be reduced. An enclosure experiment was performed in the pond between March 9 and July 29, 2020 to compare the efficiency of dredging, addition of the lanthanum-modified bentonite clay Phoslock® (LMB), the aluminum-modified zeolite Aqual-P™ (AMZ) and FeCl2 to mitigate nutrient release from the sediment. The treatments improved water quality. Mean total phosphorus (TP) concentrations in water were 0.091, 0.058, 0.032, 0.031, and 0.030 mg P L-1 in controls, dredged, FeCl2, LMB and AMZ treated enclosures, respectively. Mean filterable P (FP) concentrations were 0.056, 0.010, 0.009, 0.005, and 0.005 mg P L-1 in controls, dredged, FeCl2, LMB and AMZ treatments, respectively. Total nitrogen (TN) and dissolved inorganic nitrogen (DIN) were similar among treatments; lanthanum was elevated in LMB treatments, Fe and Cl in FeCl2 treatments, and Al and Cl in AMZ treatments. After 112 days, sediment was collected from each enclosure, and subsequent sequential P extraction revealed that the mobile P pool in the sediments had reduced by 71.4%, 60.2%, 38%, and 5.2% in dredged, AMZ, LMB, and FeCl2 treatments compared to the controls. A sediment core incubation laboratory experiment done simultaneously with the enclosure experiment revealed that FP fluxes were positive in controls and cores from the dredged area, while negative in LMB, AMZ and FeCl2 treated cores. Dissolved inorganic nitrogen (DIN) release rate in LMB treated cores was 3.6 times higher than in controls. Overall, the applied in-lake treatments improved water quality in the enclosures. Based on this study, from effectiveness, application, stakeholders engagement, costs and environmental safety, LMB treatment would be the preferred option to reduce the internal nutrient loading of the Bouvigne pond, but additional arguments also have to be considered when preparing a restoration.
Collapse
Affiliation(s)
- Li Kang
- Aquatic Ecology & Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Sina Haasler
- Freshwater Ecology Group, Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Maíra Mucci
- Aquatic Ecology & Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Leon Korving
- Wetsus, European Centre Of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
| | - Achim Iulian Dugulan
- Delft University of Technology, Radiation Science & Technology, Fundamental Aspects of Materials and Energy, Mekelweg 15, 2629 JB, Delft, The Netherlands
| | - Thomas Prot
- Wetsus, European Centre Of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
| | - Guido Waajen
- Water Authority Brabantse Delta, Team Knowledge, P.O. Box 5520, 4801 DZ, Breda, The Netherlands
| | - Miquel Lürling
- Aquatic Ecology & Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands.
| |
Collapse
|
28
|
Hu Z, Hu S, Hong PY, Zhang X, Prodanovic V, Zhang K, Ye L, Deletic A, Yuan Z, Zheng M. Impact of electrochemically generated iron on the performance of an anaerobic wastewater treatment process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162628. [PMID: 36889383 DOI: 10.1016/j.scitotenv.2023.162628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Anaerobic treatment of domestic wastewater has the advantages of lower biomass yield, lower energy demand and higher energy recover over the conventional aerobic treatment process. However, the anaerobic process has the inherent issues of excessive phosphate and sulfide in effluent and superfluous H2S and CO2 in biogas. An electrochemical method allowing for in-situ generation of Fe2+ in the anode and hydroxide ion (OH-) and H2 in the cathode was proposed to overcome the challenges simultaneously. The effect of electrochemically generated iron (e‑iron) on the performance of anaerobic wastewater treatment process was explored with four different dosages in this work. The results showed that compared to control, the experimental system displayed an increase of 13.4-28.4 % in COD removal efficiency, 12.0-21.3 % in CH4 production rate, 79.8-98.5 % in dissolved sulfide reduction, 26.0-96.0 % in phosphate removal efficiency, depending on the e‑iron dosage between 40 and 200 mg Fe/L. Dosing of the e‑iron significantly upgraded the quality of produced biogas, showing a much lower CO2 and H2S contents in biogas in experimental reactor than that in control reactor. The results thus demonstrated that e‑iron can significantly improve the performance of anaerobic wastewater treatment process, bringing multiple benefits with the increase of its dosage regarding effluent and biogas quality.
Collapse
Affiliation(s)
- Zhetai Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Pei-Ying Hong
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, SA 23955, Saudi Arabia
| | - Xueqin Zhang
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Veljko Prodanovic
- School of Civil and Environmental Engineering, UNSW Sydney, NSW 2052, Australia
| | - Kefeng Zhang
- School of Civil and Environmental Engineering, UNSW Sydney, NSW 2052, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Ana Deletic
- School of Civil and Environmental Engineering, UNSW Sydney, NSW 2052, Australia; School of Civil and Environmental Engineering, Engineering Faculty, Queensland University of Technology, QLD 4001, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
29
|
Saoudi MA, Dabert P, Ponthieux A, Vedrenne F, Daumer ML. Correlation between phosphorus removal technologies and phosphorus speciation in sewage sludge: focus on iron-based P removal technologies. ENVIRONMENTAL TECHNOLOGY 2023; 44:2091-2103. [PMID: 35019813 DOI: 10.1080/09593330.2021.2023222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/20/2021] [Indexed: 05/30/2023]
Abstract
Phosphorus recovery from sewage sludge as secondary raw materials or as a direct P-rich fertiliser is one of the top frontrunner solutions to tackle Phosphorus (P) scarcity and depletion. However, the efficiency of this P recovery process greatly depends on its phosphorus dissolution potential, which in return relies on the phosphorus speciation in the sewage sludge. This article investigates the potential correlation between P speciation in sewage sludge and the iron-based P removal technologies used in sewage treatment plants (STP) through an innovative sequential extraction method based on the SEDEX method that distinguishes quantitatively between ferrous bound phosphate and ferric bound phosphate. XRD and SEM-EDX were also used to characterise P and Fe species in the studied sludge qualitatively. Principal component analysis showed that the sludge characterised by P bound to ferric iron (as the dominant P fraction) are mostly correlated with sludge produced from the CPR process (chemical phosphorus removal) and primary sludge. Moreover, sludge with a non-negligible amount of P bound to ferrous iron were correlated with sludge from the mixed EBPR-CPR process (Enhanced Biological P Removal assisted with CPR). However, Vivianite was only found in CPR sludge with Fe/P molar ratio higher than 0.6.
Collapse
|
30
|
You G, Wang C, Wang P, Chen J, Gao Y, Li Y, Xu Y. Long-term transformation of nanoscale zero-valent iron explains its biological effects in anaerobic digestion: From ferroptosis-like death to magnetite-enhanced direct electron transfer networks. WATER RESEARCH 2023; 241:120115. [PMID: 37269627 DOI: 10.1016/j.watres.2023.120115] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
Nanoscale zero-valent iron (nZVI) has been extensively used for environmental remediation and wastewater treatment. However, the biological effects of nZVI remain unclear, which is no doubt a result of the complexity of iron species and the dynamic succession of microbial community during nZVI aging. Here, the aging effects of nZVI on methanogenesis in anaerobic digestion (AD) were consecutively investigated, with an emphasis on deciphering the causal relationships between nZVI aging process and its biological effects. The addition of nZVI in AD led to ferroptosis-like death with hallmarks of iron-dependent lipid peroxidation and glutathione (GSH) depletion, which inhibited CH4 production during the first 12 days of exposure. With prolonged exposure time, a gradual recovery (12-21 days) and even better performance (21-27 days) in AD were observed. The recovery performance of AD was mainly attributed to nZVI-enhanced membrane rigidity via forming siderite and vivianite on the outer surface of cells, protecting anaerobes against nZVI-induced toxicity. At the end of 27-days exposure, the significantly increased amount of conductive magnetite simulated direct interspecies electron transfer among syntrophic partners, improving CH4 production. Metagenomic analysis further revealed that microbial cells gradually adapted to the aging of nZVI by upregulating functional genes related to chemotaxis, flagella, conductive pili and riboflavin biosynthesis, in which electron transfer networks likely thrived and the cooperative behaviors between consortium members were promoted. These results unveiled the significance of nZVI aging on its biological effects toward multiple microbial communities and provided fundamental insights into the long-term fates and risks of nZVI for in situ applications.
Collapse
Affiliation(s)
- Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China.
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China.
| | - Yang Gao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Yan Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Yi Xu
- College of Agricultural Engineering, Hohai University, Nanjing 210098, China
| |
Collapse
|
31
|
Hu Z, Hu S, Ye L, Duan H, Wu Z, Hong PY, Yuan Z, Zheng M. Novel Use of a Ferric Salt to Enhance Mainstream Nitrogen Removal from Anaerobically Pretreated Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6712-6722. [PMID: 37038903 DOI: 10.1021/acs.est.2c08325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This study aims to demonstrate a new technology roadmap to support the ongoing paradigm shift in wastewater management from pollutant removal to resource recovery. This is achieved by developing a novel use of an iron salt (i.e., FeCl3) in an integrated anaerobic wastewater treatment and mainstream anammox process. FeCl3 was chosen to be dosed in a proposed sidestream unit rather than in a primary settler or a mainstream reactor. This causes acidification of returned activated sludge and enables stable suppression of nitrite-oxidizing bacterial activity and excess sludge reduction. A laboratory-scale system, which comprised an anaerobic baffled reactor, a continuous-flow anoxic-aerobic (A/O) reactor, and a secondary settler, was designed to treat real domestic wastewater, with the performance of the system comprehensively monitored under a steady-state condition. The experimental assessments showed that the system had good effluent quality, with total nitrogen and phosphorus concentrations of 12.6 ± 1.3 mg N/L and 0.34 ± 0.05 mg P/L, respectively. It efficiently retained phosphorus in excess sludge (0.18 ± 0.03 g P/g dry sludge), suggesting its potential for further recovery. About half of influent organic carbon was recovered in the form of bioenergy (i.e., methane). This together with low energy consumption revealed that the system could produce a net energy of about 0.11 kWh/m3-wastewater, assessed by an energy balance analysis.
Collapse
Affiliation(s)
- Zhetai Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Haoran Duan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Ziping Wu
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Pei-Ying Hong
- Environmental Science and Engineering, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
32
|
Chang J, Ren N, Yuan Q, Wang S, Liang D, He Z, Wang X, Li N. Charging-discharging cycles of geobattery activated carbon enhance iron reduction and vivianite recovery from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163541. [PMID: 37076005 DOI: 10.1016/j.scitotenv.2023.163541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Vivianite as a significant secondary mineral of dissimilatory iron reduction (DIR) exhibits marvelous potential to solve eutrophication as well as phosphorus shortage. Geobattery represents by natural organic matters (NOM) with rich functional groups influences bioreduction of natural iron mineral. Activated carbon (AC) which contains abundant functional groups is expected to serve as geobattery, but there remains insufficient understanding on its geobattery mechanism and how it benefits the vivianite formation. In this study, the charging and discharging cycle of "geobattery" AC enhanced extracellular electron transfer (EET) and vivianite recovery was demonstrated. Feeding with ferric citrate, AC addition increased vivianite formation efficiency by 141 %. The enhancement was attributed to the electron shuttle capacity of storage battery AC, which was contributed by the redox cycle between CO and O-H. Feeding with iron oxides, huge gap of redox potential between AC and Fe(III) minerals broke through the reduction energy barrier. Therefore the iron reduction efficiency of four Fe(III) minerals was accelerated to the same high level around 80 %, and the vivianite formation efficiency were increased by 104 %-256 % in pure culture batches. Except acting as storage battery, AC as a dry cell contributed 80 % to the whole enhancement towards iron reduction, in which O-H groups were the dominant driver. Due to the rechargeable nature and considerable electron exchange capacity, AC served as geobattery playing the role of both storage battery and dry cell on electron storaging and transferring to influence biogeochemical Fe cycle and vivianite recovery.
Collapse
Affiliation(s)
- Jifei Chang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qing Yuan
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Shu Wang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Danhui Liang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zexuan He
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Nan Li
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
33
|
Li Q, Wang M, Chen JQ, Liu X, Wang J, Mu Y. Vivianite-induced peroxymonosulfate activation for containment removal under dark conditions: Performance, mechanism and regeneration. WATER RESEARCH 2023; 233:119729. [PMID: 36801576 DOI: 10.1016/j.watres.2023.119729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The performance and intrinsic mechanism of vivianite, a natural mineral containing structural Fe(II), for peroxymonosulfate (PMS) activation and pollutant degradation under dark conditions were comprehensively explored in this study. It was found that vivianite was able to efficiently activate PMS to degrade various pharmaceutical pollutants under dark conditions, in which the corresponding reaction rate constant of ciprofloxacin (CIP) degradation was 47- and 32-fold higher than that of magnetite and siderite, respectively. SO4·-, ·OH, Fe(IV) and electron-transfer processes were found in the vivianite-PMS system, while SO4·- was the main contributor to CIP degradation. Moreover, mechanistic explorations revealed that the Fe site on the surface of vivianite could bind PMS in the form of a bridge position, and thus vivianite could rapidly activate absorbed PMS due to its strong electron-donating ability. Additionally, it was illustrated that the used vivianite could be efficiently regenerated by either chemical or biological reduction. This study may provide an alternative application of vivianite in addition to phosphorus recovery from wastewater.
Collapse
Affiliation(s)
- Qi Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Mingzhou Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Jia-Qi Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Xiaomeng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
| | - Jing Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
34
|
Devos P, Filali A, Grau P, Gillot S. Sidestream characteristics in water resource recovery facilities: A critical review. WATER RESEARCH 2023; 232:119620. [PMID: 36780748 DOI: 10.1016/j.watres.2023.119620] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/12/2022] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
This review compiles information on sidestream characteristics that result from anaerobic digestion dewatering (conventional and preceded by a thermal hydrolysis process), biological and primary sludge thickening. The objective is to define a range of concentrations for the different characteristics found in literature and to confront them with the optimal operating conditions of sidestream processes for nutrient treatment or recovery. Each characteristic of sidestream (TSS, VSS, COD, N, P, Al3+, Ca2+, Cl-, Fe2+/3+, Mg2+, K+, Na+, SO42-, heavy metals, micro-pollutants and pathogens) is discussed according to the water resource recovery facility configuration, wastewater characteristics and implications for the recovery of nitrogen and phosphorus based on current published knowledge on the processes implemented at full-scale. The thorough analysis of sidestream characteristics shows that anaerobic digestion sidestreams have the highest ammonium content compared to biological and primary sludge sidestreams. Phosphate content in anaerobic digestion sidestreams depends on the type of applied phosphorus treatment but is also highly dependent on precipitation reactions within the digester. Thermal Hydrolysis Process (THP) mainly impacts COD, N and alkalinity content in anaerobic digestion sidestreams. Surprisingly, the concentration of phosphate is not higher compared to conventional anaerobic digestion, thus offering more attractive recovery possibilities upstream of the digester rather than in sidestreams. All sidestream processes investigated in the present study (struvite, partial nitrification/anammox, ammonia stripping, membranes, bioelectrochemical system, electrodialysis, ion exchange system and algae production) suffer from residual TSS in sidestreams. Above a certain threshold, residual COD and ions can also deteriorate the performance of the process or the purity of the final nutrient-based product. This article also provides a list of characteristics to measure to help in the choice of a specific process.
Collapse
Affiliation(s)
| | - Ahlem Filali
- Université Paris-Saclay, INRAE, UR PROSE, F-92761, Antony, France
| | - Paloma Grau
- Ceit and Tecnun, Manuel de Lardizabal 15, 20018, San Sebastian, Spain
| | | |
Collapse
|
35
|
Wang SN, Cao JS, Zhang JL, Luo JY, Ni BJ, Fang F. Recovery of phosphorus from wastewater containing humic substances through vivianite crystallization: Interaction and mechanism analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117324. [PMID: 36657201 DOI: 10.1016/j.jenvman.2023.117324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/29/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Vivianite crystallization has been regarded as a suitable option for recovering phosphorus (P) from P-containing wastewater. However, the presence of humic substances (HS) would inevitably affect the formation of vivianite crystals. Therefore, the influences of HS on vivianite crystallization and the changes in the harvested vivianite crystals were investigated in this study. The results suggested the inhibition effect of 70 mg/L HS on vivianite crystallization reached 12.24%, while it could be attenuated by increasing the pH and Fe/P ratio of the solution. Meanwhile, the addition of HS altered the size, purity, and morphology of recovered vivianite crystals due to the blockage of the growth sites on the crystal surface. Additionally, the formation of phosphate ester group, hydrogen bonding, and COOH-Fe2+ complexes are the potential mechanisms of HS interaction with vivianite crystals. The results obtained herein will help to elucidate the underlying mechanism of HS on vivianite crystallization from P-containing wastewater.
Collapse
Affiliation(s)
- Su-Na Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jia-Shun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jia-Ling Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, PR China
| | - Jing-Yang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Sydney, NSW, 2007, Australia
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
36
|
Hu Z, Li W, Duan H, Huang X, Meng J, Yang L, Zheng M. An integrated approach to vivianite recovery from waste activated sludge. BIORESOURCE TECHNOLOGY 2023; 371:128608. [PMID: 36640822 DOI: 10.1016/j.biortech.2023.128608] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The waste activated sludge (WAS) of wastewater treatment system is often rich in phosphorus (P), which is a basic element of human life and could use up in the near future. This study proposed an integrated approach to efficiently recover P as vivianite from WAS and simultaneously enhance the sludge dewaterability. The raw WAS was first acidified using FeCl3, which was then fed to anaerobic fermenter for Fe3+ reduction. After fermentation, a technology named acid-elutriation was introduced to convert Fe and P from solid phase to liquid phase and concomitantly enhance the liquor-solid separation. Finally, vivianite was obtained via sludge eluate neutralization. The enhanced sludge dewaterability not only increases the recovery efficiency of Fe and P but also decreases the cost of sludge disposal.
Collapse
Affiliation(s)
- Zhetai Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Weiwei Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Haoran Duan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Xin Huang
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Liangzhen Yang
- 2005 Pioneer Park, Longcheng Residential Street, Shenzhen Tongdao Environmental Technology Co., Ltd, Shenzhen 518001, China
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
37
|
Li X, Shen S, Xu Y, Guo T, Dai H, Lu X. Mining phosphorus from waste streams at wastewater treatment plants: a review of enrichment, extraction, and crystallization methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28407-28421. [PMID: 36680723 DOI: 10.1007/s11356-023-25388-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Two interrelated problems exist: the non-renewability of phosphate rock as a resource and the excess phosphate in the water system lead to eutrophication. Removal and recovery of phosphorus (P) from waste streams at wastewater treatment plants (WWTPs) is one of the promising solutions. This paper reviews strategies for P recovery from waste streams in WWTPs are reviewed, and the main P recovery processes were broken down into three parts: enrichment, extraction, and crystallization. On this basis, the present P recovery technology was summarized and compared. The choice of P recovery technology depends on the process of sewage treatment and sludge treatment. Most P recovery processes can meet the financial requirements since the recent surge in phosphate rock prices. The safety requirements of P recovery products add a high cost to toxic substance removal, so it is necessary to control the discharge of toxic substances such as heavy metals and persistent organic pollutants from the source.
Collapse
Affiliation(s)
- Xiang Li
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Shuting Shen
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Yuye Xu
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Ting Guo
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Hongliang Dai
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang, 212018, China
| | - Xiwu Lu
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China.
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China.
| |
Collapse
|
38
|
Yang X, Zhang C, Zhang X, Deng S, Cheng X, Waite TD. Phosphate Recovery from Aqueous Solutions via Vivianite Crystallization: Interference of Fe II Oxidation at Different DO Concentrations and pHs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2105-2117. [PMID: 36688915 DOI: 10.1021/acs.est.2c06668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Vivianite (Fe3(PO4)2·8H2O) crystallization has attracted increasing attention as a promising approach for removing and recovering P from wastewaters. However, FeII is susceptible to oxygen with its oxidation inevitably influencing the crystallization of vivianite. In this study, the profile of vivianite crystallization in the presence of dissolved oxygen (DO) was investigated at pHs 5-7 in a continuous stirred-tank reactor. It is found that the influence of DO on vivianite crystallization was highly pH-related. At pH 5, the low rate of FeII oxidation at all of the investigated DO of 0-5 mg/L and the low degree of vivianite supersaturation resulted in slow crystallization with the product being highly crystalline vivianite, but the P removal efficiency was only 30-40%. The removal of P from the solution was substantially more effective (to >90%) in the DO-removed reactors at pH 6 and 7, whereas the efficiencies of P removal and especially recovery decreased by 10-20% when FeII oxidation became more severe at DO concentrations >2.5 mg/L (except at pH 6 with 2.5 mg/L DO). The elevated degree of vivianite supersaturation and enhanced rate and extent of FeII oxidation at the higher pHs led to decreases in the size and homogeneity of the products. At the same pH, amorphous ferric oxyhydroxide (AFO)─the product of FeII oxidation and FeIII hydrolysis─interferes with vivianite crystallization with the induction of aggregation of crystal fines by AFO, leading to increases in the size of the obtained solids.
Collapse
Affiliation(s)
- Xiaofan Yang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing100083, China
| | - Changyong Zhang
- Water Research Center, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW2052, Australia
| | - Xinran Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing100083, China
| | - Shaoyu Deng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing100083, China
| | - Xiang Cheng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing100083, China
| | - T David Waite
- Water Research Center, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW2052, Australia
| |
Collapse
|
39
|
Wang S, Li N, Yuan Q, Liang D, Chang J, Wang X, Ren N. Vivianite recovery from high concentration phosphorus wastewater with mine drainage as iron sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160098. [PMID: 36370783 DOI: 10.1016/j.scitotenv.2022.160098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
High concentration phosphorus wastewater has attracted much attention due to the safety of water ecology and the potential crisis of phosphorus resource, which is caused by large amounts of phosphorus discharging into natural water bodies. Vivianite (Fe3(PO4)2·8H2O) crystallization has been considered as an effective technology for phosphorus recovery. In this study, we develop a potentially low-cost, sustainable approach to recover phosphorus from high concentration phosphorus wastewater using mine drainage as iron source. Inoculated with both sewage and Geobacter, mine drainage was suitable for vivianite recovery from high concentration phosphorus wastewater with PO43- concentration between 6 and 18 mM. When the PO43- concentration increased gradually, both phosphorus removal efficiency (RP) and vivianite recovery efficiency (RV) decreased significantly. The highest RV of 48 % was obtained with 9 mM PO43- in Geobacter batches (CJ2 batches), which was 15 % higher than that in the paralleled sewage batches (33 % in HJ2). Simultaneously, vivianite accounted for 91 % of the solid phosphate compounds in CJ2 batches due to the enhancement of Geobacter.
Collapse
Affiliation(s)
- Shu Wang
- Academy of Eco-Environmental Science, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Nan Li
- Academy of Eco-Environmental Science, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qing Yuan
- Academy of Eco-Environmental Science, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Danhui Liang
- Academy of Eco-Environmental Science, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jifei Chang
- Academy of Eco-Environmental Science, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
40
|
Song X, Chen T, Xing M. Electrochemical Crystallization for Phosphate Recovery in the Form of Vivianite by a Two‐Chamber Electrolysis Cell Using Sacrificial Iron Anodes. ChemistrySelect 2023. [DOI: 10.1002/slct.202203182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xingfu Song
- Department of advanced manufacturing FuZhou University No. 1, ShuiCheng South Road, Jinjiang Fujian 362200 China
| | - Tengshu Chen
- Deparment of Resource Environmental Science Quanzhou Normal University Donghai Street, FengZe District Quanzhou City Fujian 362000 China
| | - Mengyao Xing
- Department of Architecture ArtsGuangxi Art college No. 8 Luowen Avenue, Xixiangtang District Nanning Guangxi 530000 China
| |
Collapse
|
41
|
Heinrich L, Schmieder P, Barjenbruch M, Hupfer M. Formation of vivianite in digested sludge and its controlling factors in municipal wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158663. [PMID: 36096220 DOI: 10.1016/j.scitotenv.2022.158663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Engineering solutions to recover phosphorus from municipal wastewater are required to close the anthropogenic phosphorus cycle. After chemical phosphorus elimination by iron, the ferrous iron‑phosphorus mineral vivianite forms in digested sludge, and its separation is being researched at the pilot scale. In this study, sludge samples from 16 wastewater treatment plants (WWTPs) demonstrated that phosphorus bound to biomass and redox-sensitive iron in activated sludge was transformed into other phosphorus binding forms, including vivianite, during digestion. Vivianite quantity was approximated using X-ray diffraction and two sequential extractions. These three independent methods of approximating vivianite quantity were closely related confirming their relationship to the vivianite content in the samples. The digested sludge from three WWTPs exhibited comparatively high levels of vivianite-bound phosphorus approximated between 31 % and 51 % of total phosphorus. The controlling factors of vivianite formation were investigated in order to enhance its formation in digested sludge and increase the amount of phosphorus recoverable as vivianite. They were identified using single and multivariate correlation (MLR), considering the sludge properties, sludge composition, and process parameters within the operating range of the 16 WWTPs. Increasing iron content was verified as the primary predictor of significantly increased vivianite formation (MLR: p < 0.001). In addition, increasing sulphur content was found to be an additional significant factor that decreased vivianite formation (MLR: p < 0.05). Furthermore, a comparison of plants using sulphur-free (FeCl2 and FeCl3) and sulphur-containing (FeSO4 and FeClSO4) precipitants indicated that the latter could increase the sulphur content in digested sludge (one-tailed Welch two-sample t-test: t(14.6) = 2.3, p = 0.02). Thus, by increasing the sulphur content, the use of sulphur-comprising precipitants may counteract vivianite formation, whereas sulphur-free precipitants may facilitate it and, hence, promote vivianite recovery.
Collapse
Affiliation(s)
- Lena Heinrich
- Department of Ecohydrology and Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587 Berlin, Germany; Department of Urban Water Management, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Matthias Barjenbruch
- Department of Urban Water Management, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Michael Hupfer
- Department of Ecohydrology and Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587 Berlin, Germany
| |
Collapse
|
42
|
Ping Q, Zhang B, Zhang Z, Lu K, Li Y. Speciation analysis and formation mechanism of iron-phosphorus compounds during chemical phosphorus removal process. CHEMOSPHERE 2023; 310:136852. [PMID: 36241115 DOI: 10.1016/j.chemosphere.2022.136852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Iron (Fe) salt was applied extensively to remove phosphorus (P) in wastewater treatment plants (WWTPs). Exploring the formation mechanism of iron-phosphorus compounds (FePs) during the chemical P removal (CPR) process is beneficial to P recovery. In this study, the performance of P removal, FePs speciation analysis and the kinetics of P removal under different conditions (pH, Fe/P molar ratio (Fe/Pmol), type of Fe salt, dissolved organic matters) were comprehensively investigated. More than 95% of P was removed under the optimal conditions with pH = 4.7, Fe/Pmol = 2, FeCl3 or polymeric ferric sulfate (PFS) as the coagulant. The FePs formation mechanism was considerably influenced by reaction conditions. Iron-phosphate compounds were the dominant FePs species (>76%) at pH < 6.2, while more iron oxides were formed at pH ≥ 6.2 with decreased P removal efficiency. When the initial Fe/Pmol was 2, iron-phosphate compound was the only product that was formed by the reaction between PO43- and Fe(III) or Fe(II) ions directly. More iron oxides were generated when the initial Fe/Pmol was 1 or 3. At Fe/Pmol = 1, the Fe(III) was hydrolyzed to form iron oxides and trapped PO43-, while at Fe/Pmol = 3, iron-phosphate compounds were produced firstly and the remaining Fe(III) was hydrolyzed to form iron oxides. The pseudo-second-order kinetic model simulated the chemical P removal process well. The reaction rate of P with Fe(II) was slower than that with Fe(III), but complete removal was still achieved when the reaction time was more than 30 min. Poly-Fe salt exhibited a fast P removal rate, while the removal efficiency depended on its iron content. Organic matters in wastewater with large molecular weight and multiple functional groups (such as humic acids) inhibited P removal rate but hardly affect the removal amount. This study provides an insight into CPR by Fe salts and is beneficial for P recovery in WWTPs.
Collapse
Affiliation(s)
- Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Bingqian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Zhipeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Kexin Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
43
|
Hu D, Zhu N, Li Y, Yan Y, Zhang C. Acid/alkali pretreatment enhances the formation of vivianite during anaerobic fermentation of waste activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115760. [PMID: 35863301 DOI: 10.1016/j.jenvman.2022.115760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 06/13/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Phosphorus (P) recovery from waste activated sludge (WAS) of wastewater treatment plants is significant in the world suffering from P shortage. Recently, vivianite crystallization has been regarded as an essential method of recovering P from anaerobic fermentation (AF) of WAS. This study performed acid/alkali pretreatment (pH 3/pH 10) on AF of WAS to improve iron reduction and vivianite formation. The results showed that the maximum iron reduction rate (Rmax) in the pH 3 and pH 10 groups was increased by 1.9 and 1.7 times compared with that in the Control-Fe group, and the iron reduction efficiency (EFe) was increased by 17.5% and 12.0% respectively. The Fe bound P (Fe-P) proportion in the sludge in the pH 3 and pH 10 groups increased by 50.0% and 33.7%, respectively. Furthermore, the relative abundance of the iron-reducing bacteria Clostridium_sensusensu in the pH 3 group was higher; and the Fe-P proportion in the sludge and the size of vivianite crystal after AF were larger. With these results, pH 3 pretreatment was preferred for promoting Fe2+ release and vivianite formation during AF.
Collapse
Affiliation(s)
- Dexiu Hu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China.
| | - Nian Zhu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Yao Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Yixin Yan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Cong Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| |
Collapse
|
44
|
Hao X, Yu W, Yuan T, Wu Y, van Loosdrecht MCM. Unravelling key factors controlling vivianite formation during anaerobic digestion of waste activated sludge. WATER RESEARCH 2022; 223:118976. [PMID: 36001903 DOI: 10.1016/j.watres.2022.118976] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/11/2022] [Accepted: 08/12/2022] [Indexed: 05/06/2023]
Abstract
As a product of phosphorous recovery from anaerobic digestion (AD) of waste activated sludge (WAS), vivianite has received increasing attention. However, key factors controlling vivianite formation have not yet been fully addressed. Thus, this study was initiated to ascertain key factors controlling vivianite formation. A simulation of chemical equilibriums indicates that interfering ions such as metallic ions and inorganic compounds may affect vivianite formation, especially at a PO43-concentration lower than 3 mM. The experiments demonstrated that the rate of ferric bio-reduction conducted by dissimilatory metal-reducing bacteria (DMRB) and the competition of methane-producing bacteria (MPB) with DMRB for VFAs (acetate) were not the key factors controlling vivianite formation, and that ferric bio-reduction of DMRB can proceed when a sufficient amount of Fe3+ exists in WAS. The determined affinity constants (Ks) of both DMRB and MPB on acetate revealed that the KHAc constant (4.2 mmol/g VSS) of DMRB was almost 4 times lower than that of MPB (15.67 mmol/g VSS) and thus MPB could not seriously compete for VFAs (acetate) with DMRB. As a result, vivianite formation was controlled mainly by the amount of Fe3+ in WAS. In practice, a Fe/P molar ratio of 2:1 should be enough for vivianite formation in AD of WAS. Otherwise, exogenously dosing Fe3+ or Fe2+ into AD must be applied in AD.
Collapse
Affiliation(s)
- Xiaodi Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering & Architecture, Beijing, 100044, China.
| | - Wenbo Yu
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering & Architecture, Beijing, 100044, China
| | - Tugui Yuan
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering & Architecture, Beijing, 100044, China
| | - Yuanyuan Wu
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering & Architecture, Beijing, 100044, China
| | - Mark C M van Loosdrecht
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering & Architecture, Beijing, 100044, China; Dept. of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| |
Collapse
|
45
|
Piash KS, Anwar R, Shingleton C, Erwin R, Lin L, Sanyal O. Integrating Chemical Precipitation and Membrane Separation for Phosphorus and Ammonia Recovery from Anaerobic Digestate. AIChE J 2022. [DOI: 10.1002/aic.17869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Rifat Anwar
- Wadsworth Department of Civil and Environmental Engineering West Virginia University Morgantown WV
| | - Carley Shingleton
- Wadsworth Department of Civil and Environmental Engineering West Virginia University Morgantown WV
| | | | - Lian‐Sin Lin
- Wadsworth Department of Civil and Environmental Engineering West Virginia University Morgantown WV
| | - Oishi Sanyal
- Department of Chemical and Biomedical Engineering
| |
Collapse
|
46
|
Konadu-Amoah B, Hu R, Ndé-Tchoupé AI, Gwenzi W, Noubactep C. Metallic iron (Fe 0)-based materials for aqueous phosphate removal: A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115157. [PMID: 35526394 DOI: 10.1016/j.jenvman.2022.115157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/06/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
The discharge of excessive phosphate from wastewater sources into the aquatic environment has been identified as a major environmental threat responsible for eutrophication. It has become essential to develop efficient but affordable techniques to remove excess phosphate from wastewater before discharging into freshwater bodies. The use of metallic iron (Fe0) as a reactive agent for aqueous phosphate removal has received a wide attention. Fe0 in-situ generates positively charged iron corrosion products (FeCPs) at pH > 4.5, with high binding affinity for anionic phosphate. This study critically reviews the literature that focuses on the utilization of Fe0-based materials for aqueous phosphate removal. The fundamental science of aqueous iron corrosion and historical background of the application of Fe0 for phosphate removal are elucidated. The main mechanisms for phosphate removal are identified and extensively discussed based on the chemistry of the Fe0/H2O system. This critical evaluation confirms that the removal process is highly influenced by several operational factors including contact time, Fe0 type, influent geochemistry, initial phosphate concentration, mixing conditions, and pH value. The difficulty in comparing independent results owing to diverse experimental conditions is highlighted. Moreover, contemporary research in progress including Fe0/oxidant systems, nano-Fe0 application, Fe0 material selection, desorption studies, and proper design of Fe0-based systems for improved phosphate removal have been discussed. Finally, potential strategies to close the loop in Fe0-based phosphate remediation systems are discussed. This review presents a science-based guide to optimize the efficient design of Fe0-based systems for phosphate removal.
Collapse
Affiliation(s)
- Bernard Konadu-Amoah
- School of Earth Science and Engineering, Hohai University, Fo Cheng Xi Road 8, Nanjing, 211100, China.
| | - Rui Hu
- School of Earth Science and Engineering, Hohai University, Fo Cheng Xi Road 8, Nanjing, 211100, China.
| | - Arnaud Igor Ndé-Tchoupé
- School of Earth Science and Engineering, Hohai University, Fo Cheng Xi Road 8, Nanjing, 211100, China.
| | - Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Agricultural and Biosystems Engineering, University of Zimbabwe, P.O. Box MP167, Mount Pleasant, Harare, Zimbabwe.
| | - Chicgoua Noubactep
- School of Earth Science and Engineering, Hohai University, Fo Cheng Xi Road 8, Nanjing, 211100, China; Centre for Modern Indian Studies (CeMIS), University of Göttingen, Waldweg 26, 37073, Göttingen, Germany; Department of Water and Environmental Science and Engineering, Nelson Mandela African Institution of Science and Technology, Arusha P.O. Box 447, Tanzania; Faculty of Science and Technology, Campus of Banekane, Université des Montagnes, P.O. Box 208, Bangangté, Cameroon.
| |
Collapse
|
47
|
Enhanced Phosphorus Recovery as Vivianite from Anaerobically Digested Sewage Sludge with Magnetic Biochar Addition. SUSTAINABILITY 2022. [DOI: 10.3390/su14148690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sustainable phosphorus (P) recovery from sewage sludge is crucial to reconciling the simultaneous shortage and excess of P. In this study, magnetic biochar (MBC) was synthesized and innovatively applied to enhance P recovery as vivianite. The effects of anaerobic digestion (AD) time, hydrothermal (HT) pretreatment temperature and MBC dose on vivianite formation were investigated using batch experiments and a modified sequential P extraction protocol. The P fractionation results showed that the concentration of pure vivianite-bound P (Fe(II)-P) reached a maximum on the 10th day of AD treatment, and then declined sharply due to vivianite oxidation and P limitation. HT pretreatment operated at relatively high temperatures (135 and 185 °C) reduced vivianite formation; this negative effect of HT pretreatment was partially compensated by MBC supplementation. The proportion of Fe(II)-P in the solid phase of sludge was substantially raised up to 57.1% from 8.3~17.4% with an increasing dose of MBC from 0 to 12.5 g/L, indicating that MBC had a markedly enhanced effect on vivianite formation; this could be attributed to the MBC-improved Fe(II) production, as evidenced by the elevated proportion of Fe(II) in Fe2p XPS spectra and the increased ratio of Fe(II)-P to oxidized vivianite-bound P (Fe(III)-P) in the sludge after MBC supplementation. MBC addition also decreased the proportion of water-extractable P by sorption and promoted organic P decomposition, which further facilitated vivianite production. These findings reveal a new strategy for enhancing P recovery from HT-pretreated AD sludge.
Collapse
|
48
|
Dou Q, Zhang L, Lan S, Hao S, Guo W, Sun Q, Wang Y, Peng Y, Wang X, Yang J. Metagenomics illuminated the mechanism of enhanced nitrogen removal and vivianite recovery induced by zero-valent iron in partial-denitrification/anammox process. BIORESOURCE TECHNOLOGY 2022; 356:127317. [PMID: 35595225 DOI: 10.1016/j.biortech.2022.127317] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
In this study, a novel strategy of zero-valent iron (ZVI) combined with acetic acid was proposed to optimize partial-denitrification/anammox (PD/A) process, and enhanced nitrogen removal mechanism was elucidated through metagenomics. Results showed that the optimal nitrogen and phosphorus removal were as high as 99.50% and 98.37%, respectively, with vivianite being precipitated as the main byproduct. The occurrence of Feammox was a crucial link for enhanced ammonia removal and vivianite recovery. Metagenomic analysis further certified that long-term acclimation of optimization strategy triggered DNRA-based nitrate reducing genes (narY/Z and nrfA) assigned to Candidatus Brocadia, which allow direct uptake of nitrate by the anammox. Additionally, ZVI might act as a new electron donor to decrease organics dependence of PD by reducing the abundance of genes for electron production involved in carbon metabolism. However, FA addition enhanced the relative abundances of genes involved in anammox including nitrogen reduction and oxidation, thereby accelerating nitrogen removal.
Collapse
Affiliation(s)
- Quanhao Dou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Shuang Lan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Shiwei Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wei Guo
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Qingxuan Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yueping Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| | - Jiachun Yang
- Shuifa Shandong Water Development Group Co. Ltd. Shandong, 274200, China
| |
Collapse
|
49
|
Wang Q, Raju CS, Almind-Jørgensen N, Laustrup M, Reitzel K, Nielsen UG. Variation in Phosphorus Speciation of Sewage Sludge throughout Three Wastewater Treatment Plants: Determined by Sequential Extraction Combined with Microscopy, NMR Spectroscopy, and Powder X-ray Diffraction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8975-8983. [PMID: 35623015 DOI: 10.1021/acs.est.2c01815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The variation in phosphorus (P) speciation of sewage sludge throughout three wastewater treatment plants (WWTPs) was obtained by combining sequential P extraction with optical and scanning electron microscopy (SEM), chemical analyses, powder X-ray diffraction (PXRD), and 27Al and 31P nuclear magnetic resonance (NMR) spectroscopy. The WWTPs combine chemical P removal (CPR) and enhanced biological P removal (EBPR) and were compared to understand the effect of iron (Fe) dosing with and without codosing of aluminum (Al) and thermal hydrolysis on the P speciation. 31P NMR showed comparable inorganic orthophosphate (ortho-P, 53-60% of total P) and organophosphate (organic-P, 37-45%) in primary sludge, whereas polyphosphate (poly-P, 23-44%) from poly-P accumulating organisms (PAOs) was mainly observed in the secondary sludge. Inorganic ortho-P (90-98%) dominated after anaerobic digestion, which degraded poly-P and most organic-P. The inorganic ortho-P was mainly Fe bound P (Fe-P), especially after anaerobic digestion (71%). Codosing of Fe and Al led to two comparable fractions: Fe-P (38%) and P sorbed on amorphous Al (hydr)oxides (38%). Vivianite was identified in all samples by microscopy and chemical extraction but was PXRD amorphous in 12 out of 17 samples. Thus, vivianite may be more common in sewage sludge than previously known.
Collapse
Affiliation(s)
- Qian Wang
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Chitra S Raju
- Billund Vand & Energi, Grindsted Landevej 40, 7200 Grindsted, Denmark
| | | | | | - Kasper Reitzel
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Ulla Gro Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
50
|
Goedhart R, Müller S, van Loosdrecht MCM, van Halem D. Vivianite precipitation for iron recovery from anaerobic groundwater. WATER RESEARCH 2022; 217:118345. [PMID: 35460977 DOI: 10.1016/j.watres.2022.118345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Iron in anaerobic groundwater is commonly removed by oxidation followed by sand filtration. This produces large volumes of iron(III)(hydr)oxide sludge with little value. Our research investigates the novel concept of anaerobic iron(II) recovery from groundwater as the valuable mineral vivianite (Fe3(PO4)2 • 8 H2O) by the addition of phosphate to the water. We found that vivianite precipitated both in synthetic and natural groundwater when the saturation index (SI) was higher than 4. The SI can be increased by elevating the pH, which allows for iron removal at lower concentrations. Anaerobic iron removal reached 93.7% in natural groundwater, which increased further to 99.9% after a subsequent aeration step. Vivianite precipitation followed second order kinetics with a rate constant of 2.3 M-1s-1 and the sludge volume decreased by two third compared to iron oxidation. We therefore conclude that anaerobic iron removal is a promising new approach towards sustainable groundwater treatment.
Collapse
Affiliation(s)
- Roos Goedhart
- Water Management Department, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, Delft 2628 CN, The Netherlands.
| | - Simon Müller
- Water Management Department, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, Delft 2628 CN, The Netherlands
| | - Mark C M van Loosdrecht
- Biotechnology Department, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Doris van Halem
- Water Management Department, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, Delft 2628 CN, The Netherlands
| |
Collapse
|