1
|
Jiang Q, Dong X, Liu Y, Zhou X, Sun G, Shi K, Qiao Y, Jiang H, Feng Y. Deciphering of electron transfer and microbial community of electrogenic oxygen reducing biofilms to sulfamethoxazole stress. BIORESOURCE TECHNOLOGY 2025; 430:132597. [PMID: 40306339 DOI: 10.1016/j.biortech.2025.132597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/15/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025]
Abstract
This study first evaluated the sulfamethoxazole (SMX) effects on oxygen-reducing biocathodes in microbial fuel cells (MFCs). Low SMX (0.5 mg L-1) enhanced current density by 20 % via increased direct electron transfer and lower charge transfer resistance. High SMX (10-30 mg L-1) suppressed electrochemical performance. SMX preferentially bound protein-like EPS components over fulvic-like fractions, inducing sequential structural changes (1054 > 970 > 3464 > 2921 > 1643 > 1350 cm-1). SMX exposure reshaped microbial communities, enriching antibiotic-resistant genera (Truepera, Nitrospira, Brevundimonas, etc.). Network analysis revealed low SMX enhanced community complexity/stability, while high doses simplified biofilm structure. Functional genes for electron transfer, carbon metabolism and oxidative phosphorylation increased at 0.5 mg L-1 SMX but decreased under high concentrations. Overall, this study elucidates the dual role of SMX in modulating oxygen-reducing biofilm composition, function, and capability, laying the groundwork for optimized application of MFC in treating SMX-contaminated wastewater.
Collapse
Affiliation(s)
- Qing Jiang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, China.
| | - Xing Dong
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yang Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Xiaoyu Zhou
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Guomeng Sun
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Ke Shi
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, China
| | - Yanlu Qiao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, China
| | - Hao Jiang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, China.
| | - Yujie Feng
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
2
|
He L, He X, Zhang Y, Fan X, Yang T, Ji X, Wang Y, Zhou J, Lin C. Enhanced dissimilatory nitrate reduction to ammonium and electron transfer mechanisms in bidirectional electron transfer biofilm constructed by iron phthalocyanine. BIORESOURCE TECHNOLOGY 2025; 426:132381. [PMID: 40074093 DOI: 10.1016/j.biortech.2025.132381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/08/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
Bidirectional electron transfer biofilms (BETB) could efficiently reduce nitrate without accumulating nitrite, representing a promising biological electrochemical denitrification technology. This study utilized iron phthalocyanine modified carbon felt (FePc-CF) to enrich electroactive bacteria, constructing a long-term stable FePc-BETB. Its nitrate removal rate reached 91%, far exceeding the traditional nitrate-reducing biocathode (45%) and Con-BETB (46%). The dissimilatory nitrate reduction to ammonium (DNRA) dominated nitrate reduction in FePc-BETB, consuming 35% of the total electrons. Additionally, FePc-BETB effectively reduced the accumulation of NO2--N and N2O. Electrochemical analysis demonstrated FePc-BETB exhibited stronger electrochemical activity and electron transfer capability. Mediated electron transfer (MET) enhanced by increased extracellular humic acid in FePc-BETB favored the electron supplement for nitrate removal. The relative abundance of nrfA, marker of the DNRA, increased significantly. This study provided new insights into regulating denitrification and DNRA pathways and treating nitrate wastewater lacking electron donors.
Collapse
Affiliation(s)
- Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; Chengdu Drainage Co., Ltd, Chengdu 610000, PR China
| | - Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Ying Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Xing Fan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Tao Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; China Railway Eryuan Engineering Group Co., Ltd, Chengdu, Sichuan 610031, PR China
| | - Xiaopeng Ji
- Chongqing Water Group Co., Ltd., Chongqing 400015, PR China
| | - Yingmu Wang
- College of Civil Engineering, Fuzhou University, Fuzhou, Fujian 350116, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Chengbao Lin
- China Railway Eryuan Engineering Group Co., Ltd, Chengdu, Sichuan 610031, PR China
| |
Collapse
|
3
|
Yan X, Su H, Liao C, Zhao Q, Qian X, Tian L, Li N, Wang X. Metabolic allocation strategies of Geobacter in electroactive biofilms to adapt to varying acetate supply concentrations. WATER RESEARCH 2025; 283:123890. [PMID: 40424924 DOI: 10.1016/j.watres.2025.123890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/21/2025] [Accepted: 05/22/2025] [Indexed: 05/29/2025]
Abstract
Geobacter species play a key role in acetate-fed electroactive biofilms (EABs), but their competitiveness varies with acetate supply concentration for unclear reasons. By continuously supplying different concentrations of acetate, we discovered an adaptive metabolic strategy of Geobacter biofilms, centered on regulating carbon allocation to protein synthesis, polysaccharide production, and the TCA cycle. Growth and reproduction were prioritized in response to acetate limitation under low supply concentrations, whereas catabolic efficiency was enhanced when acetate was sufficient. Excess acetate also induced the toxic effects of intracellular acetyl-CoA accumulation, triggering metabolic processes including stress responses, acetyl-CoA hydrolase synthesis, and carbon source storage. These metabolic adaptations ultimately determined the competitive niche of Geobacter in wastewater EABs, allowing for population dominance under acetate limitation and enhancing current production when acetate was abundant. Our findings give new insights into Geobacter's survival strategies in various environments with different acetate availability, and provide a theoretical basis for targeted regulation of the performance and stability of EABs to achieve environmental functions.
Collapse
Affiliation(s)
- Xuejun Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Academy for Advanced Interdisciplinary Studies, College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Huijuan Su
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Academy for Advanced Interdisciplinary Studies, College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Academy for Advanced Interdisciplinary Studies, College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Academy for Advanced Interdisciplinary Studies, College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Lili Tian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Academy for Advanced Interdisciplinary Studies, College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Academy for Advanced Interdisciplinary Studies, College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| |
Collapse
|
4
|
You J, Ye L, Zhang S, Zhao J, Zhao Y, He Y, Chen J, Kennes C, Chen D. Electrode functional microorganisms in bioelectrochemical systems and its regulation: A review. Biotechnol Adv 2025; 79:108521. [PMID: 39814087 DOI: 10.1016/j.biotechadv.2025.108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 12/03/2024] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Bioelectrochemical systems (BES) as environmental remediation biotechnologies have boomed in the last two decades. Although BESs combined technologies with electro-chemistry, -biology, and -physics, microorganisms and biofilms remain at their core. In this review, various functional microorganisms in BESs for CO2 reduction, dehalogenation, nitrate, phosphate, and sulfate reduction, metal removal, and volatile organic compound oxidation are summarized and compared in detail. Moreover, interrelationship regulation approaches for functional microorganisms and methods for electroactive biofilm development, such as targeted electrode surface modification, chemical treatment, physical revealing, biological optimization, and genetic programming are pointed out. This review provides promising guidance and suggestions for the selection of microbial inoculants and provides an analysis of the role of individual microorganisms in mixed microbial communities and its metabolisms.
Collapse
Affiliation(s)
- Juping You
- Zhejiang Key Laboratory of Pullution control for Port-Petrochemical Industry, Zhejiang Ocean University, Zhoushan 316022, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Zhejiang Shuren University, Hangzhou 312028, China
| | - Lei Ye
- Zhejiang Key Laboratory of Pullution control for Port-Petrochemical Industry, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shihan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingkai Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yan Zhao
- Zhejiang Key Laboratory of Pullution control for Port-Petrochemical Industry, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yaxue He
- Zhejiang Key Laboratory of Pullution control for Port-Petrochemical Industry, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jianmeng Chen
- School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310018, China
| | - Christian Kennes
- Chemical Engineering Laboratory and Center for Advance Scientific Research (CICA), Faculty of Sciences, Universidade da Coruña, Spain
| | - Dongzhi Chen
- Zhejiang Key Laboratory of Pullution control for Port-Petrochemical Industry, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
5
|
Zhang Z, Li Z, Nan J, Ouyang J, Chen X, Wang H, Wang A. Evaluating advancements and opportunities in electro-assisted biodehalogenation of emerging halogenated contaminants. BIORESOURCE TECHNOLOGY 2025; 419:132011. [PMID: 39725360 DOI: 10.1016/j.biortech.2024.132011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Electro-assisted biodehalogenation (EASB) as a biostimulation strategy can accelerate the slow attenuation of emerging halogenated contaminants (EHCs) in anaerobic aqueous environments. A timely review is urgent to evaluate the knowledge gaps and potential opportunities, further facilitating its design and application. Till now, EASB achieves promising progress in accelerating biohalogenation rates, promoting the detoxification of EHCs to cope with unfavourable environments and mitigating greenhouse gas emissions. However, EASB of EHCs still faces several knowledge gaps. Exploring crucial microbes and deciphering insights into dehalogenase characteristics and extracellular electron transfer (EET) pathways remain the prominent task for EASB of EHCs. Moreover, microbial ecological relationships and intricate environmental factors affecting performances and applications are largely underexplored. The emergence of emerging tools holds promises for sorting the intricate changes and addressing these knowledge gaps. Judicious use of emerging tools will rejuvenate EASB strategy, from EET to scale-up, to purposefully and effectively address cascading EHCs.
Collapse
Affiliation(s)
- Zimeng Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jia Ouyang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xueqi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongcheng Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
6
|
Riveros A, Asefaw BK, Wang Q, Maqbool T, Tang Y, Jiang D. Selenium treatment via integrating flow electrode capacitive deionization (FCDI) and bio-electrochemical systems (BES). WATER RESEARCH 2025; 271:122844. [PMID: 39616811 DOI: 10.1016/j.watres.2024.122844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/26/2024] [Accepted: 11/22/2024] [Indexed: 01/14/2025]
Abstract
Selenium pollution in aquatic environments poses a major global challenge, with a significant gap in effective treatment technologies. In this study, we explored a novel approach integrating flow-electrode capacitive deionization (FCDI) with bio-electrochemical systems (BES) for the removal and reduction of selenate and selenite ions in one compact reactor. Our integrated system was electricity-driven, eliminating chemical usage. Up to 76 % selenium removal from the waste streams was achieved, followed by up to 66 % and 54 % reduction of selenate and selenite to elemental selenium respectively. The addition of acetate, a carbon source, enhanced selenate reduction by 14 % but lowered selenite reduction by 21 %, suggesting the substrate-dependent and bio-electrochemical-driven nature of selenate and selenite reduction respectively. Metagenomic sequencing revealed that Geobacter sulfurreducens and Pseudomonas stutzeri two known Se-reducing species, likely contributed to both selenite and selenate reduction through up-regulating functional genes related to sulfide reductase, fumarate reductase, and multi-heme c-type cytochromes. Thauera spp. and Alishewanella spp., two species not previously associated with selenium reduction, were likely involved in selenite reduction via the up-regulation of genes related to sulfite reductase and selenium reductase.
Collapse
Affiliation(s)
- Adriana Riveros
- Department of Civil, Construction, and Environmental Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Benhur K Asefaw
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida 32310, USA
| | - Qingshi Wang
- Department of Civil, Construction, and Environmental Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Tahir Maqbool
- Department of Civil, Construction, and Environmental Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida 32310, USA
| | - Daqian Jiang
- Department of Civil, Construction, and Environmental Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
7
|
Fan YY, Tang Q, Li Y, Sun H, Xu M, Yu HQ. Fabricating an advanced electrogenic chassis by activating microbial metabolism and fine-tuning extracellular electron transfer. Trends Biotechnol 2025; 43:383-407. [PMID: 39490224 DOI: 10.1016/j.tibtech.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024]
Abstract
Exploiting electrogenic microorganisms as unconventional chassis hosts offers potential solutions to global energy and environmental challenges. However, their limited electrogenic efficiency and metabolic versatility, due to genetic and metabolic constraints, hinder broader applications. Herein, we developed a multifaceted approach to fabricate an enhanced electrogenic chassis, starting with streamlining the genome by removing extrachromosomal genetic material. This reduction led to faster lactate consumption, higher intracellular NADH/NAD+ and ATP/ADP levels, and increased growth and biomass accumulation, as well as promoted electrogenic activity. Transcriptome profiling showed an overall activation of cellular metabolism. We further established a molecular toolkit with a vector vehicle incorporating native replication block and refined promoter components for precise gene expression control. This enabled engineered primary metabolism for greater environmental robustness and fine-tuned extracellular electron transfer (EET) for improved efficiency. The enhanced chassis demonstrated substantially improved pollutant biodegradation and radionuclide removal, establishing a new paradigm for utilizing electrogenic organisms as novel biotechnology chassis.
Collapse
Affiliation(s)
- Yang-Yang Fan
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Qiang Tang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Yang Li
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Hong Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
8
|
Li T, Li CY, Wang YF, Zhang JN, Li H, Wu HF, Yang XL, Song HL. Insights to the cooperation of double-working potential electroactive biofilm for performance of sulfamethoxazole removal: ARG fate and microorganism communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135357. [PMID: 39079293 DOI: 10.1016/j.jhazmat.2024.135357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/06/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Bioelectrochemical systems (BESs) have shown great potential in enhancing sulfamethoxazole (SMX) removal. However, electroactive biofilms (EBs) constructed with single potentials struggle due to limited biocatalytic activity, hindering deep SMX degradation. Here, we constructed a double-working potential BES (BES-D) to investigate its ability to eliminate SMX and reduce the levels of corresponding antibiotic resistance genes (ARGs). The preferable electrochemical activity of EB in BES-D was confirmed by electrochemical characterization, EPS analysis, physical structure, viability of the biofilm, and cytochrome content. BES-D exhibited a notably greater SMX removal efficiency (94.2 %) than did the single-working potential BES (BES-S) and the open-circuit group (OC). Degradation pathway analysis revealed that the cooperative EB could accelerate the in-depth removal of SMX. Moreover, EB interaction in BES-D decreased the relative abundance of ARGs in biofilms compared to that in BES-S, although the absolute number of ARG copies increased in BES-D effluents. Compared to those in BES-S and OC, more complex cross-niche microbial associations in the EB of BES-D were observed by network analysis of the bacterial community and ARG hosts, enhancing the degradation efficiency of SMX. In conclusion, BES-D has significant potential for SMX removal and the enhancement of EB activity. Nonetheless, the risk of ARG dissemination in effluent remains a concern.
Collapse
Affiliation(s)
- Tao Li
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China.
| | - Chen-Ying Li
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China.
| | - Yan-Fei Wang
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China.
| | - Jing-Nan Zhang
- School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Hua Li
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China; Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hui-Fang Wu
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China.
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210023, China.
| |
Collapse
|
9
|
Cai T, Han Y, Wang J, Li W, Lu X, Zhen G. Natural defence mechanisms of electrochemically active biofilms: From the perspective of microbial adaptation, survival strategies and antibiotic resistance. WATER RESEARCH 2024; 262:122104. [PMID: 39032331 DOI: 10.1016/j.watres.2024.122104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Electrochemically active biofilms (EABs) play an ever-growingly critical role in the biological treatment of wastewater due to its low carbon footprint and sustainability. However, how the multispecies biofilms adapt, survive and become tolerant under acute and chronic toxicity such as antibiotic stress still remains well un-recognized. Here, the stress responses of EABs to tetracycline concentrations (CTC) and different operation schemes were comprehensively investigated. Results show that EABs can quickly adapt (start-up time is barely affected) to low CTC (≤ 5 μM) exposure while the adaptation time of EABs increases and the bioelectrocatalytic activity decreases at CTC ≥ 10 μM. EABs exhibit a good resilience and high anti-shocking capacity under chronic and acute TC stress, respectively. But chronic effects negatively affect the metabolic activity and extracellular electron transfer, and simultaneously change the spatial morphology and microbial community structure of EABs. Particularly, the typical exoelectrogens Geobacter anodireducens can be selectively enriched under chronic TC stress with relative abundance increasing from 45.11% to 85.96%, showing stronger TC tolerance than methanogens. This may be attributed to the effective survival strategies of EABs in response to TC stress, including antibiotic efflux regulated by tet(C) at the molecular level and the secretion of more extracellular proteins in the macro scale, as the C=O bond in amide I of aromatic amino acids plays a critical role in alleviating the damage of TC to cells. Overall, this study highlights the versatile defences of EABs in terms of microbial adaptation, survival strategies, and antibiotic resistance, and deepens the understanding of microbial communities' evolution of EABs in response to acute and chronic TC stress.
Collapse
Affiliation(s)
- Teng Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yule Han
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiayi Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Wanjiang Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
10
|
Wu X, Tang Y, Amanze C, Peng J, Yu R, Li J, Shen L, Liu Y, Zeng W. Fabrication and optimization of bioelectrochemical system using tetracycline-degrading bacterial strains for antibiotic wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 407:131096. [PMID: 38986881 DOI: 10.1016/j.biortech.2024.131096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/19/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
In this study, a microbial fuel cell was constructed using Raoultella sp. XY-1 to efficiently degrade tetracycline (TC) and assess the effectiveness of the electrochemical system. The degradation rate reached 83.2 ± 1.8 % during the 7-day period, in which the system contained 30 mg/L TC, and the degradation pathway and intermediates were identified. Low concentrations of TC enhanced anodic biofilm power production, while high concentrations of TC decreased the electrochemical activity of the biofilm, extracellular polymeric substances, and enzymatic activities associated with electron transfer. Introducing electrogenic bacteria improved power generation efficiency. A three-strain hybrid system was fabricated using Castellaniella sp. A3, Castellaniella sp. A5 and Raoultella sp. XY-1, leading to the enhanced TC degradation rate of 90.4 % and the increased maximum output voltage from 200 to 265 mV. This study presents a strategy utilizing tetracycline-degrading bacteria as bioanodes for TC removal, while incorporating electrogenic bacteria to enhance electricity generation.
Collapse
Affiliation(s)
- Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China
| | - Yunhui Tang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China
| | - Jingxuan Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China
| | - Runlan Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China
| | - Yuandong Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China.
| |
Collapse
|
11
|
Xue J, Wang Y, Jing Y, Li X, Chen S, Xu Y, Song RB. Recent advances in microbial fuel cell-based self-powered biosensors: a comprehensive exploration of sensing strategies in both anode and cathode modes. Anal Bioanal Chem 2024; 416:4649-4662. [PMID: 38457006 DOI: 10.1007/s00216-024-05230-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
With the rapid development of society, it is of paramount importance to expeditiously assess environmental pollution and provide early warning of toxicity risks. Microbial fuel cell-based self-powered biosensors (MFC-SPBs) have emerged as a pivotal technology, obviating the necessity for external power sources and aligning with the prevailing trends toward miniaturization and simplification in biosensor development. In this case, vigorous advancements in MFC-SPBs have been acquired in past years, irrespective of whether the target identification event transpires at the anode or cathode. The present article undertakes a comprehensive review of developed MFC-SPBs, categorizing them into substrate effect and microbial activity effect based on the nature of the target identification event. Furthermore, various enhancement strategies to improve the analytical performance like accuracy and sensitivity are also outlined, along with a discussion of future research trends and application prospects of MFC-SPBs for their better developments.
Collapse
Affiliation(s)
- Junjun Xue
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
| | - Yuxin Wang
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Jing
- Henan Joint International Research Laboratory of Intelligent Water Treatment System, Qingshuiyuan Technology Co., Ltd., Jiyuan, China
| | - Xiaoxuan Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
| | - Suping Chen
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
| | - Ying Xu
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China.
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China.
| | - Rong-Bin Song
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China.
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
12
|
Su H, Yan J, Yan X, Zhao Q, Liao C, Li N, Wang X. Highly sensitive standardized toxicity biosensors for rapid water quality warning. BIORESOURCE TECHNOLOGY 2024; 406:130985. [PMID: 38885731 DOI: 10.1016/j.biortech.2024.130985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Microbial electrochemical sensor (MES) using electroactive biofilm (EAB) as the sensing element represents a broad-spectrum technology for early warning of biotoxicity of water samples. However, its commercial application is impeded by limited sensitivity and repeatability. Here, we proposed a layered standardized EAB (SEAB) with enriched Geobacter anodireducens SD-1 in the inner layer and self-matched outer layer. The SEAB sensors showed a 2.3 times higher sensitivity than conventional EAB acclimated directly from wastewater (WEAB). A highly repeatable response sensitivity was concentrated at 0.011 ± 0.0006 A/m2/ppm in 4 replicated batches of SEAB sensors (R2 > 0.95), highlighting their potential for reliable toxicity monitoring in practical applications. In contrast, the sensing performance of all WEAB sensors was unpredictable. SEAB also exhibited a better tolerance towards low concentration of formaldehyde, with only a 4 % loss in viability. Our findings improved the sensitivity and reproducibility of standardized MES for toxicity early warning.
Collapse
Affiliation(s)
- Huijuan Su
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Jiaguo Yan
- Oilfield Chemicals Division, China Oilfield Services Limited (COSL), Tianjin Marine Petroleum Environmental and Reservoir Low-Damage Drilling Fluid Enterprise Key Laboratory, China.
| | - Xuejun Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
13
|
Liu X, Wang D, Qi X, Gu Y, Huang X, Liang P. Propionate outperforms conventional acetate as electron donors for highly-sensitive electrochemical active biofilm sensors in water biotoxicity early-warning. ENVIRONMENTAL RESEARCH 2024; 252:119127. [PMID: 38750998 DOI: 10.1016/j.envres.2024.119127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
With the ability to generate in situ real-time electric signals, electrochemically active biofilm (EAB) sensors have attracted wide attention as a promising water biotoxicity early-warning device. Organic matters serving as the electron donors potentially affect the electric signal's output and the sensitivity of the EAB sensor. To explore the influence of organic matters on EAB sensor's performance, this study tested six different organic matters during the sensor's inoculation. Besides the acetate, a conventional and widely used organic matter, propionate and lactate were also found capable of starting up the sensor. Moreover, the propionate-fed (PF) sensor delivered the highest sensitivity, which are respectively 1.4 times and 2.8 times of acetate-fed (AF) sensor and lactate-fed (LF) sensor. Further analysis revealed that EAB of PF sensor had more vulnerable intracellular metabolism than the others, which manifested as the most severe energy metabolic suppression and reactive oxygen species attack. Regarding the microbial function, a two-component system that was deemed as an environment awareness system was found in the EAB of PF, which also contributed to its high sensitivity. Finally, PF sensor was tested in real water environment to deliver early-warning signals.
Collapse
Affiliation(s)
- Xinning Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Donglin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiang Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Yuyi Gu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
14
|
Wang J, Chen M, Zhang J, Sun X, Li N, Wang X. Dynamic membrane filtration accelerates electroactive biofilms in bioelectrochemical systems. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100375. [PMID: 38283869 PMCID: PMC10821169 DOI: 10.1016/j.ese.2023.100375] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024]
Abstract
Bioelectrochemical systems (BES) have emerged as a dual-function technology for treating wastewater and recovering energy. A vital element of BES is the rapid formation and maintenance of electroactive biofilms (EABs). Previous attempts to accelerate EAB formation and improve electroactivities focused on enhancing the bacterial adhesion process while neglecting the rate-limiting step of the bacterial transport process. Here, we introduce membrane filtration into BES, establishing a dynamic membrane filtration system that enhances overall performance. We observed that optimal membrane flux considerably reduced the startup time for EAB formation. Specifically, EABs established under a 25 L m-2 h-1 flux (EAB25 LMH) had a formation time of 43.8 ± 1.3 h, notably faster than the 51.4 ± 1.6 h in the static state (EAB0 LMH). Additionally, EAB25 LMH exhibited a significant increase in maximum current density, approximately 2.2 times higher than EAB0 LMH. Pearson correlation analysis indicated a positive relationship between current densities and biomass quantities and an inverse correlation with startup time. Microbial analysis revealed two critical findings: (i) variations in maximum current densities across different filtration conditions were associated with redox-active substances and biomass accumulation, and (ii) the incorporation of a filtration process in EAB formation enhanced the proportion of viable cells and encouraged a more diverse range of electroactive bacteria. Moreover, the novel electroactive membrane demonstrated sustained current production and effective solid-liquid separation during prolonged operation, indicating its potential as a viable alternative in membrane-based systems. This approach not only provides a new operational model for BES but also holds promise for expanding its application in future wastewater treatment solutions.
Collapse
Affiliation(s)
- Jinning Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Mei Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Jiayao Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Xinyi Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| |
Collapse
|
15
|
Cai J, Wang Y, Al-Dhabi NA, Wu G, Pu Y, Tang W, Chen X, Jiang Y, Zeng RJ. Refining microbial potentiometric sensor performance with unique cathodic catalytic properties for targeted application scenarios. ENVIRONMENTAL RESEARCH 2024; 247:118285. [PMID: 38266896 DOI: 10.1016/j.envres.2024.118285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Traditional microbial electrochemical sensors encounter challenges due to their inherent complexity. In response to these challenges, the microbial potentiometric sensor (MPS) technology was introduced, featuring a straightforward high-impedance measurement circuit tailored for environmental monitoring. Nonetheless, the practical implementation of conventional MPS is constrained by issues such as the exposure of the reference electrode to the monitored water and the absence of methodologies to stimulate microbial metabolism. In this study, our objective was to enhance MPS performance by imbuing it with unique cathodic catalytic properties, specifically tailored for distinct application scenarios. Notably, the anodic region served as the sensing element, with both the cathodic region and reference electrode physically isolated from the analyzed water sample. In the realm of organic monitoring, the sensor without Pt/C coated in the cathodic region exhibited a faster response time (1 h) and lower detection limits (1 mg L-1 BOD, 1 mM acetic acid). Conversely, when monitoring toxic substances, the sensor with Pt/C showcased a lower detection limit (0.004% formaldehyde), while the Pt/C-free sensor demonstrated superior reusability. The sensor with Pt/C displayed a heightened anode biofilm thickness and coverage, predominantly composed of Rhodococcus. In conclusion, this study introduces simple, cost-effective, and tailorable biosensors holding substantial promise for water quality monitoring.
Collapse
Affiliation(s)
- Jiayi Cai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yue Wang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Gaoying Wu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ying Pu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wangwang Tang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
16
|
Yang FA, Hou YN, Cao C, Huang C, Shen S, Ren N, Wang AJ, Guo J, Wei W, Ni BJ. Electroactive properties of EABs in response to long-term exposure to polystyrene microplastics/nanoplastics and the underlying adaptive mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133438. [PMID: 38198865 DOI: 10.1016/j.jhazmat.2024.133438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Given widespread presence of polystyrene (PS) microplastics/nanoplastics (MPs/NPs), the electroactive responses and adaptation mechanisms of electroactive biofilms (EABs) exposed long-term to PS-containing aquatic environments remain unclear. Therefore, this study investigated the impacts of PS MPs/NPs on electroactivity of EABs. Results found that EABs exhibited delayed formation upon initially exposure but displayed an increased maximum current density (Imax) after subsequent exposure for up to 55 days. Notably, EABs exposure to NH2PS NPs (EAB-NH2PSNPs) demonstrated a 50% higher Imax than the control, along with a 17.84% increase in viability and a 58.10% increase in biomass. The cytochrome c (c-Cyts) content in EAB-NH2PSNPs rose by 178.35%, benefiting the extracellular electron transfer (EET) of EABs. Moreover, bacterial community assembly indicated the relative abundance of electroactive bacteria increased to 87.56% in EAB-NH2PSNPs. The adaptability mechanisms of EABs under prolonged exposure to PS MPs/NPs predominantly operate by adjusting viability, EET, and bacterial community assembly, which were further confirmed a positive correlation with Imax through structural equation model. These findings provide deeper insights into long-term effects and mechanisms of MPs/NPs on the electroactive properties of EABs and even functional microorganisms in aquatic ecosystems.
Collapse
Affiliation(s)
- Feng-Ai Yang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ya-Nan Hou
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Ce Cao
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Cong Huang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Shaoheng Shen
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Nanqi Ren
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Ai-Jie Wang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jianbo Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
17
|
Fathima A, Ilankoon IMSK, Zhang Y, Chong MN. Scaling up of dual-chamber microbial electrochemical systems - An appraisal using systems design approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169186. [PMID: 38086487 DOI: 10.1016/j.scitotenv.2023.169186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
Impetus to minimise the energy and carbon footprints of evolving wastewater resource recovery facilities has promoted the development of microbial electrochemical systems (MES) as an emerging energy-neutral and sustainable platform technology. Using separators in dual-chamber MES to isolate anodic and cathodic environments creates endless opportunities for its myriad applications. Nevertheless, the high internal resistance and the complex interdependencies among various system factors have challenged its scale-up. This critical review employed a systems approach to examine the complex interdependencies and practical issues surrounding the implementation and scalability of dual-chamber MES, where the anodic and cathodic reactions are mutually appraised to improve the overall system efficiency. The robustness and stability of anodic biofilms in large-volume MES is dependent on its inoculum source, antecedent history and enrichment strategies. The composition and anode-respiring activity of these biofilms are modulated by the anolyte composition, while their performance demands a delicate balance between the electrode size, macrostructure and the availability of substrates, buffers and nutrients when using real wastewater as anolyte. Additionally, the catholyte governed the reduction environment and associated energy consumption of MES with scalable electrocatalysts needed to enhance the sluggish reaction kinetics for energy-efficient resource recovery. A comprehensive assessment of the dual-chamber reactor configuration revealed that the tubular, spiral-wound, or plug-in modular MES configurations are suitable for pilot-scale, where it could be designed more effectively using efficient electrode macrostructure, suitable membranes and bespoke strategies for continuous operation to maximise their performance. It is anticipated that the critical and analytical understanding gained through this review will support the continuous development and scaling-up of dual-chamber MES for prospective energy-neutral treatment of wastewater and simultaneous circular management of highly relevant environmental resources.
Collapse
Affiliation(s)
- Arshia Fathima
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - I M S K Ilankoon
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Meng Nan Chong
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
18
|
Guo M, Guo M, Wang Y, Li M, Qi X, Wei S, Jia X. The influencing mechanism of AD-MEC domesticated sludge to alleviates propionate accumulation and enhances methanogenesis. BIORESOURCE TECHNOLOGY 2024; 393:129996. [PMID: 37951554 DOI: 10.1016/j.biortech.2023.129996] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Anaerobic digestion combined with microbial electrolysis cell (AD-MEC) could maintain stable reactor operation and alleviating the anaerobic digestion (AD) propionate accumulation. In this study, the addition of sludge to AD-MEC was examined as a way to enhance system performance and explore the microbial interaction mechanism after electric field domestication. The results showed that under 1000 and 4000 mg/L propionate, the methane production of the sludge from AD-MEC increased by 34.29 % and 9.70 %, respectively, as compared to the AD sludge. Gompertz fitting analysis showed that sludge after electric field domestication enhancing its continuous methanogenic capacity. Further analysis showed that sludge extracellular electron transfer capacity was enhanced in AD-MEC and that its domesticated granular sludge formed a microbial community function with acid-degrading synergistic methanogenesis. The results of the study may provide theoretical support and optimization strategies for the application of AD-MEC system.
Collapse
Affiliation(s)
- Meixin Guo
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Meng Guo
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yong Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Mingxiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuejiao Qi
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Sijia Wei
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Xuan Jia
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
19
|
Zhao H, Zang Y, Xie B, Zhao T, Cao B, Wu J, Ge Y, Yi Y, Liu H. Instant water toxicity detection based on magnetically-constructed electrochemically active biofilm. Biosens Bioelectron 2023; 242:115745. [PMID: 37832348 DOI: 10.1016/j.bios.2023.115745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Water toxicity determination with electrochemically active bacteria (EAB) is promising in the early warning of water pollution. However, limited by tedious biofilm formation, natural EAB biofilms are uncapable of the instant detection of water toxicity, resulting in the failure for the emergency monitoring of water pollution. To solve this problem, a novel method for the rapid construction of EAB biofilms using magnetic adsorption was established, and the performance of instant water toxicity detection with magnetically-constructed EAB biofilm was investigated. The results demonstrate that EAB biofilms were magnetically constructed in less than 30 min, and magnetically-constructed EAB biofilm generated stable currents even under continuous flow conditions. Magnetically-constructed EAB biofilms realized instant water toxicity detection, and the sensitivity increased with the decrease of magnetic field intensity. Low magnetic field intensity resulted in a loose biofilm structure, which is conducive to toxic pollutant penetration. The detection limit for Cu2+, phenol, and Cd2+ achieved 0.07 mg/L with optimal magnetic field intensity, and the detection time was less than 30 min. This study broadens the application of water toxicity determination with EAB, and establishes a foundation for the instant and continuous detection of water toxicity with EAB.
Collapse
Affiliation(s)
- Hongyu Zhao
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China; International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing, 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Yuxuan Zang
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China; International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing, 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Beizhen Xie
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China; International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing, 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Ting Zhao
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China; International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing, 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Bo Cao
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China; International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing, 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Jing Wu
- Medical and Health Analysis Center, Peking University, Beijing, 100191, China
| | - Yanhong Ge
- Infore Environment Technology Group, Foshan, 528000, Guangdong Province, China
| | - Yue Yi
- School of Life, Beijing Institute of Technology, 100081, China.
| | - Hong Liu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China; International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing, 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China.
| |
Collapse
|
20
|
Wu Y, Niu J, Yuan X, Liu Y, Zhai S, Zhao Y. Polydopamine and calcium functionalized fiber carrier for enhancing microbial attachment and Cr(VI) resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166626. [PMID: 37643709 DOI: 10.1016/j.scitotenv.2023.166626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
The formation of biofilm determines the performance and stability of biofilm system. Increasing the hydrophilicity of the carrier surface could efficiently accelerate the attachment and growth of microorganisms. Here, the surface of polypropylene (PP) fiber carrier was modified with polydopamine (PDA) and calcium (Ca(II)) to enhance microbial attachment and toxicity resistance. The results of surface characteristic confirmed the self-polymerization of PDA and the chelation mechanism of Ca(II). Subsequently, the biofilm formation experiments were conducted in sequencing batch biofilm reactors using both normal and chromium-containing wastewater. The biofilm on the surface of the modified carrier exhibited better nitrogen removal and Cr(VI) reduction ability. The biomass of the modified carrier was significantly increased, and the maximum microbial attachment amounts in normal wastewater and chrome-containing wastewater were 1153.34 and 511.78 mg/g carrier, respectively. Furthermore, the confocal laser scanning microscope (CLSM) indicated that the modified carrier coated with PDA and Ca(II) were both biocompatible, and the cell activity was significantly increased. 16S rRNA sequencing results showed that the modified carrier efficiently enriched both denitrification bacteria (Thauera and Flavobacterium) and chrome-reducing bacteria (Simplicispira and Arenimonas) to improve system stability and Cr(VI) resistance. Microbial phenotype prediction based on BugBase analysis further verified the enrichment effect of modified carriers on microorganisms responsible for biofilm formation and oxidative stress resistance. Overall, this work proposed a novel functional carrier that could provide references for advancing the application of biofilm systems in wastewater treatment.
Collapse
Affiliation(s)
- Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xin Yuan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Siyuan Zhai
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
21
|
Ma H, Dong X, Yan Y, Shi K, Wang H, Lu H, Xue J, Qiao Y, Cheng D, Jiang Q. Acclimation of electroactive biofilms under different operating conditions: comprehensive analysis from architecture, composition, and metabolic activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108176-108187. [PMID: 37749470 DOI: 10.1007/s11356-023-29929-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
Electroactive biofilms (EABs) have aroused wide concern in waste treatment due to their unique capability of extracellular electron transfer with solid materials. The combined effect of different operating conditions on the formation, microbial architecture, composition, and metabolic activity of EABs is still unknown. In this study, the impact of three different factors (anode electrode, substrate concentration, and resistance) on the acclimation and performance of EABs was investigated. The results showed that the shortest start-up time of 127.3 h and highest power density of 0.84 W m-2 were obtained with carbon brush as electrode, low concentration of substrate (1.0 g L-1), and 1000 Ω external resistance (denoted as N1). The EABs under N1 condition also represented strongest redox capacity, lowest internal resistance, and close arrangement of bacteria. Moreover, the EABs cultured under different conditions both showed similar results, with direct electron transfer (DET) dominated from EABs to anode. Microbial community compositions indicated that EABs under N1 condition have lowest diversity and highest abundance of electroactive bacteria (46.68%). Higher substrate concentration (3.0 g L-1) promoted the proliferation of some other bacteria without electroactivity, which was adverse to EABs. The metabolic analysis showed the difference of genes related to electron transfer (cytochrome C and pili) and biofilm formation (xap) of EABs under different conditions, which further demonstrated the higher electroactivity of EABs under N1. These results provided a comprehensive understanding of the effect of different operating conditions on EABs including biofilm formation and electrochemical activity.
Collapse
Affiliation(s)
- Han Ma
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
| | - Xing Dong
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
| | - Yi Yan
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
| | - Ke Shi
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
| | - Hao Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
| | - Haoyun Lu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
| | - Jianliang Xue
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, China
- Shandong Provincial Key Laboratory of Eco-environmental Science for Yellow River Delta, Binzhou University, Binzhou, 256600, Shandong, China
| | - Yanlu Qiao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, China
- Shandong Provincial Key Laboratory of Eco-environmental Science for Yellow River Delta, Binzhou University, Binzhou, 256600, Shandong, China
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, China
- Shandong Provincial Key Laboratory of Eco-environmental Science for Yellow River Delta, Binzhou University, Binzhou, 256600, Shandong, China
| | - Qing Jiang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China.
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, China.
- Shandong Provincial Key Laboratory of Eco-environmental Science for Yellow River Delta, Binzhou University, Binzhou, 256600, Shandong, China.
| |
Collapse
|
22
|
Zhu Q, Qian D, Yuan M, Li Z, Xu Z, Liang S, Yu W, Yuan S, Yang J, Hou H, Hu J. Revealing the roles of chemical communication in restoring the formation and electroactivity of electrogenic biofilm under electrical signaling disruption. WATER RESEARCH 2023; 243:120421. [PMID: 37523919 DOI: 10.1016/j.watres.2023.120421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
Electrogenic biofilms in microbial electrochemical systems have played significant roles in simultaneous wastewater treatment and energy recovery owing to their unique extracellular electron transfer. Their formation has been shown to be regulated by electrical and chemical communication, but the interaction between these signal communication pathways has not been studied. This research investigated the coordination between intracellular c-di-GMP signaling and reinforced quorum sensing with or without exogenous HSL (a common quorum sensing molecule), on the formation of mixed-cultured electrogenic biofilm under electrical signaling disruption by tetraethylammonium (TEA, a broad-range potassium channel blocker). Intracellular c-di-GMP was spontaneously reinforced in response to TEA stress, and metagenomic analysis revealed that the dominant DGC (the genes for producing c-di-GMP) induced the eventual biofilm formation by mediating exopolysaccharide synthesis. Meanwhile, reinforced quorum sensing by exogenous HSL could also benefit the biofilm restoration, however, it alleviated the TEA-induced communication stress, resulting in the weakening of c-di-GMP dominance. Interestingly, suppressing electrical communication with or without HSL addition both induced selective enrichment of Geobacter of 85.5% or 30.1% respectively. Functional contribution analysis revealed the significant roles of Geobacter and Thauera in c-di-GMP signaling, especially Thauera in resistance to TEA stress. This study proposed a potential strategy for electrogenic biofilm regulation from the perspectives of cell-to-cell communication.
Collapse
Affiliation(s)
- Qian Zhu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, China
| | - Dingkang Qian
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Mengjiao Yuan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Zhen Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Ziming Xu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Wenbo Yu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Shushan Yuan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China.
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
23
|
Philippon T, Ait-Itto FZ, Monfort A, Barrière F, Behan JA. Fe(III) oxide microparticles modulate extracellular electron transfer in anodic biofilms dominated by bacteria of the Pelobacter genus. Bioelectrochemistry 2023; 151:108394. [PMID: 36739700 DOI: 10.1016/j.bioelechem.2023.108394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
Exo-electrogenic microorganisms have been extensively studied for their ability to transfer electrons with solid surfaces using a large variety of metabolic pathways. Most of the studies on these microorganisms consist in the replacement of solid electron acceptors such as Fe(III) oxides found in nature by electrodes with the objective of generating harvestable current in devices such as microbial fuel cells. In this study we show how the presence of solid ferric oxide (Fe2O3) particles in the inoculum during bio-anode development influences extracellular electron transfer to the electrode. Amplification and sequencing of the 16S rRNA (V4-V5 region) show bacteria and archaea communities with a large predominance of the Pelobacter genus, which is known to be phylogenetically close to the Geobacter genus, regardless of the presence or absence of ferric oxide in the inoculum. Data indicate that the bacteria at the bio-anode surface can preferentially utilize solid ferric oxide as terminal electron acceptors instead of the anode, though extracellular electron transfer to the anode can be restored by removing the particles. Mixed inoculum commonly used to develop bioanodes may produce similar bacterial communities with divergent electrochemical responses due to the presence of alternate electron acceptors, with direct implications for microbial fuel cell performance.
Collapse
Affiliation(s)
- Timothé Philippon
- Université de Rennes, CNRS, Institut des Sciences Chimiques de Rennes, UMR 6226, Rennes, France
| | - Fatima-Zahra Ait-Itto
- Université de Rennes, CNRS, Institut des Sciences Chimiques de Rennes, UMR 6226, Rennes, France
| | - Alicia Monfort
- Université de Rennes, CNRS, Institut des Sciences Chimiques de Rennes, UMR 6226, Rennes, France
| | - Frédéric Barrière
- Université de Rennes, CNRS, Institut des Sciences Chimiques de Rennes, UMR 6226, Rennes, France.
| | - James A Behan
- Université de Rennes, CNRS, Institut des Sciences Chimiques de Rennes, UMR 6226, Rennes, France.
| |
Collapse
|
24
|
Radouani F, Sanchez-Cid C, Silbande A, Laure A, Ruiz-Valencia A, Robert F, Vogel TM, Salvin P. Evolution and interaction of microbial communities in mangrove microbial fuel cells and first description of Shewanella fodinae as electroactive bacterium. Bioelectrochemistry 2023; 153:108460. [PMID: 37224603 DOI: 10.1016/j.bioelechem.2023.108460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
Understanding exoelectrogenic bacteria mechanisms and their interactions in complex biofilm is critical for the development of microbial fuel cells (MFCs). In this article, assumptions concerning the benefits of the complex sediment microbial community for electricity production were explored with both the complex microbial community and isolates identified as Shewanella. Analysis of the microbial community revealed a strong influence of the sediment community on anodes and electrolytes compared to that of only water. Moreover, while Pelobacteraceae-related genera were dominant in our MFCs instead of Desulfuromonas and Geobacter as usually reported, the electroactive Shewanella algae and Shewanella fodinae were isolated and cultivated from the anodic biofilm. S. fodinae, described for the first time as an electroactive bacterium to the best of our knowledge, led to a maximal current density of 3.6 A/m2 set as 0.3 V/SCE in a three-electrode set-up fed with lactate. S. algae, in a complex medium containing several available substrates, showed several preferential oxidative behaviors including a diauxic behavior. In pure culture and under our conditions, S. fodinae and S. algae were not able to use acetate as a sole electron donor. However, their presence in our acetate-fed MFCs and the adaptive behavior of S. algae hint a syntrophic interaction between the bacteria to optimize the use of the substrate in a complex environment.
Collapse
Affiliation(s)
- Fatima Radouani
- Laboratoire des Matériaux et Molécules en Milieu Agressif, UR4_1, UFR STE, Université des Antilles, Schoelcher, France
| | - Concepcion Sanchez-Cid
- Environmental Microbial Genomics, CNRS UMR 5005 Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Écully, France
| | - Adèle Silbande
- Laboratoire des Matériaux et Molécules en Milieu Agressif, UR4_1, UFR STE, Université des Antilles, Schoelcher, France
| | - Adeline Laure
- Laboratoire des Matériaux et Molécules en Milieu Agressif, UR4_1, UFR STE, Université des Antilles, Schoelcher, France
| | - Azariel Ruiz-Valencia
- Environmental Microbial Genomics, CNRS UMR 5005 Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Écully, France
| | - Florent Robert
- Laboratoire des Matériaux et Molécules en Milieu Agressif, UR4_1, UFR STE, Université des Antilles, Schoelcher, France
| | - Timothy M Vogel
- Université de Lyon, Université Claude Bernard Lyon 1, UMR 5557, UMR INRAe 1418, VetAgro Sup, Écologie Microbienne, équipe BEER, F-69622 Villeurbanne, France
| | - Paule Salvin
- Laboratoire des Matériaux et Molécules en Milieu Agressif, UR4_1, UFR STE, Université des Antilles, Schoelcher, France.
| |
Collapse
|
25
|
Zhang B, Shi S, Tang R, Qiao C, Yang M, You Z, Shao S, Wu D, Yu H, Zhang J, Cao Y, Li F, Song H. Recent advances in enrichment, isolation, and bio-electrochemical activity evaluation of exoelectrogenic microorganisms. Biotechnol Adv 2023; 66:108175. [PMID: 37187358 DOI: 10.1016/j.biotechadv.2023.108175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
Exoelectrogenic microorganisms (EEMs) catalyzed the conversion of chemical energy to electrical energy via extracellular electron transfer (EET) mechanisms, which underlay diverse bio-electrochemical systems (BES) applications in clean energy development, environment and health monitoring, wearable/implantable devices powering, and sustainable chemicals production, thereby attracting increasing attentions from academic and industrial communities in the recent decades. However, knowledge of EEMs is still in its infancy as only ~100 EEMs of bacteria, archaea, and eukaryotes have been identified, motivating the screening and capture of new EEMs. This review presents a systematic summarization on EEM screening technologies in terms of enrichment, isolation, and bio-electrochemical activity evaluation. We first generalize the distribution characteristics of known EEMs, which provide a basis for EEM screening. Then, we summarize EET mechanisms and the principles underlying various technological approaches to the enrichment, isolation, and bio-electrochemical activity of EEMs, in which a comprehensive analysis of the applicability, accuracy, and efficiency of each technology is reviewed. Finally, we provide a future perspective on EEM screening and bio-electrochemical activity evaluation by focusing on (i) novel EET mechanisms for developing the next-generation EEM screening technologies, and (ii) integration of meta-omics approaches and bioinformatics analyses to explore nonculturable EEMs. This review promotes the development of advanced technologies to capture new EEMs.
Collapse
Affiliation(s)
- Baocai Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Sicheng Shi
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Rui Tang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chunxiao Qiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Meiyi Yang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zixuan You
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shulin Shao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Deguang Wu
- Department of Brewing Engineering, Moutai Institute, Luban Ave, Renhuai 564507, Guizhou, PR China
| | - Huan Yu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Junqi Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Feng Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
26
|
Martinez Ostormujof L, Teychené S, Achouak W, Fochesato S, Bakarat M, Rodriguez‐Ruiz I, Bergel A, Erable B. Systemic Analysis of the Spatiotemporal Changes in Multi‐Species Electroactive Biofilms to Clarify the Gradual Decline of Current Generation in Microbial Anodes. ChemElectroChem 2023. [DOI: 10.1002/celc.202201135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
27
|
Yang Y, Wang J, Chen M, Li N, Yan J, Wang X. Self-forming electroactive dynamic membrane for enhancing the decolorization of methyl orange by weak electrical stimulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160897. [PMID: 36521609 DOI: 10.1016/j.scitotenv.2022.160897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
An electroactive dynamic membrane (EADM), which enabled simultaneous solid-liquid separation and contaminants removal, has been developed by electrostimulation using domestic wastewater as inoculum. Results showed that both the control dynamic membrane (CDM), without electrical stimulation, and the EADM systems exhibited stable removal performance with chemical oxygen demand (COD), and a robustness in responding to a fluctuating organic load. With the introduction of a weak electrical field, the EADM transmembrane pressure (TMP) was significantly reduced (0.02 kPa/d) compared with the control (0.20 kPa/d). In the treatment of methyl orange (MO), the EADM system achieved a decolorization efficiency of 85.87 %, much higher than the control dynamic membrane (CDM) system (58.84 %), which can be attributed to electrical stimulation and H2 production on cathode. Microbial analysis has established that electrostimulation enriched the electroactive bacteria in the dynamic biofilm, and shaped the microbial structure, with improved contaminant removal. The results of this study highlight the potential of regulating the microbial community and creating a beneficial biofilm as a dynamic layer to facilitate contaminant removal.
Collapse
Affiliation(s)
- Yang Yang
- College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Jinning Wang
- College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Mei Chen
- College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Jiaguo Yan
- Division of Oilfield Chemicals, China Oilfield Services Limited, No. 1581, Haichuan Road, Binhai New District, Tianjin, China
| | - Xin Wang
- College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| |
Collapse
|
28
|
Amanze C, Anaman R, Wu X, Alhassan SI, Yang K, Fosua BA, Yunhui T, Yu R, Wu X, Shen L, Dolgor E, Zeng W. Heterotrophic anodic denitrification coupled with cathodic metals recovery from on-site smelting wastewater with a bioelectrochemical system inoculated with mixed Castellaniella species. WATER RESEARCH 2023; 231:119655. [PMID: 36706471 DOI: 10.1016/j.watres.2023.119655] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Although Castellaniella species are crucial for denitrification, there is no report on their capacity to carry out denitrification and anode respiration simultaneously in a bioelectrochemical system (BES). Herein, the ability of a mixed inoculum of electricigenic Castellaniella species to perform simultaneous denitrification and anode respiration coupled with cathodic metals recovery was investigated in a BES. Results showed that 500 mg/L NO3--N significantly decreased power generation, whereas 100 and 250 mg/L NO3--N had a lesser impact. The single-chamber MFCs (SCMFCs) fed with 100 and 250 mg/L NO3--N concentrations achieved a removal efficiency higher than 90% in all cycles. In contrast, the removal efficiency in the SCMFCs declined dramatically at 500 mg/L NO3--N, which might be attributable to decreased microbial viability as revealed by SEM and CLSM. EPS protein content and enzymatic activities of the biofilms decreased significantly at this concentration. Cyclic voltammetry results revealed that the 500 mg/L NO3--N concentration decreased the redox activities of anodic biofilms, while electrochemical impedance spectroscopy showed that the internal resistance of the SCMFCs at this concentration increased significantly. In addition, BES inoculated with the Castellaniella species was able to simultaneously perform heterotrophic anodic denitrification and cathodic metals recovery from real wastewater. The BES attained Cu2+, Hg2+, Pb2+, and Zn2+ removal efficiencies of 99.86 ± 0.10%, 99.98 ± 0.014%, 99.98 ± 0.01%, and 99.17 ± 0.30%, respectively, from the real wastewater. Cu2+ was bio-electrochemically reduced to Cu0 and Cu2O, whereas Hg0 and HgO constituted the Hg species recovered via bioelectrochemical reduction and chemical deposition, respectively. Furthermore, Pb2+ and Zn2+ were bio-electrochemically reduced to Pb0 and Zn0, respectively. Over 89% of NO3--N was removed from the BES anolyte during the recovery of the metals. This research reveals promising denitrifying exoelectrogens for enhanced power generation, NO3--N removal, and heavy metals recovery in BES.
Collapse
Affiliation(s)
- Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Richmond Anaman
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xiaoyan Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Sikpaam Issaka Alhassan
- College of Engineering, Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, United States
| | - Kai Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Bridget Ataa Fosua
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Tang Yunhui
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Runlan Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Erdenechimeg Dolgor
- Department of Chemical and Biological Engineering, School of Engineering and Applied Sciences, National University of Mongolia, 14200, Mongolia
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China.
| |
Collapse
|
29
|
Gu Y, Qi X, Yang X, Jiang Y, Liu P, Quan X, Liang P. Extracellular electron transfer and the conductivity in microbial aggregates during biochemical wastewater treatment: A bottom-up analysis of existing knowledge. WATER RESEARCH 2023; 231:119630. [PMID: 36689883 DOI: 10.1016/j.watres.2023.119630] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/14/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Microbial extracellular electron transfer (EET) plays a crucial role in bioenergy production and resource recovery from wastewater. Interdisciplinary efforts have been made to unveil EET processes at various spatial scales, from nanowires to microbial aggregates. Electrical conductivity has been frequently measured as an indicator of EET efficiency. In this review, the conductivity of nanowires, biofilms, and granular sludge was summarized, and factors including subjects, measurement methods, and conducting conditions that affect the conductivity difference were discussed in detail. The high conductivity of nanowires does not necessarily result in efficient EET in microbial aggregates due to the existence of non-conductive substances and contact resistance. Improving the conductivity measurement of microbial aggregates is important because it enables the calculation of an EET flux from conductivity and a comparison of the flux with mass transfer coefficients. This review provides new insight into the significance, characterization, and optimization of EET in microbial aggregates during a wastewater treatment process.
Collapse
Affiliation(s)
- Yuyi Gu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiang Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xufei Yang
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007 USA
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Panpan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xiangchun Quan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
30
|
Dzofou Ngoumelah D, Kuchenbuch A, Harnisch F, Kretzschmar J. Combining Geobacter spp. Dominated Biofilms and Anaerobic Digestion Effluents─The Effect of Effluent Composition and Electrode Potential on Biofilm Activity and Stability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2584-2594. [PMID: 36731122 DOI: 10.1021/acs.est.2c07574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The combination of anaerobic digestion (AD) and microbial electrochemical technologies (METs) offers different opportunities to increase the efficiency and sustainability of AD processes. However, methanogenic archaea and/or particles may partially hinder combining MET and AD processes. Furthermore, it is unclear if the applied anode potential affects the activity and efficiency of electroactive microorganisms in AD-MET combinations as it is described for more controlled experimental conditions. In this study, we confirm that 6-week-old Geobacter spp. dominated biofilms are by far more active and stable in AD-effluents than 3-week-old Geobacter spp. dominated biofilms. Furthermore, we show that the biofilms are twice as active at -0.2 V compared to 0.4 V, even under challenging conditions occurring in AD-MET systems. Paired-end amplicon sequencing at the DNA level using 16S-rRNA and mcrA gene shows that hydrogenotrophic methanogens incorporate into biofilms immersed in AD-effluent without any negative effect on biofilm stability and electrochemical activity.
Collapse
Affiliation(s)
- Daniel Dzofou Ngoumelah
- Department of Biochemical Conversion, DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH (German Biomass Research Centre), Leipzig04347, Saxony, Germany
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig04318, Saxony, Germany
| | - Anne Kuchenbuch
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig04318, Saxony, Germany
| | - Falk Harnisch
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig04318, Saxony, Germany
| | - Jörg Kretzschmar
- Department of Biochemical Conversion, DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH (German Biomass Research Centre), Leipzig04347, Saxony, Germany
| |
Collapse
|
31
|
Gao Y, Xia L, Yao P, Lee HS. Periodic step polarization accelerates electron recovery by electroactive biofilms (EABs). Biotechnol Bioeng 2023; 120:1545-1556. [PMID: 36782377 DOI: 10.1002/bit.28352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Relatively low rate of electron recovery is one of the factors that limit the advancement of bioelectrochemical systems. Here, new periodic polarizations were investigated with electroactive biofilms (EABs) enriched from activated sludge and Geobacter sulfurreducens biofilms. When representative anode potentials (Ea ) were applied, redox centers with midpoint potentials (Emid ) higher than Ea were identified by localized cyclic voltammetry. The electrons held by these redox centers were accessible when Ea was raised to 0.4 V (vs. Ag/AgCl). New periodic polarizations that discharge at 0.4 V recovered electrons faster than normal periodic and fixed-potential polarizations. The best-performing periodic step polarization accelerated electron recovery by 23%-24% and 12%-76% with EABs and G. sulfurreducens biofilms, respectively, compared to the fixed-potential polarization. Quantitative reverse transcription polymerase chain reaction showed an increased abundance of omcZ mRNA transcripts from G. sulfurreducens after periodic step polarization. Therefore, both the rate of energy recovery by EABs and the performance of bioelectrochemical systems can be enhanced by improving the polarization schemes.
Collapse
Affiliation(s)
- Yaohuan Gao
- Institute of Global Environmental Change, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Longfei Xia
- Institute of Global Environmental Change, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Provincial Land Engineering Construction Group, Xi'an, Shaanxi, People's Republic of China
| | - Peiru Yao
- Institute of Global Environmental Change, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Hyung-Sool Lee
- Institute for Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju-si, Republic of Korea
| |
Collapse
|
32
|
Tian L, Liao C, Yan X, Zhao Q, Wang Z, Li T, Li N, Wang X. Endogenous electric field accelerates phenol degradation in bioelectrochemical systems with reduced electrode spacing. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130043. [PMID: 36182882 DOI: 10.1016/j.jhazmat.2022.130043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Reducing the electrode spacing in bioelectrochemical systems (BESs) are widely reported to improve power output, which was mainly attributed to the decrease of ohmic resistance (Rohm) for a long time. Here we found the change of endogenous electric field (EF) intensity was the key to improve electroactivity in response to a reduced electrode spacing, which also accelerated phenol biodegradation. Correlation and principal components analysis revealed that the microbial community of electroactive biofilm (EAB) was independent of Rohm, while the EF intensity was found closely related to most of predominant genera. A strong EF selectively enriched phenol-degrading bacteria Comamonas in suspension and Geobacter in EAB, contributed to the improvement of degradation efficiency. EF also induced the secretion of extracellular polymeric substances, protected EAB from being inactivated by phenol. Our findings highlighted the importance of EF intensity on BESs performance, providing new insights into the design and application of BESs in wastewater treatment.
Collapse
Affiliation(s)
- Lili Tian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xuejun Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Ziyuan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
33
|
Cai J, Yu N, Guan F, Cai X, Hou R, Yuan Y. Response of electroactive biofilms from real wastewater to metal ion shock in bioelectrochemical systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157158. [PMID: 35798101 DOI: 10.1016/j.scitotenv.2022.157158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The electrochemical activity of bioelectrochemical systems (BESs) was proven to be dependent on the stability of electroactive biofilms (EABs), but the response of EABs based on real wastewater to external disturbances is not fully known. Herein, we used real wastewater (beer brewery wastewater) as a substrate for culturing EABs and found that current generation, biomass, redox activity and extracellular polymeric substances (EPS) content in those EABs were lower as compared to EABs cultured with synthetic wastewaters (acetate and glucose). However, the EABs from the beer brewery wastewater showed moderate anti-shock resistance capability. The proteins and humic acid in loosely bound EPS (LB-EPS) exhibited a positive linear relationship with current recovery after Ag+ shock, indicating the importance of LB-EPS for protecting the EABs. Fluorescence and Fourier transform infrared spectroscopy integrated with two-dimensional correlation spectroscopy verified that the spectra of the protein-like region of LB-EPS changed considerably under the interference of Ag+ concentration and the CO group of humic acid or proteins was mainly responsible for binding with Ag+ to attenuate its toxicity to the EABs. This is the first study revealing the underlying molecular mechanism of EABs cultured with real wastewater against external heavy metal shock and provides useful insights into enhancing the application of BESs in future water treatment.
Collapse
Affiliation(s)
- Jiexuan Cai
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Na Yu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Fengyi Guan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xixi Cai
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Rui Hou
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yong Yuan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
34
|
Hu Y, Han X, Shi L, Cao B. Electrochemically active biofilm-enabled biosensors: Current status and opportunities for biofilm engineering. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Zhu Q, Hou H, Wu Y, Hu J, Liu B, Liang S, Xiao K, Yu W, Yuan S, Yang J, Su X. Deciphering the role of extracellular polymeric substances in the regulation of microbial extracellular electron transfer under low concentrations of tetracycline exposure: Insights from transcriptomic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156176. [PMID: 35613646 DOI: 10.1016/j.scitotenv.2022.156176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Low concentrations of antibiotics can regulate the formation of electroactive biofilms, however, the underlying mechanisms, especially the composition and spatial distribution of extracellular polymeric substances (EPS) and their effects on extracellular electron transfer (EET) process, have not been fully deciphered. Here, the response of EPS of Geobacter sulfurreducens biofilm to low concentrations of tetracycline (μg L-1 to mg L-1) was explored, and the impact of such EPS variations on EET efficiency was further elucidated by transcriptomic analysis. Results showed that 0.05 mg L-1 of tetracycline achieved both beneficial quantitative and spatial regulation of redox-active proteins and non-conducting exopolysaccharides in EPS, while higher concentrations induced negative effects. Moreover, 1 mg L-1 of tetracycline upregulated multiple exopolysaccharide biosynthesis-related genes, indicating a stress response for cell-protection, while 0.05 mg L-1 of tetracycline upregulated most direct EET-related gene expressions, resulting in the promoted EET efficiency. Furthermore, 0.05 mg L-1 of tetracycline selectively enriched Geobacter (45.55% vs 19.55% in control, respectively) from mixed inoculum. This research provides a new insight of how antibiotics at low concentrations regulated EET process through modulation of EPS.
Collapse
Affiliation(s)
- Qian Zhu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China.
| | - Yaqian Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Bingchuan Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Keke Xiao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Wenbo Yu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Shushan Yuan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xintai Su
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China
| |
Collapse
|
36
|
Lan J, Ren Y, Luo H, Wang X, Liu G, Zhang R. High current density with spatial distribution of Geobacter in anodic biofilm of the microbial electrolysis desalination and chemical-production cell with enlarged volumetric anode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154798. [PMID: 35367555 DOI: 10.1016/j.scitotenv.2022.154798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
The aim of this study was to establish the relationship between spatial distribution of Geobacter and electric intensity in the microbial electrolysis desalination and chemical-production cell (MEDCC) and to investigate the effect of enlarged volumetric anode on the performance of MEDCC. The MEDCC was constructed with nine carbon brush anodes (length × diameter = 11 cm × 3 cm) as enlarged volumetric anode, and operated by feeding with 1 g/L acetate as substrate and 35 g/L NaCl as artificial seawater under the applied voltages of 1.2-4.5 V. Spatial distribution of Geobacter in the anodic biofilm was determined according to the bacterial community analysis on 27 biofilm samples from the top, middle and bottom layers of anodes (i.e., with distance of 4.5, 10, and 15.5 cm to the cathode, respectively). Results showed that the enlarged volumetric anode significantly improved the performance of MEDCC. The maximum desalination rate and current density reached 338.5 ± 21.8 mg/L∙h and 55.7 ± 3.7 A/m2 in the MEDCC, respectively. The electric intensity values decreased with the distance from the anode to the cathode and formed an uneven distribution in the anode chamber. The samples in the top layer of anodes had the highest average 16S rRNA gene copy number of Geobacter of 1.55 × 107 copies/μL, which was 18 times higher than that in the bottom layer of anodes. A linear relation was established between the spatial distribution of Geobacter and electric intensity (R2 = 0.994-0.999). The electric intensity gradient created the uneven spatial distribution of Geobacter in the biofilms of volumetric anode. Results from this study could be useful to enrich Geobacter in the anodic biofilm thus to improve the performance of MEDCC.
Collapse
Affiliation(s)
- Jun Lan
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yongxiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiping Luo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Renduo Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
37
|
Li C, Feng Y, Liang D, Zhang L, Tian Y, Yadav RS, He W. Spatial-type skeleton induced Geobacter enrichment and tailored bio-capacitance of electroactive bioanode for efficient electron transfer in microbial fuel cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153123. [PMID: 35051486 DOI: 10.1016/j.scitotenv.2022.153123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Microbial fuel cell (MFC) is a promising alternative to energy-intensive conventional wastewater technology. However, poor electron transfer efficiency, low coulombic recovery (CR), and high capital cost highly restricted its practical application. In this work, spatial electroactive biofilm is successfully developed on the carbonaceous skeleton derived from phenolic foam, which highly improved the bio-capacitance and Geobacter abundance of bioanode. Compared with carbon cloth (CC) anode, the optimal spatial electroactive biofilm (3DP_900) enriched the Geobacter abundance up to 56.8% from 17.2%, and obtained an extraordinary electroactive biomass loading of about 339 ± 63 μg cm-2 and a remarkable bio-capacitance of about 3.4 F. In general, spatial biofilm highly reduces the barriers to electron transfer (Rct) and mass transfer (Rd) in anodic substrate oxidation reaction and obtains the lowest Rct of 2.0 ± 0.2 Ω and Rd of 35 ± 3.3 Ω in 3DP_900, which also supports the highest power density at 0.347 ± 0.027 W m-2 and the highest CR at 69.2%. More importantly, due to its mature preparation technology, carbonized phenolic foam (2 cm thick pieces) reduces the capital cost of electrode preparation by three orders of magnitude from 1157.3 USD m-2 of CC to 5.2 USD m-2. Overall, this work offers an effective and scalable electrode to achieve high substrate utilization rate and energy recovery efficiency, and considers the economic cost of electrode fabrication for the further construction of pilot-scale MFCs equipment.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Dandan Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Lijuan Zhang
- School of Environmental and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yan Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Ravi Shankar Yadav
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Weihua He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
38
|
Zhao M, Bai X, Zhang Y, Yuan Y, Sun J. Enhanced photodegradation of antibiotics based on anoxygenic photosynthetic bacteria and bacterial metabolites: A sustainably green strategy for the removal of high-risk organics from secondary effluent. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128350. [PMID: 35149498 DOI: 10.1016/j.jhazmat.2022.128350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/13/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic residues in effluents discharged from wastewater treatment plants (WWTPs) have been considered high-risk organics due to biorefractory property and potential toxicity. Secondary pollution and unsustainability existed in advanced treatment of secondary effluent are currently in urgent need of improvement. In this study, a sustainably green strategy based on Rhodopseudomonas palustris (R.palustris) by regulating the structure of extracellular polymeric substances (EPS) was proposed for the first time to achieve efficiently removal of sulfadiazine (SDZ). Results showed that 0.2 V was the optimal external potential for R.palustris to efficiently remove SDZ, where the biodegradation rate constant obtained at this potential was 4.87-folds higher than that in open-circuit mode and a complete removal was achieved within 58 h in the presence of EPS extracted at this potential. Three-dimensional excitation-emission matrix (3D-EEM) spectra analysis suggested that tryptophan protein-like, tyrosine protein-like, humic acid-like and fulvic acid-like substances present in EPS were the main effective components which was responsible for the indirect photodegradation of SDZ. The quenching experiments showed that 3EPS* was the dominant reactive species which accounted for 90% of SDZ removal. This study provides new implications for the advanced treatment of secondary effluent organic matters by developing eco-friendly bioaugmentation technology and biomaterials.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyan Bai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaping Zhang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yong Yuan
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jian Sun
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
39
|
Yu YY, Zhen SH, Chao SL, Wu J, Cheng L, Li SW, Xiao X, Zhou X. Electrochemistry of newly isolated Gram-positive bacteria Paenibacillus lautus with starch as sole carbon source. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
|
41
|
A high-sensitive and durable electrochemical sensor based on Geobacter-dominated biofilms for heavy metal toxicity detection. Biosens Bioelectron 2022; 206:114146. [PMID: 35272214 DOI: 10.1016/j.bios.2022.114146] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/20/2022]
Abstract
A highly sensitive electrochemical sensor for detecting low concentrations of heavy metals (Cd2+, Ni2+, Pb2+ and Cu2+) based on Geobacter-dominated biofilms was developed. The biosensor showed a high sensitivity for the determination of Cd2+ (109.7 μAμM-1cm-2) and the determination of Pb2+ (161.7 μAμM-1cm-2). The performance of three fitting models for biosensor response to heavy metal toxicity was investigated based on the relationship between total coulomb yield and heavy metal concentration. The full-area model (Equation a) provided the best fit, and the response times tended to be the fastest based on the peak current model (Equation c). Recovery methods were proposed to ensure the electrical activity of the biofilm for long-term monitoring. 16S rRNA gene sequence analysis showed that the most dominant genus in the anodic biofilm was Geobacter (44.1%-45.8%), indicating a stable community structure after continuous toxicity shock for 22 days. The confocal laser scanning microscope (CLSM) further proved the restorable and reusability of the biosensor. Thanks to the thin and electrically active Geobacter-dominated biofilms, it could be a good alternative biosensor for groundwater analysis etc. The results of this study contribute to the development of a highly sensitive and accurate biosensor with long-term usage towards on-site monitoring of heavy metals at low concentrations, improving the test performance of the biosensor for practical application.
Collapse
|
42
|
Ma XL, He EJ, Cao FT, Fan YY, Zhou XT, Xiao X. Re-evaluation of the environmental hazards of nZnO to denitrification: Performance and mechanism. CHEMOSPHERE 2022; 291:132824. [PMID: 34752835 DOI: 10.1016/j.chemosphere.2021.132824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Numerous studies have shown that zinc oxide nanoparticles (nZnO) have an inhibitory effect on wastewater biotreatment, where doses exceeding ambient concentrations are used. However, the effect of ambient concentrations of ZnO (<1 mg/L) on anaerobic digestion processes is not clear. Herein, this study comprehensively explored the impact of nZnO on the denitrification performance and core microbial community of activated sludge under ambient concentrations. Results showed that only 0.075 mg/L nZnO had shown a beneficial effect on nitrogen removal by activated sludge. When nZnO concentration reached 0.75 mg/L, significant enhancement of nitrate reduction and mitigation of nitrite accumulation were observed, indicating a remarkable stimulatory effect on nitrogen removal. Simultaneously, nZnO could weaken the sludge surface charge and improve the secretion of extracellular polymeric substances, thus enhancing sludge flocculation for denitrification. Microbial community analysis revealed that nZnO exposure increased the relative abundance of denitrifying bacteria, which could contribute to the reinforcement of traditional denitrification. Furthermore, exogenous addition of NH4+ significantly inhibited the accumulation of nitrite, implying that nZnO had a potential to improve the denitrification process via a partial denitrification-anammox pathway. Considering current ambient concentration, the stimulatory effect shown in our work may better represent the actual behavior of ZnO in wastewater biotreatment.
Collapse
Affiliation(s)
- Xiao-Lin Ma
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - En-Jing He
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Feng-Ting Cao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Yang-Yang Fan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Xiang-Tong Zhou
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiang Xiao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
43
|
Rivalland C, Radouani F, Gonzalez-Rizzo S, Robert F, Salvin P. Enrichment of Clostridia enhances Geobacter population and electron harvesting in a complex electroactive biofilm. Bioelectrochemistry 2022; 143:107954. [PMID: 34624726 DOI: 10.1016/j.bioelechem.2021.107954] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 11/26/2022]
Abstract
Current research on microbial fuel cell or microbial electrolysis cell dealt with finding new electroactive bacteria and understanding the mechanisms of electronic exchange. Complex consortia allowed to obtain better performances than pure cultures in part thanks to inter-species cooperation. However, the role of each bacterium in a complex biofilm in the electron harvest on an electrode remains unclear. Thus, we combined electrochemical monitoring of electron exchange and high throughput sequencing analysis in order to describe the bacterial composition and the electroactive performance of mangrove mud biofilms. In this study, secondary electroactive biofilms were formed on carbon electrodes from Desulfuromonas-dominated inoculum of pre-formed bioanodes. The performances and the Desulfuromonas-dominated profile were the same as those of primary bioanodes when the planktonic community was conserved. However, a Clostridium enrichment allowed to restore the performance in maximal current densities promoting an increase of Geobacter population, becoming the most dominant group among the Deltaproteobacteria, replacing Desulfuromonas. These results highlight a positive collaboration between Clostridium and Geobacter spp. helping a bacterial population to achieve with the depletion of their environment. Our study provides new insight into relationships between dominant electroactive bacteria and other bacteria species living in an organic matter-rich environment as mangrove sediments.
Collapse
Affiliation(s)
- Caroline Rivalland
- Laboratoire des Matériaux et Molécules en Milieu Agressif L3MA EA7526, UFR STE, Université des Antilles, Schœlcher, France
| | - Fatima Radouani
- Laboratoire des Matériaux et Molécules en Milieu Agressif L3MA EA7526, UFR STE, Université des Antilles, Schœlcher, France
| | - Silvina Gonzalez-Rizzo
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Pointe-à-Pitre, France
| | - Florent Robert
- Laboratoire des Matériaux et Molécules en Milieu Agressif L3MA EA7526, UFR STE, Université des Antilles, Schœlcher, France
| | - Paule Salvin
- Laboratoire des Matériaux et Molécules en Milieu Agressif L3MA EA7526, UFR STE, Université des Antilles, Schœlcher, France.
| |
Collapse
|
44
|
Song X, Jo C, Zhou M. Enhanced electricity generation and tetracycline removal of bioelectro-Fenton with electroactive biofilm induced by multi external resistance. CHEMOSPHERE 2022; 289:133070. [PMID: 34838838 DOI: 10.1016/j.chemosphere.2021.133070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/30/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
A simple multi electric resistance mode is used to regulate electroactive anode film, which improves the electricity generation, H2O2 production and pollutants removal. This external electron transport path (double cathode with different resistance) exhibits higher H2O2 production (571.9 ± 0.1 mg m-2 h-1), tetracycline removal (71.4 ± 0.4% to 50 mg L-1), and power (615.3 ± 9.9 mW m-2 plus 680.6 ± 10.3 mW m-2), which is 75.4%, 23.1% and 1.25 times higher than that of single cathode mode. The double cathode improves the relative abundance of Geobacter (exoelectrogens), which is 9.45 times higher than that of single cathode mode. The anodic capacitance of double cathode mode is more than 10 times higher than that of single cathode mode. Electrons (generate by exoelectrogens) participate in two- (cathodic chamber) and four- (anodic chamber) electron reaction at cathode surface, and facilitates electricity generation of bioelectro-Fenton. The removal rate of double cathode mode is 342.7 mg L-1 d-1 (50 mg L-1 tetracycline) and 170.1 mg L-1 d-1 (20 mg L-1 tetracycline), which is much higher than that of reported. These results indicate that external electron transport path enhances the electrochemical activity of anode film and performance of bioelectro-Fenton. This paper provides a new power supply method for the future practical application and field experiment of bioelectrio-Fenton.
Collapse
Affiliation(s)
- Xiangru Song
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - ChungHyok Jo
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Institute of Nano Science and Physical Engineering, Kim Chaek University of Technology, Pyongyang, North Korea
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
45
|
Chen X, Li Y, Wu J, Li N, He W, Feng Y, Liu J. Heterogeneous Structure Regulated by Selection Pressure on Bacterial Adhesion Optimized the Viability Stratification Structure of Electroactive Biofilms. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2754-2767. [PMID: 34982530 DOI: 10.1021/acsami.1c19767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As the core of microbial fuel cells (MFCs), the components and structure of electroactive biofilms (EABs) are essential for MFC performance. Bacterial adhesion plays a vital role in shaping the structure of EABs, but the effect of bacterial adhesion under selection pressure on EABs has not been systematically studied. Here, the response of the composition, structure, and electrochemical performance of EABs to the selective adhesion pressure due to the selective coordination of Fe(III) and Co(II) with thiol and the different affinities for bacteria on hybrid electrodes (Fe1Co, Fe4Co, and Fe10Co) were comprehensively investigated. Compared with carbon cloth (CC), the appropriate selective adhesion pressure of Fe4Co activated the dead inner core of EABs and optimized their viability stratification structure. Both the total viability and the viability of the inner core layer in the Fe4Co EAB (0.67, 0.70 ± 0.01) were higher than those of the CC (0.46, 0.54 ± 0.01), Fe1Co (0.50, 0.48 ± 0.03), and Fe10Co (0.51, 0.51 ± 0.03). Moreover, a higher proportion of proteins was detected in the Fe4Co EAB, enhancing the redox activity of extracellular polymeric substances. Fe4Co enriched Geobacter and stimulated microbial metabolism. Electrochemical analysis revealed that the Fe4Co EAB was the most electroactive EAB, with a maximum power density of 2032.4 mW m-2, which was 1.7, 1.3, and 1.1 times that of the CC (1202.6 mW m-2), Fe1Co (1610.3 mW m-2), and Fe10Co (1824.4 mW m-2) EABs, respectively. Our findings confirmed that highly active EABs could be formed by imposing selection pressure on bacterial adhesion.
Collapse
Affiliation(s)
- Xuepeng Chen
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yunfei Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jingxuan Wu
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Weihua He
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
46
|
Li R, Li T, Wan Y, Zhang X, Liu X, Li R, Pu H, Gao T, Wang X, Zhou Q. Efficient decolorization of azo dye wastewater with polyaniline/graphene modified anode in microbial electrochemical systems. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126740. [PMID: 34333409 DOI: 10.1016/j.jhazmat.2021.126740] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Azo dye pollution has become a worldwide issue, and the current treatment methods can hardly meet the expected emission standards. Microbial electrochemical systems (MESs) show promising applications for decolorization, but their performance critically depends on the microorganisms. Electrode modification is an interesting method of improving decolorization performance. However, the mechanisms of how the modification can affect microbial communities and the decolorization process remain unclear. Here, a modified anode with polyaniline (PANI) and graphene was fabricated via electro-deposition. Consequently, the highest decolorization efficiency was obtained. The Congo red (CR) decolorization rate of the MESs with the PANI/graphene-modified electrode (PG) reached 90% at 54 h. By contrast, the CR decolorization rates of the MESs with the PANI-modified electrode (P) and those of the MESs with the unmodified electrode (C) only reached 68% and 79%, respectively. Results of the microbial community analysis showed abundant Methanobrevibacter arboriphilus in PG (11%), which was 5.5 times that in C (2%) at 18 h. This phenomenon may be related to the rapid decolorization. The upregulated metabolism pathways, including arginine and proline metabolism, purine metabolism, arginine biosynthesis, and riboflavin metabolism, provided more electron shuttles and redox mediators that facilitated the extracellular electron transfer. Therefore, the PG-modified electrode facilitated the decolorization by altering certain metabolic pathways. This study can help to improve the guideline on the potential application of MESs for wastewater treatment.
Collapse
Affiliation(s)
- Ruixiang Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| | - Yuxuan Wan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xiaolin Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xueyi Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Runtong Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Hangming Pu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Tong Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
47
|
Yan X, Du Q, Mu Q, Tian L, Wan Y, Liao C, Zhou L, Yan Y, Li N, Logan BE, Wang X. Long-Term Succession Shows Interspecies Competition of Geobacter in Exoelectrogenic Biofilms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14928-14937. [PMID: 34676765 DOI: 10.1021/acs.est.1c03010] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Geobacter spp. are well-known exoelectrogenic microorganisms that often predominate acetate-fed biofilms in microbial fuel cells (MFCs) and other bioelectrochemical systems (BESs). By using an amplicon sequence variance analysis (at one nucleotide resolution), we observed a succession between two closely related species (98% similarity in 16S RNA), Geobacter sulfurreducens and Geobacter anodireducens, in the long-term studies (20 months) of MFC biofilms. Geobacter spp. predominated in the near-electrode portion of the biofilm, while the outer layer contained an abundance of aerobes, which may have helped to consume oxygen but reduced the relative abundance of Geobacter. Removal of the outer aerobes by norspermidine washing of biofilms revealed a transition from G. sulfurreducens to G. anodireducens. This succession was also found to occur rapidly in co-cultures in BES tests even in the absence of oxygen, suggesting that oxygen was not a critical factor. G. sulfurreducens likely dominated in early biofilms by its relatively larger cell size and production of extracellular polymeric substances (individual advantages), while G. anodireducens later predominated due to greater cell numbers (quantitative advantage). Our findings revealed the interspecies competition in the long-term evolution of Geobacter genus, providing microscopic insights into Geobacter's niche and competitiveness in complex electroactive microbial consortia.
Collapse
Affiliation(s)
- Xuejun Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Qing Du
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Quanhua Mu
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Lili Tian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yuxuan Wan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Lean Zhou
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yuqing Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Bruce E Logan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| |
Collapse
|
48
|
Yang J, Cheng S. External resistance acclimation regulates bio-anode: new perspective from biofilm structure and its correlation with anode performance. Bioprocess Biosyst Eng 2021; 45:269-277. [PMID: 34689231 DOI: 10.1007/s00449-021-02658-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
External resistance is important for the anode and cell performance. However, little attentions were paid on the effect of external resistance on the variation of biofilm structure. Here, we used external resistance ranged from 4000 to 500 Ω for anodic acclimation to investigate the correlation between anode performance and biofilm structure. With the reduce of external resistance, the maximum current density of anode increased from 1.0 to 3.4 A/m2, which was resulted from a comprehensive effect of reduced charge transfer resistance and increased diffusion resistance. Biological analysis showed that with the reduce of external resistance, biomass and extracellular polymeric substances content increased by 109 and 286%, cell viability increased by 22.7%, which contributed to the reduced charge transfer resistance. But the porosity of anodic biofilm decreased by 27.8%, which led to an increased diffusion resistance of H+. This work provided a clear correlation between the electrochemical performance and biofilm structure.
Collapse
Affiliation(s)
- Jiawei Yang
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
49
|
Liu Y, Zhu X, Zhao Q, Yan X, Du Q, Li N, Liao C, Wang X. Synthesis of silver nanoparticles using living electroactive biofilm protected by polydopamine. iScience 2021; 24:102933. [PMID: 34409277 PMCID: PMC8361215 DOI: 10.1016/j.isci.2021.102933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/04/2021] [Accepted: 07/28/2021] [Indexed: 12/04/2022] Open
Abstract
The biosynthesis of metal nanoparticles from precious metals has been of wide concern. Their antibacterial activity is a main bottleneck restricting the bacterial activity and reduction performance. Here, bio-electrochemical systems were used to harvest electroactive biofilms (EABs), where bacteria were naturally protected by extracellular polymeric substances to keep activity. The biofilm was further encapsulated with polydopamine (PDA) as additional shield. Silver nanoparticles (AgNPs) were biosynthesized on EABs, whose electroactivity could be fully recovered after Ag+ reduction. The PDA increased bacterial viability by 90%–105%, confirmed as an effective protection against antibacterial activity of Ag+/AgNPs. The biosynthetic process changed the component and function of the microbial community, shifting from bacterial Fe reduction to archaeal methanogenesis. These results demonstrated that the electrochemical acclimation of EABs and encapsulation with PDA were effective protective measures during the biosynthesis of AgNPs. These approaches have a bright future in the green synthesis of nanomaterials, biotoxic wastewater treatment, and sustainable bio-catalysis. The EABs formed using BESs had an efficient ability to recover Ag+ to AgNPs The bio-reduction efficiencies of AgNPs reached more than 94% The PDA increased by 90%–105% of the bacterial viability The biosynthesis process changed the microbial community
Collapse
Affiliation(s)
- Yarui Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xuemei Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xuejun Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Qing Du
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| |
Collapse
|
50
|
Wang T, Zhu G, Kuang B, Jia J, Liu C, Cai G, Li C. Novel insights into the anaerobic digestion of propionate via Syntrophobacter fumaroxidans and Geobacter sulfurreducens: Process and mechanism. WATER RESEARCH 2021; 200:117270. [PMID: 34077836 DOI: 10.1016/j.watres.2021.117270] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/21/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
The accumulation of volatile fatty acids, particularly propionic acid, significantly inhibits the efficiency of the anaerobic digestion system. In propionate degradation metabolism, the unfavorable thermodynamics of syntrophic reactions, strict ecological niche of syntrophic priopionate oxidizing bacteria, and slow metabolic rate of methanogens are regarded as major limitations. In this study, Geobacter sulfurreducens was co-cultured with Syntrophobacter fumaroxidans in bioelelectrochemical cells to analyze the propionate degradation process, impact factor, mechanism metabolic pathways, and electron transfer comprehensively. The results revealed that the syntroph S. fumaroxidans and syntrophic partner G. sulfurreducens achieved more efficient propionate degradation than the control group, comprising S. fumaroxidans and methanogens. Moreover, the carbon resource concentration and pH were both significantly correlated with propionate degradation (P < 0.01). The results further confirmed that G. sulfurreducen strengthened the consumption of H2 and acetate via direct interspecific electron transfer in propionate degradation. These findings indicate that G. sulfurreducens plays an unidentified functional role in propionate degradation.
Collapse
Affiliation(s)
- Tao Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Gefu Zhu
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, PR China
| | - Bin Kuang
- School of Economics and Management, Jiangmen Polytechnic, Jiangmen 529020, PR China
| | - Jianbo Jia
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Changyu Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Guanjing Cai
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Chunxing Li
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|