1
|
Xu H, Tang P, Zhou Y, Zhang Y, Zhang T. Effects of pore water flow rate on microplastics transport in saturated porous media: Spatial distribution analysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137511. [PMID: 39933465 DOI: 10.1016/j.jhazmat.2025.137511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/19/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
Microplastics (MPs) pollution in subsurface environments poses significant ecological challenges, yet the understanding of their transport and retention behaviors remains limited. This study employs a two-dimensional porous media flow cell to investigate the migration and distribution of polystyrene MPs in saturated porous media under varying flow rates. We reveal that higher flow rates reduce overall retention but increase spatial autocorrelation in MP distribution, driven by particle accumulation in "transition pores" -pores that retain MPs occasionally. Moreover, smaller MP sizes or higher flow rates enhance the homogeneity of the flow field. Notably, inconsistencies between flow and flux fields emerged, particularly at high flow rates, due to the re-migration of retained MPs. By pinpointing specific thresholds for flux and flow velocity, we identify critical conditions governing MP retention within transition pores. Furthermore, we introduce a novel dimensionless parameter, Pe*, to quantify how flux and flow velocity collectively influence MP behavior. These insights expand our understanding of MPs transport and retention behaviors in porous media and contribute to evaluating their environment behavior within subsurface environments.
Collapse
Affiliation(s)
- Henglei Xu
- Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, Hangzhou, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
| | - Ping Tang
- School of Materials and Environment, Hangzhou Dianzi University, China
| | - Yongchao Zhou
- Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, Hangzhou, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China.
| | - Yiping Zhang
- Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, Hangzhou, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China.
| | - Tuqiao Zhang
- Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, Hangzhou, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
| |
Collapse
|
2
|
Zhang D, Chen Q, Xu T, Yin D. Current research status on the distribution and transport of micro(nano)plastics in hyporheic zones and groundwater. J Environ Sci (China) 2025; 151:387-409. [PMID: 39481947 DOI: 10.1016/j.jes.2024.03.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 11/03/2024]
Abstract
Micro(nano)plastics, as an emerging environmental pollutant, are gradually discovered in hyporheic zones and groundwater worldwide. Recent studies have focused on the origin and spatial/temporal distribution of micro(nano)plastics in regional groundwater, together with the influence of their properties and effects of environmental factors on their transport. However, the transport of micro(nano)plastics in the whole hyporheic zone-groundwater system and the behavior of co-existing substances still lack a complete theoretical interpretation. To provide systematic theoretical support for that, this review summarizes the current pollution status of micro(nano)plastics in the hyporheic zone-groundwater system, provides a comprehensive introduction of their sources and fate, and classifies the transport mechanisms into mechanical transport, physicochemical transport and biological processes assisted transport from the perspectives of mechanical stress, physicochemical reactions, and bioturbation, respectively. Ultimately, this review proposes to advance the understanding of the multi-dimensional hydrosphere transport of micro(nano)plastics centered on groundwater, the microorganisms-mediated synergistic transformation and co-transport involving the intertidal circulation. Overall, this review systematically dissects the presence and transport cycles of micro(nano)plastics within the hyporheic zone-groundwater system and proposes prospects for future studies based on the limitations of current studies.
Collapse
Affiliation(s)
- Dongming Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Wang Y, Wu M, Hao Y, Li H, Mo C. Surfactant-mediated transport of polyvinyl chloride nanoplastics in porous media: Influence of natural organic matter, natural inorganic ligands and electrolytes. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 273:104597. [PMID: 40311390 DOI: 10.1016/j.jconhyd.2025.104597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/26/2025] [Accepted: 04/26/2025] [Indexed: 05/03/2025]
Abstract
This study investigates the transport behavior of polyvinyl chloride nanoplastics (PVC-NPs) in porous media under surfactant-mediated conditions through a combination of column experiments, numerical simulations, and extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) interaction energy analysis. The effects of different surfactant types, ionic species, ionic strength, humic acid (HA), and phosphate were examined. Results indicate that surfactants enhance the transport of PVC-NPs, with anionic surfactants exhibiting a stronger enhancement effect than cationic ones. Generally, the addition of cations inhibited PVC-NPs transport, with divalent Ca2+ exhibiting a stronger inhibitory effect than monovalent Na+. Interestingly, at low ionic strengths, Na+ had a stronger inhibitory effect than Ca2+. In the presence of anionic surfactants, higher Na+ concentrations promoted PVC-NPs transport. In contrast, both HA and phosphate inhibited PVC-NPs transport under cationic surfactants, with the degree of inhibition positively correlated with their concentrations. However, under anionic surfactants, high concentrations of HA inhibited PVC-NPs transport, while lower concentrations had no significant impact. Phosphate, under anionic surfactant conditions, initially inhibited but subsequently promoted PVC-NPs transport. This study provides a comprehensive understanding of the natural transport and transformation mechanisms of PVC-NPs in the environment under surfactant influence, offering a solid data foundation and theoretical framework for accurately assessing the potential ecological and human health risks posed by nanomaterials.
Collapse
Affiliation(s)
- Yujue Wang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ming Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Yanru Hao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Cehui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Elrahmani A, Al-Raoush RI, Hannun JA, Albaba MT, Seers TD. Retention mechanisms of microplastics in soil environments during saturation-desaturation cycles: Impact of hydrophobicity and pore geometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179238. [PMID: 40154083 DOI: 10.1016/j.scitotenv.2025.179238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/12/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Forming ubiquitous contaminants in sediments, microplastics (MPs) are of growing concern due to their rapid infiltration into the environment and detrimental effects on ecosystems and human health. Understanding MP transport dynamics in pore networks is essential for predicting their mobility in sediments and soils and developing strategies to mitigate their spread. This study examines how pore geometry and MP hydrophobicity affect retention mechanisms within porous media during saturation-desaturation cycles. Microfluidic experiments were conducted using micromodels representing porous media with varied pore characteristics. MPs with hydrophilic, hydrophobic, and mixed hydrophobicity properties were introduced into these micromodels, and high-resolution imaging analyzed their retention patterns. The results reveal distinct retention behaviors based on MP hydrophobicity and pore geometry. Hydrophilic MPs were retained through clustering and sieving within smaller throats, particularly in low-connectivity geometries, with retention reaching 25 %. Hydrophobic MPs attached strongly to the solid-water interface (SWI) during saturation and shifted to the air-water interface (AWI) during desaturation, achieving retention rates up to 40 % in high-connectivity geometries. Mixed MPs exhibited combined behaviors, with early SWI attachment and subsequent clustering and sieving, resulting in retention rates as high as 50 % in geometries with high specific surface areas. These findings highlight the role of pore geometry and MP surface properties in determining retention and mobility. Hydrophilic MPs form contamination hotspots in fine-grained sediments, while hydrophobic MPs are more mobile in high-connectivity environments. Mixed MPs persist due to multiple retention mechanisms, posing challenges for remediation. This study informs strategies to manage MP contamination in subsurface environments.
Collapse
Affiliation(s)
- Ahmed Elrahmani
- Department of Civil and Environmental Engineering, Qatar University, Doha, Qatar
| | - Riyadh I Al-Raoush
- Department of Civil and Environmental Engineering, Qatar University, Doha, Qatar.
| | - Jamal A Hannun
- Department of Civil and Environmental Engineering, Qatar University, Doha, Qatar
| | - Mhd Taisir Albaba
- Department of Civil and Environmental Engineering, Qatar University, Doha, Qatar
| | - Thomas D Seers
- Department of Petroleum Engineering, Texas A&M University at Qatar, Doha, Qatar
| |
Collapse
|
5
|
Man S, Liu X, Presser V, Dong S, Li Z, Qiu L, Zhao Z, Wang H, Yan Q. Degradation of microplastics by electrocoagulation technology: Combination oxidation and flocculation effects. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138379. [PMID: 40273854 DOI: 10.1016/j.jhazmat.2025.138379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/30/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Electrocoagulation (EC) technology features a promising prospect for coping with the formidable microplastics (MPs) pollution challenge, albeit the underlying abatement mechanism still needs to be further clarified. Accordingly, in this work, we evaluated the removal performance by EC for four typical MPs, including polyvinyl chloride (PVC), polystyrene (PS), polypropylene (PP), and polyethylene (PE). The Fourier transform infrared spectroscopies of MPs confirmed the presence of electrochemical oxidation during EC process, owing to its hydroxyl radical generation ability as demonstrated by the detected fluorescence spectroscopies and electron paramagnetic resonance results, which has been rarely reported in other works. Specifically, 21.2 ± 0.8 %, 10.8 ± 1.8 %, 15.6 ± 1.6 %, and 7.6 ± 1.4 % abatement efficiency for PVC, PS, PP, and PE, respectively, originated from the oxidation effect, and these values for flocculation effect were 77.2 ± 0.8 %, 74.0 ± 1.6 %, 70.8 ± 1.2 %, and 69.2 ± 1.2 %, successively. Many factors influence these differences, especially the MPs' hydrophilicity, as it facilitates the mass transfer efficiency between MPs (like PVC and PP) and the generated flocs or radicals. To lay a foundation for practical application, we also optimized the operation parameters, demonstrating the wise choice of pH 7 to maintain a balance between the oxidation and flocculation effect. Therefore, we believe our work provides a good reference for promoting MPs abatement efficiency and elucidating the corresponding mechanism, especially the contribution of the oxidation part by EC.
Collapse
Affiliation(s)
- Shuaishuai Man
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China; Changzhou Cheff Environmental Protection Technology Co.Ltd, Changzhou 213000, PR China; WELLE Environmental Group Co., Ltd, Changzhou 213000, PR China
| | - Xinyu Liu
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Volker Presser
- INM - Leibniz Institute for New Materials, Saarbrücken 66123, Germany; Department of Materials Science and Engineering, Saarland University, Saarbrücken 66123, Germany; saarene - Saarland Center for Energy Materials and Sustainability, Saarland University, Campus D4 2, Saarbrücken 66123, Germany
| | - Shaohan Dong
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Ziyang Li
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Liwei Qiu
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China; Changzhou Cheff Environmental Protection Technology Co.Ltd, Changzhou 213000, PR China
| | - Zhenzhen Zhao
- WELLE Environmental Group Co., Ltd, Changzhou 213000, PR China
| | - Han Wang
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Qun Yan
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
6
|
Qiu Y, Niu J, Zhang C, Chen L, Su B, Zhou S. Interpretable machine learning reveals transport of aged microplastics in porous media: Multiple factors co-effect. WATER RESEARCH 2025; 274:123129. [PMID: 39813894 DOI: 10.1016/j.watres.2025.123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/20/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
Microplastics (MPs) easily migrate into deeper soil layers, posing potential risks to subterranean habitats and groundwater. However, the mechanisms governing the vertical migration of MPs in soil, particularly aged MPs, remain unclear. In this study, we investigate the transport of MPs under varying MPs properties, soil texture and hydrology conditions. Under nearly all controlled conditions, aged MPs demonstrated a higher vertical mobility compared to virgin MPs. By employing interpretable machine learning models (IML), we not only identified the dominant role of individual parameters in the vertical migration of MPs but also discovered that the increased contribution of carbonyl index and O/C ratio in aged MPs, along with the enhanced interaction with other feature parameters, collectively promotes the elevated vertical mobility of aged MPs. The varying contributions of different feature parameters under individual control variables revealed the mechanisms of MPs vertical migration under different gradients and highlighted the dual constraints of physical obstruction and chemical retention between MPs and soil particles. The established machine learning model was also utilized to predict the differences in vertical mobilities of MPs with varying degrees of aging. The nonlinear increasing relationship between MPs vertical mobility and simulated aging time suggests that MPs can migrate to deeper soil layers shortly after entering the soil environment. The integration of laboratory experiment with IML elucidates the key drivers of vertical MP migration. It also provides a theoretical basis for the timely removal of MPs from soil and the assessment of their potential risks.
Collapse
Affiliation(s)
- Yifei Qiu
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210024, China
| | - Jingyu Niu
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210024, China
| | - Chuchu Zhang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Long Chen
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210024, China
| | - Bo Su
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210024, China
| | - Shenglu Zhou
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210024, China.
| |
Collapse
|
7
|
Orikpete OF, Kikanme KN, Falade TDO, Dennis NM, Ejike Ewim DR, Fadare OO. Neonicotinoid pesticides in African agriculture: What do we know and what should be the focus for future research? CHEMOSPHERE 2025; 372:144057. [PMID: 39746486 DOI: 10.1016/j.chemosphere.2024.144057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
This review provides a comprehensive overview of the direct and indirect effects of neonicotinoid pesticides (NEO-P) within African agricultural ecosystems and identifies research gaps, particularly in the monitoring and regulation of pesticide use. We observed a decline in the numbers of NEO-P studies conducted in Africa since 2019 with 40.7% of the countries reporting at least one study to date. Imidacloprid (33.5%), acetamiprid (23.3%), and thiamethoxam (25.0%) are the most reported NEO-P across the continent with concentrations range from 9.0 × 10-5 to 7.2 × 107 mg kg-1, 1.7 × 10-5 to 2.1 × 103 mg kg-1, and 1.0 × 10-5 to 4.7 × 104 mg kg-1, respectively. NEO-P have been reported in honey, water, vegetables, fruits, and staple foods in most countries and in 92-100% of human urine samples collected in Ghana and Cameroon. This widespread presence indicates a potential food safety and public health concern, warranting further study. Studies on NEO-P interactions with bees have emanated mainly from North Africa (35.3% published studies) while Central/Middle, and Southern Africa accounted for 11.8% each of these studies, all of which were conducted in Cameroon and South Africa, respectively. It is important to have contextual evidence to understand neonicotinoids-pollinator interactions across specific African regions and countries; however, literature regarding the extent of NEO-P toxicities/effects on pollinators is required in 44 African countries. The environmental persistence of NEO-P and their broad-spectrum impact necessitate a re-evaluation of current regulatory practices and adoption of more sustainable pest management strategies across the continent. Furthermore, future studies should focus on investigating the long-term exposure to NEO-P, advanced computational methods in ecological risk assessments and eco-friendly alternatives to NEO-P.
Collapse
Affiliation(s)
- Ochuko Felix Orikpete
- Centre for Occupational Health, Safety and Environment (COHSE), University of Port Harcourt, Choba, Rivers State, 500102, Nigeria
| | - Kenneth N Kikanme
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, 79416, USA
| | - Titilayo D O Falade
- International Institute of Tropical Agriculture, Ibadan, Oyo State, 200001, Nigeria
| | - Nicole M Dennis
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, 32610, USA
| | | | - Oluniyi O Fadare
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
8
|
He X, Yang J, Chen X, Chen J, Zhao H, Liu J, Du F, Wang P. Fabrication of Multifunctional Three-Component Supramolecular Nano-Biscuits via Two Macrocycles-Involved Self-Assembly for Rice, Citrus and Kiwifruit Protections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413826. [PMID: 39853942 PMCID: PMC11923968 DOI: 10.1002/advs.202413826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/06/2025] [Indexed: 01/26/2025]
Abstract
Bacterial plant diseases, worsened by biofilm-mediated resistance, are increasingly threatening global food security. Numerous attempts have been made to develop agrochemicals that inhibit biofilms, however, their ineffective foliar deposition and difficulty in removing mature biofilms remain major challenges. Herein, multifunctional three-component supramolecular nano-biscuits (NI6R@CB[7]@β-CD) are successfully engineered via ordered self-assembly between two macrocycles [cucurbit[7]uril (CB[7]), β-cyclodextrin (β-CD)] and (R)-2-naphthol-based bis-imidazolium bromide salt (NI6R). This macrocycles-involved bactericidal material combines many advantages. 1) Alleviate the off-target movement of droplets on hydrophobic blade surfaces. 2) Enhance the biofilm-disrupting ability. At a low-dose of 4.44 µg mL-1, the inhibition rate of biofilm formation reached 78.3%. At 35.5 µg mL-1, the potency to remove mature biofilms reached 77.6%. 3) Efficiently hinder bacterial reproduction, swimming, extracellular polysaccharide production, extracellular enzyme secretion, and virulence to plants. These superior characteristics are undoubtedly transmitted to the in vivo control effect. At 200 µg mL-1, this smart material exhibits superior control efficiencies of 49.6%/65.0%/85.4% against three kinds of bacterial diseases (rice leaf blight, citrus canker, and kiwifruit canker), respectively, surpassing the commercial bactericide-thiodiazole-copper-20%SC (33.6%/41.5%/43.2%) and NI6R (40.3%/51.2%/71.2%). Furthermore, NI6R@CB[7]@β-CD is biosafe to non-target organisms. This study is instructive for constructing multifunctional agrochemicals in sustainable crop protection.
Collapse
Affiliation(s)
- Xinyu He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of Education, Center for Research and Development of Fine Chemicals of Guizhou UniversityGuiyang550025China
| | - Jinghan Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of Education, Center for Research and Development of Fine Chemicals of Guizhou UniversityGuiyang550025China
| | - Xue Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of Education, Center for Research and Development of Fine Chemicals of Guizhou UniversityGuiyang550025China
| | - Jiajia Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of Education, Center for Research and Development of Fine Chemicals of Guizhou UniversityGuiyang550025China
| | - Haicong Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of Education, Center for Research and Development of Fine Chemicals of Guizhou UniversityGuiyang550025China
| | - Juan Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of Education, Center for Research and Development of Fine Chemicals of Guizhou UniversityGuiyang550025China
| | - Fengpei Du
- Department of Applied Chemistry, College of ScienceChina Agricultural UniversityBeijing100193China
| | - Peiyi Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of Education, Center for Research and Development of Fine Chemicals of Guizhou UniversityGuiyang550025China
| |
Collapse
|
9
|
Wang Y, Hou F, Gai Y, Pan X, Zhao Z, Li Y. Enhanced density separation efficiency of microplastics in presence of nonionic surfactants. ENVIRONMENTAL RESEARCH 2025; 267:120737. [PMID: 39746624 DOI: 10.1016/j.envres.2024.120737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Microplastics (MPs) recycling, a promising approach to tackle its pollution, faces significant challenges due to the lack of effective separation methods. Herein, the optimized density separation accompanied with nonionic surfactants was employed to purify single MPs species from mixed systems. By adjusting the flotation fluid density, the single MPs can be separated from their mixtures in equal proportions (e.x., 97 ± 2% pure polyethylene terephthalate (PET) was extracted from polystyrene (PS)/PET mixed system). Under the optimized density separation conditions, nonionic surfactants of Tween 20 (TW20) enhanced the purity of the separated MPs for all MPs mixture systems (from 69%-85% to 76%-96%). The enhanced separations can be mainly attributed to adsorption of surfactant onto the surface of MPs which would alter hydrophilic and hydrophobic properties of MPs. But anionic surfactants could reduce or promote the separated efficiencies of MPs (e.x., the purity of separated polyvinylchloride increased by 4.8% in Thermoplastic polyurethanes/polyvinylchloride group by added sodium dodecyl benzene sulfonate, and the purity of PS decreased by 8.3% in PS/PET group in presence of hexadecyl trimethyl ammonium bromide). The efficient separations have also been obtained in simulated environmental aqueous experiments where TW20 promoted the separated purity of PET from 83.4% to 91.8% in the PS/PET group, consistent with the separation effect in the laboratory environment. This paper provided a convenient and cost-effective method to separate mixed MPs to high-purity MPs, which would be improve the quality of plastic recycling.
Collapse
Affiliation(s)
- Yiming Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Fangwei Hou
- College of Electromechanical Engineering, Qingdao University, Qingdao, China
| | - Yining Gai
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Xu Pan
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Zongshan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China.
| | - Yaru Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China.
| |
Collapse
|
10
|
Yang X, Tang DWS. Modeling microplastic transport through porous media: Challenges arising from dynamic transport behavior. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136728. [PMID: 39637795 DOI: 10.1016/j.jhazmat.2024.136728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/25/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Modelling microplastic transport through porous media, such as soils and aquifers, is an emerging research topic, where existing hydrogeological models for (reactive) solute and colloid transport have shown limited effectiveness thus far. This perspective article draws upon recent literature to provide a brief overview of key microplastic transport processes, with emphases on less well-understood processes, to propose potential research directions for efficiently modeling microplastic transport through the porous environment. Microplastics are particulate matter with distinct physicochemical properties. Biogeochemical processes and physical interactions with the surrounding environment cause microplastic properties such as material density, geometry, chemical composition, and DLVO interaction parameters to change dynamically, through complex webs of interactions and feedbacks that dynamically affect transport behavior. Furthermore, microplastic material densities, which cluster around that of water, distinguish microplastics from other colloids, with impactful consequences that are often underappreciated. For example, (near-)neutral material densities cause microplastic transport behavior to be highly sensitive to spatio-temporally varying environmental conditions. The dynamic nature of microplastic properties implies that at environmentally relevant large spatio-temporal scales, the complex transport behavior may be effectively intractable to direct physical modeling. Therefore, efficient modeling may require integrating reduced-complexity physics-constrained models, with stochastic or statistical analyses, supported by extensive environmental data.
Collapse
Affiliation(s)
- Xiaomei Yang
- College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, China; Soil Physics and Land Management, Wageningen University & Research, 6700AA Wageningen, the Netherlands
| | - Darrell W S Tang
- Water, Energy, and Environmental Engineering, University of Oulu, Finland.
| |
Collapse
|
11
|
Ji Y, Xu D, Wu L, Du B, Chen H, Wang T, Yin X. Transport of microplastics treated with dielectric barrier discharge (DBD) plasma in saturated porous media. J Colloid Interface Sci 2025; 679:889-899. [PMID: 39396464 DOI: 10.1016/j.jcis.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024]
Abstract
The performance of discharge plasma in treating organic pollutants and micro-organisms in water is impressive. When discharge plasma is used to treat polluted water containing organic pollutants and microorganisms, the presence of a certain amount of microplastics (MPs) in the water is unavoidable due to the complexity of the components contained in the water and the prevalence of MPs. MPs, as one of the pollutants that are difficult to be degraded by discharge plasma, undergo physical and chemical changes that increase their risk in the environment after treatment. Therefore, it is necessary to understand the fate of MPs after being treated with discharge plasma. In this study, the surface morphology of plastics before and after discharge plasma treatment was observed by scanning electron microscopy (SEM). The plastics after discharge plasma treatment were characterized by Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) to determine the changes in oxygen-containing functional groups on the surface. The recovery of microplastics (MPs) in saturated porous media under different physicochemical and plasma oxidation conditions was investigated by column experiments. It has been shown that MPs exhibit increased recovery under conditions of increased flow rate and pH. A decrease in recovery was observed at elevated ionic strength and co-existing cation valence. High voltages and low air flow rates increase the oxidation of MPs by increasing the thermal effects of the dielectric barrier discharge (DBD) plasma system, the amount of reactive oxygen species (ROS) and the intensity of ultraviolet ray (UV) irradiation. The mobility of MPs is enhanced by a combination of these factors. The advection-dispersion equation (ADE) fits the transport data of MPs well. The interaction energy between quartz sand and MPs was calculated using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. This study provides a new perspective on the potential risks of discharge plasma in water treatment.
Collapse
Affiliation(s)
- Yantian Ji
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Duo Xu
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Lan Wu
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Bowen Du
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Hongyang Chen
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
12
|
Kang Q, Zhang K, Dekker SC, Mao J. Microplastics in soils: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 960:178298. [PMID: 39787873 DOI: 10.1016/j.scitotenv.2024.178298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/07/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025]
Abstract
Microplastics (MPs) have become pervasive pollutants in terrestrial ecosystems, raising significant ecological risks and human health concerns. Despite growing attention, a comprehensive understanding of their quantification, sources, emissions, transport, degradation, and accumulation in soils remains incomplete. This review synthesizes the current knowledge on the anthropogenic activities contributing to soil MP contamination, both intentional and unintentional behaviors, spanning sectors including agriculture, domestic activities, transportation, construction, and industry. Furthermore, it examines the spatial distribution, accumulation, and abundance of MPs across various land use types, alongside a critical assessment of existing quantification methodologies. While the predominant metric for MP quantification is particle number concentration, integrating mass and area concentration enhances the ability to compare pollution levels, assess fluxes, and conduct risk analyses. Additionally, the review explores the transport behavior of MPs in soil, distinguishing between external mechanisms (abiotic factors: wind, leaching, and runoff, biotic factors: soil bioturbation and food chain interactions), and internal mechanisms that are impacted by the characteristics of MPs themselves (e.g., shape, color, size, density, surface properties), soil properties (e.g., porosity, pH, ionic strength, organic matter and mineral content), coexisting substances, and soil structural dynamics. The study of MP transport in soil remains in its early stages, with substantial gaps in knowledge. Future research should focus on integrating number, mass concentration, and area concentration for the more holistic quantification of MP abundance, and prioritize the development of more accurate and efficient methodologies. In addition, the investigation of MP transport and degradation processes under varying environmental conditions and soil management practices is critical for addressing this emerging environmental challenge.
Collapse
Affiliation(s)
- Qilin Kang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Zhang
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
| | - Stefan C Dekker
- Department of Environmental Sciences, Copernicus Institute for Sustainable Development, Utrecht University, Utrecht 3584CB, the Netherlands
| | - Jiefei Mao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Wang Y, Cheng Z, Wu M, Hao Y. Surfactant-mediated transport behavior of zinc oxide nanoparticles in porous media. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117467. [PMID: 39637632 DOI: 10.1016/j.ecoenv.2024.117467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Nanomaterials and surfactants are widely detected in soil-groundwater environments, while the surfactant-mediated transport behavior of nanoparticles has not been sufficiently investigated. In this study, the transport of ZnO nanoparticles (nZnO) in quartz sand (QS) in the presence of cetyltrimethylammonium bromide (CTAB) is investigated by adsorption and column experiments in combination with XDLVO analysis and numerical simulation. The adsorption of nZnO on QS is investigated by adsorption experiments under the environmental concentration of CTAB (50 mg·L-1). The results of adsorption experiments indicate that the adsorption efficiency of QS is related to the concentration of nZnO and primarily exhibits multilayer adsorption, and the Freundlich model can effectively fit the experimental data of isothermal adsorption. Additionally, the adsorption process is dominated by several factors, among which chemical adsorption is the primary controlling factor. The column experiment results indicate that at higher initial concentrations, the transport capacity of nZnO is weakened due to the occupation of adsorption sites on the QS and the increased collision opportunities between particles. The addition of ionic strength promotes the aggregation of nZnO by reducing electrostatic repulsion, thus inhibiting nZnO transport. Significantly, the inhibition of divalent Ca2+ is stronger than that of monovalent Na+. Interestingly, HA binds mainly to CTAB to form a hydrophobic complex, which reduces the repulsive force between nZnO and QS and inhibits the transport of nZnO. Increasing the pH, nZnO mobility first increases and then decreases, and begins to be inhibited at pH= 9 near the zero-point charge of nZnO. Moreover, at pH= 10, nZnO particles acquire a positive charge due to the adsorption of CTAB, and consequently, they are retained by QS through the hydrophobic interaction between the adsorbed CTABs. In addition, nZnO transport capacity does not increase with CTAB concentration. When a certain concentration of nZnO is reached, nZnO transport capacity is inhibited with CTAB concentration.
Collapse
Affiliation(s)
- Yujue Wang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhou Cheng
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Ming Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Yanru Hao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
14
|
Zhao S, Xu R, Liu X, Wang Y, Jiang Y. Effect of carbon chain length and concentration of perfluorinated compounds on polytetrafluoroethylene microplastics transport behavior. NANOIMPACT 2025; 37:100550. [PMID: 39999948 DOI: 10.1016/j.impact.2025.100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/02/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Perfluorooctanoic acid (PFOA) and perfluoropentanoic acid (PFPeA), as important components of perfluorinated compounds (PFAS), are not only ecologically hazardous, but also have surfactant properties that can alter the transport behavior of polytetrafluoroethylene (PTFE) in porous media. In this experiment, the effect of PFAS on the transport of PTFE in porous media under different pH, ionic strength (IS) and ion valence states was studied. The results showed that the recovery rate of PTFE decreased gradually with the decrease of pH and the increase of IS and ion valence states. When the above conditions change, the double electron layer on the microplastic surface is compressed, the absolute value of zeta potential decreases, the repulsion between each other decreases, and aggregation and deposition are more likely. In addition, it was found that the recovery rate of PTFE co-transported with long chain PFOA was higher than that of short chain PFPeA. This phenomenon may be caused by the adhesion ability of PFOA with long carbon chain on the surface of PTFE is greater than that of PFPeA with short carbon chain. On the other hand, PFAS with different carbon chain lengths produce different spatial site resistance effects after binding with particles, and the spatial site resistance produced by the long-chain PFOA is larger than that of the short-chain PFPeA, leading to a decrease in particle-to-particle aggregation and a better transport effect. This study will help to understand the effects of PFAS with different carbon chain lengths on the transport of microplastics in porous media, as well as the transport rule of PTFE under different conditions, and provide reference value for the calculation of its flux in soil.
Collapse
Affiliation(s)
- Shihao Zhao
- College of International Education, Henan Normal University, Xinxiang 453007, China
| | - Ruihao Xu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xiangying Liu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yifan Wang
- College of International Education, Henan Normal University, Xinxiang 453007, China
| | - Yanji Jiang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
15
|
Wu L, Yin J, Wu W, Pang K, Sun H, Yin X. Effect of low-molecular-weight organic acids on the transport of polystyrene nanoplastics in saturated porous media. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136343. [PMID: 39476696 DOI: 10.1016/j.jhazmat.2024.136343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/22/2024] [Accepted: 10/27/2024] [Indexed: 12/01/2024]
Abstract
Low molecular weight organic acids (LMWOAs) are extensively present as soluble organic matter in the environment, potentially influencing the transport of polystyrene nanoplastics (PSNPs) in soil and groundwater environments. In this study, we studied the impact of three LMWOAs (Acetic Acid (AA), Malic Acid (MA), and Citric Acid (CA)) on PSNPs migration under varied pH and Ionic Strength (IS) conditions in the saturated porous medium. The results demonstrated that the low LMWOAs concentrations (0.0001 mol L-1) promoted PSNPs migration rate, while high concentrations (0.001, 0.01 mol L-1) reduced the migration rate and increased the deposition. Due to the different relative molecular weights and number of functional groups of different LMWOAs, the order of promoting (0.0001 mol L-1) /inhibiting (0.001, 0.01 mol L-1) effects of LMWOAs on PSNPs migration rate under various physicochemical conditions in this study was AA < MA < CA. The decrease in IS and increase in pH promoted the migration of PSNPs. Electrostatic repulsion and spatial potential resistance affected PSNPs migration. This study offers theoretical support for the understanding of migration patterns and mechanisms of nanoparticles in soil-water environments.
Collapse
Affiliation(s)
- Lan Wu
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jing Yin
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Wenbing Wu
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Kejing Pang
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China.
| |
Collapse
|
16
|
Xie J, Ji J, Sun Y, Ma Y, Wu D, Zhang Z. Blood-brain barrier damage accelerates the accumulation of micro- and nanoplastics in the human central nervous system. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136028. [PMID: 39366047 DOI: 10.1016/j.jhazmat.2024.136028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
The widespread use of plastics has led to increased micro- and nanoplastics (MNPs) pollution, resulting in significant environmental challenges and concerns about potential harm to human health. This study investigated whether certain types of MNPs can accumulate in the human central nervous system (CNS) and trigger inflammatory responses, particularly after CNS infection. Our analysis of 28 cerebrospinal fluid (CSF) samples from 28 patients with or without CNS infection revealed that only polystyrene (PS), polyethylene (PE), polypropylene (PP), and polyvinyl chloride (PVC) were capable of selectively entering the human CNS. Concentrations of PP and PE were positively correlated with the CSF albumin index. The levels of interleukin-6 (IL-6) and interleukin-8 (IL-8) were significantly increased in patients with CNS infections. However, concentrations of MNPs were not significantly associated with CSF levels of IL-6 or IL-8. Overall, these findings suggest that specific MNPs can penetrate the human CNS, especially after impairment of the blood-brain barrier. Notably, MNPs derived from commonly used plastics did not significantly induce or exacerbate inflammation in the human CNS.
Collapse
Affiliation(s)
- Jian Xie
- Department of Neurology in Affiliated ZhongDa Hospital and Jiangsu Provincial Medical Key Discipline, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Jiale Ji
- Department of Neurology in Affiliated ZhongDa Hospital and Jiangsu Provincial Medical Key Discipline, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yun Sun
- Department of Neurology in Affiliated ZhongDa Hospital and Jiangsu Provincial Medical Key Discipline, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yifan Ma
- Department of Neurology in Affiliated ZhongDa Hospital and Jiangsu Provincial Medical Key Discipline, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Di Wu
- Department of Neurology in Affiliated ZhongDa Hospital and Jiangsu Provincial Medical Key Discipline, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210009, China.
| | - Zhijun Zhang
- Department of Neurology in Affiliated ZhongDa Hospital and Jiangsu Provincial Medical Key Discipline, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210009, China; Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Department of Mental Health and Public Health, Faculty of Life and Health Sciences of Shenzhen University of Advanced Technology, The Brain Cognition and Brain Disease institute of Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
17
|
Fu H, Zhang Q, Liu Y, Zheng Z, Cheng H, Huang B, Wang P. Photocatalytic Overall Water Splitting with a Solar-to-Hydrogen Conversion Efficiency Exceeding 2 % through Halide Perovskite. Angew Chem Int Ed Engl 2024; 63:e202411016. [PMID: 39193810 DOI: 10.1002/anie.202411016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 08/29/2024]
Abstract
Photocatalytic water splitting using semiconductors is a promising approach for converting solar energy to clean energy. However, challenges such as sluggish water oxidation kinetics and limited light absorption of photocatalyst cause low solar-to-hydrogen conversion efficiency (STH). Herein, we develop a photocatalytic overall water splitting system using I3 -/I- as the shuttle redox couple to bridge the H2-producing half-reaction with the O2-producing half-reaction. The system uses the halide perovskite of benzylammonium lead iodide (PMA2PbI4, PMA=C6H5CH2NH2) loaded with MoS2 (PMA2PbI4/MoS2) as the H2 evolution photocatalyst, and the RuOx-loaded WO3 (WO3/RuOx) as the O2 evolution photocatalyst, achieving a H2/O2 production in stoichiometric ratio with an excellent STH of 2.07 %. This work provides a detour route for photocatalytic water splitting with the help of I3 -/I- shuttle redox couple in the halide perovskite HI splitting system and enlightens one to integrate and utilize multi catalytic strategies for solar-driven water splitting.
Collapse
Affiliation(s)
- Hui Fu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Qianqian Zhang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
18
|
Fei J, Bai X, Jiang C, Yin X, Ni BJ. A state-of-the-art review of environmental behavior and potential risks of biodegradable microplastics in soil ecosystems: Comparison with conventional microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176342. [PMID: 39312976 DOI: 10.1016/j.scitotenv.2024.176342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/03/2024] [Accepted: 09/15/2024] [Indexed: 09/25/2024]
Abstract
As the use of biodegradable plastics becomes increasingly widespread, their environmental behaviors and impacts warrant attention. Unlike conventional plastics, their degradability predisposes them to fragment into microplastics (MPs) more readily. These MPs subsequently enter the terrestrial environment. The abundant functional groups of biodegradable MPs significantly affect their transport and interactions with other contaminants (e.g., organic contaminants and heavy metals). The intermediates and additives released from depolymerization of biodegradable MPs, as well as coexisting contaminants, induce alterations in soil ecosystems. These processes indicate that the impacts of biodegradable MPs on soil ecosystems might significantly diverge from conventional MPs. However, an exhaustive and timely comparison of the environmental behaviors and effects of biodegradable and conventional MPs within soil ecosystems remains scarce. To address this gap, the Web of Science database and bibliometric software were utilized to identify publications with keywords containing biodegradable MPs and soil. Moreover, this review comprehensively summarizes the transport behavior of biodegradable MPs, their role as contaminant carriers, and the potential risks they pose to soil physicochemical properties, nutrient cycling, biota, and CO2 emissions as compared with conventional MPs. Biodegradable MPs, due to their great transport and adsorption capacity, facilitate the mobility of coexisting contaminants, potentially inducing widespread soil and groundwater contamination. Additionally, these MPs and their depolymerization products can disrupt soil ecosystems by altering physicochemical properties, increasing microbial biomass, decreasing microbial diversity, inhibiting the development of plants and animals, and increasing CO2 emissions. Finally, some perspectives are proposed to outline future research directions. Overall, this study emphasizes the pronounced effects of biodegradable MPs on soil ecosystems relative to their conventional counterparts and contributes to the understanding and management of biodegradable plastic contamination within the terrestrial ecosystem.
Collapse
Affiliation(s)
- Jiao Fei
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Xue Bai
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
19
|
Ai J, Wang B, Gao X, Yuan Y, Zhou S, Yin X, Wang J, Jia H, Sun H. Effect of biosurfactants on the transport of polyethylene microplastics in saturated porous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176636. [PMID: 39357764 DOI: 10.1016/j.scitotenv.2024.176636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/11/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Microplastic (MP) pollution has become a significant global environmental issue, and the potential application of biosurfactants in soil remediation has attracted considerable attention. However, the effects of biosurfactants on the transport and environmental risks of MPs are not fully understood. This study investigated the transport of polyethylene (PE) in the presence of two types of biosurfactants: typical anionic biosurfactant (rhamnolipids) and non-ionic biosurfactant (sophorolipids) using column experiments. We explored the potential mechanisms involving PE surface roughness and the influence of dissolved organic matter (DOM) on PE transport in the column under the action of biosurfactants, utilizing the Wenzel equation and fluorescence analysis. The results revealed that both the concentration of biosurfactants and the surface roughness of PE were advantageous for the adhesion of biosurfactants to the PE surface, thereby enhancing the mobility of PE in the column. The proportion of hydrophobic substances in various DOM sources is a critical factor that enhances PE transport in the column. However, the biosurfactant-mediated enhancement of PE transport was inhibited by the biosurfactant-DOM mixture. This was mainly due to DOM occupying the adhesion sites of biosurfactants on PE surfaces. Moreover, the mobility of PE in the presence of sophorolipids is higher than that in the presence of rhamnolipids because the combined hydrophobic and electrostatic forces between PE and sophorolipids create synergistic effects that improve PE stability. Additionally, the mobility of PE increased with rising pH and decreasing ionic strength. These findings provide a more comprehensive understanding of MP transport when using biosurfactants for soil remediation.
Collapse
Affiliation(s)
- Juehao Ai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Binying Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaolong Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yunning Yuan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Shi Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Hongtao Jia
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
20
|
Zhang X, Shen Z, Wu J, Su M, Zheng L, Xie M, Hong H, Huang X, Lu H. High salinity restrains microplastic transport and increases the risk of pollution in coastal wetlands. WATER RESEARCH 2024; 267:122463. [PMID: 39306930 DOI: 10.1016/j.watres.2024.122463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 11/28/2024]
Abstract
Microplastics (MPs) pollution in coastal wetlands has attracted global attention. However, few studies have focused on the effect of soil properties and structure on MP transport in coastal wetlands. Salinity is one of the most pivotal environmental factors and varies in coastal wetlands. Here, we conducted column experiments and employed fluorescent labeling combined with Derjaguin-Landau-Verwey-Overbeek (DLVO) theoretical calculations to reveal the vertical transport behavior of MPs. Specifically, we investigated the influence of five salinity levels (0, 0.035, 0.35, 3.5, and 35 PSU) on MP transport in different coastal wetlands soils and a sand through the X-ray photoelectron spectroscopy and nondestructive computed tomography technique. The results indicated that the migration capability of MPs in soils is significantly lower than in quartz sand, and that the migration capability varies depending on the soil type. This variability may be due to soil minerals and microporous structures providing numerous attachment sites for MPs and may be explained by the DLVO energy barrier of MP-Soil (6568-7767 KT) and MP-sand (5250 KT). Salinity plays a crucial role in modifying the chemical properties of pore water (i.e., zeta potential) as well as altering the soil elemental composition and pore structure. At 0 PSU, the maximum C/C0 of MPs through the sand, Soil 1, and Soil 2 transport columns were 37.86 ± 2.36 %, 23.96 ± 1.71 %, and 3.94 ± 0.68 %, respectively. When salinity increased to 3.5 PSU, MP mobility decreased by over 20 %. Additionally, a salinity of 35 PSU may alter the soil pore distribution, thereby changing water flow paths and velocities to constrain the migration of MPs in soils. These findings could provide valuable insights into understanding the environmental behavior and transport mechanisms of MPs, and lay a solid scientific basis for accurately simulating and predicting the fate of MPs in coastal wetland water-soil systems. We highlight the effect of salinity on the fate of MPs and the corresponding priority management of MPs risks under the background of global climate change.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhanyi Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Jianyong Wu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Manlin Su
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Linke Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Minwei Xie
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Hualong Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaohong Huang
- School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Haoliang Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
21
|
Dong S, Su X, Sheng L, Yu Q, Yu Y, Sun Y, Wu J, Gao B. Pore-Scale Visualized Transport and Retention of Fibrous and Fragmental Microplastics in Porous Media under Various Surfactant Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21058-21067. [PMID: 39527491 DOI: 10.1021/acs.est.4c10405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
For advancing current knowledge on the transport of microplastics (MPs) in the environment, this study used a real-time pore-scale visualization and quantitative system to examine the motions and mobility of fibrous and fragmental MPs under various surfactant (AEO, CTAC, and AES) and electrolyte conditions. The videos showed that fibrous MPs formed tangles through entanglement, which moved in an axial direction aligned with the flow streamline. Both fibrous and fragmental MPs showed suspended movement as well as surface movement (e.g., sliding, rolling, and saltating) in the porous media. Some deposited fibrous MPs showed flexible deformation due to shear flow. Compared to fragmental MPs, fibrous MPs showed lower mobility due to the tendency to deposit and clog the porous media. The mobility of fragmental MPs was enhanced in the presence of AEO but remained relatively unchanged with AES. In the presence of CTAC, the mobility of fragmental MPs was slightly inhibited under low ionic strength (IS) conditions but remarkably enhanced under high IS conditions. However, the mobility of fibrous MPs was largely unaffected by the surfactants. Both the numerical model and FDLVO calculations effectively described the transport and deposition of MPs in porous media.
Collapse
Affiliation(s)
- Shunan Dong
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Xiaoting Su
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Liting Sheng
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Qianhui Yu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Yulu Yu
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Yuanyuan Sun
- School Earth Science & Engineering, Nanjing University, Nanjing 210023, China
| | - Jichun Wu
- School Earth Science & Engineering, Nanjing University, Nanjing 210023, China
| | - Bin Gao
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 United States
| |
Collapse
|
22
|
Yang H, Lin X, Lu J, Zhao X, Wu D, Kim H, Su L, Cai L. Effect of shape on the transport and retention of nanoplastics in saturated quartz sand. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135766. [PMID: 39244984 DOI: 10.1016/j.jhazmat.2024.135766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Nanoplastics (NPs) pose great challenges to soil-groundwater systems. This study investigated the transport and retention of self-synthesized 0.5-μm polystyrene NPs with different shapes using column experiments. The regular NPs were with spherical shapes, while the irregular NPs were with toroid-like shapes. The toroid-like shapes were the irregular shapes (with low aspect ratio) which have not been studied yet. The explorations were carried out in both 5-25 mM NaNO3 and 1-10 mM Ca(NO3)2 solutions. Both breakthrough curves (BTCs) and retained profiles (RPs) were monitored. Our findings uncovered a clear disparity in the transport of irregular and regular NPs, with irregular particles exhibiting lower transport ability compared to the regular ones. For example, the average breakthrough plateaus of the regular and irregular NPs were ∼0.9 and ∼0.5, respectively, in 10 mM NaNO3. In-depth theoretical analysis indicated that the lower XDLVO interaction energy barrier between the irregular NPs and quartz sand was one factor, and the greater margination of irregular NPs on quartz sand, as verified by the numerical simulation, was another factor leading to the decreased transport and increased retention of the irregular NPs. The obtained results highlighted the significance of considering particle shape in future modelling and predicting the fate of NPs in real environmental circumstances.
Collapse
Affiliation(s)
- Haiyan Yang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Xunyang Lin
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Jizhe Lu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoning Zhao
- Beijing Institute of Metrology, Beijing 100029, China
| | - Dan Wu
- China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Hyunjung Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Lei Su
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Li Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
23
|
Chanda M, Bathi JR, Khan E, Katyal D, Danquah M. Microplastics in ecosystems: Critical review of occurrence, distribution, toxicity, fate, transport, and advances in experimental and computational studies in surface and subsurface water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122492. [PMID: 39307085 DOI: 10.1016/j.jenvman.2024.122492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 11/17/2024]
Abstract
Microplastics (MPs), particles under 5 mm, pervade water, soil, sediment, and air due to increased plastic production and improper disposal, posing global environmental and health risks. Examining their distribution, quantities, fate, and transport is crucial for effective management. Several studies have explored MPs' sources, distribution, transport, and biological impacts, primarily focusing on the marine environment. However, there is a need for a comprehensive review of all environmental systems together for enhanced pollution control. This review critically examines the occurrence, distribution, fate, and transport of MPs in the following environments: freshwater, marine, and terrestrial ecosystems. The concentration of MPs is highly variable in the environment, ranging from negligible to significant amounts (0.003-519.223 items/liter in water and 0-18,000 items/kg dry weight sediment, respectively). Predominantly, these MPs manifest as fibers and fragments, with primary polymer types including polypropylene, polystyrene, polyethylene, and polyethylene terephthalate. A complex interplay of natural and anthropogenic actions, including wastewater treatment plant discharges, precipitation, stormwater runoff, inadequate plastic waste management, and biosolid applications, influences MPs' presence and distribution. Our critical synthesis of existing literature underscores the significance of factors such as wind, water flow rates, settling velocities, wave characteristics, plastic morphology, density, and size in determining MPs' transport dynamics in surface and subsurface waters. Furthermore, this review identifies research gaps, both in experimental and simulation, and outlines pivotal avenues for future exploration in the realm of MPs.
Collapse
Affiliation(s)
- Mithu Chanda
- Civil and Chemical Engineering Department, University of Tennessee at Chattanooga, Chattanooga, TN, 37403, United States
| | - Jejal Reddy Bathi
- Civil and Chemical Engineering Department, University of Tennessee at Chattanooga, Chattanooga, TN, 37403, United States.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV, 89154, United States
| | - Deeksha Katyal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, 110078, New Delhi, India
| | - Michael Danquah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, United States
| |
Collapse
|
24
|
Wu T, He C, Chang H, Bian C, Zhou R, Dong Z, Li Y, Li B. Adsorption-desorption mechanisms and migration behavior of fluchlordiniliprole in four different soils under varied conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117026. [PMID: 39270478 DOI: 10.1016/j.ecoenv.2024.117026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/30/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
Utilizing infrared spectroscopy coupled with batch equilibrium methods, the adsorption and desorption characteristics of the novel Insecticide fluchlordiniliprole were assessed in four different soil types. It was found that fluchlordiniliprole's adsorption and desorption in these soils were consistent with the Freundlich isotherm, exhibiting adsorption capacities (KF-ads) ranging from 8.436 to 36.269. Temperature fluctuations, encompassing both high and low extremes, impaired the ability of soil to adsorb fluchlordiniliprole. In addition, adsorption dynamics were modulated by several other factors, including soil pH, ionic strength, amendments (e.g., biochar and humic substances), and the presence of various surfactants and microplastics. Although capable of leaching, fluchlordiniliprole exhibited weak mobility in most soils. Therefore, it appears that fluchlordiniliprole seems to pose a threat to surface soil and aquatic biota, but a minimal threat to groundwater. SYNOPSIS STATEMENT: This research examines the dynamics of fluchlordiniliprole in soil, an will aid in maintaining ecological safety and managing agricultural pesticides. The study's comprehensive analysis of adsorption, desorption, and soil migration patterns significantly contributes to our understanding of pesticide interactions with diverse soil types. The results of this study will enable the development of environmentally responsible agricultural practices.
Collapse
Affiliation(s)
- Tianqi Wu
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chuan He
- Jiangxi Provincial Ganfu Plain Hydraulic Engineering Administration, Nanchang 330096, China
| | - Hailong Chang
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chuanfei Bian
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Rendan Zhou
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zemin Dong
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Technology Extension Center of Jiangxi Province, Nanchang 330046, China
| | - Yuqi Li
- School of Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Baotong Li
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
25
|
Liu H, Wen Y. Evaluation of the migration behaviour of microplastics as emerging pollutants in freshwater environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58294-58309. [PMID: 39298032 DOI: 10.1007/s11356-024-34994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
Microplastics, as an emerging pollutant, are widely distributed in freshwater environments such as rivers and lakes, posing immeasurable potential risks to aquatic ecosystems and human health. The migration behaviour of microplastics can exacerbate the degree or scope of risk. A complete understanding of the migration behaviour of microplastics in freshwater environments, such as rivers and lakes, can help assess the state of occurrence and environmental risk of microplastics and provide a theoretical basis for microplastic pollution control. Firstly, this review presents the hazards of microplastics in freshwater environments and the current research focus. Then, this review systematically describes the migration behaviours of microplastics, such as aggregation, horizontal transport, sedimentation, infiltration, stranding, resuspension, bed load, and the affecting factors. These migration behaviours are influenced by the nature of the microplastics themselves (shape, size, density, surface modifications, ageing), environmental conditions (ionic strength, cation type, pH, co-existing pollutants, rainfall, flow regime), biology (vegetation, microbes, fish), etc. They can occur cyclically or can end spontaneously. Finally, an outlook for future research is given.
Collapse
Affiliation(s)
- Haicheng Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215000, China.
| | - Yu Wen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215000, China
| |
Collapse
|
26
|
Cheng D, Liu H, Qian W, Yao R, Wang X. Migration characteristics of microplastics in riparian soils and groundwater. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:796. [PMID: 39112830 DOI: 10.1007/s10661-024-12962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/01/2024] [Indexed: 09/14/2024]
Abstract
Investigations have revealed the presence of microplastics in both soil and groundwater, but the migration characteristics from soil to groundwater remain incompletely understood. In this study, two sampling sections consisting of soil-groundwater-river water were established near Lianxi Bridge and Xilin Bridge along the Jiuxi River in Xiamen. A total of 22 soil samples, 36 groundwater samples, and 18 river water samples were collected. Microplastics were detected in all samples with an abundance range of 392-836 n/kg in soil (mean, 655 ± 177 n/kg), 0.58-2.48 n/L groundwater (mean, 1.23 ± 0.42 n/L), and 0.38-1.80 n/L in river water (mean, 0.86 ± 0.41 n/L). Flakes predominantly constituted the shape of microplastics found in soil, while fibers dominated those present in water. Black, yellow, and red were the dominant color types. Polyamide (PA) and polyethylene (PE) were the main components of microplastics within soils, whereas polyethylene terephthalate (PET), polypropylene (PP), and PA prevailed within water. Microplastic particle sizes ranged from 39 to 2498 μm in soils, mainly from 29 to 3394 μm in water. The upstream section displayed higher abundances of microplastic compared to the downstream, revealing the soil particles having an intercepting effect on microplastics. The distribution and migration of microplastics in soil and groundwater are affected by many factors, including natural and anthropogenic factors, such as soil depth, soil properties, pore structure, hydrodynamics, hydraulic connections between groundwater and surface water, the extensive utilization and disposal of plastics, irrational exploitation of groundwater, and morphology and types of microplastics. These research findings contribute to a better understanding of the pathways, migration capacity, and influencing factors associated with microplastic entry into groundwater, thereby providing valuable technical support for the development of strategies aimed at controlling microplastic pollution.
Collapse
Affiliation(s)
- Dongdong Cheng
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China
| | - Huatai Liu
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China.
- Key Laboratory of the Coastal and Wetland Ecosystems, Xiamen University, Ministry of Education, Xiamen, 361102, PR China.
| | - Weixu Qian
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China
| | - Rui Yao
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China
| | - Xinhong Wang
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, PR China
| |
Collapse
|
27
|
Li Y, Ding BH, Geng X. Effect of biochar on microplastics penetration treatment within soil porous medium under the wetting-drying cycles and optimisation of soil-biochar mixing format. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173194. [PMID: 38744391 DOI: 10.1016/j.scitotenv.2024.173194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Plant-based biochar was demonstrated promising capability in adsorbing microplastic particles (MPs) within soil porous mediums. However, biochar's function in mitigating MPs' vertical penetration during wetting-drying cycles, typical of seasonal precipitation and evaporation, remains uncertain. Furthermore, few studies have investigated the structures of how biochar combines with soil. This study conducted column tests to assess the MPs retention capabilities of soil-biochar porous media under saturated and wetting-drying conditions. The water retention and hydrophilic properties were investigated to elucidate the impact of wetting-drying cycles. Additionally, different biochar-soil structures were compared to optimise the structural design. Without biochar, wetting-drying cycles resulted in 8.74 % more MPs escaping from samples. However, incorporating 15 % biochar led to only around 2 % more MPs in effluent. Biochar significantly enhanced soil's MP absorption capacity and mitigated the negative effects of wetting-drying cycles. Biochar's alveolate morphology provides ample adsorption sites and creates complex flow paths. The hydrophilic groups of biochar and capillarity by micropores facilitated slower water release during drying, preventing crack propagation and flush on MP particles. This effect was more pronounced with higher biochar content and lower porosity. Moreover, layer structure was found to improve MPs removal, benefiting the long-term performance and management of the biochar functional layer.
Collapse
Affiliation(s)
- Yixin Li
- School of Engineering, University of Warwick, CV4 7AL Coventry, UK
| | | | - Xueyu Geng
- School of Engineering, University of Warwick, CV4 7AL Coventry, UK.
| |
Collapse
|
28
|
Li W, Brunetti G, Bolshakova A, Stumpp C. Effect of particle density on microplastics transport in artificial and natural porous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173429. [PMID: 38782271 DOI: 10.1016/j.scitotenv.2024.173429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/07/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
The occurrence and persistence of microplastics (MPs) in natural environments are of increasing concern. Along with this, the transport of MPs in sediments has been investigated mainly focusing on the effect of plastic size and shape, media size effect, and solution chemistry. Yet, the influence of particle density is only partially understood. Therefore, column experiments on the transport of variably buoyant MPs in saturated natural sediments and glass beads were conducted, and transport parameters were quantified using a two-site kinetic transport model with a depth-dependent blocking function (the amount of retained MPs does not decrease at a constant rate with increasing depth, the majority of MPs were retained near the column inlet). Neutral, sinking, and buoyant MPs within the same size range were selected, with stable water isotope applied as conservative tracer to explore water and MP movement in the tested sediments. The results showed that 95.5 ± 1.4% of sinking MPs remained in columns packed with gravel, followed by buoyant and neutral MPs, thus indicating that particle density does affect MP mobility. Similar recovered amounts of MPs were found in columns packed with glass beads, indicating that tested sediment types do not affect the deposition behavior of MPs. The breakthrough curves of MPs were accurately described by the selected model. However, the simulated retention profiles overestimated the observed MP amount in layers closest to the column inlet. The coupled experimental and modeled results suggest an enhanced retention of sinking MPs, while neutrally and buoyant MPs exhibit a higher mobility in comparison. Thus, neutral or buoyant MPs can potentially pose a higher contamination risk to subsurface porous media environments compared to sinking MPs. Discrepancies between observed and simulated retention profiles indicate that future model development is needed for advancing the MP deposition as affected by particle density.
Collapse
Affiliation(s)
- Wang Li
- University of Natural Resources and Life Sciences, Vienna, Department of Water, Atmosphere and Environment, Institute of Soil Physics and Rural Water Management, Muthgasse 18, 1190 Vienna, Austria.
| | - Giuseppe Brunetti
- University of Calabria, Department of Civil Engineering, Rende, Italy
| | - Anastasiia Bolshakova
- University of Natural Resources and Life Sciences, Vienna, Department of Water, Atmosphere and Environment, Institute of Soil Physics and Rural Water Management, Muthgasse 18, 1190 Vienna, Austria
| | - Christine Stumpp
- University of Natural Resources and Life Sciences, Vienna, Department of Water, Atmosphere and Environment, Institute of Soil Physics and Rural Water Management, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
29
|
Schenkel CA, Brown MRM, Lenczewski ME. Impact of Type and Shape of Microplastics on the Transport in Column Experiments. GROUND WATER 2024; 62:537-547. [PMID: 37983834 DOI: 10.1111/gwat.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
The pervasive nature of plastic and the longevity of plastics leaves a legacy of microplastics (MPs) that contaminate our environment, including drinking water sources. Although MPs have been documented in every environmental setting, a paucity of research has focused on the transport and fate of MPs in groundwater. Previous field and laboratory studies have shown that MPs can migrate through aquifer material and are influenced by environmental factors. This study used controlled column experiments to investigate the influence of polymer type (polyamide, polyethylene, polypropylene, and polyester) and particle shape (fragment, fiber, and sphere) on MP retardation and retention. The results showed that all individual MP types investigated were retarded compared to the NaCl tracer, with a retardation factor ranging from 1.53 to 1.75. While hypothesized that presence of multiple types and shapes could change mobility, the results indicate that this hypothesis is not correct for the conditions tested. This study provides new insights into MP transport in groundwater systems based on the characteristics of MP particles. In addition, this study demonstrates the need for further research on types of MPs and under more conditions, especially in the presence of a mixture of types and shapes of MPs to gauge what is occurring in natural systems where many MPs are present together.
Collapse
Affiliation(s)
- Cheyanne A Schenkel
- Department of Earth, Atmosphere and Environment, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL, 60115, USA
| | - Megan R M Brown
- Department of Earth, Atmosphere and Environment, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL, 60115, USA
| | - Melissa E Lenczewski
- Department of Earth, Atmosphere and Environment, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL, 60115, USA
| |
Collapse
|
30
|
Sudarsan JS, Dogra K, Kumar R, Raval NP, Leifels M, Mukherjee S, Trivedi MH, Jain MS, Zang J, Barceló D, Mahlknecht J, Kumar M. Tricks and tracks of prevalence, occurrences, treatment technologies, and challenges of mixtures of emerging contaminants in the environment: With special emphasis on microplastic. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104389. [PMID: 38941876 DOI: 10.1016/j.jconhyd.2024.104389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
This paper aims to emphasize the occurrence of various emerging contaminant (EC) mixtures in natural ecosystems and highlights the primary concern arising from the unregulated release into soil and water, along with their impacts on human health. Emerging contaminant mixtures, including pharmaceuticals, personal care products, dioxins, polychlorinated biphenyls, pesticides, antibiotics, biocides, surfactants, phthalates, enteric viruses, and microplastics (MPs), are considered toxic contaminants with grave implications. MPs play a crucial role in transporting pollutants to aquatic and terrestrial ecosystems as they interact with the various components of the soil and water environments. This review summarizes that major emerging contaminants (ECs), like trimethoprim, diclofenac, sulfamethoxazole, and 17α-Ethinylestradiol, pose serious threats to public health and contribute to antimicrobial resistance. In addressing human health concerns and remediation techniques, this review critically evaluates conventional methods for removing ECs from complex matrices. The diverse physiochemical properties of surrounding environments facilitate the partitioning of ECs into sediments and other organic phases, resulting in carcinogenic, teratogenic, and estrogenic effects through active catalytic interactions and mechanisms mediated by aryl hydrocarbon receptors. The proactive toxicity of ECs mixture complexation and, in part, the yet-to-be-identified environmental mixtures of ECs represent a blind spot in current literature, necessitating conceptual frameworks for assessing the toxicity and risks with individual components and mixtures. Lastly, this review concludes with an in-depth exploration of future scopes, knowledge gaps, and challenges, emphasizing the need for a concerted effort in managing ECs and other organic pollutants.
Collapse
Affiliation(s)
- Jayaraman Sethuraman Sudarsan
- School of Energy and Environment, NICMAR (National Institute of Construction Management and Research) University, Pune 411045, India
| | - Kanika Dogra
- School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Nirav P Raval
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Andhra Pradesh 522 240, India
| | - Mats Leifels
- Division Water Quality and Health, Karl Landsteiner University for Health Sciences, Dr.-Karl-Dorrek-Strasse 30, 3500 Krems an der Donau, Austria
| | - Santanu Mukherjee
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India.
| | - Mrugesh H Trivedi
- Department of Earth and Environmental Science, KSKV Kachchh University, Bhuj-Kachchh, Gujarat 370001, India
| | - Mayur Shirish Jain
- Department of Civil Engineering, Indian Institute of Technology Indore, Simrol, 453552, India
| | - Jian Zang
- School of Civil Engineering, Chongqing University, Chongqing, China
| | - Damià Barceló
- School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Chemistry and Physics Department, University of Almeria, Ctra Sacramento s/n, 04120, Almería, Spain
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, Nuevo Leon 64849, Mexico
| | - Manish Kumar
- School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, Nuevo Leon 64849, Mexico.
| |
Collapse
|
31
|
Zhou S, Song J, Sun H, Jiang Y, Jia H, Wang J, Yin X. Transport of polyethylene and polypropylene microplastics under the action of agricultural chemicals: Role of pesticide adjuvants and neonicotinoid active ingredients. ENVIRONMENTAL RESEARCH 2024; 252:118975. [PMID: 38649018 DOI: 10.1016/j.envres.2024.118975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Understanding the impact of various agricultural chemical components on the fate and transport of microplastics (MPs) in the subsurface is essential. In this study, column experiments on saturated porous media were conducted to explore the influence of the coexistence environment of pesticide adjuvants (surfactants) and active ingredients (neonicotinoids) on the transport of polyethylene (PE) and polypropylene (PP) MPs. An anionic surfactant (sodium dodecyl sulfate (SDS)), a nonionic surfactant (nonylphenol ethoxylate (NP-40)), and three neonicotinoid insecticides (acetamiprid, dinotefuran, and nitenpyram) could independently increase MP migration by 9.31%-61.01% by improving the hydrophilicity. Acetamiprid or dinotefuran reduced the adhesion work of the binary system by competing with SDS for adsorption sites, thereby inhibiting PE mobility. However, nitenpyram in the mixture was not easily adsorbed on the surface of PE MPs together with SDS because of nitenpyram's high hydrophilicity. Neonicotinoid molecules could not reduce the hydrophilic modification of SDS on PP MPs by competing for adsorption sites. Owing to their weak charge and adhesion work of nonionic surfactants (-4.80 mV and 28.45 kT for PE and -8.21 mV and 17.64 kT for PP), neonicotinoids tended to occupy the adsorption sites originally belonging to NP-40. The long molecular chain of NP-40 made it difficult for high-concentration neonicotinoids to affect the adhesion on MPs. In addition, NP-40 was harder to peel off from the MP surface than SDS, leading to a larger MP transport ability in the sand column.
Collapse
Affiliation(s)
- Shi Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jie Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yanji Jiang
- School of Environment, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Hongtao Jia
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, Xinjiang, 830052, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Tai'an, Shandong, 271000, PR China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
32
|
Liu H, Wen Y, Xu J. Comparative study of polystyrene microplastic transport behavior in three different filter media: Quartz sand, zeolite, and anthracite. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104395. [PMID: 39018629 DOI: 10.1016/j.jconhyd.2024.104395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/22/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Microplastics (MPs) are emerging contaminants that are attracting increasing interest from researchers, and the safety of drinking water is greatly affected by their transportation during filtration. Polystyrene (PS) was selected as a representative MPs, and three filter media (quartz sand, zeolite, and anthracite) commonly found in water plants were used. The retention patterns of PS-MPs by various filter media under various background water quality conditions were methodically investigated with the aid of DLVO theory and colloidal filtration theory. The results show that the different structures and elemental compositions of the three filter media cause them to exhibit different surface roughnesses and surface potentials. A greater surface roughness of the filter media can provide more deposition sites for PS-MPs, and the greater surface roughness of zeolite and anthracite significantly enhances their ability to inhibit the migration of PS-MPs compared with that of quartz sand. However, surface roughness is not the only factor affecting the migration of MPs. The lower absolute value of the surface potential of anthracite causes the DLVO energy between it and PS-MPs to be significantly lower than that between zeolite and PS-MPs, which results in stronger retention of PS-MPs by anthracite, which has a lower surface roughness, than zeolite, which has a higher surface roughness. The transport of PS-MPs in the medium is affected by the combination of the surface roughness of the filter media and the DLVO energy. Under the same operating conditions, the retention efficiencies of the three filter materials for PS-MPs followed the order of quartz sand < zeolite < anthracite. Additionally, the conditions of the solution markedly influenced the transport ability of PS-MPs within the simulated filter column. The transport PS-MPs in the simulated filter column decreased with increasing solution ionic strength and cation valence. Naturally, dissolved organic matter promoted the transfer of PS-MPs in the filter layer, and humic acid had a much stronger facilitating impact than fulvic acid. The study findings might offer helpful insight for improving the ability of filter units ability to retain MPs.
Collapse
Affiliation(s)
- Haicheng Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215000, China.
| | - Yu Wen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215000, China
| | - Jingkun Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215000, China
| |
Collapse
|
33
|
He YQ, McDonough LK, Zainab SM, Guo ZF, Chen C, Xu YY. Microplastic accumulation in groundwater: Data-scaled insights and future research. WATER RESEARCH 2024; 258:121808. [PMID: 38796912 DOI: 10.1016/j.watres.2024.121808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Given that microplastics (MPs) in groundwater have been concerned for risks to humans and ecosystems with increased publications, a Contrasting Analysis of Scales (CAS) approach is developed by this study to synthesize all existing data into a hierarchical understanding of MP accumulation in groundwater. Within the full data of 386 compiled samples, the median abundance of MPs in Open Groundwater (OG) and Closed Groundwater (CG) were 4.4 and 2.5 items/L respectively, with OG exhibiting a greater diversity of MP colors and larger particle sizes. The different pathways of MP entry (i.e., surface runoff and rock interstices) into OG and CG led to this difference. At the regional scale, median MP abundance in nature reserves and landfills were 17.5 and 13.4 items/L, respectively, all the sampling points showed high pollution load risk. MPs in agricultural areas exhibited a high coefficient of variation (716.7%), and a median abundance of 1.0 items/L. Anthropogenic activities at the regional scale are the drivers behind the differentiation in the morphological characteristics of MPs, where groundwater in residential areas with highly toxic polymers (e.g., polyvinylchloride) deserves prolonged attention. At the local scale, the transport of MPs is controlled by groundwater flow paths, with a higher abundance of MP particles downstream than upstream, and MPs with regular surfaces and lower resistance (e.g., pellets) are more likely to be transported over long distances. From the data-scaled insight this study provides on the accumulation of MPs, future research should be directed towards network-based observation for groundwater-rich regions covered with landfills, residences, and agricultural land.
Collapse
Affiliation(s)
- Yu-Qin He
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liza K McDonough
- Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Rd, Lucas Heights, NSW 2234, Australia
| | - Syeda Maria Zainab
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Zhao-Feng Guo
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Cai Chen
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao-Yang Xu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
34
|
Xu D, Ji Y, Du B, He B, Chen H, Sun H, Yin X. The synergistic effect of typical chiral organic acids and solution chemistry conditions on the transport of 2-arylpropionic acid chiral derivatives in porous media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124059. [PMID: 38703979 DOI: 10.1016/j.envpol.2024.124059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
The hazards of man-made chiral compounds are of great public concern, with reports of worrying stereoselective compounds and an urgent need to assess their transport. This study evaluated the transport of 2-arylpropionic acid derivatives enantiomers (2-APA) in porous media under a variety of solution chemistry conditions via column packing assays. The results revealed the introduction of Malic acid (MA) enantiomers enhanced the mobility of 2-APA enantiomers, but the enhancement effect was different for different 2-APA enantiomers. Batch sorption experiments confirmed that the MA enantiomers occupied the sorption site of the quartz sand, thus reducing the deposition of the 2-APA enantiomer. Homo- or heterochirality between 2-APA and MA dominates the transport of 2-APA enantiomers, with homochirality between them triggering stronger retention and vice versa. Further evaluating the effect of solution chemistry conditions on the transport of 2-APA enantiomers, increased ionic strength attenuated the mobility of 2-APA enantiomers, whereas introduced coexisting cations enhanced the retention of 2-APA enantiomers in the column. The redundancy analyses corroborated these solution chemistry conditions were negatively correlated with the transport of 2-APA enantiomers. The coupling of pH and these conditions reveals electrostatic forces dominate the transport behavior and stereoselective interactions of 2-APA enantiomers. Distinguishing the transport of enantiomeric pair helps to understand the difference in stereoselectivity of enantiomers and promises to remove the more hazardous one.
Collapse
Affiliation(s)
- Duo Xu
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, PR China
| | - Yantian Ji
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, PR China
| | - Bowen Du
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, PR China
| | - Bo He
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, PR China
| | - Hongyang Chen
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, PR China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, PR China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
35
|
Guo J, Rong H, He L, Chen C, Zhang B, Tong M. Effects of arsenic on the transport and attachment of microplastics in porous media. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134285. [PMID: 38640672 DOI: 10.1016/j.jhazmat.2024.134285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/23/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Understanding the impact of arsenic (As(III), inorganic pollutant widely present in natural environments) on microplastics (MPs, one type of emerging contaminants) mobility is essential to predict MPs fate and distribution in soil-groundwater systems, yet relevant research is lacking. This study explored the effects of As(III) copresent in suspensions (0.05, 0.5, and 5 mg/L) on MPs transport/attachment behaviors in porous media containing varied water contents (θ = 100 %, 90 %, and 60 %) under different ionic strengths (5, 10, and 50 mM NaCl) and flow rates (2, 4, and 8 m/day). Despite solution ionic strengths, flow rates, porous media water contents, sizes, and surface charges of MPs, with coexisting humic acid, and in actual water samples, As(III) of three concentrations increased MPs transport in quartz sand and natural sandy soil. The increased electrostatic repulsion between MPs and sand caused by the altered MPs surface charge via the adsorption of As(III) together with steric repulsion from As(III) in solution contributed to the promoted MPs mobility in porous media. The occupying attachment sites by As(III) partially contributed to the increased mobility of MPs with negative surface charge in porous media. Clearly, As(III) coexisting in suspensions would enhance MPs transport in porous media, increasing MPs environment risks.
Collapse
Affiliation(s)
- Jia Guo
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, College of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Haifeng Rong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Cuibai Chen
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, College of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, College of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China.
| |
Collapse
|
36
|
Li F, Huang D, Wang G, Cheng M, Chen H, Zhou W, Xiao R, Li R, Du L, Xu W. Microplastics/nanoplastics in porous media: Key factors controlling their transport and retention behaviors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171658. [PMID: 38490411 DOI: 10.1016/j.scitotenv.2024.171658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Till now, microplastics/nano-plastics(M/NPs) have received a lot of attention as emerging contaminant. As a typical but complex porous medium, soil is not only a large reservoir of M/NPs but also a gateway for M/NPs to enter groundwater. Therefore, the review of the factors controlling the transport behavior of M/NPs in porous media can provide important guidance for the risk assessment of M/NPs in soil and groundwater. In this study, the key factors controlling the transport behavior of M/NPs in porous media are systematically divided into three groups: (1) nature of M/NPs affecting M/NPs transport in porous media, (2) nature of flow affecting M/NPs transport in porous media, (3) nature of porous media affecting M/NPs transport. In each group, the specific control factors for M/NPs transport in porous media are discussed in detail. In addition to the above factors, some substances (colloids or pollutants) present in natural porous media (such as soil or sediments) will co-transport with M/NPs and affect its mobility. According to the different properties of co-transported substances, the mechanism of promoting or inhibiting the migration behavior of M/NPs in porous media was discussed. Finally, the limitations and future research directions of M/NPs transport in porous media are pointed out. This review can provide a useful reference for predicting the transport of M/NPs in natural porous media.
Collapse
Affiliation(s)
- Fei Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haojie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Li Du
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Wenbo Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
37
|
Zhang M, Hou J, Xia J, Wu J, You G, Miao L. The long-term release and particle fracture behaviors of nanoplastics retained in porous media: Effects of surfactants, natural organic matters, antibiotics, and bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171563. [PMID: 38460706 DOI: 10.1016/j.scitotenv.2024.171563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
The transport of nanoplastics (NPs) in porous media has received a lot of attention, but the studies on the long-term release of NPs retained in porous media and the particle fracture during this process are seriously lacking. For filling this deficiency, we examined the individual or synergistic effects of surfactants, natural organic matters (NOMs), antibiotics, and bacteria on the desorption, long-term release, and particle fracture behaviors of polystyrene NPs (PS-NPs) retained in porous media. It was found that the change in hydrophilicity of PS-NPs dominated the long-term release of PS-NPs retained in porous media when surfactants were present. In the single system of surfactants and the dual system of surfactants and NOMs, the release of PS-NPs were improved owing to the increasing hydrophilicity of PS-NPs, although cationic surfactants also reduced the electrostatic repulsion between PS-NPs and porous media. Increasing antibiotic concentration reduced the electrostatic repulsion between PS-NPs and porous media to inhibit the release of PS-NPs. When bacteria were present whether containing antibiotics or not, the effects on roughness of PS-NPs dominated the release of PS-NPs. The effects of surfactants and NOMs on the PS-NP desorption were similar with the long-term release, with changes in hydrophilicity dominating the process. Whereas the effects of antibiotics and bacteria on the PS-NP desorption were different with the long-term release. Surfactants and NOMs in the presence of surfactants inhibited the fracture of PS-NPs by increasing the hydrophilicity of PS-NPs brought about the coating of water molecules on PS-NPs for protection. Antibiotics had no significant effects on the fracture of PS-NPs due to unaltered vertical forces on PS-NPs and no protective effect. Bacteria in the presence or absence of antibiotics inhibited the fracture of PS-NPs by coating PS-NPs retained in porous media to protect PS-NPs from fracture.
Collapse
Affiliation(s)
- Mingzhi Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Jun Xia
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
38
|
Wang F, Shang J, Zhang Q, Lu T, Li Y, Wang X, Farooq U, Qi Z. Influence of surfactant molecular features on tetracycline transport in saturated porous media of varied surface heterogeneities. WATER RESEARCH 2024; 255:121501. [PMID: 38552491 DOI: 10.1016/j.watres.2024.121501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/24/2024]
Abstract
This study aims to understand how surfactants affect the mobility of tetracycline (TC), an antibiotic, through different aquifer media. Two anionic and cationic surfactants, sodium dodecylbenzene sulfonate (SDBS) and cetyltrimethyl ammonium bromide (CTAB), were used to study their influence on TC mobility through clean sand and humic acid (HA)-coated sand. HA coating inhibits TC mobility due to its strong interaction with TC. Both surfactants promoted TC mobility at pH 7.0 due to competitive deposition, steric effect, and increased hydrophilicity of TC. CTAB had a more substantial effect than SDBS, related to the surfactants' molecular properties. Each surfactant's promotion effects were greater in HA-coated sand than in quartz sand due to differences in surfactant retention. CTAB inhibited TC transport at pH 9.0 due to its significant hydrophobicity effect. Furthermore, in the presence of Ca2+, SDBS enhanced TC transport by forming deposited SDBS-Ca2+-TC complexes. On the other hand, CTAB increased TC mobility due to its inhibition of cation bridging between TC and porous media. The findings highlight surfactants' crucial role in influencing the environmental behaviors of tetracycline antibiotics in varied aquifers.
Collapse
Affiliation(s)
- Fei Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Jingyi Shang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Qiang Zhang
- Ecology institute of the Shandong academy of sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Taotao Lu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Yanxiang Li
- The Testing Center of Shandong Bureau of China Metallurgical Geology Bureau, Jinan 250014, China
| | - Xinhai Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Usman Farooq
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
39
|
Zhang G, Wang B, Jiang N, Pang K, Wu W, Yin X. Effect of water-soluble polymers on the transport of functional group-modified polystyrene nanoplastics in goethite-coated saturated porous media. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134044. [PMID: 38493628 DOI: 10.1016/j.jhazmat.2024.134044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
The research on the impact of water-soluble polymers (WSPs) on the migration and fate of plastic particles is extremely limited. This article explored the effects of polyacrylic acid (PAA, a common WSP) and physicochemical factors on the transport of polystyrene nanoparticles (PSNPs-NH2/COOH) with different functional groups in QS (quartz sand) and FOS (goethite-modified quartz sand, simulates mineral colloids). Research has shown that PAA can selectively adsorb onto the surface of PSNPs-NH2, forming ecological corona heterogeneous aggregates. This process increased the spatial hindrance and elastic repulsion, resulting in the recovery of PSNPs-NH2 always exceeding that of PSNPs-COOH. Overall, PAA can hinder the migration of PSNPs in QS but can promote their migration in FOS. When multivalent cations coexist with PAA, the transport of PSNPs in the media is primarily affected by cation bridging and CH-cation-π interaction. The presence of oxyanions and PAA prevents PSNPs from following the Hofmeister rule and promotes their migration (PO43-: 82.34 ± 0.16% to 94.63 ± 2.82%>SO42-: 81.38 ± 2.73% to 91.15 ± 0.93%>NO3-: 55.85 ± 0.70%-87.16 ± 3.80%). The findings of this study contribute significantly to a better understanding of the migration of WSPs and group-modified NPs in complex saturated porous media.
Collapse
Affiliation(s)
- Guangcai Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Binying Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Nan Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Kejing Pang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Wenbing Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China.
| |
Collapse
|
40
|
Gao W, Wang X, Diao Y, Gong Y, Miao J, Sang W, Yuan H, Shen Z, El-Sayed MEA, Abdelhafeez IA. Co-impacts of cation type and humic acid on migration of polystyrene microplastics in saturated porous media. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120918. [PMID: 38643625 DOI: 10.1016/j.jenvman.2024.120918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/23/2024]
Abstract
The aging process of microplastics (MPs) could significantly change their physical and chemical characteristics and impact their migration behavior in soil. However, the complex effects of different cations and humic acids (HA) on the migration of aged MPs through saturated media are not clear. In this research, the migration and retention of pristine/aged PSMPs (polystyrene microplastics) under combined effects of cations (Na+, Ca2+) (ionic strength = 10 mM) and HA (0, 5, 15 mg/L) were investigated and analyzed in conjunction with the two-site kinetic retention model and DLVO theory. The findings showed that the aging process accelerated PSMPs migration under all tested conditions. Aged PSMPs were less susceptible to Ca2+ than pristine PSMPs. Under Ca2+ conditions, pristine/aged PSMPs showed higher retention than under Na+ conditions in the absence of HA. Furthermore, under Na+ conditions, the migration of aged PSMPs significantly increased at higher concentrations of HA. However, under Ca2+ conditions, the migration of aged PSMPs decreased significantly at higher concentrations of HA. In higher HA conditions, HA, Ca2+, and PSMPs interact to cause larger aggregations, resulting in the sedimentation of aged PSMPs. The DLVO calculations and two-site kinetic retention models' results showed the detention of PSMPs was irreversible under higher HA conditions (15 mg/L) with Ca2+, and aged PSMPs were more susceptible to clogging. These findings may help to understand the potential risk of migration behavior of PSMPs in the soil-groundwater environment.
Collapse
Affiliation(s)
- Wenxin Gao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoxia Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China
| | - Yinzhu Diao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yiqun Gong
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jing Miao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wenjing Sang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Hui Yuan
- Tianjin Eco-Environmental Monitoring Center, 19 Fukang Road, Nankai District, Tianjin, 300191, China
| | - Zheng Shen
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Mohamed E A El-Sayed
- Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt
| | - Islam A Abdelhafeez
- Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt
| |
Collapse
|
41
|
Xu D, Du B, Ji Y, Sun H, Wang T, Yin X. Stereoselective transport of 2-aryl propionic acid enantiomers in porous media subjected to chiral organic acids. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133824. [PMID: 38377915 DOI: 10.1016/j.jhazmat.2024.133824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
The study examined the transport behavior of the 2-aryl propionic acid (2-APA) chiral pharmaceutical enantiomers by means of a laboratory-scale saturated quartz sand column experiment. Four typical of 2-APA and their enantiomers were selected for the study under different types of chiral organic acids (COAs)-mediated effects. Differences in the transport of the 2-APA enantiomeric pairs have been identified in response to various pH, types of COAs, and enantiomeric structures of COAs. Redundancy analysis identified the factors responsible for the largest differences in transport of 2-APA enantiomeric pairs, while spectroscopic characterization and density function theory (DFT) studies elucidated the underlying mechanisms contributing to the differences in transport of enantiomeric pairs. Obvious correlations among homochirality or heterochirality between COAs and 2-APA enantiomeric pairs were observed for changes in the mobility of 2-APA. The results indicate widespread COAs significantly affect the transport behavior of chiral man-made chemicals, suggesting more attention is needed to fill the gap in the perception of the transport behavior of chiral compounds.
Collapse
Affiliation(s)
- Duo Xu
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Bowen Du
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Yantian Ji
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling Shaanxi, 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling Shaanxi, 712100, PR China.
| |
Collapse
|
42
|
Liu Y, Gu G, Lu J, Zhu L, Chen Q, Kim H, Wang J, Ji P, Cai L. Decreased transport of nano- and micro-plastics in the presence of low-molecular-weight organic acids in saturated quartz sand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171195. [PMID: 38408673 DOI: 10.1016/j.scitotenv.2024.171195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Low-molecular-weight organic acids (LMWOAs) and nano- and micro-plastics (NPs and MPs) are both widely distributed in terrestrial systems. To better understand the influence of LMWOAs on the transport of NPs and MPs, the effects of 0.5 mM citric- (CA), malic- (MA), and tartaric- (TA) acid on the transport of nano- (0.51 μm, PS NPs) and micro- (1.1 μm, PS MPs) polystyrene particles (2 mg L-1) in saturated quartz sand were investigated. All three LMWOAs decreased the transport of PS NPs and MPs, regardless of ionic composition or strength (0.1-10 mM NaCl and 0.1-1 mM CaCl2). Further investigation revealed that the interfacial interactions between PS-quartz sand surfaces and PS-PS were altered by LMWOAs. LMWOAs adsorbed to quartz sand surfaces could serve as new deposition sites, as evidenced by the decreased transport of PS NPs and MPs in quartz sand that was subjected to pre-equilibration with selected MA, the low inhibition of PS transport with low concentrations of LMWOAs (0.1 mM), and also the adsorption of LMWOAs onto quartz sand surfaces by batch experiments. Meanwhile, the adsorption of LMWOAs on PS, hydrodynamic measurement and visual TEM observation together clarified the slight aggregation of PS NPs and MPs in suspensions, inducing the subsequent decrease in transport. Among them, the adsorption of LMWOAs onto quartz sand surfaces was found to be the main factor dominating the decreased transport of both PS NPs and MPs in saturated quartz sand.
Collapse
Affiliation(s)
- Yanan Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Genyao Gu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Jizhe Lu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Luxiang Zhu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Quanyuan Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Hyunjung Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jiajun Wang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
| | - Peng Ji
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, PR China
| | - Li Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
43
|
Zhang M, Hou J, Xia J, Wu J, You G, Miao L. Statuses, shortcomings, and outlooks in studying the fate of nanoplastics and engineered nanoparticles in porous media respectively and borrowable sections from engineered nanoparticles for nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169638. [PMID: 38181944 DOI: 10.1016/j.scitotenv.2023.169638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024]
Abstract
This review discussed the research statuses, shortcomings, and outlooks for the fate of nanoplastics (NPs) and engineered nanoparticles (ENPs) in porous media and borrowable sections from ENPs for NPs. Firstly, the most important section was that we reviewed the research statuses on the fate of NPs in porous media and the main influencing factors, and explained the influencing mechanisms. Secondly, in order to give NPs a reference of research ideas and influence mechanisms, we also reviewed the research statuses on the fate of ENPs in porous media and the factors and mechanisms influencing the fate. The main mechanisms affecting the transport of ENPs were summarized (Retention or transport modes: advection, diffusion, dispersion, deposition, adsorption, blocking, ripening, and straining; Main forces and actions: Brownian motion, gravity, electrostatic forces, van der Waals forces, hydration, filtration, bridging; Affecting elements of the forces and actions: the ENP and media grain surface functional groups, size, shape, zeta potential, density, hydrophobicity, and roughness). Instead of using the findings of ENPs, thorough study on NPs was required because NPs and ENPs differed greatly. Based on the limited existing studies on the NP transport in porous media, we found that although the conclusions of ENPs could not be applied to NPs, most of the influencing mechanisms summarized from ENPs were applicable to NPs. Combining the research thoughts of ENPs, the research statuses of NPs, and some of our experiences and reflections, we reviewed the shortcomings of the current studies on the NP fate in porous media as well as the outlooks of future research. This review is very meaningful for clarifying the research statuses and influence mechanisms for the NP fate in porous media, as well as providing a great deal of inspiration for future research directions about the NP fate in porous media.
Collapse
Affiliation(s)
- Mingzhi Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Jun Xia
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
44
|
Chang B, Huang Z, Yang X, Yang T, Fang X, Zhong X, Ding W, Cao G, Yang Y, Hu F, Xu C, Qiu L, Lv J, Du W. Adsorption of Pb(II) by UV-aged microplastics and cotransport in homogeneous and heterogeneous porous media. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133413. [PMID: 38228006 DOI: 10.1016/j.jhazmat.2023.133413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024]
Abstract
To investigate the adsorption effects of aged microplastics (MPs) on Pb(II) and their co-transport properties in homogeneous (quartz sand) and heterogeneous (quartz sand with apple branches biochar) porous media, we explored the co-transport of UV-irradiated aged MPs and coexisting Pb(II) along with their interaction mechanisms. The UV aging process increased the binding sites and electronegativity of the aged MPs' surface, enhancing its adsorption capacity for Pb(II). Aged MPs significantly improved Pb(II) transport through homogeneous media, while Pb(II) hindered the transport of aged MPs by reducing electrostatic repulsion between these particles and the quartz sand. When biochar, with its loose and porous structure, was used as a porous medium, it effectively inhibited the transport capacity of both contaminants. In addition, since the aged MPs cannot penetrate the column, a portion of Pb(II) adsorbed by the aged MPs will be co-deposited with the aged MPs, hindering Pb(II) transport to a greater extent. The transport experiments were simulated and interpreted using two-point kinetic modeling and the DLVO theory. The study results elucidate disparities in the capacity of MPs and aged MPs to transport Pb(II), underscoring the potential of biochar application as an effective strategy to impede the dispersion of composite environmental pollutants.
Collapse
Affiliation(s)
- Bokun Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zixuan Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xiaodong Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Tianhuan Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xianhui Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xianbao Zhong
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Wei Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Gang Cao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Soil Physics and Land Management Group, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Yajun Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Feinan Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
| | - Chenyang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ling Qiu
- College of Mechanical and Electronic Engineering & Northwest Research Center of Rural Renewable Energy, Exploitation and Utilization of Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| | - Wei Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|
45
|
Wang H, Wang Y, Zhang T, Ji Y, Zhang Y, Wang Y, Li X. Filtration of polystyrene nanoplastics with different functional groups by natural mineral materials: Performance and mechanisms. MARINE POLLUTION BULLETIN 2024; 200:116094. [PMID: 38335638 DOI: 10.1016/j.marpolbul.2024.116094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/12/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
Optimizing nanoplastics (NPs) removal performance of rapid sand filter (RSF) in water treatment plants is significant for NP pollution prevention and remediation. This study investigated the application prospect of natural granular manganese sand, zeolite and limestone in RSF for NP removal through column experiments. Pristine, amino-modified, and carboxyl-modified polystyrene NPs (100 nm) were selected as experimental subjects. Quartz sand filter showed negligible NP removal, zeolite and manganese sand showed no obvious optimization on NP filtration. Limestone amended RSF significantly enhanced the removal of three NPs, the removal efficiency increased with decreasing size and increasing limestone grains dosage. The excellent performance of limestone was attributed to its special physicochemical properties in terms of synthetical action of electrostatic interaction, cationic bridging and especially the surface roughness morphology, and the mechanisms overcame the influence of functional groups of NPs. The results indicate the prospective applications of granular limestone in RSF for NP filtration.
Collapse
Affiliation(s)
- Hao Wang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yu Wang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Tongyu Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yining Ji
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yuanyuan Zhang
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Yufei Wang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xiaohui Li
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
46
|
Protyusha GB, B K, Robin RS, A N, Ineyathendral TR, Shivani SS, I A, Sivasamy S, Samuel VD, R P. Microplastics in oral healthcare products (OHPs) and their environmental health risks and mitigation measures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123118. [PMID: 38092338 DOI: 10.1016/j.envpol.2023.123118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023]
Abstract
The environmental input of microplastics from personal care products has received significant attention; however, less focus has been paid to oral healthcare products. The present study assessed the occurrence of microplastics in commercially available oral healthcare products such as toothbrushes, toothpastes, toothpowder, mouthwash, dental floss, and mouth freshener spray that have a pan-India distribution. The extracted microplastics were quantified and characterised using a microscope and ATR-FTIR. All products showed microplastic contamination, where toothbrushes showed the maximum particles (30-120 particles/brush) and mouth freshener sprays (0.2-3.5 particles/ml) had the least abundance. Fragments, fibres, beads, and films were the various shapes of microplastics observed, where fragments (60%) were dominant. Various colours such as pink, green, blue, yellow, black, and colourless were observed, where colourless (40%) particles were dominant. Microplastics were categorized into three sizes: <0.1 mm (63%), 0.1-0.3 mm (35%), and >0.3 mm (2%). Four major types of polymers, such as polyethylene (52%), polyamide (30%), polyethylene terephthalate (15%), and polybutylene terephthalate (3%), were identified. Risk assessment studies such as Daily Microplastics Emission (DME), Annual Microplastics Exposure (AME), and Polymer Hazard Index (PHI) were carried out. The DME projection for India was the highest for mouthwash (74 billion particles/day) and the least for mouth freshener sprays (0.36 billion particles/day). The AME projection for an individual was the highest in toothbrushes (48,910 particles ind.-1 yr.-1) and the least in mouth freshener sprays (111 particles ind.-1 yr.-1). PHI shows that the identified polymers fall under the low-to high-risk categories. This study forecasts the community health risks linked to microplastics in oral healthcare products and suggests mitigation strategies. It has the potential to shape environmental policy development in response.
Collapse
Affiliation(s)
- G B Protyusha
- Department of Oral Pathology and Microbiology, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, 600095, India.
| | - Kavitha B
- Department of Oral Pathology and Microbiology, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, 600095, India
| | - R S Robin
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | - Nithin A
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | | | - S Shruthi Shivani
- Department of Oral Pathology and Microbiology, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, 600095, India
| | - Anandavelu I
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | - Shyam Sivasamy
- Department of Oral Pathology and Microbiology, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, 600095, India
| | - V Deepak Samuel
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | - Purvaja R
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| |
Collapse
|
47
|
Dong S, Suakollie EB, Cao S, Su X, Fan W, Yu Y, Xia J. Effect of NaNO 3, NH 4Cl and urea on the fate and transformation of various typical microplastics in porous media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:123014. [PMID: 38006991 DOI: 10.1016/j.envpol.2023.123014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/30/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Understanding the transport behaviors of microplastics (MPs) in porous media is crucial in controlling MPs pollution. Given nitrogen is one of the most important nutrients in soil and groundwater systems, unclearness of the transport behaviors of microplastics (MPs) under various nitrogen conditions may inhibit the acknowledgment of MPs fate. For this reason, this study innovatively investigates the transport characteristics of four kinds of typical MPs (PVC MPs, PMMA MPs, PET MPs, and PP MPs) under various NaNO3, NH4Cl and urea conditions via column experiments numerical models. The FTIR and XPS analysis were conducted to excavate the transform of MPs. The MPs mobility was generally reduced with the increasing nitrogen concentrations. The polarity and density properties of different MPs played combined roles in transport under similar conditions. Compared to NO3-, NH4+ may neutralize the negative charge of MPs and then restrain their transport in porous media. Urea may coat the surface of MPs and promote the mobility, however, increasing concentrations of urea may result in the interattraction between MPs and porous media via hydrogen-bond and π-π interaction. PET MPs and PP MPs showed barely transform during transport under the tested conditions. Particularly, the chlorines on PVC MPs could react with the amide on urea and produce amidogen, which may improve PVC MPs transport. The N-H and C-N bond also generated on PMMA MPs in presence of urea also may enhance the mobility.
Collapse
Affiliation(s)
- Shunan Dong
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China.
| | - Emmanuel B Suakollie
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Shaohua Cao
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China; State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, Jiangsu, China
| | - Xiaoting Su
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Weiya Fan
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Yulu Yu
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Jihong Xia
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| |
Collapse
|
48
|
Zhang G, Cui J, Song J, Ji Y, Zuo Y, Jia H, Yin X. Transport of polystyrene nanoplastics with different functional groups in goethite-coated saturated porous media: Effects of low molecular weight organic acids and physicochemical properties. J Colloid Interface Sci 2024; 653:423-433. [PMID: 37722171 DOI: 10.1016/j.jcis.2023.09.090] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
The influence of low molecular weight organic acids (LMWOAs) and goethite on the migration of nanoplastics in the soil environment remains poorly understood. To elucidate the mechanism of influence, the study investigated the impact of LMWOAs on the migration ability of functionalized polystyrene nanoplastics (PSNPs-NH2/COOH) in quartz sand (QS) and goethite (α-FeOOH)-coated quartz sand (FOS). We investigated the effect of changes in iron valence induced by LMWOAs on the migration of PSNPs. The results revealed that the migration ability of polystyrene nanoplastics (PSNPs) declined as the ionic strength (IS) increased and the pH decreased, primarily due to the compression of the double layer and protonation reactions. The migration of PSNPs is facilitated by LMWOAs through distinct mechanisms in the two media. Specifically, LMWOAs were adsorbed on the FOS and QS surfaces through complexation and hydrogen bonding, respectively. At pH 4.0, LMWOAs exhibit redox activity, resulting in the generation of additional Fe(III). This redox process enhances the electrostatic attraction between the media and PSNPs, thereby reducing the competition at specific points and spatial resistance associated with LMWOAs. In contrast to FOS, LMWOAs at pH 4.0 reduced the migration ability of PSNPs in QS, following the trend of MA > TA > CA. This difference was attributed to the pKa of LMWOAs and the weak hydrogen bonding on the QS surface. The relevant mathematical models effectively validate the migration results. The above conclusions suggest that LMWOAs can alter the valence state of iron on the surface of goethite, thereby influencing the migration of plastic particles in environmental media.
Collapse
Affiliation(s)
- Guangcai Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jiahao Cui
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jie Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yantian Ji
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yajie Zuo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongtao Jia
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China.
| |
Collapse
|
49
|
Okutan H, Hul G, Stoll S, Le Coustumer P. Retention and Transport of Nanoplastics with Different Surface Functionalities in a Sand Filtration System. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:32. [PMID: 38202487 PMCID: PMC11326042 DOI: 10.3390/nano14010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
The efficiency of sand filtration was investigated in terms of the behavior of the nanoplastics (NPLs) with different surface functionalities. The initial condition concentrations of NPLs were varied, and their effects on retention and transport were investigated under a constant flow rate in saturated porous media. The behavior of NPLs in this porous system was discussed by considering Z- average size and zeta (ζ) potential measurements of each effluent. The retention efficiencies of NPLs were ranked as functionalized with amidine [A-PS]+ > with sulfate [S-PS]- > with surfactant-coated amidine [SDS-A-PS]-. The reversibility of the adsorption process was revealed by introducing surfactant into the sand filter system containing adsorbed [A-PS]+ at three different initial state concentration conditions. The deposition behavior on sand grain showed that positively charged NPLs were attached to the quartz surface, and negatively charged NPLs were attached to the edge of the clay minerals, which can be caused by electrical heterogeneities. The homoaggregates made of positively charged NPLs were more compact than those made of negatively charged NPLs and surfactant-coated NPLs. An anti-correlation was revealed, suggesting a connection between the fractal dimension (Df) of NPL aggregates and retention efficiencies. Increased Df values are associated with decreased retention efficiencies.The findings underscore the crucial influence of NPL surface properties in terms of retention efficiency and reversible adsorption in the presence of surfactants in sand filtration systems.
Collapse
Affiliation(s)
- Hande Okutan
- Ecole Doctorale, Sciences et Technologies, Université de Bordeaux Montaigne, 33607 Pessac, France
- Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, 1205 Geneva, Switzerland
- Department of Geological Engineering, Mugla Sitki Kocman University, Mugla 48000, Türkiye
| | - Gabriela Hul
- Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Serge Stoll
- Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Philippe Le Coustumer
- Ecole Doctorale, Sciences et Technologies, Université de Bordeaux Montaigne, 33607 Pessac, France
- Earth Sciences Department, Université de Bordeaux, 33615 Pessac, France
- Bordeaux Imaging Center, Université de Bordeaux, CNRS-UAR3420-INSERM US4, 33000 Bordeaux, France
| |
Collapse
|
50
|
Qiu Y, Zhou S, Zhang C, Chen L, Qin W, Zhang Q. Vertical distribution and weathering characteristic of microplastics in soil profile of different land use types. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166902. [PMID: 37709069 DOI: 10.1016/j.scitotenv.2023.166902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/20/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
After deposition on the topsoil, microplastics (MPs) may be vertically migrated to deeper soil layers over time or eventually enter the groundwater system, leading to more widespread environmental and ecological issues. However, the vertical distribution of MPs in natural soils are not yet fully understood. In this study, we collected soil profiles (0-100 cm) from four different land use types on the west bank of Taihu Lake in China to investigate the vertical distribution and weathering characteristics of MPs. The average abundance of soil MPs followed the pattern of paddy field (490 ± 82 items/kg) > dryland (356 ± 55 items/kg) > tea garden (306 ± 32 items/kg) > woodland (171 ± 27 items/kg) in the 0-10 cm layer, and the abundance of MPs decreased linearly with soil depth (r = -0.89, p < 0.01). Compared to tea garden and woodland, MPs in dryland and paddy field have migrated to deeper soil layers (80-100 cm). The carbonyl index of polyethylene and polypropylene MPs increased significantly with soil depth (r = 0.96, p < 0.01), with values of 0.58 ± 0.30 and 0.54 ± 0.33, respectively. The significant negative correlation between MPs size and carbonyl index confirmed that small-sized MPs in deeper soil layers originated from the weathering and fragmentation of MPs in topsoil. The results of structural equation model showed that roots and soil aggregates may act as filters during the vertical migration of MPs. These findings contribute to a better understanding of the environmental fate of MPs in soil and the assessment of associated ecological risks.
Collapse
Affiliation(s)
- Yifei Qiu
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210024, China
| | - Shenglu Zhou
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210024, China.
| | - Chuchu Zhang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China
| | - Long Chen
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210024, China
| | - Wendong Qin
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210024, China
| | - Qi Zhang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210024, China
| |
Collapse
|