1
|
Ran X, Zhou M, Wang T, Wang Y, Wang H, Wang Y. Exploring the ecological niche of comammox Nitrospira by in-situ enrichment within mainstream nitrification systems. WATER RESEARCH 2025; 283:123810. [PMID: 40378467 DOI: 10.1016/j.watres.2025.123810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/19/2025] [Accepted: 05/10/2025] [Indexed: 05/19/2025]
Abstract
Complete-ammonia-oxidization bacteria (Comammox Nitrospira) hold promising potential for reducing carbon footprint in mainstream wastewater treatment. However, the inadequate understanding of comammox Nitrospira within wastewater systems has greatly hindered the utilization of these novel microbial resources. This study explored the ecological niche of comammox Nitrospira within mainstream nitrification systems by enriching them under varied operational conditions. The joint analysis of multiple linear regression and random forest model have identified in-situ ammonium concentration and pH as the two most important parameters influencing the growth of comammox Nitrospira, followed by nitrogen loading rate, nitrogen source type, and dissolved oxygen (DO). Meanwhile, the ecological niche preference of comammox Nitrospira was revealed. The optimal ranges of in-situ ammonium concentration and pH for comammox Nitrospira was found below 0.5 mg NH4+-N/L and 6.5-7.5, respectively, indicating that low free ammonia conditions favor their growth. Furthermore, comammox Nitrospira exhibited a competitive advantage over Nitrosomonas under weakly acidic pH (6.0-6.5), and adapted to DO fluctuations by interspecies shifts, whereas Nitrosomonas preferred relatively high DO (1.5-2 mg O2/L). Comparative genomics further confirmed the above niche differentiation of two groups from reconstructed comammox Nitrospira and Nitrosomonas genomes. Overall, these findings provide guidance for the application of comammox process in wastewater treatment, thereby supporting the transition of mainstream nitrification process toward a more sustainable and energy-efficient pathway.
Collapse
Affiliation(s)
- Xiaochuan Ran
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Mingda Zhou
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Tong Wang
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Yanren Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for nvironmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Han Wang
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Yayi Wang
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China.
| |
Collapse
|
2
|
Chai Z, Tian Z, Zheng M, Wang B, Li Y, Cui J, Ju F, Niu J, Guo J. The functional dominance and metabolic diversity of comammox Nitrospira in recirculating aquaculture systems. WATER RESEARCH 2025; 273:122949. [PMID: 39675116 DOI: 10.1016/j.watres.2024.122949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
As a newly discovered group of ammonia-oxidizing microorganisms, complete ammonia oxidizing (comammox) Nitrospira has been widely found in various oligotrophic ecosystems. However, their activity and ecological niche is still unclear in recirculating aquaculture systems (RAS). This study aimed to compare the abundance and activity of comammox Nitrospira, ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), and elucidate metabolic versatility of comammox Nitrospira in RAS. Quantitative PCR (qPCR) results showed that either comammox Nitrospira or AOB numerically predominated, while comammox Nitrospira and AOA shared similar low ammonia niches. Specifically, DNA-based stable isotope probing in conjunction with high-throughput 16S rRNA gene amplicon sequencing revealed that comammox Nitrospira accounted for 79.1 %, 97.5 %, 91.9 % and 97.6 % in the active ammonia-oxidizing community in four selected typical samples representing high abundance of comammox, AOA, and AOB, respectively. Phylogenetic analysis of heavy fraction DNA further identified novel comammox species from Nitrospira nitrificans cluster and clade A.2 acting as active species in different freshwater aquariums. Moreover, metagenome-assembled genome analysis revealed them as novel species with stress resistance and metabolic diversity compared with known comammox Nitrospira. This study underscores the dominant role of comammox Nitrospira as active ammonia-oxidizers in RAS and presents two novel comammox MAGs with metabolic flexibility, enriching our understanding of the nitrification process in oligotrophic artificial ecosystems.
Collapse
Affiliation(s)
- Zimin Chai
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Zhichao Tian
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Maosheng Zheng
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| | - Bowen Wang
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yunlong Li
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jiaqi Cui
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, PR China
| | - Junfeng Niu
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
3
|
Zhao J, Huang Y, Hu S, Chen Z, Chen B, Qi W, Wang L, Liu H. Impact of adaptation time on lincomycin removal in riverbank filtration: A long-term sand column study. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136950. [PMID: 39731892 DOI: 10.1016/j.jhazmat.2024.136950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/11/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024]
Abstract
Riverbank filtration (RBF) is an effective pretreatment technology for drinking water, removing organic micropollutants (OMPs) mainly through biodegradation. Despite documented improvements in OMP removal with extended adaptation time, the mechanisms remain poorly understood. This study assessed the removal of 128 OMPs over 82 d in a simulated RBF system, identified those with improved removal, and analyzed their properties. Additionally, microbial community shifts after 400 d of lincomycin exposure were studied to understand the underlying mechanisms. We found that the removal efficiencies of 24 OMPs, including lincomycin and fluconazole, improved by 3-77 % over 82 d while being positively correlated with the presence of tertiary amides and secondary sulfonamides. Lincomycin removal efficiency rose from 20 % to 95 % over 68 days and stayed high. We identified eight potential degradation products of lincomycin, occurring primarily via hydroxylation, N-demethylation, and amide hydrolysis. Additionally, lincomycin notably increased the abundances of specific antibiotic-resistant bacteria (e.g., Thiobacillus, 8.3-fold) and ammonia-oxidizing archaea (e.g., Nitrososphaera, 46.8-fold). The β-lactam resistance gene in Thiobacillus and the amoA gene in Nitrososphaera may enhance lincomycin's removal by promoting its hydrolysis and hydroxylation. Overall, this study provides insights into OMP biodegradation mechanisms and the impact of ng/L levels of lincomycin on microbial communities.
Collapse
Affiliation(s)
- Jian Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yangrui Huang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shengchao Hu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhanyan Chen
- Kweichow Moutai Distillery Co., Ltd, Zunyi 564501, China
| | - Bi Chen
- Kweichow Moutai Distillery Co., Ltd, Zunyi 564501, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Li Wang
- Kweichow Moutai Distillery Co., Ltd, Zunyi 564501, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Fang L, Deng Y, Lakshmanan P, Liu W, Tang X, Zou W, Zhang T, Wang X, Xiao R, Zhang J, Chen X, Su X. Selective increase of antibiotic-resistant denitrifiers drives N 2O production in ciprofloxacin-contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135673. [PMID: 39217949 DOI: 10.1016/j.jhazmat.2024.135673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/02/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Agricultural systems significantly contribute to global N2O emissions, which is intensified by excessive fertilization and antibiotic residues, attracting global concerns. However, the dynamics and pathways of antibiotics-induced soil N2O production coupled with microbial metabolism remain controversial. Here, we explored the pathways of N2O production in agricultural soils exposed to ciprofloxacin (CIP), and revealed the underlying mechanisms of CIP degradation and the associated microbial metabolisms using 15N-isotope labeling and molecular techniques. CIP exposure significantly increases the total soil N2O production rate. This is attributed to an unexpected shift from heterotrophic and autotrophic nitrification to denitrification and an increased abundance of denitrifiers Methylobacillus members under CIP exposure. The most striking strain M. flagellatus KT is further discovered to harbor N2O-producing genes but lacks a N2O-reducing gene, thereby stimulating denitrification-based N2O production. Moreover, this denitrifying strain is probably capable of utilizing the byproducts of CIP as carbon sources, evidenced by genes associated with CIP resistance and degradation. Molecular docking further shows that CIP is well ordered in the catalytic active site of CotA laccase, thus affirming the potential for this strain to degrade CIP. These findings advance the mechanistic insights into N2O production within terrestrial ecosystems coupled with the organic contaminants degradation.
Collapse
Affiliation(s)
- Linfa Fang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yue Deng
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Prakash Lakshmanan
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD 4067, Australia
| | - Weibing Liu
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xiufeng Tang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, China
| | - Wenxin Zou
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Tong Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xiaozhong Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Jinbo Zhang
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Germany
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Xiaoxuan Su
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
5
|
Jin D, Zhang X, Zhang X, Zhou L, Zhu Z, Deogratias UK, Wu Z, Zhang K, Ji X, Ju T, Zhu X, Gao B, Ji L, Zhao R, Ruth G, Wu P. A critical review of comammox and synergistic nitrogen removal coupling anammox: Mechanisms and regulatory strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174855. [PMID: 39034010 DOI: 10.1016/j.scitotenv.2024.174855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/13/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Nitrification is highly crucial for both anammox systems and the global nitrogen cycle. The discovery of complete ammonia oxidation (comammox) challenges the inherent concept of nitrification as a two-step process. Its wide distribution, adaptability to low substrate environments, low sludge production, and low greenhouse gas emissions may make it a promising new nitrogen removal treatment process. Meanwhile, anammox technology is considered the most suitable process for future wastewater treatment. The diverse metabolic capabilities and similar ecological niches of comammox bacteria and anammox bacteria are expected to achieve synergistic nitrogen removal within a single system. However, previous studies have overlooked the existence of comammox, and it is necessary to re-evaluate the conclusions drawn. This paper outlined the ecophysiological characteristics of comammox bacteria and summarized the environmental factors affecting their growth. Furthermore, it focused on the enrichment, regulatory strategies, and nitrogen removal mechanisms of comammox and anammox, with a comparative analysis of hydroxylamine, a particular intermediate product. Overall, this is the first critical overview of the conclusions drawn from the last few years of research on comammox-anammox, highlighting possible next steps for research.
Collapse
Affiliation(s)
- Da Jin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xiaonong Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xingxing Zhang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Li Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Zixuan Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Ufoymungu Kisa Deogratias
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Zhiqiang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Kangyu Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xu Ji
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Ting Ju
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xurui Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Bo Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Luomiao Ji
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Rui Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Guerra Ruth
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou 215009, PR China.
| |
Collapse
|
6
|
Pan J, Li J, Zhang T, Liu T, Xu K, Wang C, Zheng M. Complete ammonia oxidation (comammox) at pH 3-4 supports stable production of ammonium nitrate from urine. WATER RESEARCH 2024; 257:121686. [PMID: 38705065 DOI: 10.1016/j.watres.2024.121686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
This study developed a new process that stably produced ammonium nitrate (NH4NO3), an important and commonly used fertilizer, from the source-separated urine by comammox Nitrospira. In the first stage, the complete conversion of ammonium to nitrate was achieved by comammox Nitrospira. In this scenario, the pH was maintained at 6 by adding external alkali, which also provided sufficient alkalinity for full nitrification. In the second stage, the NH4NO3 was produced directly by comammox Nitropsira by converting half of the ammonium in urine into nitrate. In this case, no alkali was added and pH automatically dropped and self-maintained at an extremely acidic level (pH 3-4). In both scenarios, negligible nitrite accumulation was observed, while the final product of the second stage contained ammonium and nitrate at the molar ratio of 1:1. The dominance of comammox Nitrospira over canonical ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) was systematically proved by the combination of 16S rRNA gene amplicon sequencing, quantitative polymerase chain reaction, and metagenomics. Notably, metagenomic sequencing suggested that the relative abundance of comammox Nitrospira was over 20 % under the acidic condition at pH 3-4, while canonical AOB and NOB were undetectable. Batch experiments showed that the optimal pH for the enriched comammox Nitrospira was ∼7, which could sustain their activity in a wider pH range from 4 to 8 surprisingly but lost activity at pH 3 and 9. The findings not only present an application potential of comammox Nitrospira in nitrogen recovery from urine wastewater but also report the survivability of comammox bacteria in acidic environments.
Collapse
Affiliation(s)
- Junhao Pan
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiyun Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tingting Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Kangning Xu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Chengwen Wang
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Min Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
7
|
Guo Z, Ma XS, Ni SQ. Journey of the swift nitrogen transformation: Unveiling comammox from discovery to deep understanding. CHEMOSPHERE 2024; 358:142093. [PMID: 38679176 DOI: 10.1016/j.chemosphere.2024.142093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/02/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
COMplete AMMonia OXidizer (comammox) refers to microorganisms that have the function of oxidizing NH4+ to NO3- alone. The discovery of comammox overturned the two-step theory of nitrification in the past century and triggered many important scientific questions about the nitrogen cycle in nature. This comprehensive review delves into the origin and discovery of comammox, providing a detailed account of its detection primers, clades metabolic variations, and environmental factors. An in-depth analysis of the ecological niche differentiation among ammonia oxidizers was also discussed. The intricate role of comammox in anammox systems and the relationship between comammox and nitrogen compound emissions are also discussed. Finally, the relationship between comammox and anammox is displayed, and the future research direction of comammox is prospected. This review reveals the metabolic characteristics and distribution patterns of comammox in ecosystems, providing new perspectives for understanding nitrogen cycling and microbial ecology. Additionally, it offers insights into the potential application value and prospects of comammox.
Collapse
Affiliation(s)
- Zheng Guo
- School of Environmental Science and Engineering, Shandong University, Shandong, 266237, China
| | - Xue Song Ma
- School of Environmental Science and Engineering, Shandong University, Shandong, 266237, China
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Shandong, 266237, China.
| |
Collapse
|
8
|
Wei L, Zheng J, Han Y, Xu X, Li M, Zhu L. Insights into the roles of biochar pores toward alleviating antibiotic resistance genes accumulation in biofiltration systems. BIORESOURCE TECHNOLOGY 2024; 394:130257. [PMID: 38151208 DOI: 10.1016/j.biortech.2023.130257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Biofiltration systems would harbor and spread various antibiotic resistance genes (ARGs) when treating antibiotic micro-pollution, constituting a potential ecological risk. This study aimed to investigate the effects of biochar pores on ARG emergence and related microbial response mechanisms in bench-scale biofiltration systems. Results showed that biochar pores effectively reduced the absolute copies of the corresponding ARGs sul1 and sul2 by 54.1% by lowering the sorbed-SMX's bioavailability compared to non-porous anthracite. An investigation of antimicrobial resistomes revealed a considerable decrease in the abundance and diversity of ARGs and mobile gene elements. Metagenomic and metaproteomic analysis demonstrated that biochar pores induced the changeover of microbial defense strategy against SMX from blocking SMX uptake by EPS absorbing to SMX biotransformation. Microbial SOS response, antibiotic efflux pump, EPS secretion, and biofilm formation were decreased. Functions related to SMX biotransformation, such as sadABC-mediated transformation, xenobiotics degradation, and metabolism, were significantly promoted.
Collapse
Affiliation(s)
- Lecheng Wei
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, China
| | - Jingjing Zheng
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, China
| | - Yutong Han
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, China
| | - Xiangyang Xu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Liang Zhu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, China.
| |
Collapse
|
9
|
Mugnai G, Borruso L, Wu YL, Gallinaro M, Cappitelli F, Zerboni A, Villa F. Ecological strategies of bacterial communities in prehistoric stone wall paintings across weathering gradients: A case study from the Borana zone in southern Ethiopia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168026. [PMID: 37907101 DOI: 10.1016/j.scitotenv.2023.168026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/18/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023]
Abstract
Rock art paintings represent fragile ecosystems supporting complex microbial communities tuned to the lithic substrate and climatic conditions. The composition and activity of these microbial communities associated with different weathering patterns affecting rock art sites remain unexplored. This study aimed to explore how bacterial communities adapt their ecological strategies based on substrate weathering, while also examining the role of their metabolic pathways in either biodeterioration or bioprotection of the underlying stone. SEM-EDS investigations coupled with 16S rRNA gene sequencing and PICRUSt2 analysis were applied on different weathered surfaces that affect southern Ethiopian rock paintings to investigate the relationships between the current stone microbiome and weathering patterns. The findings revealed that samples experiencing low and high weathering reached a climax stage characterized by stable microenvironments and limited resources. This condition favored K-strategist microorganisms, leading to reduced α-biodiversity and a community with a positive or neutral impact on the substrate. In contrast, moderately-weathered samples displayed diverse microhabitats, resulting in the prevalence of r-strategist bacteria, increased α-biodiversity, and the presence of specialist microorganisms. Moreover, the bacterial communities in moderately-weathered samples demonstrated the highest potential for carbon fixation, stress responses, and complete nitrogen and sulfur cycles. This bacterial community also showed the potential to negatively impact the underlying substrate. This research provided valuable insights into the little-understood ecology of bacterial communities inhabiting deteriorated surfaces, shedding light on the potential role of these microorganisms in the sustainable conservation of rock art.
Collapse
Affiliation(s)
- Gianmarco Mugnai
- Department of Agriculture, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, I-06121 Perugia (PG), IT, Italy.
| | - Luigimaria Borruso
- Free University of Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universitá 5, 39100 Bolzano, Italy.
| | - Ying-Li Wu
- Dipartimento di Scienze della Terra "A. Desio", Università degli Studi di Milano, 20133 Milan, Italy.
| | - Marina Gallinaro
- Dipartimento di Scienze dell'Antichità, Università di Roma La Sapienza, 00185 Rome, Italy.
| | - Francesca Cappitelli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Andrea Zerboni
- Dipartimento di Scienze della Terra "A. Desio", Università degli Studi di Milano, 20133 Milan, Italy.
| | - Federica Villa
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
10
|
Wang K, Li J, Gu X, Wang H, Li X, Peng Y, Wang Y. How to Provide Nitrite Robustly for Anaerobic Ammonium Oxidation in Mainstream Nitrogen Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21503-21526. [PMID: 38096379 DOI: 10.1021/acs.est.3c05600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Innovation in decarbonizing wastewater treatment is urgent in response to global climate change. The practical implementation of anaerobic ammonium oxidation (anammox) treating domestic wastewater is the key to reconciling carbon-neutral management of wastewater treatment with sustainable development. Nitrite availability is the prerequisite of the anammox reaction, but how to achieve robust nitrite supply and accumulation for mainstream systems remains elusive. This work presents a state-of-the-art review on the recent advances in nitrite supply for mainstream anammox, paying special attention to available pathways (forward-going (from ammonium to nitrite) and backward-going (from nitrate to nitrite)), key controlling strategies, and physiological and ecological characteristics of functional microorganisms involved in nitrite supply. First, we comprehensively assessed the mainstream nitrite-oxidizing bacteria control methods, outlining that these technologies are transitioning to technologies possessing multiple selective pressures (such as intermittent aeration and membrane-aerated biological reactor), integrating side stream treatment (such as free ammonia/free nitrous acid suppression in recirculated sludge treatment), and maintaining high activity of ammonia-oxidizing bacteria and anammox bacteria for competing oxygen and nitrite with nitrite-oxidizing bacteria. We then highlight emerging strategies of nitrite supply, including the nitrite production driven by novel ammonia-oxidizing microbes (ammonia-oxidizing archaea and complete ammonia oxidation bacteria) and nitrate reduction pathways (partial denitrification and nitrate-dependent anaerobic methane oxidation). The resources requirement of different mainstream nitrite supply pathways is analyzed, and a hybrid nitrite supply pathway by combining partial nitrification and nitrate reduction is encouraged. Moreover, data-driven modeling of a mainstream nitrite supply process as well as proactive microbiome management is proposed in the hope of achieving mainstream nitrite supply in practical application. Finally, the existing challenges and further perspectives are highlighted, i.e., investigation of nitrite-supplying bacteria, the scaling-up of hybrid nitrite supply technologies from laboratory to practical implementation under real conditions, and the data-driven management for the stable performance of mainstream nitrite supply. The fundamental insights in this review aim to inspire and advance our understanding about how to provide nitrite robustly for mainstream anammox and shed light on important obstacles warranting further settlement.
Collapse
Affiliation(s)
- Kaichong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Jia Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Xin Gu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
11
|
Yuan D, Fu C, Zheng L, Tan Q, Wang X, Xing Y, Wu H, Tian Q. Abundance, community and driving factor of nitrifiers in western China plateau. ENVIRONMENTAL RESEARCH 2023; 234:116565. [PMID: 37419201 DOI: 10.1016/j.envres.2023.116565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Complete ammonia oxidation (comammox) is one of the most important biogeochemical processes, with recent studies showing that comammox process dominates nitrification in many ecosystems. However, the abundance, community and driving factor of comammox bacteria and other nitrifying microorganisms in plateau wetland is still unclear. Here, the abundances and community features of comammox bacteria, ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in the wetland sediments of western China plateaus were examined using qPCR and high-throughput sequencing. The results indicate that comammox bacteria were more abundant than AOA and AOB, and dominated the nitrification process. Compared with low-elevation samples (below 3000 m: samples 6-10, 12, 13, 15, 16), the abundance of comammox bacteria was much higher at high-elevation samples (above 3000 m: samples 1-5, 11, 14, 17, 18). The key species of AOA, AOB, and comammox bacteria were Nitrososphaera viennensis, Nitrosomonas europaea, and Nitrospira nitrificans, respectively. The key factor affecting comammox bacteria community was elevation. Elevation could increase the interaction links of key species Nitrospira nitrificans, resulting in high comammox bacterial abundance. The results of this study advance our knowledge of comammox bacteria in natural ecosystems.
Collapse
Affiliation(s)
- Dongdan Yuan
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Chaochen Fu
- School of Water Conservancy and Hydroelectric Power, Hebei University of Engineering, Handan, 056038, China
| | - Lei Zheng
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Qiuyang Tan
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xue Wang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yuzi Xing
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Haoming Wu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Qi Tian
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
12
|
Zhang ZX, Fan XY, Li X, Gao YX, Zhao JR. Effects of combined antibiotics on nitrification, bacteria and antibiotic resistance genes in activated sludge: Insights from legacy effect of antibiotics. J Environ Sci (China) 2023; 131:96-110. [PMID: 37225384 DOI: 10.1016/j.jes.2022.10.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 05/26/2023]
Abstract
The effect of combined antibiotics exposure on nitrogen removal, microbial community assembly and proliferation of antibiotics resistance genes (ARGs) is a hotspot in activated sludge system. However, it is unclear that how the historical antibiotic stress affects the subsequent responses of microbes and ARGs to combined antibiotics. In this study, the effects of combined sulfamethoxazole (SMX) and trimethoprim (TMP) pollution on activated sludge under legacy of SMX or TMP stress with different doses (0.005-30 mg/L) were investigated to clarify antibiotic legacy effects. Nitrification activity was inhibited under higher level of combined exposure but a high total nitrogen removal (∼70%) occurred. Based on the full-scale classification, the legacy effect of past antibiotic stress had a marked effect on community composition of conditionally abundant taxa (CAT) and conditionally rare or abundant taxa (CRAT). Rare taxa (RT) were the keystone taxa in the microbial network, and the responses of hub genera were also affected by the legacy of antibiotic stress. Nitrifying bacteria and genes were inhibited by the antibiotics and aerobic denitrifying bacteria (Pseudomonas, Thaurea and Hydrogenophaga) were enriched under legacy of high dose, as were the key denitrifying genes (napA, nirK and norB). Furthermore, the occurrences and co-selection relationship of 94 ARGs were affected by legacy effect. While, some shared hosts (eg., Citrobacter) and hub ARGs (eg., mdtD, mdtE and acrD) were identified. Overall, antibiotic legacy could affect responses of activated sludge to combined antibiotic and the legacy effect was stronger at higher exposure levels.
Collapse
Affiliation(s)
- Zhong-Xing Zhang
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiao-Yan Fan
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Xing Li
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yu-Xi Gao
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jun-Ru Zhao
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
13
|
Zhang Y, Liu T, Li MM, Hua ZS, Evans P, Qu Y, Tan S, Zheng M, Lu H, Jiao JY, Lücker S, Daims H, Li WJ, Guo J. Hot spring distribution and survival mechanisms of thermophilic comammox Nitrospira. THE ISME JOURNAL 2023; 17:993-1003. [PMID: 37069235 PMCID: PMC10284858 DOI: 10.1038/s41396-023-01409-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/19/2023]
Abstract
The recent discovery of Nitrospira species capable of complete ammonia oxidation (comammox) in non-marine natural and engineered ecosystems under mesothermal conditions has changed our understanding of microbial nitrification. However, little is known about the occurrence of comammox bacteria or their ability to survive in moderately thermal and/or hyperthermal habitats. Here, we report the wide distribution of comammox Nitrospira in five terrestrial hot springs at temperatures ranging from 36 to 80°C and provide metagenome-assembled genomes of 11 new comammox strains. Interestingly, the identification of dissimilatory nitrate reduction to ammonium (DNRA) in thermophilic comammox Nitrospira lineages suggests that they have versatile ecological functions as both sinks and sources of ammonia, in contrast to the described mesophilic comammox lineages, which lack the DNRA pathway. Furthermore, the in situ expression of key genes associated with nitrogen metabolism, thermal adaptation, and oxidative stress confirmed their ability to survive in the studied hot springs and their contribution to nitrification in these environments. Additionally, the smaller genome size and higher GC content, less polar and more charged amino acids in usage profiles, and the expression of a large number of heat shock proteins compared to mesophilic comammox strains presumably confer tolerance to thermal stress. These novel insights into the occurrence, metabolic activity, and adaptation of comammox Nitrospira in thermal habitats further expand our understanding of the global distribution of comammox Nitrospira and have significant implications for how these unique microorganisms have evolved thermal tolerance strategies.
Collapse
Affiliation(s)
- Yan Zhang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, China
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, QLD, Australia
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zheng-Shuang Hua
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
| | - Paul Evans
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Yanni Qu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sha Tan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, QLD, Australia
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sebastian Lücker
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Holger Daims
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- The Comammox Research Platform, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
14
|
Mei P, Wang Z, Guo W, Gao Y, A Vanrolleghem P, Li Y. The ASM2d model with two-step nitrification can better simulate biological nutrient removal systems enriched with complete ammonia oxidizing bacteria (comammox Nitrospira). CHEMOSPHERE 2023; 335:139169. [PMID: 37295682 DOI: 10.1016/j.chemosphere.2023.139169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
The discovery of comammox Nitrospira, a complete ammonia-oxidizing microorganism belonging to the genus Nitrospira, has brought new insights into the nitrification process in wastewater treatment plants (WWTPs). The applicability of Activated Sludge Model No. 2 d with one-step nitrification (ASM2d-OSN) or two-step nitrification (ASM2d-TSN) for the simulation of the biological nutrient removal (BNR) processes of a full-scale WWTP in the presence of comammox Nitrospira was studied. Microbial analysis and kinetic parameter measurements showed comammox Nitrospira was enriched in the BNR system operated under low dissolved oxygen (DO) and long sludge retention time (SRT). The relative abundance of Nitrospira under the conditions of stage I (DO = 0.5 mg/L, SRT = 60 d) was about twice of that under stage II conditions (DO = 4.0 mg/L, SRT = 26 d), and the copy number of the comammox amoA gene for stage I was 33 times higher than that for stage II. Compared to the ASM2d-OSN model, the ASM2d-TSN model simulated the performance of the WWTP under stage I conditions better, and the Theil inequality coefficient values of all the tested water quality parameters were lower than using ASM2d-OSN. These results indicate that an ASM2d model with two-step nitrification is a better choice for the simulation of WWTPs with the presence of comammox.
Collapse
Affiliation(s)
- Peng Mei
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Zhiqi Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Wenjie Guo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yuan Gao
- Shanghai Urban Construction Design & Research Institute (Group) Co., Ltd, Shanghai, 200001, PR China
| | | | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
15
|
Meng S, Liang X, Peng T, Liu Y, Wang H, Huang T, Gu JD, Hu Z. Ecological distribution and function of comammox Nitrospira in the environment. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12557-6. [PMID: 37195422 DOI: 10.1007/s00253-023-12557-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/18/2023]
Abstract
Complete ammonia oxidizers (Comammox) are of great significance for studying nitrification and expanding the understanding of the nitrogen cycle. Moreover, Comammox bacteria are also crucial in natural and engineered environments due to their role in wastewater treatment and maintaining the flux of greenhouse gases to the atmosphere. However, only few studies are there regarding the Comammox bacteria and their role in ammonia and nitrite oxidation in the environment. This review mainly focuses on summarizing the genomes of Nitrospira in the NCBI database. Ecological distribution of Nitrospira was also reviewed and the influence of environmental parameters on genus Nitrospira in different environments has been summarized. Furthermore, the role of Nitrospira in carbon cycle, nitrogen cycle, and sulfur cycle were discussed, especially the comammox Nitrospira. In addition, the overviews of current research and development regarding comammox Nitrospira, were summarized along with the scope of future research. KEY POINTS: • Most of Comammox Nitrospira are widely distributed in both aquatic and terrestrial ecosystems, but it has been studied less frequently in the extreme environments. • Comammox Nitrospira can be involved in different nitrogen transformation process, but rarely involved in nitrogen fixation. • The stable isotope and transcriptome techniques are important methods to study the metabolic function of comammox Nitrospira.
Collapse
Affiliation(s)
- Shanshan Meng
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Xueji Liang
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Tao Peng
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Yongjin Liu
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Hui Wang
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Tongwang Huang
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, 515063, Guangdong, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, 515063, Guangdong, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China.
| |
Collapse
|
16
|
Jiang L, Yu J, Wang S, Wang X, Schwark L, Zhu G. Complete ammonia oxidization in agricultural soils: High ammonia fertilizer loss but low N 2 O production. GLOBAL CHANGE BIOLOGY 2023; 29:1984-1997. [PMID: 36607170 DOI: 10.1111/gcb.16586] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/22/2022] [Indexed: 05/28/2023]
Abstract
The contribution of agriculture to the sustainable development goals requires climate-smart and profitable farm innovations. Increasing the ammonia fertilizer applications to meet the global food demands results in high agricultural costs, environmental quality deterioration, and global warming, without a significant increase in crop yield. Here, we reported that a third microbial ammonia oxidation process, complete ammonia oxidation (comammox), is contributing to a significant ammonia fertilizer loss (41.9 ± 4.8%) at the rate of 3.53 ± 0.55 mg N kg-1 day-1 in agricultural soils around the world. The contribution of comammox to ammonia fertilizer loss, occurring mainly in surface agricultural soil profiles (0-0.2 m), was equivalent to that of bacterial ammonia oxidation (48.6 ± 4.5%); both processes were significantly more important than archaeal ammonia oxidation (9.5 ± 3.6%). In contrast, comammox produced less N2 O (0.98 ± 0.44 μg N kg-1 day-1 , 11.7 ± 3.1%), comparable to that produced by archaeal ammonia oxidation (16.4 ± 4.4%) but significantly lower than that of bacterial ammonia oxidation (72.0 ± 5.1%). The efficiency of ammonia conversion to N2 O by comammox (0.02 ± 0.01%) was evidently lower than that of bacterial (0.24 ± 0.06%) and archaeal (0.16 ± 0.04%) ammonia oxidation. The comammox rate increased with increasing soil pH values, which is the only physicochemical characteristic that significantly influenced both comammox bacterial abundance and rates. Ammonia fertilizer loss, dominated by comammox and bacterial ammonia oxidation, was more intense in soils with pH >6.5 than in soils with pH <6.5. Our results revealed that comammox plays a vital role in ammonia fertilizer loss and sustainable development in agroecosystems that have been previously overlooked for a long term.
Collapse
Affiliation(s)
- Liping Jiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Yu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, China
| | - Shanyun Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lorenz Schwark
- Organic Geochemistry Unit, Kiel University, Kiel, Germany
| | - Guibing Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Li D, Ren Z, Zhou Y, Jiang L, Zheng M, Liu G. Comammox Nitrospira and Ammonia-Oxidizing Archaea Are Dominant Ammonia Oxidizers in Sediments of an Acid Mine Lake Containing High Ammonium Concentrations. Appl Environ Microbiol 2023; 89:e0004723. [PMID: 36912626 PMCID: PMC10056971 DOI: 10.1128/aem.00047-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 03/14/2023] Open
Abstract
Exploring nitrifiers in extreme environments is vital to expanding our understanding of nitrogen cycle and microbial diversity. This study presents that complete ammonia oxidation (comammox) Nitrospira, together with acidophilic ammonia-oxidizing archaea (AOA), dominate in the nitrifying guild in sediments of an acid mine lake (AML). The lake water was characterized by acidic pH below 5 with a high ammonium concentration of 175 mg-N/liter, which is rare on the earth. Nitrification was active in sediments with a maximum nitrate production potential of 70.5 μg-N/(g-dry weight [dw] day) for mixed sediments. Quantitative PCR assays determined that in AML sediments, comammox Nitrospira and AOA amoA genes had relative abundances of 52% and 41%, respectively, among the total amoA genes. Further assays with 16S rRNA and amoA gene amplicon sequencing and metagenomics confirmed their dominance and revealed that the comammox Nitrospira found in sediments belonged to comammox Nitrospira clade A.2. Metagenomic binning retrieved a metagenome-assembled genome (MAG) of the comammox Nitrospira from sediments (completeness = 96.76%), and phylogenomic analysis suggested that it was a novel comammox Nitrospira. Comparative genomic investigation revealed that this comammox Nitrospira contained diverse metal resistance genes and an acidophile-affiliated F-type ATPase. Moreover, it had a more diverse genomic characteristic on nitrogen metabolism than the AOA in sediments and canonical AOB did. The results suggest that comammox Nitrospira is a versatile nitrifier that can adapt to acidic environments even with high ammonium concentrations. IMPORTANCE Ammonia-oxidizing archaea (AOA) was previously considered the sole dominant ammonia oxidizer in acidic environments. This study, however, found that complete ammonia oxidation (comammox) Nitrospira was also a dominant ammonia oxidizer in the sediments of an acidic mine lake, which had an acidic pH < 5 and a high ammonium concentration of 175 mg-N/liter. In combination with average nucleotide identity analysis, phylogenomic analysis suggested it is a novel strain of comammox Nitrospira. Moreover, the adaption of comammox Nitrospira to the acidic lake had been comprehensively investigated based on genome-centric metagenomic approaches. The outcomes of this study significantly expand our understanding of the diversity and adaptability of ammonia oxidizers in the acidic environments.
Collapse
Affiliation(s)
- Deyong Li
- Center for Environmental Microplastics Studies, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Zhichang Ren
- Center for Environmental Microplastics Studies, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yangqi Zhou
- Center for Environmental Microplastics Studies, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Lugao Jiang
- Center for Environmental Microplastics Studies, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Guoqiang Liu
- Center for Environmental Microplastics Studies, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
18
|
Abstract
Common culturing techniques and priorities bias our discovery towards specific traits that may not be representative of microbial diversity in nature. So far, these biases have not been systematically examined. To address this gap, here we use 116,884 publicly available metagenome-assembled genomes (MAGs, completeness ≥80%) from 203 surveys worldwide as a culture-independent sample of bacterial and archaeal diversity, and compare these MAGs to the popular RefSeq genome database, which heavily relies on cultures. We compare the distribution of 12,454 KEGG gene orthologs (used as trait proxies) in the MAGs and RefSeq genomes, while controlling for environment type (ocean, soil, lake, bioreactor, human, and other animals). Using statistical modeling, we then determine the conditional probabilities that a species is represented in RefSeq depending on its genetic repertoire. We find that the majority of examined genes are significantly biased for or against in RefSeq. Our systematic estimates of gene prevalences across bacteria and archaea in nature and gene-specific biases in reference genomes constitutes a resource for addressing these issues in the future.
Collapse
Affiliation(s)
- Sage Albright
- Department of Biology, University of Oregon, Eugene, USA
| | - Stilianos Louca
- Department of Biology, University of Oregon, Eugene, USA.
- Institute of Ecology and Evolution, University of Oregon, Eugene, USA.
| |
Collapse
|
19
|
Roux S, Fischer MG, Hackl T, Katz LA, Schulz F, Yutin N. Updated Virophage Taxonomy and Distinction from Polinton-like Viruses. Biomolecules 2023; 13:204. [PMID: 36830574 PMCID: PMC9952930 DOI: 10.3390/biom13020204] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Virophages are small dsDNA viruses that hijack the machinery of giant viruses during the co-infection of a protist (i.e., microeukaryotic) host and represent an exceptional case of "hyperparasitism" in the viral world. While only a handful of virophages have been isolated, a vast diversity of virophage-like sequences have been uncovered from diverse metagenomes. Their wide ecological distribution, idiosyncratic infection and replication strategy, ability to integrate into protist and giant virus genomes and potential role in antiviral defense have made virophages a topic of broad interest. However, one limitation for further studies is the lack of clarity regarding the nomenclature and taxonomy of this group of viruses. Specifically, virophages have been linked in the literature to other "virophage-like" mobile genetic elements and viruses, including polinton-like viruses (PLVs), but there are no formal demarcation criteria and proper nomenclature for either group, i.e., virophage or PLVs. Here, as part of the ICTV Virophage Study Group, we leverage a large set of genomes gathered from published datasets as well as newly generated protist genomes to propose delineation criteria and classification methods at multiple taxonomic ranks for virophages 'sensu stricto', i.e., genomes related to the prototype isolates Sputnik and mavirus. Based on a combination of comparative genomics and phylogenetic analyses, we show that this group of virophages forms a cohesive taxon that we propose to establish at the class level and suggest a subdivision into four orders and seven families with distinctive ecogenomic features. Finally, to illustrate how the proposed delineation criteria and classification method would be used, we apply these to two recently published datasets, which we show include both virophages and other virophage-related elements. Overall, we see this proposed classification as a necessary first step to provide a robust taxonomic framework in this area of the virosphere, which will need to be expanded in the future to cover other virophage-related viruses such as PLVs.
Collapse
Affiliation(s)
- Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Matthias G. Fischer
- Max Planck Institute for Medical Research, Department of Biomolecular Mechanisms, 69120 Heidelberg, Germany
| | - Thomas Hackl
- Groningen Institute of Evolutionary Life Sciences, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
20
|
Hsu PC(L, Di HJ, Cameron K, Podolyan A, Chau H, Luo J, Miller B, Carrick S, Johnstone P, Ferguson S, Wei W, Shen J, Zhang L, Liu H, Zhao T, Wei W, Ding W, Pan H, Liu Y, Li B. Comammox Nitrospira Clade B is the most abundant complete ammonia oxidizer in a dairy pasture soil and inhibited by dicyandiamide and high ammonium concentrations. Front Microbiol 2022; 13:1048735. [PMID: 36578577 PMCID: PMC9791190 DOI: 10.3389/fmicb.2022.1048735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022] Open
Abstract
The recent discovery of comammox Nitrospira, a complete ammonia oxidizer, capable of completing the nitrification on their own has presented tremendous challenges to our understanding of the nitrification process. There are two divergent clades of comammox Nitrospira, Clade A and B. However, their population abundance, community structure and role in ammonia and nitrite oxidation are poorly understood. We conducted a 94-day microcosm study using a grazed dairy pasture soil amended with urea fertilizers, synthetic cow urine, and the nitrification inhibitor, dicyandiamide (DCD), to investigate the growth and community structure of comammox Nitrospira spp. We discovered that comammox Nitrospira Clade B was two orders of magnitude more abundant than Clade A in this fertile dairy pasture soil and the most abundant subcluster was a distinctive phylogenetic uncultured subcluster Clade B2. We found that comammox Nitrospira Clade B might not play a major role in nitrite oxidation compared to the role of canonical Nitrospira nitrite-oxidizers, however, comammox Nitrospira Clade B is active in nitrification and the growth of comammox Nitrospira Clade B was inhibited by a high ammonium concentration (700 kg synthetic urine-N ha-1) and the nitrification inhibitor DCD. We concluded that comammox Nitrospira Clade B: (1) was the most abundant comammox in the dairy pasture soil; (2) had a low tolerance to ammonium and can be inhibited by DCD; and (3) was not the dominant nitrite-oxidizer in the soil. This is the first study discovering a new subcluster of comammox Nitrospira Clade B2 from an agricultural soil.
Collapse
Affiliation(s)
- Pei-Chun (Lisa) Hsu
- Centre for Soil and Environmental Research, Lincoln University, Lincoln, New Zealand
| | - Hong J. Di
- Centre for Soil and Environmental Research, Lincoln University, Lincoln, New Zealand
| | - Keith Cameron
- Centre for Soil and Environmental Research, Lincoln University, Lincoln, New Zealand
| | - Andriy Podolyan
- Centre for Soil and Environmental Research, Lincoln University, Lincoln, New Zealand
| | - Henry Chau
- Centre for Soil and Environmental Research, Lincoln University, Lincoln, New Zealand
| | | | - Blair Miller
- Lincoln Agritech Ltd, Lincoln University, Lincoln, New Zealand
| | - Sam Carrick
- Manaaki Whenua – Landcare Research, Lincoln, New Zealand
| | - Paul Johnstone
- The New Zealand Institute for Plant and Food Research, Havelock North, New Zealand
| | - Scott Ferguson
- Department of Microbiology, University of Otago, Dunedin, New Zealand
| | - Wenhua Wei
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | - Limei Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Hongbin Liu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tongke Zhao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wenxue Wei
- Institute of Subtropical Agricultural Ecology, Chinese Academy of Sciences, Changsha, China
| | - Weixin Ding
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Hong Pan
- College of Natural Resources and Environment, Shandong Agricultural University, Taian, China
| | - Yimeng Liu
- Centre for Innovation and Development, Beijing Normal University, Zhuhai, China
| | - Bowen Li
- College of Natural Resources and Environment, Hebei Agricultural University, Baoding, China
| |
Collapse
|
21
|
Liu S, Cai H, Zhao X, Wu Z, Chen Q, Xu X, Zhong S, Sun W, Ni J. Comammox biogeography subject to anthropogenic interferences along a high-altitude river. WATER RESEARCH 2022; 226:119225. [PMID: 36272199 DOI: 10.1016/j.watres.2022.119225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The recent discovery of comammox Nitrospira performing complete ammonia oxidation to nitrate has overturned the long-held dogma of two-step nitrification on Earth, yet little is known about the effect of urbanization interference on their distribution. Using gene-centric metagenomics, we provided the first blueprints about comammox community, biogeography, and environmental drivers along a high-elevation (> 2000 m) river flowing through the largest city on the vulnerable Qinghai-Tibetan Plateau. Our study confirmed a wide presence and diversity of yet-uncultured comammox clade B across wet and dry seasons, with average 3.0 and 2.0 times as abundant as clade-A amoA genes in water and sediments, respectively. Species identified from freshwater and drinking water treatment plants dominated the comammox guilds (58∼100%), suggesting this plateau river shared a similar comammox assemblage with the above habitat types. Compared with the urban area harboring more abundant canonical Nitrospira identified in wastewater (average 24%), the upstream suburban reach had a smaller human population but larger proportions of comammox in ammonia-oxidizing prokaryotes (24∼72% of abundances) and Nitrospira sublineages I/II. Higher contents of nitrate and nitrite in water, and antibiotics in water and sediments, may restrain comammox niches in nitrifiers over the urban area. Further random forest analysis revealed that lincosamides and quinolones were the most important antibiotic predictors for the niche differentiations between comammox and canonical nitrifiers in water, while macrolides for those in sediments. Finally, by incubation experiments, we demonstrated higher activity contributions of benthic comammox in the suburban area (36.2∼92.8% of potential ammonia-oxidation rates) than in the urban reach, and that the contribution variation had significant negative relations with macrolides and their major components. Overall, this study highlighted that anthropogenic activities hampered the advantage of riverine complete nitrifiers over the canonical two-step ones.
Collapse
Affiliation(s)
- Shufeng Liu
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China.
| | - Hetong Cai
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China
| | - Xiaohui Zhao
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China; College of Water Resources and Hydropower Engineering, Xi'an University of Technology, Xi'an, China
| | - Zongzhi Wu
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China.
| | - Xuming Xu
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China
| | - Sining Zhong
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Jinren Ni
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
22
|
He J, Zhang N, Shen X, Muhammad A, Shao Y. Deciphering environmental resistome and mobilome risks on the stone monument: A reservoir of antimicrobial resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156443. [PMID: 35660621 DOI: 10.1016/j.scitotenv.2022.156443] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Antimicrobial resistance (AMR) in the environment has attracted increasing attention as an emerging global threat to public health. Stone is an essential ecosystem in nature and also an important material for human society, having architectural and aesthetic values. However, little is known about the AMR in stone ecosystems, particularly in the stone monument, where antimicrobials are often applied against biodeterioration. Here, we provide the first detailed metagenomic study of AMR genes across different types of biodeteriorated stone monuments, which revealed abundant and diverse AMR genes conferring resistance to drugs (antibiotics), biocides, and metals. Totally, 132 AMR subtypes belonging to 27 AMR types were detected including copper-, rifampin-, and aminocoumarins-resistance genes, of which diversity was mainly explained by the spatial turnover (replacement of genes between samples) rather than nestedness (loss of nested genes between samples). Source track analysis confirms that stone resistomes are likely driven by anthropogenic activities across stone heritage areas. We also detected various mobile genetic elements (namely mobilome, e.g., prophages, plasmids, and insertion sequences) that could accelerate replication and horizontal transfer of AMR genes. Host-tracking analysis further identified multiple biodeterioration-related bacterial genera such as Pseudonocardia, Sphingmonas, and Streptomyces as the major hosts of resistome. Taken together, these findings highlight that stone microbiota is one of the natural reservoirs of antimicrobial-resistant hazards, and the diverse resistome and mobilome carried by active biodeteriogens may improve their adaptation on stone and even deactivate the antimicrobials applied against biodeterioration. This enhanced knowledge may also provide novel and specific avenues for environmental management and stone heritage protection.
Collapse
Affiliation(s)
- Jintao He
- Max Planck Partner Group, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, China
| | - Nan Zhang
- Max Planck Partner Group, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, China
| | - Xiaoqiang Shen
- Max Planck Partner Group, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, China
| | - Abrar Muhammad
- Max Planck Partner Group, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, China
| | - Yongqi Shao
- Max Planck Partner Group, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, China; Key Laboratory for Molecular Animal Nutrition, Ministry of Education, China.
| |
Collapse
|
23
|
Meng S, Peng T, Wang H, Huang T, Gu JD, Hu Z. Evaluation of PCR primers for detecting the distribution of nitrifiers in mangrove sediments. Appl Microbiol Biotechnol 2022; 106:5811-5822. [PMID: 35941255 DOI: 10.1007/s00253-022-12104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
Abstract
Ammonia-oxidizing archaea and ammonia-oxidizing bacteria (AOA and AOB), complete ammonia oxidizers (Comammox), and nitrite-oxidizing bacteria (NOB) play a crucial role in the nitrification process during the nitrogen cycle. However, their occurrence and diversity in mangrove ecosystems are still not fully understood. Here, a total of 11 pairs of PCR primers were evaluated to study the distribution and abundances of these nitrifiers in rhizosphere and non-rhizosphere sediments of a mangrove ecosystem. The amplification efficiency of these 11 pairs of primers was first evaluated and their performances were found to vary considerably. The CamoA-19F/CamoA-616R primer pair was suitable for the amplification of AOA in mangrove sediments, especially on the surface of rhizosphere sediments. Primer pair amoA1F/amoA2R was better for the characterization of novel AOB in the bacterial community of non-rhizosphere sediments of mangroves. In contrast, primer nxrB169F/nxrB638R showed a low abundance of NOB in mangrove sediments (except for R1). Comammox bacteria were abundant and diverse in mangrove sediments, as indicated by both the amoB gene for Comammox clade A and the amoA gene for Comammox Nitrospira clade B. However, the amoA gene for Comammox Nitrospira clade A was not successful in detecting them in the mangrove sediments. Furthermore, 568 operational taxonomic units (OTUs) were obtained by generating a clone library and a high abundance of OTUs was correlated with ammonium, pH, NO2-, and NO3-. Comammox and Comammox Nitrospira were identified by phylogenetic tree analysis, indicating that mangrove sediments harbor newly discovered nitrifiers. Additionally, many AOA and NOB were mainly distributed in the surface layer of the rhizosphere, whereas AOB and Comammox Nitrospira were in the subsurface of non-rhizosphere, as determined by qPCR analysis. Collectively, our findings highlight the limitations of some primers for the identification of specific nitrifying bacteria. Therefore, primers must be carefully selected to gain accurate insights into the ecological distribution of nitrifiers in mangroves. KEY POINTS: • Several sets of PCR primers perform well for the detection of nitrifiers in mangroves. • Mangroves are an important source of newly discovered nitrifiers. • Ammonium, pH, NO2-, and NO3- are important shapers of nitrifier communities in mangroves.
Collapse
Affiliation(s)
- Shanshan Meng
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, People's Republic of China
| | - Tao Peng
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, People's Republic of China
| | - Hui Wang
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, People's Republic of China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong, 511458, Guangzhou, People's Republic of China
| | - Tongwang Huang
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, People's Republic of China
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, 515063, Guangdong, China.,Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, 515063, Guangdong, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, People's Republic of China. .,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong, 511458, Guangzhou, People's Republic of China.
| |
Collapse
|
24
|
Zhu G, Wang X, Wang S, Yu L, Armanbek G, Yu J, Jiang L, Yuan D, Guo Z, Zhang H, Zheng L, Schwark L, Jetten MSM, Yadav AK, Zhu YG. Towards a more labor-saving way in microbial ammonium oxidation: A review on complete ammonia oxidization (comammox). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154590. [PMID: 35306060 DOI: 10.1016/j.scitotenv.2022.154590] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
In the Anthropocene, nitrogen pollution is becoming an increasing challenge for both mankind and the Earth system. Microbial nitrogen cycling begins with aerobic nitrification, which is also the key rate-limiting step. For over a century, it has been accepted that nitrification occurs sequentially involving ammonia oxidation, which produces nitrite followed by nitrite oxidation, generating nitrate. This perception was changed by the discovery of comammox Nitrospira bacteria and their metabolic pathway. In addition, this also provided us with new knowledge concerning the complex nitrogen cycle network. In the comammox process, ammonia can be completely oxidized to nitrate in one cell via the subsequent activity of the enzyme complexes, ammonia monooxygenase, hydroxylamine dehydrogenase, and nitrite oxidodreductase. Over the past five years, research on comammox made great progress. However, there still exist a lot of questions, including how much does comammox contribute to nitrification? How large is the diversity and are there new strains to be discovered? Do comammox bacteria produce the greenhouse gas N2O, and how or to which extent may they contribute to global climate change? The above four aspects are of great significance on the farmland nitrogen management, aquatic environment restoration, and mitigation of global climate change. As large number of comammox bacteria and pathways have been detected in various terrestrial and aquatic ecosystems, indicating that the comammox process may exert an important role in the global nitrogen cycle.
Collapse
Affiliation(s)
- Guibing Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaomin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanyun Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longbin Yu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gawhar Armanbek
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Yu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Liping Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongdan Yuan
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Zhongrui Guo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hanrui Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lei Zheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Lorenz Schwark
- Institute for Geosciences, University of Kiel, 24118 Kiel, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud University Nijmegen, 36525 AJ Nijmegen, the Netherlands
| | - Asheesh Kumar Yadav
- Department of Environment and Sustainability, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
| | - Yong-Guan Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Zhao C, Li J, Li C, Xue B, Wang S, Zhang X, Yang X, Shen Z, Bo L, Qiu Z, Wang J. Horizontal transfer of the multidrug resistance plasmid RP4 inhibits ammonia nitrogen removal dominated by ammonia-oxidizing bacteria. WATER RESEARCH 2022; 217:118434. [PMID: 35427829 DOI: 10.1016/j.watres.2022.118434] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic resistance genes (ARGs) have become an important public health concern. Particularly, although several ARGs have been identified in wastewater treatment plants (WWTPs), very few studies have characterized their impacts on reactor performance. Therefore, our study sought to investigate the effect of a representative conjugative transfer plasmid (RP4) encoding multidrug resistance genes on ammonia oxidation. To achieve this, we established sequencing batch reactors (SBRs) and a conjugation model with E. coli donor strains carrying the RP4 plasmid and a typical ammonia-oxidating (AOB) bacterial strain (Nitrosomonas europaea ATCC 25978) as a recipient to investigate the effect of conjugative transfer of plasmid RP4 on AOB. Our findings demonstrated that the RP4 plasmid carried by the donor strains could be transferred to AOB in the SBR and to Nitrosomonas europaea ATCC 25978. In SBR treated with donor strains carrying the RP4 plasmid, ammonia removal efficiency continuously decreased to 71%. Once the RP4 plasmid entered N. europaea ATCC 25978 in the conjugation model, ammonia removal was significantly inhibited and nitrite generation was decreased. Furthermore, the expression of several functional genes related to ammonia oxidation in AOB was suppressed following the transfer of the RP4 plasmid, including amoA, amoC, hao, nirK, and norB. In contrast, the cytL gene encoding cytochrome P460 was upregulated. These results demonstrated the ecological risk of ARGs in WWTPs, and therefore measures must be taken to avoid their transfer.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China; Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Jia Li
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Chenyu Li
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China; Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Bin Xue
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China; Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Shang Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xi Zhang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaobo Yang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhiqiang Shen
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Lin Bo
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China; Tiangong University, Tianjin, China
| | - Zhigang Qiu
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China; Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China.
| | - Jingfeng Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China; Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China.
| |
Collapse
|
26
|
Al-Ajeel S, Spasov E, Sauder LA, McKnight MM, Neufeld JD. Ammonia-oxidizing archaea and complete ammonia-oxidizing Nitrospira in water treatment systems. WATER RESEARCH X 2022; 15:100131. [PMID: 35402889 PMCID: PMC8990171 DOI: 10.1016/j.wroa.2022.100131] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 05/27/2023]
Abstract
Nitrification, the oxidation of ammonia to nitrate via nitrite, is important for many engineered water treatment systems. The sequential steps of this respiratory process are carried out by distinct microbial guilds, including ammonia-oxidizing bacteria (AOB) and archaea (AOA), nitrite-oxidizing bacteria (NOB), and newly discovered members of the genus Nitrospira that conduct complete ammonia oxidation (comammox). Even though all of these nitrifiers have been identified within water treatment systems, their relative contributions to nitrogen cycling are poorly understood. Although AOA contribute to nitrification in many wastewater treatment plants, they are generally outnumbered by AOB. In contrast, AOA and comammox Nitrospira typically dominate relatively low ammonia environments such as drinking water treatment, tertiary wastewater treatment systems, and aquaculture/aquarium filtration. Studies that focus on the abundance of ammonia oxidizers may misconstrue the actual role that distinct nitrifying guilds play in a system. Understanding which ammonia oxidizers are active is useful for further optimization of engineered systems that rely on nitrifiers for ammonia removal. This review highlights known distributions of AOA and comammox Nitrospira in engineered water treatment systems and suggests future research directions that will help assess their contributions to nitrification and identify factors that influence their distributions and activity.
Collapse
|
27
|
Zhang J, Hu M, Wang Y, Zhao J, Li S, Bao Y, Wen J, Hu J, Zhou M. Niche differentiation of comammox Nitrospira in sediments of the Three Gorges Reservoir typical tributaries, China. Sci Rep 2022; 12:6820. [PMID: 35474096 PMCID: PMC9042867 DOI: 10.1038/s41598-022-10948-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/15/2022] [Indexed: 11/09/2022] Open
Abstract
Complete ammonia oxidizer (Comammox) can complete the whole nitrification process independently, whose niche differentiation is important guarantee for its survival and ecological function. This study investigated the niche differentiation of comammox Nitrospira in the sediments of three typical tributaries of the Three Gorges Reservoir (TGR). Clade A and clade B of comammox Nitrospira coexisted in all sampling sites simultaneously. The amoA gene abundance of clade A and B was gradually increased or decreased along the flow path of the three tributaries with obvious spatial differentiation. The amoA gene abundance of comammox Nitrospira clade A (6.36 × 103 - 5.06 × 104 copies g-1 dry sediment) was higher than that of clade B (6.26 × 102 - 6.27 × 103 copies g-1 dry sediment), and the clade A amoA gene abundance was one order of magnitude higher than that of AOA (7.24 × 102 - 6.89 × 103 copies g-1 dry sediment) and AOB (1.44 × 102 - 1.46 × 103 copies g-1 dry sediment). A significant positive correlation was observed between comammox Nitrospira clade A amoA gene abundance and flow distance (P < 0.05). The number of operational taxonomic units (OTUs) in two sub-clades of clade A accounted for the majority in different tributaries, indicating that clade A also had population differentiation among different tributaries. This study revealed that comammox Nitrospira in the sediments of TGR tributaries have niche differentiation and clade A.2 played a more crucial role in comammox Nitrospira community.
Collapse
Affiliation(s)
- Jiahui Zhang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing, 10038, People's Republic of China.,Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, People's Republic of China.,Laboratory of Eco-Environmental Engineering Research, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Mingming Hu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing, 10038, People's Republic of China. .,Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, People's Republic of China.
| | - Yuchun Wang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing, 10038, People's Republic of China.,Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, People's Republic of China
| | - Jianwei Zhao
- Laboratory of Eco-Environmental Engineering Research, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| | - Shanze Li
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing, 10038, People's Republic of China.,Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, People's Republic of China
| | - Yufei Bao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing, 10038, People's Republic of China.,Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, People's Republic of China
| | - Jie Wen
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing, 10038, People's Republic of China.,Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, People's Republic of China
| | - Jinlong Hu
- Laboratory of Eco-Environmental Engineering Research, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Mingzhi Zhou
- Laboratory of Eco-Environmental Engineering Research, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| |
Collapse
|
28
|
Gao YX, Li X, Zhao JR, Zhang ZX, Fan XY. Impacts of combined pollution under gradient increasing and gradient decreasing exposure modes on activated sludge: Microbial communities and antibiotic resistance genes. BIORESOURCE TECHNOLOGY 2022; 345:126568. [PMID: 34921920 DOI: 10.1016/j.biortech.2021.126568] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
The responses of microbial communities and antibiotic resistance genes (ARGs) to azithromycin and copper combined pollution under gradient increasing (from 0.5 to 10 mg/L) and decreasing exposure (from 10 to 0.5 mg/L) modes were investigated. Nitrification was inhibited more obviously under gradient increasing exposure mode. Responses of archaeal community and function structure were more obvious than bacteria under both exposure modes. The dominant bacterial and archaeal compositions (Hyphomicrobium, Euryarchaeota, etc.) were affected by two exposure modes, except some rare archaea (Methanoregula and Methanosarcina). There were more positive correlations between bacteria and archaea, and Nitrospira was keystone genus. Ammonia-oxidizing archaea (0.37-3.06%) and complete ammonia oxidizers (Nitrospira_ENR4) were enriched, and Nitrososphaera_viennensis was closely related to denitrifying genes (napA/B, nosZ, etc.). 50 ARG subtypes were detected and specific ARG subtypes (aac, ImrA, etc.) proliferated in two exposure modes. Bacteria and archaea were common hosts for 24 ARGs and contributed to their shifts.
Collapse
Affiliation(s)
- Yu-Xi Gao
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xing Li
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jun-Ru Zhao
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Zhong-Xing Zhang
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xiao-Yan Fan
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
29
|
Ding X, Lan W, Yan A, Li Y, Katayama Y, Gu JD. Microbiome characteristics and the key biochemical reactions identified on stone world cultural heritage under different climate conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114041. [PMID: 34741944 DOI: 10.1016/j.jenvman.2021.114041] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/11/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
The surfaces of historical stone monuments are visibly covered with a layer of colonizing microorganisms and their degradation products. In this study, a metadata analysis was conducted using the microbial sequencing data available from NCBI database to determine the diversity, biodeterioration potential and functionality of the stone microbiome on important world cultural heritage sites under four different climatic conditions. The retrieved stone microbial community composition in these metagenomes shows a clear association between climate types of the historical monuments and the diversity and taxonomic composition of the stone microbiomes. Shannon diversity values showed that microbial communities on stone monuments exposed to dry climate were more diverse than those under humid ones. In particular, functions associated with photosynthesis and UV resistance were identified from geographical locations under different climate types. The distribution of key microbial determinants responsible for stone deterioration was linked to survival under extreme environmental conditions and biochemical capabilities and reactions. Among them, biochemical reactions of the microbial nitrogen and sulfur cycles were most predominant. These stone-dwelling microbiomes on historical stone monuments were highly diverse and self-sustaining driven by energy metabolism and biomass accumulation. And metabolic products of the internal geomicrobiological nitrogen cycling on these ancient monuments play a unique role in the biodeterioration of stone monuments. These results highlight the significance of identifying the essential microbial biochemical reactions to advance the understanding of stone biodeterioration for protection management.
Collapse
Affiliation(s)
- Xinghua Ding
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Wensheng Lan
- Shenzhen R&D Key Laboratory of Alien Pest Detection Technology, The Shenzhen Academy of Inspection and Quarantine, Food Inspection and Quarantine Center of Shenzhen Custom, 1011 Fuqiang Road, Shenzhen, 518045, People's Republic of China
| | - Aixin Yan
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Yiliang Li
- Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Yoko Katayama
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Japan; Tokyo National Research Institute for Cultural Properties, 13-43 Ueno Park, Taito-ku, Tokyo, 110-8713, Japan
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, People's Republic of China.
| |
Collapse
|
30
|
Gao YX, Li X, Zhao JR, Zhang ZX, Fan XY. Response of microbial communities based on full-scale classification and antibiotic resistance genes to azithromycin and copper combined pollution in activated sludge nitrification laboratory mesocosms at low temperature. BIORESOURCE TECHNOLOGY 2021; 341:125859. [PMID: 34523571 DOI: 10.1016/j.biortech.2021.125859] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to investigate the short-term response of abundant-rare genera and antibiotic resistance genes (ARGs) to azithromycin (AZM, 0.05-40 mg/L) and copper (1 mg/L) combined pollution in activated sludge nitrification system at low temperature. Nitrification was as expected inhibited in stress- and post-effects periods under AZM concentration higher than 5 mg/L. Abundant and rare taxa presented dissimilar responses based on full-scale classification. Conditionally rare or abundant taxa (CRAT) were keystone taxa. Relative abundance of ammonia-oxidizing archaea increased, and three aerobic denitrifying bacteria (Brevundimonas, Comamonas and Trichococcus) were enriched (from 9.83% to 68.91% in total). Ammonia nitrogen assimilating into Org-N and denitrification may be nitrogen pathways based on predict analysis. 29 ARGs were found with more co-occurrence patterns and high concentration of AZM (greater than 5 mg/L) caused their proliferation. Importantly, expect for some abundant taxa, rare taxa, potential pathogens and nitrogen-removal functional genera were the main potential hosts of ARGs.
Collapse
Affiliation(s)
- Yu-Xi Gao
- Faculty of Urban Construction of Beijing University of Technology, Beijing 100124, China
| | - Xing Li
- Faculty of Urban Construction of Beijing University of Technology, Beijing 100124, China
| | - Jun-Ru Zhao
- Faculty of Urban Construction of Beijing University of Technology, Beijing 100124, China
| | - Zhong-Xing Zhang
- Faculty of Urban Construction of Beijing University of Technology, Beijing 100124, China
| | - Xiao-Yan Fan
- Faculty of Urban Construction of Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
31
|
Yuan D, Zheng L, Tan Q, Wang X, Xing Y, Wang H, Wang S, Zhu G. Comammox activity dominates nitrification process in the sediments of plateau wetland. WATER RESEARCH 2021; 206:117774. [PMID: 34757282 DOI: 10.1016/j.watres.2021.117774] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
The recent discovery of complete ammonia oxidation (comammox) has increased our understanding of nitrification. Although comammox has been shown to play an important role in plain wetland ecosystems, studies of comammox contribution are still limited in plateau wetland ecosystems. Here, we analyzed the abundance, activity, community and biogeochemical mechanisms of the comammox bacteria in Yunnan-kweichow and Qinghai-Tibet plateau wetlands from elevations of 1000-5000 m. Comammox bacteria were widely distributed in all 16 sediment samples with abundances higher than 0.96 ± 0.26 × 107 copies g-1 (n = 16). Comammox showed high activity (1.18 ± 0.17 to 1.98 ± 0.08 mg N kg-1 d-1) at high-elevation (3000-5000 m) and dominated the nitrification process (activity contribution: 37.20 - 60.62%). The activity contribution of ammonia-oxidizing bacteria (1.07 ± 0.08 to 2.79 ± 0.35 mg N kg-1 d-1) dominated the nitrification process (44.55 - 64.15%) in low-elevation (1000-3000 m) samples. All detected comammox Nitrospira belonged to clade A, while clade B was not detected. Elevation always had a strongest effect on key comammox species. Thus, we infer that elevation may drive the high relative abundance of the species Candidatus Nitrospira nitrificans (avg. 12.40%) and the low relative abundance of the species Nitrospira sp. SG-bin2 (avg. 4.75%) in high-elevation samples that showed a high comammox activity (avg. 1.62 mg N kg-1 d-1) and high contribution (avg. 46.08%) to the nitrification process. These results indicate that comammox may be an important and currently underestimated microbial nitrification process in plateau wetland ecosystems.
Collapse
Affiliation(s)
- Dongdan Yuan
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Lei Zheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Qiuyang Tan
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xue Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuzi Xing
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Huipeng Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shanyun Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibing Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|