1
|
Wu Y, Xian B, Xiang X, Fang F, Chu F, Deng X, Hu Q, Sun X, Tang W, Bao S, Li G, Fang T. Identification of key feature variables and prediction of harmful algal blooms in a water diversion lake based on interpretable machine learning. ENVIRONMENTAL RESEARCH 2025; 276:121491. [PMID: 40158870 DOI: 10.1016/j.envres.2025.121491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/08/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Harmful algal blooms (HABs) as an increasing environmental problem in lakes, and water diversion has become a common and effective strategy for mitigating HABs. Early and accurate identification of the occurrence of HABs in lakes is essential for scientific guidance of water diversion. Furthermore, the inevitable changes of hydrodynamic and water environment in the receiving area during water diversion make it more challenging to identify the important environmental features of HABs. Therefore, we constructed a machine learning modelling framework suitable for predicting HABs with favorable performance in both non-water diversion and water diversion states. In this study, we collected data from three monitoring sites for the years 2008-2020 (non-water diversion period from 2008 to 2013 and water diversion period from 2014 to 2020) as external validations and six sampling sites for the years 2021-2022 (2021 non-water diversion period and 2022 water diversion period) as internal validation. The CatBoost (AUC = 0.948) model fared best performance was obtained by comparing 10 machine learning models for comprehensive HABs prediction analyses in the external cohorts of Yilong Lake, and the 24 features were reduced to obtain the 8 (Including TP, TN and CODCr, etc.) most important environmental features. In addition, the SHapley Additive explanation (SHAP) method was used to interpret this CatBoost model through a global interpretation that describes the whole features of the model and a local interpretation that details how a certain forecast of HABs is made for a single sample via inputting the individual data. The CatBoost interpretable model also performed well in internal validation and the model has been converted into a convenient application for use by the Bureau of Yilong Lake Administration personnel and researchers. Finally, the results of the PLS-PM explains that water diversion indirectly mitigates HABs mainly through diluting nutrient concentrations. Overall, the final model of this study has a good performance and application benefits in predicting HABs during the non-water diversion period and water diversion period of Yilong Lake, which provides a guideline for water diversion. Furthermore, this study also provides a reference for other similar eutrophic lake water diversion strategies.
Collapse
Affiliation(s)
- Yundong Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Bo Xian
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiaowei Xiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fang Fang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| | - Fuhao Chu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xingkang Deng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| | - Qing Hu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| | - Xiuqiong Sun
- Bureau of Yilong Lake Administration, Shiping, 662200, PR China
| | - Wei Tang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shaopan Bao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Genbao Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Tao Fang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
2
|
Fan Y, Xiang T, Dai Z, Wei Q, Li Y, Wang F, Yang S, Liu L, Xu W, Cao W. Cascade effects of nutrient input on river microeukaryotic stability: habitat heterogeneity-driven assembly mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 385:125626. [PMID: 40334416 DOI: 10.1016/j.jenvman.2025.125626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/26/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
The assembly process and stability mechanism of microeukaryotes can reflect the health and sustainability of river ecosystems, and changes in land use types can alter biodiversity and affect ecosystem functions. Here, we used 18S rDNA amplicon sequencing technology to explore the effects of land use and dry and wet season changes on microeukaryotic species composition, community assembly, co-occurrence networks, and network stability, as well as the mechanisms driving observed changes. The total phosphorus concentration was 13.3 and 7.8 times higher and the total nitrogen concentration was 6.3 and 3.8 times higher in agricultural and urban river sections, respectively, than in forest river sections. Differences in land use types have created heterogeneity on river habitats and altered the distribution and species composition of microeukaryotes, reducing the number and diversity of endemic species in communities and simplifying the food web. High nitrogen and phosphorus inputs promoted the abundance of low-trophic-level species; ecosystem stability and population sizes were maintained by high trophic levels, which controlled the abundance of low trophic levels through predation and promoted nitrogen transformation. The high-nutrient environment reduced the niche breadth of species (>70 % dry season niche breadth contraction), thus promoting specialization; given that this placed these species at a disadvantage in the competition for resources, community stability decreased (60 %/40 % wet/dry season robustness reductions). The physical dilution effect of the river in the dry season was weakened, and the input of domestic sewage and agricultural return water promoted deterministic processes (71.43 % increased |βNTI|>2 in dry season). The environmental filtration effect in the wet season was still stronger than the physical dilution effect caused by the increase in river flow (neutral model R2 = 33.5 %). The input of large amounts of nutrients was the main driver of the decline in the stability of microeukaryotes (Total Effect = -0.62).
Collapse
Affiliation(s)
- Yifei Fan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Tao Xiang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zetao Dai
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Qiqi Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yujie Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Feifei Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Shengchang Yang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Lihua Liu
- Fujian Xiamen Environmental Monitoring Central Station, Xing'lin South Road, Xiamen, 361102, Fujian, China
| | - Wenfeng Xu
- Fujian Xiamen Environmental Monitoring Central Station, Xing'lin South Road, Xiamen, 361102, Fujian, China
| | - Wenzhi Cao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
3
|
Guo X, Luo Y, Xie H, Chen M, Xu J, Wang Y, Johnson AC, Jin X. Beyond agriculture: Land use thresholds governing pesticide mixture risks in megacity surface waters. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138657. [PMID: 40408968 DOI: 10.1016/j.jhazmat.2025.138657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/28/2025] [Accepted: 05/16/2025] [Indexed: 05/25/2025]
Abstract
Growing concerns have emerged regarding the risks of pesticide mixtures in surface water ecosystems, yet the mechanisms through which human activities, especially land use patterns, affect these risks remain inadequately studied. This research presents an innovative approach, combining multi-scale land use analysis with pesticide risk assessment, quantifying relationships between mixed pesticide ecological risks and land use patterns. Findings indicate that the impacts of urban land use on pesticide ecological risks surpass the traditionally recognized agricultural effects, demonstrating significant spatial scale-dependent effects. Generalized additive model analysis reveals that 1-3 km and 2-3 km buffer zones represent the critical ranges where urban land use and cropland, respectively, have significant impacts on pesticide risks. Non-parametric change point analysis determined critical land use thresholds triggering significant ecological risk increases: 10-25 % for cropland and 10-30 % for urban areas. These discoveries provide crucial quantitative foundations for landscape planning and pesticide risk management. The results not only challenge traditional views of agricultural activities as primary pesticide sources but also provide new perspectives for pesticide pollution control and water quality management in large cities.
Collapse
Affiliation(s)
- Xinying Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China; China National Environmental Monitoring Centre, Beijing 100012, China
| | - Ying Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Huiyu Xie
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Miao Chen
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Yeyao Wang
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Andrew C Johnson
- UK Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB, UK
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China.
| |
Collapse
|
4
|
Nong X, Zeng J, Chen L, Wei J, Zhang Y. A novel water quality risk assessment framework for reservoir water bodies coupling key parameter selection and dynamic warning threshold determination. Sci Rep 2025; 15:14377. [PMID: 40274902 PMCID: PMC12022315 DOI: 10.1038/s41598-025-98197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Water quality early warning is crucial for protecting ecological security and controlling pollution in lakes and reservoirs. However, the traditional warning level may not provide accurate data for a specific area. Therefore, it is necessary to design an adaptive early warning threshold and identification system that conforms to the actual operating environment. This study monitored nine water quality parameters-water temperature (WT), pH, dissolved oxygen (DO), permanganate index (CODMn), chemical oxygen demand (COD), five-day biochemical oxygen demand (BOD5), total nitrogen (TN), total phosphorus (TP), and ammonia nitrogen (NH3-N)-monthly from 11 sampling sites in the Danjiangkou Reservoir, i.e., the largest artificial lake in Asia, from 2017 to 2022. The reservoir was divided into three sub-areas by cluster analysis: Danku, Hanku, and Water intake. The Water Quality Index (WQI) was used for comprehensive spatiotemporal water quality evaluation, and a minimum WQI (WQImin) model was developed using multiple linear regression. Finally, a water quality risk early-warning model was proposed based on frequency analysis, categorizing water quality into six levels. The findings reveal that the water quality in each area maintains at "good" or "excellent" levels during the study period. The average WQI values, from lowest to highest, are Hanku (75.44), Danku (78.78), and Water intake (79.07). This result shows that the water quality of Danjiangkou Reservoir has been maintained at a good level due to the pollution control and management of Chinese government after the operation of the Middle Route of the South-to-North Water Diversion Project of China. The WQImin models for each area have different key parameters: WT, DO, TN, TP, and COD are common in all areas, whereas NH3-N is included in both Hanku and Danku models. BOD5 and pH were unique to the Danku and Water intake models, respectively. TN and TP are identified as the key parameters affecting water quality safety in Danjiangkou Reservoir. The risk thresholds for TN and TP in Hanku are significantly higher than those in Danku and Water intake, indicating that the water quality in Hanku is the worst. These thresholds are dynamically revised through the early warning model as new data became available. The proposed risk assessment framework provides a robust tool for water quality risk early warning and offers a scientific and reliable reference for administrative departments to implement effective water environment risk prevention and management strategies.
Collapse
Affiliation(s)
- Xizhi Nong
- National Key Laboratory of Water Disaster Prevention, Nanjing Hydraulic Research Institute, Nanjing, 210029, China
- Pinglu Canal Group Corporation Limited, Nanning, 530000, China
- College of Civil Engineering and Architecture, Guangxi University, Nanning, 530004, China
- State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, 100084, China
| | - Jun Zeng
- College of Civil Engineering and Architecture, Guangxi University, Nanning, 530004, China
| | - Lihua Chen
- College of Civil Engineering and Architecture, Guangxi University, Nanning, 530004, China
| | - Jiahua Wei
- State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yanqing Zhang
- Power China Guiyang Engineering Corporation Limited, Guiyang, 550000, China.
| |
Collapse
|
5
|
Ye S, Xu S, Ren M, Chang C, Hu E, Li M. Land use types, basin characteristics and water quality together shape riverine phytoplankton community composition and diversity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124496. [PMID: 39933371 DOI: 10.1016/j.jenvman.2025.124496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
Exploring the combined effects of basin characteristics, land use types, and human activities on phytoplankton biomass, community composition and diversity is important for developing effective river protection strategies. In the present study, 182 phytoplankton samples were collected in the Hanjian and Danjiang River basins and the explanation rate of the above factors was analyzed. Water quality was the primary factor affecting riverine phytoplankton biomass, with an explanation rate to Chl a reaching 59.8%. Water quality was also the primary factor affecting phytoplankton diversity but the contribution of land use types and basin characteristics was also high. In addition to affecting phytoplankton communities and diversity by affecting water quality, diverse land use can increase the taxa of algae discharged through soil erosion processes. Elevation and slope were the main basin characteristics regulating phytoplankton community and diversity because they can determine the retention time of phytoplankton in rivers. The results also showed that land use types were the primary factor affecting the critical relative abundance of extinction (a), competition coefficient (k), environmental taxa capacity (N), but water quality was the primary factor affecting Shannon index, Simpson index, and Pielou index. This difference indicated that index a, k, and N could reflect specific characteristics of phytoplankton diversity that were not reflected by the latter indices. Our results implied that land use types and basin characteristics affected the discharge of exotic algal taxa, retention time, and other factors, thereby influencing the composition and diversity of riverine phytoplankton communities.
Collapse
Affiliation(s)
- Sisi Ye
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Sha Xu
- Shaanxi Provincial Academy of Environmental Science, Xi'an, Shaanxi, 710061, China
| | - Mi Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - En Hu
- Shaanxi Provincial Academy of Environmental Science, Xi'an, Shaanxi, 710061, China
| | - Ming Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
6
|
Tang X, He H, Qin Q, Xu F, Liu F, Zhang F. Seasonal Variation in the β-Diversity of Periphytic Algae and Its Response to Landscape Patterns in the Chishui River, a Naturally Flowing Tributary of the Upper Yangtze River. Ecol Evol 2025; 15:e70976. [PMID: 39926302 PMCID: PMC11803079 DOI: 10.1002/ece3.70976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/11/2025] Open
Abstract
Understanding biodiversity is essential for preserving the stability of river ecosystems. However, the impact of landscape configurations and seasonal variations on biodiversity within undammed river ecosystems remains unexplored. Therefore, we selected the Chishui River-a naturally flowing tributary of the upper Yangtze River-for a survey of periphytic algae. The present study focuses on the seasonal fluctuations in the β-diversity of periphytic algae within the Chishui River and its correlation with the surrounding landscape patterns. Our findings indicate that there is a substantial influence of seasonal variations on the community structure and β-diversity of these algae within the Chishui River ecosystem. Concurrently, we observed that the turnover component predominantly contributes to β-diversity. In light of these findings, we recommend that conservation measures be implemented across the entire Chishui River basin to safeguard the regional biodiversity. Redundancy analysis elucidated that water temperature, conductivity, and pH were the primary environmental drivers shaping the structure of periphytic algal communities. Furthermore, additional analyses using a random forest model indicated that landscape fragmentation and complexity were key determinants of β-diversity in algal communities. Notably, the number of landscape patches was strongly correlated with the β-diversity of periphytic algae. It is important to highlight that maintaining an optimal balance between the number of patches and their size is crucial for enhancing the ecosystem's capacity to preserve biodiversity. In summary, our findings provide insights into the interplay between biodiversity and land-use practices within complex riverine environments, thereby offering a scientific foundation for the conservation and management of these ecosystems.
Collapse
Affiliation(s)
- Xiaopeng Tang
- College of Environmental Science and EngineeringChina West Normal UniversityNanchongChina
| | - Haoyun He
- College of Environmental Science and EngineeringChina West Normal UniversityNanchongChina
| | - Qiang Qin
- College of Environmental Science and EngineeringChina West Normal UniversityNanchongChina
| | - Fei Xu
- College of Environmental Science and EngineeringChina West Normal UniversityNanchongChina
| | - Fei Liu
- Institute of HydrobiologyChinese Academy of SciencesWuhanHubeiChina
| | - Fubin Zhang
- College of Environmental Science and EngineeringChina West Normal UniversityNanchongChina
| |
Collapse
|
7
|
Zheng Y, Li C, Yu J, Wang Q, Yue Q. Tracking the optimal watershed landscape pattern for driving pollutant transport: Insights from the integration of mechanistic models and data-driven approaches. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123939. [PMID: 39754799 DOI: 10.1016/j.jenvman.2024.123939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
Identifying landscape patterns conducive to pollutant transport control is of vitally importance for water quality protection. However, it remains unclear which landscape patterns can weaken the transport capacity of pollutants entering water bodies. To fill this gap, this study proposes a new framework. This framework quantifies the contribution of landscape patterns to pollutant migration; it also identifies the optimal landscape patterns capable of reducing pollutants entering rivers. Furthermore, it analyzes the impact pathways of landscape patterns on pollutant migration by integrating mechanism models, machine learning techniques, and structural equation models (SEM). The results showed that on cultivated land and urban land, when the slope reached 35%, the terrestrial transport intensity of NH₃-N peaked at 34 kg/km2 and 45 kg/km2 respectively, with more pollutants entering the receiving water bodies. Meanwhile, in the forest with a DEM of 900 m, the terrestrial transport intensity of NH₃-N was the highest (50 kg/km2). The complexity of the landscape boundary shape in areas dominated by cultivated land and forest was verified to have a significant impact on the terrestrial migration intensity of NH₃-N, with a contribution rate of over 65%. From the comparison results of multiple land use combinations, it can be seen that the combination of woodland and grassland indirectly weakens the transport capacity of pollutants entering water bodies by directly influencing the connectivity among landscape units. In particular, when the proportion of woodland and grassland reaches 75%, it has a positive effect on improving river pollution and is the optimal landscape combination pattern for reducing the pollution load of the river. The outcomes can be used to develop more efficacious optimization and regulation tactics for landscape patterns and offer a decision - making foundation for the control of pollutant transport in large basins.
Collapse
Affiliation(s)
- Yuexin Zheng
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Chong Li
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jingshan Yu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Qianyang Wang
- Faculty of Engineering, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Qimeng Yue
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
8
|
Liu C, Liu Y, Bai G, Li Q, Zhou Q, Liu L, Kong L, Xia S, Wu Z, Quintana M, Li T, Zhang Y. Silicate-based mineral materials promote submerged plant growth: Insights from plant physiology and microbiomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175992. [PMID: 39241876 DOI: 10.1016/j.scitotenv.2024.175992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/17/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Restoring submerged plants naturally has been a significant challenge in water ecology restoration programs. Some silicate-based mineral materials have shown promise in improving the substrate properties for plant growth. While it is well-established that silicate mineral materials enhance submerged plant growth by improving salt release and reducing salt stress, the influence of rhizosphere microorganisms on phytohormone synthesis and key enzyme activities has been underestimated. This study focused on two typical silicate mineral materials, bentonite and maifanite, to investigate their effects on Myriophyllum oguraense from both plant physiology and microbiome perspectives. The results demonstrated that both bentonite and maifanite regulated the synthesis of phytohormones such as gibberellin (GA) and methyl salicylate (MESA), leading to inhibition of cellular senescence and promotion of cell division. Moreover, these silicate mineral materials enhanced the activity of antioxidant enzymes, thereby reducing intracellular reactive oxygen species levels. They also optimized the structure of rhizosphere microbial communities, increasing the proportion of functional microorganisms like Nitrospirota and Sva0485, which indirectly influenced plant metabolism. Analysis of sediment physicochemical properties revealed increased rare earth elements, macronutrients, and oxygen content in pore water in the presence of silicate materials, creating favorable conditions for root growth. Overall, these findings shed light on the multifaceted mechanisms by which natural silicate mineral materials promote the growth of aquatic plants, offering a promising solution for restoring aquatic vegetation in eutrophic lake sediments.
Collapse
Affiliation(s)
- Changzi Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunli Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Bai
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qi Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiaohong Zhou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lei Liu
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lingwei Kong
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Shibin Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zhenbin Wu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Mildred Quintana
- Facultad de Ciencias, Universidad Autonoma de San Luis Potosi, San Luis Potosi 78210, Mexico
| | - Tao Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Tian Y, Hao Y, Qu C, Yang F, Iwata H, Guo J. Biodiversity of multi-trophic biological communities within riverine sediments impacted by PAHs contamination and land use changes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124884. [PMID: 39236841 DOI: 10.1016/j.envpol.2024.124884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
River ecosystems currently face a significant threat of degradation and loss of biodiversity resulting from continuous emissions of persistent organic pollutants and human activities. In this study, multi-trophic communities were assessed using DNA metabarcoding in a relatively stable riverine sediment compartment to investigate the biodiversity dynamics in the Beiluo River, followed by an evaluation of their response to polycyclic aromatic hydrocarbons (PAHs) and land use changes. A total of 48 bacterial phyla, 4 fungal phyla, 4 protist phyla, 9 algal phyla, 31 metazoan phyla, and 12 orders of fish were identified. The total concentration of PAHs in the Beiluo River sediments ranged from 25.95 to 1141.35 ng/g, with low molecular weight PAHs constituting the highest proportion (68.67%), followed by medium (22.19%) and high (9.14%) molecular weight PAHs. Notably, in contrast to lower trophic level aquatic communities such as bacteria, algae, and metazoans, PAHs exhibited a significant inhibitory effect on fish. Furthermore, the diversity of aquatic communities displayed obvious heterogeneity across distinct land use groups. A high proportion of cultivated land reduced the biodiversity of fish communities but increased that of metazoans. Conversely, an elevated proportion of built-up land reduced metazoan biodiversity, while simultaneously enhancing that of fungi and bacteria. Generally, land use changes exert both indirect and direct effects on aquatic communities. The direct effects primarily influence the abundance of aquatic communities rather than their diversity. Nevertheless, PAHs pollution may have limited potential to disrupt community structures through complex species interactions, as the hub species identified in the co-occurrence network did not align with those significantly affected by PAHs. This study indicates the potential of PAHs and land use changes to cause biodiversity losses. However, it also highlights the possibility of mitigating these negative effects in riverine sediments through optimal land use management and the promotion of enhanced species interactions.
Collapse
Affiliation(s)
- Yulu Tian
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| | - Yongrong Hao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Fangshe Yang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime Prefecture, 790-8577, Japan
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
10
|
Liu X, Pan B, Wang L, Zhang Y, Zhao X, Han X, Liu X, Hu J. Water temperature and salt ions respectively drive the community assembly of bacterial generalists and specialists in diverse plateau lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175271. [PMID: 39102958 DOI: 10.1016/j.scitotenv.2024.175271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Plateau lakes (e.g., freshwater and saltwater lakes) are formed through intricate processes and harbor diverse microorganisms that mediate aquatic ecosystem functions. The adaptive mechanisms of lake microbiota to environmental changes and the ecological impacts of such changes on microbial community assembly are still poorly understood in plateau regions. This study investigated the structure and assembly of planktonic bacterial communities in 24 lakes across the Qinghai-Tibetan and Inner Mongolia Plateaus, with particular focus on habitat generalists, opportunists, and specialists. High-throughput sequencing of the 16S ribosomal RNA genes revealed that bacterial generalists had a lower species number (2196) but higher alpha diversity than the specialist and opportunist counterparts. Taxonomic dissimilarity and phylogenetic diversity analyses unraveled less pronounced difference in the community composition of bacterial generalists compared to the specialist and opportunist counterparts. Geographical scale (14.4 %) and water quality (12.6 %) emerged as major ecological variables structuring bacterial communities. Selection by water temperature and related variables, including mean annual temperature, elevation, longitude, and latitude, mainly shaped the assembly of bacterial generalists. Ecological drift coupled with selection by salt ions and related variables, including total phosphorus, chlorophyll a, and salinity, predominantly drove the assembly of bacterial specialists and opportunists. This study uncovers distinct bacterial responses to interacting ecological variables in diverse plateau lakes and the ecological processes structuring bacterial communities across various lake habitats under anthropogenic disturbance or climate change.
Collapse
Affiliation(s)
- Xing Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi Province, China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi Province, China.
| | - Lixin Wang
- College of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Collaborative Innovation Center for Grassland Ecological Security (Jointly Supported by the Ministry of Education of China and Inner Mongolia Autonomous Region), Hohhot 010021, China
| | - Yichi Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi Province, China
| | - Xiaohui Zhao
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi Province, China
| | - Xu Han
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi Province, China
| | - Xinyuan Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi Province, China
| | - Jingxiang Hu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi Province, China
| |
Collapse
|
11
|
Hao L, Zhang Y, Shen Y, Liu Y, Gao H, Guo P. Driving mechanism of land use and landscape pattern to phytoplankton and zooplankton community and their trophic interactions in river ecosystems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122691. [PMID: 39357447 DOI: 10.1016/j.jenvman.2024.122691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/31/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
The trophic interactions between phytoplankton and zooplankton communities are essential for maintaining river ecosystem integrity and health. However, the driving mechanisms of land use and landscape patterns (LULP) affecting their trophic interactions are not fully understood. Therefore, the research objective of this study was to reveal the driving mechanisms of LULP on the interaction of phytoplankton with zooplankton through remote sensing interpretation of LULP in different buffer scales (500 m, 1000 m, 1500 m, and catchment), combined with water environment factors and plankton community structures analyzed. Results showed that LULP had the most significant effect on the phytoplankton and the zooplankton community structure at 500 and 1500 m buffer scales, respectively. Construction land (CON) and edge density (ED) most influenced phytoplankton and zooplankton community structure and their influence mechanisms were identified, i.e., CON increased the species (S) of phytoplankton by increasing the concentration of NO3-N in river water at the 500 m buffer scale. ED reduced the biological density (BD) of zooplankton by decreasing the concentration of heavy metal (HM) in river water at the 1500 m buffer scale. The water area (WAT) and ED showed the most significant influence on plankton interaction. Three pathways were found to explain their influence mechanisms, i.e., ED decreased the BD or Shannon-Weiner index (H') of zooplankton by increasing the dissolved oxygen (DO) to enhance BD of phytoplankton in river water at the 1500 m buffer scale; the WAT increased the BD of phytoplankton by increasing water temperature to reduce the H' of zooplankton at the 500 m buffer. These findings have implications for effective ecological planning of future human activities in the stream domain and maintaining river ecosystem health.
Collapse
Affiliation(s)
- Litao Hao
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Yixin Zhang
- Department of Landscape Architecture, Gold Mantis School of Architecture, The Sino-Portugal Joint Laboratory of Cultural Heritage Conservation Science, Soochow University, Suzhou 215123, PR China
| | - Yanping Shen
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Yibo Liu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Hongjie Gao
- Chinese Research Academy of Environmental Science, Beijing 100012, PR China.
| | - Ping Guo
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
12
|
Xing Y, Cheng L, Zheng L, Wu H, Tan Q, Wang X, Tian Q. Brownification increases the abundance of microorganisms related to carbon and nitrogen cycling in shallow lakes. ENVIRONMENTAL RESEARCH 2024; 257:119243. [PMID: 38810820 DOI: 10.1016/j.envres.2024.119243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Brownification in aquatic ecosystems under global change has attracted attention. The composition and quantity of dissolved organic matter transported from various land use types to lakes differ significantly, causing varying ecological effects of lake brownification by region. Bacterial communities make a significant contribution to the material cycle of ecosystems and are sensitive to environmental changes. In this study, a series of mesocosm systems were used to simulate forest lakes and urban lakes with different degrees of brownification, and a high-throughput amplicon sequencing technique was used to explore the changes in the composition, structure, and function of bacterial communities in shallow lakes undergoing brownification. Principal coordinate analysis (PCoA) and Jensen‒Shannon distance typing analysis both indicated significant differences in bacterial communities between forest lakes and urban lakes. The α diversity of bacterial communities in urban lakes increased with the degree of brownification. However, whether forest lakes or urban lakes, brownification increased the abundance of carbon cycling-related bacterial phyla (Proteobacteria, Poribacteria, and Chloroflexi) and nitrogen cycling-related bacterial genera (Microbacteriaceae, Limnohabitans, Comamonadaceae, Bacillus, and Rhizobiales_Incertae_Sedis). Additionally, the carbon and nitrogen cycling functions of bacterial communities in forest lakes are dominant, while those in urban lakes are dominated by functions related to light. Our study has preliminarily revealed that lake brownification promotes the growth of carbon and nitrogen cycling microorganisms, providing a new paradigm for understanding the response of lake ecosystems in different catchment areas to environmental changes and the carbon and nitrogen cycling processes in shallow lake ecosystems.
Collapse
Affiliation(s)
- Yuzi Xing
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Lirong Cheng
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Lei Zheng
- College of Water Science, Beijing Normal University, Beijing, 100875, China.
| | - Haoming Wu
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Qiuyang Tan
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Xue Wang
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Qi Tian
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
13
|
Hou X, Hu X, Li Y, Zhang H, Niu L, Huang R, Xu J. From disruption to adaptation: Response of phytoplankton communities in representative impounded lakes to China's South-to-North Water Diversion Project. WATER RESEARCH 2024; 261:122001. [PMID: 38964215 DOI: 10.1016/j.watres.2024.122001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/08/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Impounded lakes are often interconnected in large-scale water diversion projects to form a coordinated system for water allocation and regulation. The alternating runoff and transferred water can significantly impact local ecosystems, which are initially reflected in the sensitive phytoplankton. Nonetheless, limited information is available on the temporal dynamics and assembly patterns of phytoplankton community in impounded lakes responding to continuous and periodic water diversion. Herein, a long-term monitoring from 2013 to 2020 were conducted to systematically investigate the response of phytoplankton community, including its characteristics, stability, and the ecological processes governing community assembly, in representative impounded lakes to the South-to-North Water Diversion Project (SNWDP) in China. In the initial stage of the SNWDP, the phytoplankton diversity indices experienced a decrease during both non-water diversion periods (8.5 %∼21.2 %) and water diversion periods (5.6 %∼12.2 %), implying a disruption in the aquatic ecosystem. But the regular delivery of high-quality water from the Yangtze River gradually increased phytoplankton diversity and mediated ecological assembly processes shifting from stochastic to deterministic. Meanwhile, reduced nutrients restricted the growth of phytoplankton, pushing species to interact more closely to maintain the functionality and stability of the co-occurrence network. The partial least squares path model revealed that ecological process (path coefficient = 0.525, p < 0.01) and interspecies interactions in networks (path coefficient = -0.806, p < 0.01) jointly influenced the keystone and dominant species, ultimately resulting in an improvement in stability (path coefficient = 0.878, p < 0.01). Overall, the phytoplankton communities experienced an evolutionary process from short-term disruption to long-term adaptation, demonstrating resilience and adaptability in response to the challenges posed by the SNWDP. This study revealed the response and adaptation mechanism of phytoplankton communities in impounded lakes to water diversion projects, which is helpful for maintaining the lake ecological health and formulating rational water management strategies.
Collapse
Affiliation(s)
- Xing Hou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; Institute of Water Science and Technology, Hohai University, Nanjing, 210098, PR China
| | - Xiaodong Hu
- Jiangsu Hydraulic Research Institute, Nanjing, 210017, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Rui Huang
- Jiangsu Hydraulic Research Institute, Nanjing, 210017, PR China
| | - Jixiong Xu
- Jiangsu Hydraulic Research Institute, Nanjing, 210017, PR China
| |
Collapse
|
14
|
Feng Y, Cheng J, Deng Y. Study on agricultural water resource utilization efficiency under the constraint of carbon emission and water pollution. ENVIRONMENTAL RESEARCH 2024; 253:119142. [PMID: 38750997 DOI: 10.1016/j.envres.2024.119142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
Agricultural water resource utilization efficiency in China is facing significant challenges due to the dual constraints of carbon emissions and water pollution. The inefficiency in water usage in agriculture not only impacts the sustainability of water resources but also contributes to environmental degradation through increased carbon emissions and water pollution. Agricultural water resource utilization efficiency under the constraint of carbon emission and water pollution has been a critical issue in China from 2005 to 2022. This study employs the Quantile Autoregressive Distributed Lag (QARDL) method to comprehensively assess and analyze the complex relationship that exists between agricultural water usage, carbon emissions, and water pollution. By analyzing distinct quantiles of the data distribution, the research investigates how different levels of water resource utilization efficiency relate to carbon emissions and water pollution under various conditions. The findings reveal nuanced insights into the dynamic interactions among these components within the agricultural sector. This research project focuses on the efficiency of water resource utilization in agriculture while considering the constraints of carbon emission and water pollution. Given the dynamic and time-dependent character of these components, the QARDL methodology makes it possible to get a detailed knowledge of how they interact within the framework of agriculture. The study aims to give significant insights and policy suggestions to improve agricultural practices while minimizing environmental concerns linked to carbon emissions and water pollution.
Collapse
Affiliation(s)
- Yin Feng
- School of Lowcarbon Economics, Hubei University of Economics, Wuhan, 430205, China; Collaborative Innovation Center for Emissions Trading System Co-Constructed by the Province and Ministry, Hubei University of Economics, Wuhan, 430205, China
| | - Jinhua Cheng
- Collaborative Innovation Center for Emissions Trading System Co-Constructed by the Province and Ministry, Hubei University of Economics, Wuhan, 430205, China; China University of Geosciences (Wuhan), Wuhan, 430074, China
| | - Ying Deng
- School of Economics and Management, Wuhan University of Engineering Science, Wuhan, 430200, China.
| |
Collapse
|
15
|
Chen H, Zhao S, Li J, Zeng L, Chen X. Seasonal and interannual changes (2005-2021) of lake water quality and the implications for sustainable management in a rapidly growing metropolitan region, central China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:36995-37009. [PMID: 38758444 DOI: 10.1007/s11356-024-33618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
A series of restoration measures such as municipal wastewater treatment and aquaculture closures have been implemented in Wuhan City during recent years. In order to explore the impact of restoration measures and climate change on lake water quality, long-term (2005-2021) water quality data of 47 lakes were explored to reveal spatiotemporal changes in lake water quality. Percentages of polluted lakes were calculated according to six water-quality parameters, including total phosphorus (TP), ammonia nitrogen (NH3-N), chemical oxygen demand (COD), biological oxygen demand (BOD), chemical oxygen demand using potassium permanganate as oxidant (CODMn) and petroleum contamination (PET), at interannual and monthly timescales. At the interannual timescale, percentages of COD, BOD, CODMn and PET pollution decreased significantly, suggestive of water quality improvement during recent years. At the monthly timescale, low percentages of NH3-N and BOD pollution in March 2020 probably resulted from the sharp reduction in human activities during the COVID-19 lockdown. At the monthly timescale, temperature was positively correlated with percentage of CODMn pollution, but negatively correlated with percentage of NH3-N pollution; precipitation was negatively correlated with percentage of BOD pollution. The similarity of water-quality parameters generally decreased with an increase in geographical distance between each pair of lakes. However, the regression coefficients between the similarity of lake water quality and the geographical distance decreased with time, probably resulting from enhanced similarity of water quality parameters among all lakes with rapid urbanization. Our results highlight the importance of active restoration measures for sustainable management of lakes in Wuhan City, as well as in similar developing regions.
Collapse
Affiliation(s)
- Hongjia Chen
- Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430078, China
| | - Shenxin Zhao
- Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430078, China
| | - Junlu Li
- Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430078, China
| | - Linghan Zeng
- Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430078, China
| | - Xu Chen
- Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430078, China.
| |
Collapse
|
16
|
Jiang P, Li S. Insights into priming effects of dissolved organic matter degradation in urban lakes with different trophic states. ENVIRONMENTAL RESEARCH 2024; 245:118063. [PMID: 38160975 DOI: 10.1016/j.envres.2023.118063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Priming effect (PE) is recognized as an important potential mechanism for dissolved organic matter (DOM) degradation in aquatic ecosystems. However, the priming effects (PEs) of various priming substances on the degradation of DOM pools in urban lakes along diverse trophic states remain unknown. To address this knowledge gap, the PEs and drivers of glucose and plant leachate of lake water with three trophic states were investigated. We reveal differences in the bioavailability of DOM in lake water, glucose, and plant leachate. The PE of the same priming substance was significantly higher in highly-eutrophic lake water than in mesotrophic lake. The priming intensity induced by glucose was significantly higher when compared to plant leachate. Regarding the addition of glucose, humic-like components (C1 and C3) showed slight PE, while the tyrosine-like component C2 showed negative PE. However, the positive PEs were observed on three components after adding plant leachate. The driver of PE by glucose shifted from nutrients to DOM components with increasing trophic levels. The PEs induced by plant leachate were affected by nutrients, chlorophyll-a (Chl-a), water chemistry, and DOM components in lightly/moderately-eutrophic lake water. This study revealed the intensities, directions, and drivers of PEs, providing essential insights into uncovering the DOM biogeochemical process in urban lakes.
Collapse
Affiliation(s)
- Ping Jiang
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Siyue Li
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
17
|
Geng M, Qian Z, Jiang H, Huang B, Huang S, Deng B, Peng Y, Xie Y, Li F, Zou Y, Deng Z, Zeng J. Assessing the impact of water-sediment factors on water quality to guide river-connected lake water environment improvement. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168866. [PMID: 38016546 DOI: 10.1016/j.scitotenv.2023.168866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
The substantial impacts of exogenous pollutants on lake water quality have been extensively reported. Water-sediment factors, which are essential for regulating water quality in river-connected lakes, have not been studied in depth under different hydrological conditions. This study has combined a 31-year water environmental dataset (1991-2021) regarding Dongting Lake and a vector autoregression model (VAR) in order to investigate the impulse response characteristics and contributions of water quality caused by water-sediment factors across different periods. Our analysis suggests that total nitrogen (TN) exhibited a significant increasing trend, whereas total phosphorus (TP) increased to 0.17 mg/L, and then decreased to 0.07 mg/L from 1991 to 2021. The inflow of suspended sediment discharge (SSD) decreased significantly during the study period, mainly because of the decrease in SSD in the three channels (TC). In the pre-Three Gorges Dam (TGD) period, water discharge (WD) and SSD were the Granger causes of TN and TP. In the post-TGD periods this relationship disappeared because of the construction of the TGD, which reduced the inflow of SSD and WD into the lake. Water quality indicators showed an instant response to the shock from themselves with high values, whereas the impulse response of the water quality to water-sediment factors exhibited lagged variations. This meant that the water quality indicators displayed a high impact by themselves across the different periods, with values varying from 67 % to 95 %. Water level (WL) and SSD were the predominant water-sediment factors for TP in the pre-TGD period, with the impact on TP changes accounting for 11 % and 9 %, respectively, whereas the contribution of SSD decreased to 2 % in the post-TGD period. WL was the most crucial water-sediment factor for CODMn during the different periods, with contributions varying from 17 % to 20 %. To improve the water quality of Dongting Lake, in addition to the implementation of strict controls on excessive external nutrient loading, regulating water-sediment factors according to the hydrological features of Dongting Lake during different periods is vital.
Collapse
Affiliation(s)
- Mingming Geng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China; Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| | - Zhan Qian
- Engineering Technology Research Center of Hunan Dongting Lake Flood Control and Water Resources Protection of Hunan Province, Hunan Water Resources and Hydropower Survey, Design, Planning and Research Co., Ltd, Changsha 410007, Hunan, China
| | - Heng Jiang
- Engineering Technology Research Center of Hunan Dongting Lake Flood Control and Water Resources Protection of Hunan Province, Hunan Water Resources and Hydropower Survey, Design, Planning and Research Co., Ltd, Changsha 410007, Hunan, China
| | - Bing Huang
- Engineering Technology Research Center of Hunan Dongting Lake Flood Control and Water Resources Protection of Hunan Province, Hunan Water Resources and Hydropower Survey, Design, Planning and Research Co., Ltd, Changsha 410007, Hunan, China
| | - Shuchun Huang
- Technology Innovation Center for Ecological Conservation and Restoration in Dongting Lake Basin, Ministry of Natural Resources, Changsha 410000, Hunan, China
| | - Bo Deng
- Technology Innovation Center for Ecological Conservation and Restoration in Dongting Lake Basin, Ministry of Natural Resources, Changsha 410000, Hunan, China
| | - Yi Peng
- Key Laboratory of Coupling Process and Effect of Natural Resources Elements, Beijing 100055, China; Changsha Natural Resources Comprehensive Survey Center, China Geological Survey, Changsha 410000, Hunan, China
| | - Yonghong Xie
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China; Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| | - Feng Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China; Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China.
| | - Yeai Zou
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China; Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| | - Zhengmiao Deng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China; Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| | - Jing Zeng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China; Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| |
Collapse
|
18
|
Zheng Y, Yu J, Wang Q, Yao X, Yue Q, Xu S. What drives the changing characteristics of phytoplankton in urban lakes: Climate, hydrology, or human disturbance? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119966. [PMID: 38171129 DOI: 10.1016/j.jenvman.2023.119966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024]
Abstract
Phytoplankton in shallow urban lakes are influenced by various environmental factors. However, the long-term coupling effects and impact pathways of these environmental variables on phytoplankton remain unclear. This is an emerging issue due to high urbanization and the resultant complex climate, lake hydrology and morphology, human interference, and water quality parameter changes. This study used Tangxun Lake, the largest urban lake in the Yangtze River Economic Belt, as an example to assess for the first time the individual contributions and coupled effects of four environmental variables and fourteen indicators on chlorophyll-a (Chla) concentrations under two scenarios from 2000 to 2019. Additionally, the influence pathways between the environmental variables and Chla concentration were quantified. The results indicated that the Chla concentration was most affected by lake hydrology and morphology, as were the total nitrogen, total phosphorus, and transparency. Especially after urbanization (2015-2019), the coupling effect of human interference, lake hydrology and morphology, and water quality parameters was strongest (18%). This is mainly due to fluctuations in the lake water level and an increase in the shape index of lake morphology, large amounts of nutrients were input, which reduced lake transparency and indirectly changed the Chla content. In addition, due to the rapid development of Wuhan city, the expansion of construction land has led to an increase in impervious surface area and a decrease in lake area. During periods of intense summer rainfall, a substantial amount of pollutants entered the lakes through surface runoff, resulting in decreased lake transparency, and elevated concentrations of nitrogen and phosphorus, indirectly increasing the Chla content. This study provides a scientific basis for aquatic ecological assessment and pollution control in urban shallow lakes.
Collapse
Affiliation(s)
- Yuexin Zheng
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Jingshan Yu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Qianyang Wang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Xiaolei Yao
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Qimeng Yue
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Shugao Xu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
19
|
Jing M, Yang W, Ding X, Rao L, Zhang Q, Zhu J. Environmental heterogeneity associated with boat activity shapes bacteria and microeukaryotic communities with discrepant response patterns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166943. [PMID: 37690748 DOI: 10.1016/j.scitotenv.2023.166943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
With the development of global tourism, tourist boats, a significant form of anthropogenic disturbance, are having an increasingly serious impact on the structure and function of aquatic ecosystems. In this study, the effects of different intensities of tourist boat activities on the microbial communities of West lake, were investigated by high-throughput sequencing. The results showed significant differences in the composition of bacterioplankton and microeukaryotic communities between the high-intensity boat activity (HIBA) area and low-intensity boat activity (LIBA) area. Variation partitioning analysis showed that environmental factors contributed the most to microbial community variation, and the effect of boat activities on microbial communities mainly occurred through coupling with environmental factors. The contribution of boat activity to microbial community changes occupies the second place, the first being environmental factors. Co-occurrence network analyses showed that microbial communities in the HIBA area had more nodes and edges, higher connectivity and lower modularity than in the LIBA area, suggesting a more complex and stable network. Networks of associations between potential keystone taxa and environmental factors reveal the way in which boat activity affects microbial communities. The bacterial community responded strongly to environmental factors associated with boat activities, whereas the microeukaryotic community was more likely to be regulated by interspecific interactions. This also suggests that when faced with disturbances from the boat activity, microeukaryotes might exert a stronger direct resistance effect compared to bacterioplankton. These findings imply that bacterioplankton and microeukaryotes demonstrate distinct response patterns in the presence of disturbance caused by boat activity. Our research expand our understanding of the effects of boat activities on aquatic ecosystems and provide further insights into the assessment of anthropogenic disturbances in aquatic ecosystems.
Collapse
Affiliation(s)
- MingFei Jing
- School of Marine Science, Ningbo University, Ningbo 315800, China
| | - Wen Yang
- School of Marine Science, Ningbo University, Ningbo 315800, China
| | - Xiuying Ding
- Hangzhou West Lake Administration, Hangzhou 310002, China
| | - Lihua Rao
- Hangzhou West Lake Administration, Hangzhou 310002, China
| | - Quanxiang Zhang
- School of Marine Science, Ningbo University, Ningbo 315800, China
| | - Jinyong Zhu
- School of Marine Science, Ningbo University, Ningbo 315800, China.
| |
Collapse
|
20
|
Zhang L, Xu YJ, Li S. Changes in CO 2 concentration and degassing of eutrophic urban lakes associated with algal growth and decline. ENVIRONMENTAL RESEARCH 2023; 237:117031. [PMID: 37660875 DOI: 10.1016/j.envres.2023.117031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/28/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Urban lakes are numerous in the world, but their role in carbon storage and emission is not well understood. This study aimed to answer the critical questions: How does algal growing season influence carbon dioxide concentration (cCO2) and exchange flux (FCO2) in eutrophic urban lakes? We investigated trophic state, seasonality of algal productivity, and their association with CO2 dynamics in four urban lakes in Central China. We found that these lightly-to moderately-eutrophic urban lakes showed a shifting pattern of CO2 source-sink dynamics. In the non-algal bloom phase, the moderately-eutrophic lakes outgassed on average of 12.18 ± 24.37 mmol m-2 d-1 CO2; but, during the algal bloom phase, the lakes sequestered an average 1.07 ± 6.22 mmol m-2 d-1 CO2. The lightly-eutrophic lakes exhibited lower CO2 emission in the algal bloom (0.60 ± 10.24 mmol m-2 d-1) compared to the non-algal bloom (3.84 ± 12.38 mmol m-2 d-1). Biological factors such as Chl-a (chlorophyll a) and AOU (apparent oxygen utilization), were found to be important factors to potentially affect the shifting pattern of lake CO2 source-sink dynamics in moderately-eutrophic lakes, explaining 48% and 34% of the CO2 variation in the non-algal and algal bloom phases, respectively. Moreover, CO2 showed positive correlations with AOU, and negative correlations with Chl-a in both phases. In the lightly-eutrophic lakes, biological factors explained a higher proportion of CO2 variations (29%) in the non-algal bloom phase, with AOU accounting for 19%. Our results indicate that algal growth and decline phases largely affect dissolved CO2 level and exchange flux by regulating in-lake respiration and photosynthesis. Based on the findings, we conclude that shallow urban lakes can act as both sources and sinks of CO2, with algal growth seasonality and trophic state playing pivotal roles in controlling their carbon dynamics.
Collapse
Affiliation(s)
- Liuqing Zhang
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Y Jun Xu
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA; Coastal Studies Institute, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Siyue Li
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
21
|
Chen M, Jin X, Guo C, Liu Y, Zhang H, Wang J, Dong G, Liu N, Guo W, Giesy JP, Wu F, Xu J. Micropollutants but high risks: Human multiple stressors increase risks of freshwater ecosystems at the megacity-scale. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132497. [PMID: 37688870 DOI: 10.1016/j.jhazmat.2023.132497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
Micropollutants in water environments have attracted widespread attention, but how human and natural stressors influence the risks of micropollutants has not been comprehensively revealed. A megacity-scale study of the ecological risks of micropollutants in the surface water of Beijing, China is presented to illustrate the magnitudes of the influences of multiple anthropogenic and natural stressors. A total of 133 micropollutants representing typical land use patterns in Beijing, were quantified with the mean concentration range of ND (not detected) to 272 ng·L-1. The micropollutant concentrations in the south were obviously higher than those detected in the northern areas, and neonicotinoid pesticides showed the highest mean concentration of 311 ng·L-1. The chronic and acute risks of micropollutants to algae, invertebrates, and fishes were determined, and herbicides, organophosphorus esters, and insecticides account for the primary risks to algae, invertebrates, and fishes, respectively. The cropland and impervious cover cause the differences in the pollution and risks of micropollutants. The land use in riparian zones greater than 2 km shows a great influence on the chronic chemical risks (CCRs) for the three groups of species, indicating that too local scale does not explain the local pollution status. Climate conditions and human land use are important drivers explaining the CCRs to which various trophic levels of species are exposed. Results demonstrate that multiple categories of micropollutants pose adverse risks to freshwater in the megacity of Beijing, while climate conditions, pollution discharge, and human land use induce the chemical risk of micropollutants to aquatic organisms, and the land use in different riparian zones show different effects on the risks.
Collapse
Affiliation(s)
- Miao Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China.
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Heng Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Junxia Wang
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Guihua Dong
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Na Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wei Guo
- Beijing Hydrological Center, Beijing 100089, China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Integrative Biology, Michigan State University, East Lansing, MI 48895, USA; Department of Environmental Sciences, Baylor University, Waco, TX 76798-7266, USA
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
22
|
Hu Y, Zhang J, Wang Y, Hu S. Distinct mechanisms shape prokaryotic community assembly across different land-use intensification. WATER RESEARCH 2023; 245:120601. [PMID: 37708774 DOI: 10.1016/j.watres.2023.120601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
Changes in land-use intensity can have a far-reaching impact on river water quality and prokaryotic community composition. While research has been conducted to investigate the assembly mechanism of prokaryotic communities, the contributions of neutral theory and niche theory to prokaryotic community assembly under different land-use intensities remain unknown. In this study, a total of 251 sampling sites were set up in the Yangtze River basin to explore the assembly mechanism under different land-use intensities. Briefly, a "source" landscape can generate pollution, whereas a "sink" landscape can prevent pollution. Firstly, our result showed that higher land-use intensity might disturb the balance between the "source" and "sink" landscape patterns, resulting in water quality deterioration. Then the prokaryotic community assembly was classified into five ecological processes, namely homogeneous selection, homogenizing dispersal, undominated processes, dispersal limitation, and variable selection. The higher land-use intensity was found to strengthen the homogeneous selection, leading to the homogenization of the community at the whole basin scale. Finally, our findings demonstrated that the Yangtze River Basin's prokaryotic community displayed a distance-decay pattern when land-use intensity was low, with a greater contribution from neutral theory to its assembly. On the other hand, with a higher land-use intensity, the degradation of the aquatic environment increased the impacts of environmental filtering on the prokaryotic community, and niche theory played a stronger role in its assembly. Our findings show how land-use intensity influence the formation of prokaryotic communities, which will be an invaluable guide for managing land use and understanding the prokaryotic community assembly mechanisms in the Yangtze River Basin.
Collapse
Affiliation(s)
- Yuxin Hu
- Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecology and Environment, Wuhan 430010, Hubei, China.
| | - Jing Zhang
- Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecology and Environment, Wuhan 430010, Hubei, China
| | - Yingcai Wang
- Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecology and Environment, Wuhan 430010, Hubei, China.
| | - Sheng Hu
- Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecology and Environment, Wuhan 430010, Hubei, China.
| |
Collapse
|
23
|
Guo Y, Gu S, Wu K, Tanentzap AJ, Yu J, Liu X, Li Q, He P, Qiu D, Deng Y, Wang P, Wu Z, Zhou Q. Temperature-mediated microbial carbon utilization in China's lakes. GLOBAL CHANGE BIOLOGY 2023; 29:5044-5061. [PMID: 37427534 DOI: 10.1111/gcb.16840] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/05/2023] [Indexed: 07/11/2023]
Abstract
Microbes play an important role in aquatic carbon cycling but we have a limited understanding of their functional responses to changes in temperature across large geographic areas. Here, we explored how microbial communities utilized different carbon substrates and the underlying ecological mechanisms along a space-for-time substitution temperature gradient of future climate change. The gradient included 47 lakes from five major lake regions in China spanning a difference of nearly 15°C in mean annual temperatures (MAT). Our results indicated that lakes from warmer regions generally had lower values of variables related to carbon concentrations and greater carbon utilization than those from colder regions. The greater utilization of carbon substrates under higher temperatures could be attributed to changes in bacterial community composition, with a greater abundance of Cyanobacteria and Actinobacteriota and less Proteobacteria in warmer lake regions. We also found that the core species in microbial networks changed with increasing temperature, from Hydrogenophaga and Rhodobacteraceae, which inhibited the utilization of amino acids and carbohydrates, to the CL500-29-marine-group, which promoted the utilization of all almost carbon substrates. Overall, our findings suggest that temperature can mediate aquatic carbon utilization by changing the interactions between bacteria and individual carbon substrates, and the discovery of core species that affect carbon utilization provides insight into potential carbon sequestration within inland water bodies under future climate warming.
Collapse
Affiliation(s)
- Yao Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
- University of Chinese Academy of Sciences, Beijing, the People's Republic of China
| | - Songsong Gu
- University of Chinese Academy of Sciences, Beijing, the People's Republic of China
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, the People's Republic of China
| | - Kaixuan Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
- University of Chinese Academy of Sciences, Beijing, the People's Republic of China
| | - Andrew J Tanentzap
- Ecosystems and Global Change Group, School of the Environment, Trent University, Peterborough, Ontario, Canada
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Junqi Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
| | - Xiangfen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
- University of Chinese Academy of Sciences, Beijing, the People's Republic of China
| | - Qianzheng Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
- University of Chinese Academy of Sciences, Beijing, the People's Republic of China
| | - Peng He
- School of Environmental Studies, China University of Geosciences, Wuhan, the People's Republic of China
| | - Dongru Qiu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
| | - Ye Deng
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, the People's Republic of China
| | - Pei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
- School of Environmental Studies, China University of Geosciences, Wuhan, the People's Republic of China
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, the People's Republic of China
| |
Collapse
|
24
|
Xin Y, Zhang J, Lu T, Wei Y, Shen P. Response of prokaryotic, eukaryotic and algal communities to heavy rainfall in a reservoir supplied with reclaimed water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117394. [PMID: 36774902 DOI: 10.1016/j.jenvman.2023.117394] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The global climate change made the heavy rainfall happen more frequently, and the non-point source pollution caused by it would exacerbate the risk to the water ecological environment. In this study, we took a reservoir (Shahe reservoir, Beijing, China) supplied with reclaimed water as an exapmle to investigate how spatiotemporal changes in the quantity and diversity of prokaryotic, eukaryotic, and algal communities respond to heavy rainfall. Results showed that heavy rainfall could directly impact the composition of the prokaryotic community by introducing amounts of runoff closely associated bacterium especially for the human potential pathogens such as Aliarcobacter, Aeromonas and Pseudomonas in the Shahe reservoir area. While the eukaryotic community was rather stable, and the development and changes in algal communities occurred in the last few days after heavy rainfall. The microbial source tracking through FEAST indicated that Nansha river (S) was the major contributor to the development of all the three concerned communities in the reservoir. The co-occurrence analysis showed that the modules with the highest cumulative abundance in each community were all strongly and positively connected with Chl-a, pH, turbidity, COD and TOC, but negatively correlated with NO3-N (p < 0.01). The network analysis showed that the eukaryotes played a key role in the interaction network among the three communities, and were more likely to interact with algae and prokaryotes. It was suggested that the controlling of human potential pathogens associated with prokaryotic community should be emphasized at the beginning of the heavy rainfall, but the prevention of the eutrophication bloom should be another focus after the heavy rainfall. This study provided valuable information concerning the role of heavy rainfall on the water ecological environment from the perspective of microbial community.
Collapse
Affiliation(s)
- Yuan Xin
- College of Life Science and Technology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, Nanning 530005, Guangxi, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tiedong Lu
- Institute of Agricultural Resources and Environment, Guangxi Academy of Agriculture Sciences, Nanning 530007, Guangxi, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peihong Shen
- College of Life Science and Technology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, Nanning 530005, Guangxi, China.
| |
Collapse
|
25
|
Lv C, Tian Y, Huang L, Shan H, Chou Q, Zhang W, Su H, Li K, Zhang X, Ni L, Cao T, Jeppesen E. Buffering capacity of submerged macrophytes against nutrient pulses increase with its coverage in shallow lakes. CHEMOSPHERE 2023; 332:138899. [PMID: 37169089 DOI: 10.1016/j.chemosphere.2023.138899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/09/2023] [Accepted: 05/07/2023] [Indexed: 05/13/2023]
Abstract
Submerged macrophytes can improve water quality and buffer the effects of external nutrient loading, which helps to maintain a clear-water state in shallow lakes. We constructed 12 large enclosures with contrasting coverages (treatments) of submerged macrophytes (SMC) to elucidate their buffering capacity and resilience to nutrient pulses. We found that aquatic ecosystems with high SMC had higher buffering capacity and resilience, vice versa, i. e, the enclosures with high SMC quickly buffered the nutrient pulse and rebounded to clear-water state after a short stay in turbid-water state dominated by algae, while the treatments with low SMC could not fully buffer the pulse and rebound to clear-water state, and they slowly entered the transitional state after staying in turbid-water state. This means that the enclosures with high SMC had a better water quality than those with low SMC, i.e., the levels of nutrients and Chl-a were lower in the treatments with high plant coverage. In addition, plant coverage had a significantly positive buffering effect against nitrogen and phosphorus pulses, i.e., the nutrient concentrations in the treatments with high SMC took shorter time to return to the pre-pulse level. Overall, our results evidenced that the higher that the SMCs is, the better is the water quality and buffering capacity against nutrient pulses, i.e. the more stable is the clear-water state. However, low SMC may not be able to resist the impact of such strong nutrient pulse. Our results provide reference and guidance for water pollution control and water ecological restoration.
Collapse
Affiliation(s)
- Chaochao Lv
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yuqing Tian
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liangliang Huang
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China.
| | - Hang Shan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qingchuan Chou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Wei Zhang
- Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Haojie Su
- Institute for Ecological and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China.
| | - Kuanyi Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Xiaolin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Leyi Ni
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Te Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Erik Jeppesen
- Institute for Ecological and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China; Aarhus University, Department of Ecoscience, Aarhus, 8000, Denmark; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, 06800, Turkey.
| |
Collapse
|
26
|
Long-term succession characteristics and driving factors of zooplankton communities in a typical subtropical shallow lake, central China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49435-49449. [PMID: 36781671 DOI: 10.1007/s11356-023-25782-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023]
Abstract
Zooplankton community could be affected by aquatic environment, land use patterns, and climate factors. However, few studies have evaluated the relative importance of these factors to the zooplankton community succession on a long-term scale. In this study, long-term data were used to analyze the succession characteristics and drivers of zooplankton communities in Honghu Lake, a large-scale shallow lake in central China. Results showed that zooplankton community structure changed greatly in 1959-2021. In general, the species number decreased, abundance and biomass increased, and the number and proportion of pollution tolerant species among dominant species increased during the past ~ 60 years. For the driving factors of zooplankton from 1992 to 2021, redundancy analysis showed that nutrients, wind speed, and aquaculture enclosure and pond were the main drivers of Protozoa and Rotifera, while phytoplankton abundance, wind speed, dissolved oxygen, and farmland were the main drivers of Cladocera and Copepoda. Generalized additive model showed that the aquatic environment had the highest direct explanation (mean is 60.2%) to zooplankton variation, followed by land use (mean is 35.6%) and climate factors (mean is 33.1%). Variance partitioning analysis showed that the effects of human activities (32.9-43.1%) associated with land use, water quality, and phytoplankton on the zooplankton succession are stronger than that of climate factors (19.9-29.2%). Additionally, lake eutrophication is an important factor for the decline in the richness index (p = 0.0017, r = - 0.8411) and Shannon index (p = 0.0301, r = - 0.8020) of zooplankton from 2019 to 2021. Our results highlighted that anthropogenic activity has stronger driving effects on zooplankton succession in the long term than climate changes in the lake. These findings can provide insights into zooplankton conservation in response to global climate change and complex anthropogenic actions.
Collapse
|
27
|
Effects of Land Use and Physicochemical Factors on Phytoplankton Community Structure: The Case of Two Fluvial Lakes in the Lower Reach of the Yangtze River, China. DIVERSITY 2023. [DOI: 10.3390/d15020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Potential changes in phytoplankton community structure in shallow lakes due to land use could pose a serious threat to ecosystem sustainability and functioning. Nevertheless, this effect has not been analyzed in detail. In this study, we chose two adjacent lakes, the main land use types around them are farmland and forest, respectively. We investigated the spatial differences in the phytoplankton community structure, water quality physicochemical parameters, and land use patterns in the two lakes. The results indicated that the annual average cell density and biomass of phytoplankton in the former were 1.84 times and 2.38 times that of the latter, respectively. The results of Pearson correlation and Redundancy analysis showed that total nitrogen (TN), total phosphorus (TP), water depth (WD), and water temperature (WT) were the main environmental factors influencing the structural changes of phytoplankton communities in the two lakes. The results indicated that different land use patterns, such as farmland and towns around the lake, increase the nitrogen (N) and phosphorus (P) content of the lake, while the forests distributed around the lake can reduce the N and P entering the lake, which is probably the main reason for the spatial difference in the characteristics of phytoplankton communities in the two lakes. Our results highlight that land use significantly affects the community structure of phytoplankton by influencing physicochemical factors in water bodies. Our study can provide guidance for pollution control and water quality management of shallow lakes.
Collapse
|
28
|
Li J, Li Y, Liu M, Yu Z, Song D, Jeppesen E, Zhou Q. Patterns of thermocline structure and the deep chlorophyll maximum feature in multiple stratified lakes related to environmental drivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158431. [PMID: 36055493 DOI: 10.1016/j.scitotenv.2022.158431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Thermal stratification and the deep chlorophyll maximum (DCM), two commonly related phenomena in stratified lakes, play fundamental roles in eco-environmental processes. However, the progressive linkages among multi-dimensional environmental factors, thermal stratification and DCM were poorly explored, which greatly constrains our understanding of cross-level governance in deep lakes. In this study, the thermocline structure (i.e., thermocline depth, thickness and strength) and DCM feature (depth and thickness) and their driving factors were investigated at regional scale using data from 18 stratified lakes differing in limnological characteristics, Southwest China. Our study showed that (1) DCM occurred close to the thermocline in most lakes (represented by their depth and thickness), (2) the depths of the thermocline and DCM were both shallower than the euphotic depth, and (3) spatial heterogeneity occurred the thermocline structure and the DCM feature, reflecting different environmental factors. Specifically, water depth and light penetration depths were both positively correlated with thermocline depth and thickness and the DCM feature, and ultraviolet radiation (UVR) was more important than photosynthetically active radiation (PAR) for thermocline depth, but PAR was more important for thermocline thickness; moreover, PAR played a more prominent role than UVR for the DCM feature. As there were interactions between some environmental factors, we built a cascading path using a partial least squares path modelling for the DCM feature: lake morphometry directly impacted the thermocline structure and surface water quality; the water quality further affected light penetration depths as well as the thermocline structure; light penetration depth and thermocline structure combined directly determined the DCM feature, where the importance of light was larger. Our findings provide information on the cascading drivers of the thermocline structure and DCM feature in deep lakes and also constitute a valuable reference for deep lake management under the dual pressure of climate change and eutrophication.
Collapse
Affiliation(s)
- Jingyi Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China
| | - Yuanrui Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China
| | - Miao Liu
- Jiangsu Provincial Academy of Environmental Science, Nanjing 210098, China
| | - Zhirong Yu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China
| | - Di Song
- Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan Research Academy of Eco-environmental Sciences, Kunming 650034, China
| | - Erik Jeppesen
- Department of Ecoscience and Arctic Research Centre, Aarhus University, Aarhus 8000, Denmark; Sino-Danish Centre for Education and Research, Chinese Academy of Sciences, Beijing 100101, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara 06800, Turkey; Institute of Marine Sciences, Middle East Technical University, Erdemli-Mersin 33731, Turkey
| | - Qichao Zhou
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan Research Academy of Eco-environmental Sciences, Kunming 650034, China.
| |
Collapse
|
29
|
Chen M, Jin X, Liu Y, Guo L, Ma Y, Guo C, Wang F, Xu J. Human activities induce potential aquatic threats of micropollutants in Danjiangkou Reservoir, the largest artificial freshwater lake in Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157843. [PMID: 35934027 DOI: 10.1016/j.scitotenv.2022.157843] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Freshwater biodiversity and ecosystem services may decline because of toxicant input, and other environmental variables often co-occur with contaminants to jeopardize the freshwater ecosystem. In this study, Danjiangkou Reservoir (DJKR) in central China was selected as the target research area to investigate the impact of multiple categories of micropollutants coupled with other stressors on the reservoir ecosystem. A total of 140 samples were collected from 28 sites in DJKR, and 124 micropollutants, including pesticides, organophosphate esters (OPEs), psychoactive substances, antiviral drugs, and pharmaceutical and personal care products, were quantified. A total of 108 micropollutants were detected in the water samples, with sum concentrations ranging from 82.35 ng·L-1 to 1436.57 ng·L-1, and 71 of them had a detection frequency above 50 %, indicating the prevailing micropollutant contamination in the reservoir. The most severe pollution and risks were observed in the tributaries of DJKR. Pesticides (neonicotinoid and triazine) and OPEs were the major contributors to the ecological risk in the reservoir. Insecticides, herbicides, and OPEs accounted for the majority of the risks to fish, algae, and invertebrates, respectively. The determined priority pollutants should be paid increased attention. Environmental variables and human activities, such as human land use, induced the potential aquatic threats of micropollutants in DJKR. Results demonstrated that micropollutant pollution was one of the dominant pressures faced by aquatic organisms and human beings, and human activities played important roles as well.
Collapse
Affiliation(s)
- Miao Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China.
| | - Yang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Li Guo
- Hubei Ecological Environment Monitoring Center Station, Wuhan 430072, China
| | - Yu Ma
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fan Wang
- Hubei Ecological Environment Monitoring Center Station, Wuhan 430072, China
| | - Jian Xu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
30
|
Zhou Q, Zhang Y, Tao J, Ye L, Wang H, Shan K, Jeppesen E, Song L. Water depth and land-use intensity indirectly determine phytoplankton functional diversity and further regulate resource use efficiency at a multi-lake scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155303. [PMID: 35447191 DOI: 10.1016/j.scitotenv.2022.155303] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Biodiversity-ecosystem functioning relationships under multiple pressures have recently been the subject of broad studies. For the key primary producer in aquatic ecosystems, phytoplankton, several studies have focused on trait-based functional diversity (FD) and the related functioning (e.g., resource use efficiency, RUE), and their linkages. However, investigations of the effects of environmental factors at different levels (e.g., land use, lake morphometry, climate and nutrients) on FD and RUE are sparse. We developed a data-driven-model framework to simultaneously elucidate the effects of multiple drivers on FD (functional diversity based on dendrograms, FDc and functional richness, FRic) and RUE (of nitrogen and phosphorus) of phytoplankton based on data from 68 Yunnan-Guizhou Plateau lakes, Southwest China. We found that the concentration of total phosphorus, which is mainly affected by land-use intensity and influenced by water depth, was the primary (positive) driver of changes in both FDc and FRic, while RUE was mainly explained by phytoplankton FD (i.e., FRic). These results indicate that water depth and land-use intensity influence indirectly phytoplankton FD and further regulate RUE. Moreover, nonlinear correlations of RUE with FRic were found, which may be caused by interspecific competition and niche differentiation of the phytoplankton community related to nutrient levels. Our finding may help managers to set trade-off targets between FD and RUE in lake ecosystems except for extremely polluted ones, in which the thresholds derived from the Bayesian network, of total phosphorus, total nitrogen and land-use intensity were approximately 0.04 mg/L, 0.50 mg/L and 244 (unitless), respectively. The probability of meeting the RUE objectives was lower in shallow lakes than in deep lakes, but for FRic the opposite was observed.
Collapse
Affiliation(s)
- Qichao Zhou
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan Research Academy of Eco-environmental Sciences, Kunming 650034, China.
| | - Yun Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China
| | - Juan Tao
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-security, Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China
| | - Lin Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Haijun Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China
| | - Kun Shan
- Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| | - Erik Jeppesen
- Department of Ecoscience, Aarhus University, Silkeborg 8600, Denmark; Sino-Danish Centre for Education and Research, Beijing 100049, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara 06800, Turkey; Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
31
|
Xia F, Liu Z, Zhao M, Li Q, Li D, Cao W, Zeng C, Hu Y, Chen B, Bao Q, Zhang Y, He Q, Lai C, He X, Ma Z, Han Y, He H. High stability of autochthonous dissolved organic matter in karst aquatic ecosystems: Evidence from fluorescence. WATER RESEARCH 2022; 220:118723. [PMID: 35696806 DOI: 10.1016/j.watres.2022.118723] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 05/26/2023]
Abstract
Biological carbon pump (BCP) in karst areas has received intensive attention for years due to their significant contribution to the global missing carbon sink. The stability of autochthonous dissolved organic matter (Auto-DOM) produced by BCP in karst aquatic ecosystems may play a critical role in the missing carbon sink. However, the source of dissolved organic matter (DOM) in inland waters and its consumption by planktonic bacteria have not been thoroughly examined. Recalcitrant dissolved organic matter (RDOM) may exist in karst aquatic ecosystem as in the ocean. Through the study of the chromophoric dissolved organic matter (CDOM) and the interaction between CDOM and the planktonic bacterial community under different land uses at the Shawan Karst Water-carbon Cycle Test Site, SW China, we found that C2, as the fluorescence component of Auto-DOM mineralised by planktonic bacteria, may have some of the characteristics of RDOM and is an important DOM source in karst aquatic ecosystems. The stability ratio (Fmax(C2/(C1+C2))) of Auto-DOM reached 89.6 ± 6.71% in winter and 64.1 ± 7.19% in spring. Moreover, correlation-based network analysis determined that the planktonic bacterial communities were controlled by different fluorescence types of CDOM, of which C1 (fresh Auto-DOM), C3 (conventional allochthonous DOM (Allo-DOM)) and C4 (the Allo-DOM mineralised by bacteria) were clustered in one module together with prevalent organic-degrading planktonic bacteria; C2 was clustered in another tightly combined module, suggesting specific microbial utilization strategies for the C2 component. In addition, some important planktonic bacterium and functional genes (including chemotrophic heterotrophs and photosynthetic bacteria) were found to be affected by high Ca2+ and dissolved inorganic carbon (DIC) concentrations in karst aquatic ecosystems. Our research showed that Auto-DOM may be as an important carbon sink as the Allo-DOM in karst ecosystems, the former generally being neglected based on a posit that it is easily and first mineralized by planktonic bacteria.
Collapse
Affiliation(s)
- Fan Xia
- State Key Laboratory of Environmental Geochemistry, CAS, Institute of Geochemistry, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China; Puding Karst Ecosystem Research Station, CAS, Chinese Ecosystem Research Network, Puding 562100, China
| | - Zaihua Liu
- State Key Laboratory of Environmental Geochemistry, CAS, Institute of Geochemistry, Guiyang 550081, China; Puding Karst Ecosystem Research Station, CAS, Chinese Ecosystem Research Network, Puding 562100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| | - Min Zhao
- State Key Laboratory of Environmental Geochemistry, CAS, Institute of Geochemistry, Guiyang 550081, China; Puding Karst Ecosystem Research Station, CAS, Chinese Ecosystem Research Network, Puding 562100, China
| | - Qiang Li
- Key Laboratory of Karst Dynamics, Ministry of Nature Resources/Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China
| | - Dong Li
- State Key Laboratory of Environmental Geochemistry, CAS, Institute of Geochemistry, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenfang Cao
- State Key Laboratory of Environmental Geochemistry, CAS, Institute of Geochemistry, Guiyang 550081, China
| | - Cheng Zeng
- State Key Laboratory of Environmental Geochemistry, CAS, Institute of Geochemistry, Guiyang 550081, China; Puding Karst Ecosystem Research Station, CAS, Chinese Ecosystem Research Network, Puding 562100, China
| | - Yundi Hu
- State Key Laboratory of Environmental Geochemistry, CAS, Institute of Geochemistry, Guiyang 550081, China; Puding Karst Ecosystem Research Station, CAS, Chinese Ecosystem Research Network, Puding 562100, China
| | - Bo Chen
- Guizhou University of Finance and Economics, Guiyang 550025, China
| | - Qian Bao
- State Key Laboratory of Environmental Geochemistry, CAS, Institute of Geochemistry, Guiyang 550081, China; Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China of Ministry of Education, Sichuan Normal University, Chengdu 610066, China
| | - Yi Zhang
- State Key Laboratory of Environmental Geochemistry, CAS, Institute of Geochemistry, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China; Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang 550008, China
| | - Qiufang He
- Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing 400700, China; Key Laboratory of Karst Dynamics, Ministry of Nature Resources/Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China
| | - Chaowei Lai
- State Key Laboratory of Environmental Geochemistry, CAS, Institute of Geochemistry, Guiyang 550081, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Xuejun He
- State Key Laboratory of Environmental Geochemistry, CAS, Institute of Geochemistry, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China; Puding Karst Ecosystem Research Station, CAS, Chinese Ecosystem Research Network, Puding 562100, China
| | - Zhen Ma
- State Key Laboratory of Environmental Geochemistry, CAS, Institute of Geochemistry, Guiyang 550081, China
| | - Yongqiang Han
- State Key Laboratory of Environmental Geochemistry, CAS, Institute of Geochemistry, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China; Puding Karst Ecosystem Research Station, CAS, Chinese Ecosystem Research Network, Puding 562100, China
| | - Haibo He
- State Key Laboratory of Environmental Geochemistry, CAS, Institute of Geochemistry, Guiyang 550081, China
| |
Collapse
|
32
|
Liu Y, Bai G, Zou Y, Ding Z, Tang Y, Wang R, Liu Z, Zhou Q, Wu Z, Zhang Y. Combined remediation mechanism of bentonite and submerged plants on lake sediments by DGT technique. CHEMOSPHERE 2022; 298:134236. [PMID: 35288180 DOI: 10.1016/j.chemosphere.2022.134236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The diffusive gradients in thin films (DGT) technique was applied to determine the mechanism by which bentonite improves the eutrophic lake sediment microenvironment and enhances submerged plant growth. The migration dynamics of N, P, S, and other nutrient elements were established for each sediment layer and the remediation effects of bentonite and submerged plants on sediments were evaluated. Submerged plant growth in the bentonite group was superior to that of the Control. At harvest time, the growth of Vallisneria spiralis and Hydrilla verticillata was optimal on a substrate consisting of five parts eutrophic lake sediment to one part modified bentonite (MB5/1). Bentonite addition to the sediment was conducive to rhizosphere microorganism proliferation. Microbial abundance was highest under the MB5/1 treatment whilst microbial diversity was highest under the RB1/1 (equal parts raw bentonite and eutrophic lake sediment) treatment. Bentonite addition to the sediment may facilitate the transformation of nutrients to bioavailable states. The TP content of the bentonite treatment was 22.47%-46.70% lower than that of the Control. Nevertheless, the bentonite treatment had higher bioavailable phosphorus (BIP) content than the control. The results of this study provide theoretical and empirical references for the use of a combination of modified bentonite and submerged plants to remediate eutrophic lake sediment microenvironments.
Collapse
Affiliation(s)
- Yunli Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoliang Bai
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yilingyun Zou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zimao Ding
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yadong Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Rou Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zisen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
33
|
Wang L, Zeng X, Yu H. Association between Lake Sediment Nutrients and Climate Change, Human Activities: A Time-Series Analysis. ENVIRONMENTAL MANAGEMENT 2022; 70:117-133. [PMID: 35318516 DOI: 10.1007/s00267-022-01599-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Climate change and human activities are closely linked with the nutrient accumulation in sediments, but the role of influence factors and the driving mechanisms are unclear. Here, by using the generalized additive model (GAM), we investigated the contributions and driving mechanisms of climate change and human activities on TON, TN, and TP accumulation in sediments of typical lakes in the Huai River basin (Nansi Lake and Hongze Lake) from 1988 to 2018. The impacts of factors, such as air temperature (AT), real GDP per capita (GDP), population density (PD), crop sown area (CSA), artificial impervious area (AIA), and domestic sewage discharge (DSD) were considered in this study. The results of the multivariate GAM showed that the sediment variables were significantly affected by climate change in Nansi Lake, but not in Hongze Lake. AT and DSD contributed the most to the variation of sediment TOC in Nansi Lake, while the most critical factors affecting TN and TP were AT, PD and DSD. PD and CSA showed strong ability to explain the change of TOC in Hongze Lake, while CSA and DSD showed strong ability to explain the variations of TN and TP. The results show that the selected optimal multivariate GAM can well quantify the effects of climate change and human activities on nutrient enrichment in lake sediments. Effective recommendations are provided for decision-makers in developing water quality management plans to prevent eutrophication outbreaks in lake waters by targeting and controlling key factors.
Collapse
Affiliation(s)
- Linjie Wang
- School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China
| | - Xiangang Zeng
- School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China.
| | - Hui Yu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
34
|
Spatiotemporal Distribution Pattern of Phytoplankton Community and Its Main Driving Factors in Dongting Lake, China—A Seasonal Study from 2017 to 2019. WATER 2022. [DOI: 10.3390/w14111674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
As it is the second-largest freshwater lake downstream of the Three Gorges Dam and an important international wetland for migratory birds, there have been concerns about the ecological water health of Dongting Lake for a long time. In the present study, we studied the evolutionary characteristics of water quality in Dongting Lake in three recent years. Moreover, the evolution rules and dominant groups of the phytoplankton community were explored, and the major influencing factors of phytoplankton and their distribution were assessed based on the field survey and detection data from 2017 to 2019. The results indicated that the water quality of Dongting Lake improved in recent years. The concentration of dissolved oxygen (DO) increased by 6.91%, whereas the concentrations of the five-day biochemical oxygen demand (BOD5), chemical oxygen demand (CODCr), ammonia nitrogen (NH4+–N), total phosphorus (TP), and total nitrogen (TN) decreased by 17.5%, 13.0%, 33.8%, 7.6%, and 13.3%, respectively. The mean phytoplankton density reached 4.15 × 105 cells·L−1 in September 2017, whereas it was only 1.62 × 105 cells·L−1 in December 2018. There were 15 dominant species belonging to Cyanobacteria, Chlorophyta, Bacillariophyta, Cryptophyta, and Miozoa. Moreover, Fragilaria radians (Kützing) D.M.Williams & Round and Aulacoseiragranulata (Ehrenberg) Simonsen were the dominant populations in all seasons. The Pearson and linear regression analysis also indicated that the composition and distribution of phytoplankton in Dongting Lake were mainly affected by electrical conductivity (Cond), BOD5, potassium permanganate (CODMn), and CODCr, especially in Eastern Dongting Lake. Of course, NH4+–N, TN, and TP were also the main factors affecting the density and species of the phytoplankton community, especially in Western Dongting Lake. Finally, we suggested that local government could take “The relationship between Yangtze River and Dongting Lake”, “The relationship between the seven fed rivers and Dongting Lake”, and “The relationship between human activities and Dongting Lake” as the breakthrough points to guarantee the ecological flow, water environment, and ecological quality of Dongting Lake.
Collapse
|
35
|
Zhang H, Ma M, Huang T, Miao Y, Li H, Liu K, Yang W, Ma B. Spatial and temporal dynamics of actinobacteria in drinking water reservoirs: Novel insights into abundance, community structure, and co-existence model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152804. [PMID: 34982987 DOI: 10.1016/j.scitotenv.2021.152804] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The control of taste and odor (T&O) in drinking water reservoirs is the main challenge for water supply. T&O is mainly derived from actinobacteria during non-algal blooms. However, few studies have investigated the actinobacterial community in reservoirs, especially the effects of water quality parameters on actinobacteria. This study analyzed the environmental driving force of the actinobacterial community composition and change in time and space through structural equations and network in drinking water reservoirs. The results showed a high abundance of actinobacteria, up to 2.7 × 104 actinobacteria per 1 L, in the hypolimnion of the Lijiahe reservoir in September, which is one order of magnitude greater than that in the Jinpen reservoir. The two drinking water reservoirs had similar dominant genera, mainly Sporichthya sp., and Mycobacterium sp., and difference in the actinobacterial proportions. However, there was a large difference at the dominant species. Rhodococcus fascians (4.02%) was the dominant species in the Lijiahe reservoir, while Mycobacterium chlorophenolicum (6.64%) was the dominant species in the Jinpen reservoir. Network analysis revealed that the structure of the network in the Lijiahe reservoir was more unstable; thus, it was vulnerable to environmental disturbances. In addition, a low abundance of species may play a critical role in the actinobacterial community structure of aquatic ecosystems. Structural equation modeling analysis suggested that water temperature, dissolved oxygen, and nutrition were the dominant factors affecting the abundance and community of actinobacteria. Overall, these findings broaden the understanding of the distribution and co-existence of actinobacterial communities in drinking water reservoirs and provide valuable clues for the biological controls of T&O and reservoir management.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Manli Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yutian Miao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiyun Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kaiwen Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
36
|
Bao Q, Liu Z, Zhao M, Hu Y, Li D, Han C, Zeng C, Chen B, Wei Y, Ma S, Wu Y, Zhang Y. Role of carbon and nutrient exports from different land uses in the aquatic carbon sequestration and eutrophication process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151917. [PMID: 34826459 DOI: 10.1016/j.scitotenv.2021.151917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
The hydrochemical features affected by differing land uses play a key role in regulating both the primary production of aquatic photosynthetic organisms and the formation of autochthonous organic carbon (AOC); this impacts eutrophication and the global carbon cycle. In shallow water environments where phytoplankton and submerged plants coexist, the C-N-P limitations on the primary production of these aquatic organisms, and the mechanisms by which they promote the formation of AOC are poorly understood. In this study, over the hydrological year September 2018 to August 2019, a large-scale field simulation experiment at the Shawan Karst Test Site (SW China) with various types of land use was systematically conducted to investigate the C-N-P limitations on the primary production of phytoplankton and submerged plants. The results indicate that (1) phytoplankton are co-limited by nitrogen (N) and phosphorus (P) but with the N more important, while submerged plants are limited by carbon (C); (2) Chlorophyta and Bacillariophyta display a stronger competitive advantage than Cyanophyta in aqueous environments with high C but low N-P; (3) there is a seasonal difference in the contribution of phytoplankton and submerged plants to the formation of AOC, however, throughout the year, the contributions of phytoplankton (27%) and submerged plants biomass (28%) to AOC concentrations in the water were similar, combinedly accounting for approximately 17% of the formed AOC. It is concluded that natural restoration of vegetation, or injecting CO2 into water, which results in higher C but lower N-P loadings, may simultaneously help to mitigate eutrophication (with changes in biological structure and species) and increase C sequestration in surface waters.
Collapse
Affiliation(s)
- Qian Bao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China; Puding Karst Ecosystem Research Station, Chinese Ecosystem Research Network, CAS, Puding 562100, Guizhou, China.
| | - Zaihua Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; Puding Karst Ecosystem Research Station, Chinese Ecosystem Research Network, CAS, Puding 562100, Guizhou, China; CAS Center for Excellence in Quaternary Science and Global Change, 710061 Xi'an, China.
| | - Min Zhao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; Puding Karst Ecosystem Research Station, Chinese Ecosystem Research Network, CAS, Puding 562100, Guizhou, China
| | - Yundi Hu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; Puding Karst Ecosystem Research Station, Chinese Ecosystem Research Network, CAS, Puding 562100, Guizhou, China
| | - Dong Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuihong Han
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Zeng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; Puding Karst Ecosystem Research Station, Chinese Ecosystem Research Network, CAS, Puding 562100, Guizhou, China
| | - Bo Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; Puding Karst Ecosystem Research Station, Chinese Ecosystem Research Network, CAS, Puding 562100, Guizhou, China
| | - Yu Wei
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; Puding Karst Ecosystem Research Station, Chinese Ecosystem Research Network, CAS, Puding 562100, Guizhou, China
| | - Song Ma
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yi Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China; Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang 550008, Guizhou, China
| |
Collapse
|
37
|
Du X, Song D, Ming K, Yang J, Jin X, Wang H, Liu H, Wang L, Zhao C, Huo T. Functional Responses of Phytoplankton Assemblages to Watershed Land Use and Environmental Gradients. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.819252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Watershed land-use changes have been identified as major threats to lake fauna, subsequently affecting ecosystem functioning. In this study, the functional-based approach was used to examine the effects of land use and environmental changes on phytoplankton communities in four selected lakes in Northeast China. We also identified the sensitive functional traits as indicators of environmental stressors. The integration of RLQ analysis with the fourth-corner approach significantly identified five of 18 functional trait categories, including flagella, filamentous, unicellular, mixotrophic, and chlorophyll c, as potential indicators to changes in watershed land-use intensity and environmental gradients. Significant relationships between traits and land use and water quality highlighted the consequential indirect impact of extensive agricultural and urban development on phytoplankton via allochthonous nutrient inputs and various contaminants. In addition, the functional richness of phytoplankton assemblages generally increased along with surface area and forests, but decreased along with intensive agricultural and urban land use, implying that functional homogenization may cause a reduction in ecosystem productivity and reliability to land-use intensity. Given the superior performance of the functional-based approach, our findings also highlighted the importance of the application of both the biological traits and functional diversity index in monitoring programs for lake ecosystems.
Collapse
|