1
|
Yu J, Usman M, Liu F, Schäfer F, Shen Y, Zheng Z, Cai Y. CO 2 agitation combined with magnetized biochar to alleviate "ammonia inhibited steady-state": Exploring the mechanism by combining metagenomics with macroscopic indicators. WATER RESEARCH 2025; 276:123250. [PMID: 39946947 DOI: 10.1016/j.watres.2025.123250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 03/03/2025]
Abstract
The "ammonia inhibited steady-state" phenomenon is frequently observed in the anaerobic digestion (AD) process of nitrogen-rich substrates. Reconfiguring microbial ecosystems has proven to be an effective strategy for mitigating ammonia inhibition. In the current study, biochars were screened and targeted for modification. CO2 agitation combined with magnetized biochar was used to aid the semi-continuous AD systems with "ammonia inhibited steady-state." The results indicated that coconut shell biochar had the best stimulating effect on AD performance. The content of oxygen-containing functional groups (OCFGs), which had a positive correlation with the electron donating capacity (EDC), was targeted to be regulated. This strategy significantly increased the CH4 yield by 31.7 % (from 344 to 278 mL/g VS) (p < 0.05). Isotope tracing and KEGG gene annotation indicated that this strategy stimulated the efficiency of the hydrogenotrophic pathway. Simultaneously, it accelerated the attachment of microorganisms, which made the DIET pathway between bacteria and archaea efficient. Under CO2 agitation, the attachment of functional microorganisms to the biochar accelerated. Biochar weakened the synthesis of bioelectronic carriers (Cyt-c and chemosensory pili), while the electroactivity of the AD system was enhanced. This means that biochar replaced bioelectronic carriers and improved the DIET efficiency. In addition, the strategy had a positive effect on the colonization of simultaneous nitrification-denitrifying bacteria (Georgenia), which led to a decrease in ammonia nitrogen concentrations. This study revealed the mechanism by which this strategy alleviates ammonia inhibition and provided a promising strategy for the efficient AD of nitrogen-rich substrates.
Collapse
Affiliation(s)
- Jiadong Yu
- Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs P. R. China. Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing, 100081, China
| | - Muhammad Usman
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6 G 2W2, Canada
| | - Fan Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Franziska Schäfer
- Department of Biochemical Conversion, Deutsches Biomassforschungszentrum gemeinnützige GmbH, Torgauer Straße116, 04347 Leipzig, Germany
| | - Yuhan Shen
- Northwest A and F University, Yangling, Shaanxi, 712100, China
| | - Zehui Zheng
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Zhuo Y, Wang H, Wang X, Jing D, Zhou M, Peng D, Han Y. Performance of electroactive anaerobic granular sludge under ammonia stress: Performance, microbe and morphology. BIORESOURCE TECHNOLOGY 2025; 424:132295. [PMID: 40010542 DOI: 10.1016/j.biortech.2025.132295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/23/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Thermal hydrolysis pretreatment increases the organic loading rate by releasing organics into the liquid phase. However, high solid anaerobic digestion often faces ammonia stress, which inhibits methanogenic performance. This study explored the feasibility of direct interspecies electron transfer (DIET) in improving the performance of anaerobic granular sludge (AnGS) under ammonia stress. Furthermore, when incubated with ethanol, COD removal efficiency decreased from 95 ± 4 % under conventional ammonia nitrogen conditions to 75 ± 3 % under ammonia stress. Similarly, 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride-electron transport system activity declined by 16 % under ammonia stress. Microbial community analysis revealed a shift in DIET partners, from Geobacter - Methanothrix to unclassified genus from family Anaerolineaceae, order Bacteroidales, and family Clostridiaceae - Methanosarcina under ammonia stress. Methanothrix deficiency under ammonia stress altered the spatial structure of AnGS. Therefore, reconstructing spatial structure of AnGS by providing filamentous methanogens skeleton could improve DIET performance under ammonia stress.
Collapse
Affiliation(s)
- Yang Zhuo
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055, China.
| | - Hao Wang
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055, China.
| | - Xuena Wang
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055, China
| | - Dantong Jing
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055, China
| | - Mengyu Zhou
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055, China.
| | - Dangcong Peng
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055, China.
| | - Yun Han
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055, China.
| |
Collapse
|
3
|
Cheng Y, Pan H, Zhang J, Gao M, Wang Y, Lu Y, Rao Y, Yu C, Wu C. Enhancing methane production in two-phase anaerobic digestion of perishable organic waste: Mini-review on acidogenic fermentation pathways and regulatory strategies. BIORESOURCE TECHNOLOGY 2025; 424:132253. [PMID: 39978603 DOI: 10.1016/j.biortech.2025.132253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/15/2025] [Accepted: 02/15/2025] [Indexed: 02/22/2025]
Abstract
Two-phase anaerobic digestion is a highly effective approach for efficient reduction and resource recovery of perishable organic waste. Within this technological framework, organic wastes undergo multiple metabolic pathways during the acidogenic phase, which is classified into ethanol, butyrate, propionate, lactate, and mixed acid fermentation depending on the acidification end products. The nature of these acidification products critically influences the performance of the subsequent methanogenic phase. Strategic regulation of operational parameters during the acidogenic phase fosters the enrichment of specific microbial communities and establishment of dominant consortia, which enable the production of the targeted acidification end-products. This review provides a comprehensive analysis of the metabolic characteristics and regulatory strategies associated with various acidogenic fermentation types and methanogenic properties of different acidification products. The findings presented here are crucial for enhancing the stability and methanogenic efficiency of anaerobic digestion systems that process perishable organic waste.
Collapse
Affiliation(s)
- Yuwei Cheng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haichuan Pan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jingmin Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Ying Wang
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu 610101 Sichuan, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650 Guangdong, China
| | - Yuan Lu
- Chengdu Environmental Investment Group Co., LTD, Chengdu 610042 Sichuan, China
| | - Yi Rao
- Chengdu Environmental Investment Group Co., LTD, Chengdu 610042 Sichuan, China
| | - Chunjiang Yu
- Chengdu Environmental Investment Group Co., LTD, Chengdu 610042 Sichuan, China
| | - Chuanfu Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| |
Collapse
|
4
|
Wang F, Song G, Zhang M, Zhao S, Wang T, Zhao K, Wang X, Liu R. Fe 3O 4 nanoparticles promote methanogenesis in propionate acclimated system. BIORESOURCE TECHNOLOGY 2025; 431:132608. [PMID: 40315932 DOI: 10.1016/j.biortech.2025.132608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
Propionate accumulation is common in anaerobic digestion systems, while Fe3O4 nanoparticles (Fe3O4 NPs) show potential in steering direct interspecies electron transfer (DIET) to facilitate methanogenesis from propionate. However, the effect of Fe3O4 NPs in stable microbial communities remains unclear. This study demonstrated that 1.0 g/L Fe3O4 NPs enhanced propionate degradation and methane production by 220 % and 55 % of the propionate-acclimated microbial consortia post-shock loading, as evidenced by batch-test. High propionate concentrations suppressed Geobacter, yet Fe3O4 NPs enabled electron syntrophy between alternative DIET-participants (Arcobacter, Syntrophobacter) and methanogens (Methanothrix, Methanobacterium) serving as electron conduits. Network analysis further revealed that Fe3O4 NPs activated interactions among potential electroactive microbes, highlighting the potentially ubiquitous presence of electron syntrophy. Even in propionate-stressed microbial communities, such mutualism may be rapidly activated by Fe3O4 NPs, offering a practical solution for mitigating propionate accumulation and enhance digester performance.
Collapse
Affiliation(s)
- Fangzhou Wang
- Center for Water and Ecology, State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Ge Song
- Center for Water and Ecology, State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory of Environmental Aquatic Chemistry, State Key Laboratory of Regional Environment and Sustainability, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Mou Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Shunan Zhao
- Center for Water and Ecology, State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
| | - Tuo Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Kai Zhao
- Center for Water and Ecology, State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| | - Ruiping Liu
- Center for Water and Ecology, State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Chen L, Li S, Zhang J, Zhen F, Shang Z, Yan M, Zhang Y, Zhang P, Sun Y, Li Y. A critical review on bioaugmentation assisted anaerobic digestion for methane production: Performances, microbiome-functionalities and challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125127. [PMID: 40154254 DOI: 10.1016/j.jenvman.2025.125127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/24/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Bioaugmentation technology is considered as a straightforward approach to improve anaerobic digestion performances, with advantages of high efficiency and sustainability. However, the mechanisms and challenges of bioaugmentation in anaerobic digestion have yet to been well reviewed. In this review, the advantages of bioaugmentation in anaerobic digestion are systematically identified and discussed, covering enhancing anaerobic digestion process, relieving toxic inhibition of ammonia, and overcoming limitation of psychrophilic anaerobic digestion. This review find that the underlying mechanisms of bioaugmentation enhancing anaerobic digestion are the improvement of microbial community metabolism activity, interspecies electron transfer, and microbial adaptability to environment stress. In addition, future challenges and research directions are discussed from theoretical and practical perspectives, including preparation of bioaugmentation microorganisms, immobilization of bioaugmentation microorganisms, and economic feasibility of bioaugmentation technology. This review contributes to understanding the positive effect of bioaugmentation on anaerobic digestion and promoting the applicability of bioaugmentation technology in anaerobic digestion.
Collapse
Affiliation(s)
- Le Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Shuangshuang Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Jiasheng Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Feng Zhen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Zezhou Shang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Miao Yan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Yajie Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Yongming Sun
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Ying Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China.
| |
Collapse
|
6
|
Wang J, Gao Y, Liu Z, Han Y, Li W, Lu X, Dong K, Zhen G. Enhanced propionate degradation and CO 2 electromethanogenesis in an up-flow dual-chamber electrocatalytic anaerobic bioreactor (UF-DC-EAB): Leveraging DIET-mediated syntrophy for microbial stability. WATER RESEARCH 2025; 272:122927. [PMID: 39671865 DOI: 10.1016/j.watres.2024.122927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
Anaerobic digestion faces numerous challenges, including high CO2 content in biogas and volatile fatty acids (such as propionate) accumulation in digestate. To address these issues, an up-flow dual-chamber electrocatalytic anaerobic bioreactor (UF-DC-EAB) was developed to enhance propionate degradation through microbial symbiosis while improving biogas quality via CO2 electromethanogenesis. Under the extreme conditions with propionate as the primary carbon source at 6-h HRT, the UF-DC-EAB achieved a propionate removal efficiency of 72.1 ± 9.4 % and a faradaic efficiency of 25.5 ± 5.1 %. Microbial community analysis revealed an enrichment of acetoclastic methanogens (Methanosarcinales, 5.4 %) and syntrophic propionate-oxidizing bacteria (Syntrophobacterales, 13.9 %) in the anode, which facilitated propionate degradation. In the cathode, hydrogenotrophic methanogens (Methanobacterium, 13.6 %) and electroactive bacteria (Geobacter, 6.2 %) were predominant, further promoting CO2 electromethanogenesis and biogas upgrading. Co-occurrence network and structural equation modeling indicated that the electrocatalytic regulation roused the intrinsic capability of the microbial community to oxidize propionate and provoked the occurrence of direct interspecies electron transfer (DIET) among the enriched functional microorganisms, by regulating the synthesis of key molecules like F420 and cytochrome c in response to propionate-induced changes. The DIET-mediated syntropy increased the net energy output by 212.5 %. This study presents a novel electrochemical system combining CO2 electromethanogenesis with propionate-rich digestate degradation, offering an efficient approach for anaerobic post-treatment.
Collapse
Affiliation(s)
- Jiayi Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yijing Gao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Zhaobin Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yule Han
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Wanjiang Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; College of Urban Environment, Lanzhou City University, The Engineering Research Center of Mining Pollution Treatment and Ecological Restoration of Gansu Province, Gansu 730070, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China.
| | - Ke Dong
- Life Science Major, Kyonggi University, Suwon, South Korea
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, PR China.
| |
Collapse
|
7
|
Hmaissia A, Hernández EM, Vaneeckhaute C. Comparing sewage sludge vs. digested sludge for starting-up thermophilic two-stage anaerobic digesters: Operational and economic insights. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 194:24-35. [PMID: 39778227 DOI: 10.1016/j.wasman.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Despite advances in anaerobic digestion (AD), full-scale implementation faces significant challenges, particularly during the start-up phase, where inoculum selection is crucial. This study examines the impact of inoculum choice on the operational and economic performance of thermophilic digesters during the start-up phase. Methanogenic reactors R3 and R4 were inoculated with digested sludge (DiS) and diluted sewage sludge (DSS), respectively, and fed with hydrolyzed source-sorted organic fraction of municipal solid waste (SS-OFMSW) and thickened sewage sludge, which were processed in R1 and R2, serving as acidogenic reactors. A two-stage AD configuration was employed to mitigate inhibitory effects associated with the undigested inoculum (DSS). This approach enabled the establishment of methanogenic activity in R4 when the AD system is initiated with DSS. However, R3 outperformed R4, achieving 49 % of the feedstock's theoretical methane potential compared to 15 % in R4. Methane production and volatile solids (VS) processing costs in R4 were 18 and 3 times higher than in R3, respectively. R3's superior performance was attributed to DiS's diverse bacterial community, with over 66 % of genera involved in hydrolysis, volatile fatty acid production, and syntrophic methane production. In contrast, DSS was dominated by Trichococcus and Lactococcus (75.4 %), primarily involved in butyrate oxidation and lactate production. This study provides valuable insights into effective inoculum selection for the start-up of full-scale digesters.
Collapse
Affiliation(s)
- Amal Hmaissia
- BioEngine Research Team on Green Process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine, Québec, Québec, Canada; CentrEau, Centre de recherche sur l'eau, Université Laval, 1065 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada.
| | - Edgar Martín Hernández
- BioEngine Research Team on Green Process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine, Québec, Québec, Canada.
| | - Céline Vaneeckhaute
- BioEngine Research Team on Green Process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine, Québec, Québec, Canada; CentrEau, Centre de recherche sur l'eau, Université Laval, 1065 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
8
|
Wang J, Zhang Y, Zhou L, Gao Y, Li K, Sun S. Multiple effects of carbon, sulfur and iron on microbial mercury methylation in black-odorous sediments. ENVIRONMENTAL RESEARCH 2024; 263:120048. [PMID: 39313174 DOI: 10.1016/j.envres.2024.120048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Black-odorous sediments provide ideal conditions for microbial mercury methylation. However, the multiple effects of carbon, sulfur, and iron on the microbial methylmercury of mercury in black-odorous sediments remains unclear. In this study, we conducted mercury methylation experiments using sediments collected from organically contaminated water bodies, as well as black-odorous sediments simulated in the laboratory. The results showed that black-odorous sediments exhibit a high capacity for mercury methylation. By simulating the blackening and odorization process in sediments, it was confirmed that dissolved oxygen, organic matter and sulfide were the primary factors triggering the black-odorous phenomenon in sediments. Regarding the influence of key factors in sediments on methylmercury formation, the batch tests demonstrated that high concentrations of organics additions (above 200 mg/L) may reduce bacterial activity and weaken mercury methylation in sediments. Under five different iron-sulfur ratios, the concentrations of methylmercury in the black-odorous sediments showed an increasing trend, the ratio of 5.0 Fe/S exhibited the highest MeHg accumulation. The iron-sulfur ratio in the sediment had a significant effect on the mercury methylation process, which was mainly due to the competition between Fe2+ and Hg2+ for sulfide sites and the adsorption/coprecipitation of Hg2+ by FeS. These findings offer a potential avenue for further understanding and controlling mercury methylation, contributing to the mitigation of the potential threat of mercury pollution to the environment and human health.
Collapse
Affiliation(s)
- Jinting Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China.
| | - Yan Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Lean Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Kai Li
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Shiquan Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, China.
| |
Collapse
|
9
|
Ma P, Jin M, Zhang D, Lv L, Zhang G, Ren Z. Surface engineering-based S, N co-doped biochar for improved anaerobic digestion: Enhancing microbial-pollutant and inter-microbial electron transfer synergistic EPS protection. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136217. [PMID: 39437466 DOI: 10.1016/j.jhazmat.2024.136217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Enhancing extracellular electron transfer (EET) efficiency is crucial for improving the anaerobic digestion (AD) system's capability to treat recalcitrant wastewater. In this study, a novel S, N co-doped biochar (S-N-BC) was prepared through surface engineering to optimize EET within AD systems. The addition of S-N-BC significantly enhanced the performance of a mesophilic AD system treating Congo red wastewater, increasing the decolorization rate by 78 %, COD degradation rate by 82 %, and methane yield by 87 % compared to the control. Additionally, the shock resistance of anaerobic granular sludge was improved, as evidenced by the formation of the protective extracellular polymeric substances (EPS) barrier and the enhanced activities of the electron transport system. Mechanistic analysis revealed that adding S-N-BC did not alter the Congo red decolorization pathway but significantly enriched various electrochemically active bacteria and established EET pathways between microbial-pollutant and inter-microbial. This significantly accelerated EET efficiency within the AD system, ensuring stable and efficient operation under challenging conditions. This study proposed a novel approach using S-N-BC to simultaneously enhance "dual-pathway EET" between microbial-pollutant and inter-microbial while constructing an EPS protective barrier, addressing the issues of low efficiency and fragile stability of AD systems for treating recalcitrant wastewater.
Collapse
Affiliation(s)
- Peiyu Ma
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Mengting Jin
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Duoying Zhang
- School of Civil Engineering, Heilongjiang University, Harbin 150086, PR China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| |
Collapse
|
10
|
Shi Z, Zhang C, Sun M, Usman M, Cui Y, Zhang S, Ni B, Luo G. Syntrophic propionate degradation in anaerobic digestion facilitated by hydrochar: Microbial insights as revealed by genome-centric metatranscriptomics. ENVIRONMENTAL RESEARCH 2024; 261:119717. [PMID: 39094895 DOI: 10.1016/j.envres.2024.119717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
Propionate is a model substrate for studying energy-limited syntrophic communities in anaerobic digestion, and syntrophic bacteria usually catalyze its degradation in syntrophy with methanogens. In the present study, metagenomics and metatranscriptomics were used to study the effect of the supportive material (e.g., hydrochar) on the key members of propionate degradation and their cooperation mechanism. The results showed that hydrochar increased the methane production rate (up to 57.1%) from propionate. The general transcriptional behavior of the microbiome showed that both interspecies H2 transfer (IHT) and direct interspecies electron transfer (DIET) played essential roles in the hydrochar-mediated methanation of propionate. Five highly active syntrophic propionate-oxidizing bacteria were identified by genome-centric metatranscriptomics. H85pel, a member of the family Pelotomaculaceae, was specifically enriched by hydrochar. Hydrochar enhanced the expression of the flagellum subunit, which interacted with methanogens and hydrogenases in H85pel, indicating that IHT was one of the essential factors promoting propionate degradation. Hydrochar also enriched H162tha belonging to the genus of Thauera. Hydrochar induced the expression of genes related to the complete propionate oxidation pathway, which did not produce acetate. Hydrochar and e-pili-mediated DIET were enhanced, which was another factor promoting propionate degradation. These findings improved the understanding of metabolic traits and cooperation between syntrophic propionate oxidizing bacteria (SPOB) and co-metabolizing partners and provided comprehensive transcriptional insights on function in propionate methanogenic systems.
Collapse
Affiliation(s)
- Zhijian Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.
| | - Chao Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Meichen Sun
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Muhammad Usman
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Yong Cui
- Shanghai Wujiaochang Environmental Protection Technology Co., Ltd., Shanghai, 200438, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Bingjie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
11
|
Ma P, Yin B, Wu M, Han M, Lv L, Li W, Zhang G, Ren Z. Synergistic enhancement of microbes-to-pollutants and inter-microbes electron transfer by Fe, N modified ordered mesoporous biochar in anaerobic digestion. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135030. [PMID: 38944989 DOI: 10.1016/j.jhazmat.2024.135030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/12/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Extracellular electron transfer was essential for degrading recalcitrant pollutants by anaerobic digestion (AD). Therefore, existing studies improved AD efficiency by enhancing the electron transfer from microbes-to-pollutants or inter-microbes. This study synthesized a novel Fe, N co-doped biochar (Fe, N-BC), which could enhance both the microbes-to-pollutants and inter-microbes electron transfer in AD. Detailed characterization data indicated that Fe, N-BC has an ordered mesoporous structure, high specific surface area (463.46 m2/g), and abundant redox functional groups (Fe2+/Fe3+, pyrrolic-N), which translate into excellent biocompatibility and electrochemical properties of Fe, N-BC. By adding Fe, N-BC, the stability and efficiency of the medium-temperature AD system in the treatment of methyl orange (MO) wastewater were improved: obtained a high degradation efficiency of MO (96.8 %) and enhanced the methane (CH4) production by 65 % compared to the control group. Meanwhile, Fe, N-BC reduced the accumulation of volatile fatty acids in the AD system, and the activity of anaerobic granular sludge electron transport system and coenzyme F420 was enhanced. In addition, Fe, N-BC showed positive enrichment of azo dyes decolorization bacteria (Georgenia) and direct interspecies electron transfer (DIET) synergistic partners (Syntrophobacter, Methanosarcina). Overall, the rapid degradation of MO and enhanced CH4 production in AD systems by Fe, N-BC is associated with enhancing two electronic pathways, i.e., microbes to MO and DIET between syntrophic bacteria and methanogenic archaea. This study introduced an enhanced "two-pathways of electron transfer" theory, realized by Fe, N-BC. These findings provided new insights into the interactions within AD systems and offer strategies for enhancing their performance with recalcitrant pollutants.
Collapse
Affiliation(s)
- Peiyu Ma
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Bingbing Yin
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Minhao Wu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Muda Han
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| |
Collapse
|
12
|
Wu Z, Ji Y, Liu G, Yu X, Shi K, Liang B, Freilich S, Jiang J. Electro-stimulation modulates syntrophic interactions in methanogenic toluene-degrading microbiota for enhanced functionality. WATER RESEARCH 2024; 260:121898. [PMID: 38865893 DOI: 10.1016/j.watres.2024.121898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Syntrophy achieved via microbial cooperation is vital for anaerobic hydrocarbon degradation and methanogenesis. However, limited understanding of the metabolic division of labor and electronic interactions in electro-stimulated microbiota has impeded the development of enhanced biotechnologies for degrading hydrocarbons to methane. Here, compared to the non-electro-stimulated methanogenic toluene-degrading microbiota, electro-stimulation at 800 mV promoted toluene degradation and methane production efficiencies by 11.49 %-14.76 % and 75.58 %-290.11 %, respectively. Hydrocarbon-degrading gene bamA amplification and metagenomic sequencing analyses revealed that f_Syntrophobacteraceae MAG116 may act as a toluene degrader in the non-electro-stimulated microbiota, which was proposed to establish electron syntrophy with the acetoclastic methanogen Methanosarcina spp. (or Methanothrix sp.) through e-pili or shared acetate. In the electro-stimulated microbiota, 37.22 ± 4.33 % of Desulfoprunum sp. (affiliated f_Desulfurivibrionaceae MAG10) and 58.82 ± 3.74 % of the hydrogenotrophic methanogen Methanobacterium sp. MAG74 were specifically recruited to the anode and cathode, respectively. The potential electrogen f_Desulfurivibrionaceae MAG10 engaged in interspecies electron transfer with both syntroph f_Syntrophobacteraceae MAG116 and the anode, which might be facilitated by c-type cytochromes (e.g., ImcH, OmcT, and PilZ). Moreover, upon capturing electrons from the external circuit, the hydrogen-producing electrotroph Aminidesulfovibrio sp. MAG60 could share electrons and hydrogen with the methanogen Methanobacterium sp. MAG74, which uniquely harbored hydrogenase genes ehaA-R and ehbA-P. This study elucidates the microbial interaction mechanisms underlying the enhanced metabolic efficiency of the electro-stimulated methanogenic toluene-degrading microbiota, and emphasizes the significance of metabolic and electron syntrophic interactions in maintaining the stability of microbial community functionality.
Collapse
Affiliation(s)
- Zhiming Wu
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Yanhan Ji
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Guiping Liu
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Yu
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Shiri Freilich
- Newe-Ya'ar Research Center, Agricultural Research Organization, Ministry of Agriculture, Israel
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
13
|
Liu F, Zhang Y, Shen W, Wu Z, Yang J, Zhang Y, Li J, Chen Y, Zhang Y, Yuan Z. Boron induced multiple quorum-sensing circuits in parallel to assist in anaerobic digestion recovery from volatile fatty acids accumulation. CHEMOSPHERE 2024; 362:142640. [PMID: 38901697 DOI: 10.1016/j.chemosphere.2024.142640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/20/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Exogenous quorum sensing (QS) molecular can regulate the activity and granulation process of anaerobic sludge in anaerobic digestion process, but would be impractical as a standalone operation. Here we demonstrated that application of 1 mg L-1 boric acid assisted in an upflow anaerobic sludge blanket (UASB) reactor recovery from volatile fatty acids (VFAs) accumulation. After VFAs accumulation, the chemical oxygen demand (COD) removal suddenly reduced from 78.98% to 55.86%. The relative abundance of acetoclastic methanogens decreased from 55.79% to 68.28%-23.14%∼25.41%, and lead to the acetate accumulate as high as 1317.03 mg L-1. Granular sludge disintegrated and the average size of sludge decreased to 586.38 ± 42.45 μm. Application of 1 mg L-1 boric acid activated the interspecies QS signal (AI-2) and then induced the secretion of intraspecies QS signal (N-acyl-homoserine lactones, AHLs). AHLs were then stimulated the growth of syntrophic acetate oxidizing bacteria and hydrogenotrophic methanogen. Moreover, the concentration of acetate decreased to 224.50 mg‧L-1, and the COD removal increased to 75.10% after application of 1 mg L-1 boric acid. The activated AI-2 may induce multiple quorum-sensing circuits enhance the level of AI-2 and AHLs in parallel, and in turn assisted in anaerobic digestion recovery from VFAs accumulation.
Collapse
Affiliation(s)
- Fengqin Liu
- College of Life Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou, 450002, China
| | - Yu Zhang
- College of Life Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou, 450002, China
| | - Wenyan Shen
- College of Life Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou, 450002, China
| | - Zhenguo Wu
- College of Resources and Environmental Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou, 450002, China
| | - Jiale Yang
- College of Life Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou, 450002, China
| | - Yifan Zhang
- College of Life Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou, 450002, China
| | - Jiuling Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yun Chen
- College of Life Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou, 450002, China
| | - Yupeng Zhang
- College of Resources and Environmental Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou, 450002, China.
| | - Zhiliang Yuan
- College of Life Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou, 450002, China
| |
Collapse
|
14
|
Guo M, Wei S, Guo M, Li M, Qi X, Wang Y, Jia X. Potential mechanisms of propionate degradation and methanogenesis in anaerobic digestion coupled with microbial electrolysis cell system: Importance of biocathode. BIORESOURCE TECHNOLOGY 2024; 400:130695. [PMID: 38614147 DOI: 10.1016/j.biortech.2024.130695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Microbial electrolysis cells (MEC) have the potential for enhancing the efficiency of anaerobic digestion (AD). In this study, microbiological and metabolic pathways in the biocathode of anaerobic digestion coupled with microbial electrolysis cells system (AD-MEC) were revealed to separate bioanode. The biocathode efficiently degraded 90 % propionate within 48 h, leading to a methane production rate of 3222 mL·m-2·d-1. The protein and heme-rich cathodic biofilm enhanced redox capacity and facilitated interspecies electron transfer. Key acid-degrading bacteria, including Dechloromonas agitata, Ignavibacteriales bacterium UTCHB2, and Syntrophobacter fumaroxidans, along with functional proteins such as cytochrome c and e-pili, established mutualistic relationships with Methanothrix soehngenii. This synergy facilitated a multi-pathway metabolic process that converted acetate and CO2 into methane. The study sheds light on the intricate microbial dynamics within the biocathode, suggesting promising prospects for the scalable integration of AD-MEC and its potential in sustainable energy production.
Collapse
Affiliation(s)
- Meng Guo
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Sijia Wei
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - MeiXin Guo
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Mingxiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuejiao Qi
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yong Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuan Jia
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
15
|
Zhuo M, Quan X, Yin R, Lv K. Enhancing methane production and interspecies electron transfer of anaerobic granular sludge by the immobilization of magnetic biochar. CHEMOSPHERE 2024; 352:141332. [PMID: 38296206 DOI: 10.1016/j.chemosphere.2024.141332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/20/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Supplementation of conductive materials has been proved to be a promising approach for enhancing microbial interspecies electron transfer (IET) in anaerobic digestion systems. In this study, magnetic bamboo-based biochar was prepared at temperatures of 400-800 °C via a ball milling/carbonization method, and it immobilized in mature anaerobic granular sludge (AGS) aimed to enhance methane production by improving the IET process between syntrophic microbial communities in the AGS. Results showed that the AGS with magnetic biochar immobilization demonstrated increased glucotrophic and acetotrophic methane production by 69.54-77.56 % and 39.96-54.92 %, respectively. Magnetic biochar prepared at 800 °C with a relatively higher Fe content (0.37 g/g magnetic biochar) displayed a stronger electron charge/discharge capacity (36.66 F/g), and its immobilization into AGS promoted methane production most. The conductivity of AGS increased by 52.13-87.32 % after incorporating magnetic biochar. Furthermore, the extracellular polymeric substance (EPS) of AGS showed an increased capacitance and decreased electron transfer resistance possibly due to the binding of magnetic biochar and more riboflavin secretion in EPS, which could contribute to the accelerated IET process in the inner AGS. In addition, the immobilization of magnetic biochar could promote the production of volatile fatty acids by 15.36-22.50 %. All these improvements may jointly lead to the enhanced methane production capacity of AGS. This study provided a fundamental understanding of the role of incorporated magnetic biochar in AGS in promoting anaerobic digestion performance.
Collapse
Affiliation(s)
- Meihui Zhuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiangchun Quan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Ruoyu Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Kai Lv
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
16
|
Lin M, Pan C, Qian C, Tang F, Zhao S, Guo J, Zhang Y, Song J, Rittmann BE. Core taxa, co-occurrence pattern, diversity, and metabolic pathways contributing to robust anaerobic biodegradation of chlorophenol. ENVIRONMENTAL RESEARCH 2024; 241:117591. [PMID: 37926226 DOI: 10.1016/j.envres.2023.117591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
It is hard to achieve robustness in anaerobic biodegradation of trichlorophenol (TCP). We hypothesized that specific combinations of environmental factors determine phylogenetic diversity and play important roles in the decomposition and stability of TCP-biodegrading bacteria. The anaerobic bioreactor was operated at 35 °C (H condition) or 30 °C (L condition) and mainly fed with TCP (from 28 μM to 180 μM) and organic material. Metagenome sequencing was combined with 16S rRNA gene amplicon sequencing for the microbial community analysis. The results exhibited that the property of robustness occurred in specific conditions. The corresponding co-occurrence and diversity patterns suggest high collectivization, degree and evenness for robust communities. Two types of core functional taxa were recognized: dechlorinators (unclassified Anaerolineae, Thermanaerothrix and Desulfovibrio) and ring-opening members (unclassified Proteobacteria, Methanosarcina, Methanoperedens, and Rubrobacter). The deterministic process of the expansion of niche of syntrophic bacteria at higher temperatures was confirmed. The reductive and hydrolytic dechlorination mechanisms jointly lead to C-Cl bond cleavage. H ultimately adapted to the stress of high TCP loading, with more abundant ring-opening enzyme (EC 3.1.1.45, ∼55%) and hydrolytic dechlorinase (EC 3.8.1.5, 26.5%) genes than L (∼47%, 10.5%). The functional structure (based on KEGG) in H was highly stable despite the high loading of TCP (up to 60 μM), but not in L. Furthermore, an unknown taxon with multiple functions (dechlorinating and ring-opening) was found based on genetic sequencing; its functional contribution of EC 3.8.1.5 in H (26.5%) was higher than that in L (10.5%), and it possessed a new metabolic pathway for biodegradation of halogenated aromatic compounds. This new finding is supplementary to the robust mechanisms underlying organic chlorine biodegradation, which can be used to support the engineering, regulation, and design of synthetic microbiomes.
Collapse
Affiliation(s)
- Ming Lin
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Chenhui Pan
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Chenyi Qian
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Fei Tang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Siwen Zhao
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Jun Guo
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Department of Environmental Science and Engineering, Fudan University, Shanghai, 200238, PR China
| | - Yongming Zhang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Jiaxiu Song
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, 85287-5701, USA
| |
Collapse
|
17
|
Wang G, Sun C, Fu P, Zhang B, Zhu J, Li Q, Zhang J, Chen R. Mechanistic insights into synergistic facilitation of copper/zinc ions and dewatered swine manure-derived biochar on anaerobic digestion of swine wastewater. ENVIRONMENTAL RESEARCH 2024; 240:117429. [PMID: 37865320 DOI: 10.1016/j.envres.2023.117429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023]
Abstract
Biochar-assisted anaerobic digestion (AD) has been proposed an advanced system for swine wastewater (SW) management. However, the effects of metallic nutrients in SW, such as copper/zinc ions (Cu2+/Zn2+), on the biochar-assisted AD of SW are not well understood. This study investigated the influences of individual Cu2+/Zn2+ or dewatered swine manure-derived biochar, as well as their combined additions, on the AD of SW. The results showed that exposure to 50 mg/L Cu2+/Zn2+ temporary inhibited methane production, but the addition of 20 g/L biochar alleviated this inhibition by shortening the methanogenic lag time and increasing methane yield. Following a period of acclimation, both Cu2+/Zn2+ and biochar promoted methane production, although metagenomic analysis revealed distinct mechanisms underlying their promotion. Cu2+/Zn2+ enhanced ATP processing, including electron exchange between NADH/NAD+ and succinate/fumarate transformation, by 26.0-35.8%. Additionally, the gene encoding Coenzyme M methylation was upregulated by 36.2% along with enrichments of Methanocullus and Methanosarcina, contributing to accelerated hydrolysis and methanogenesis rates by 54.7% and 44.8%, respectively. On the other hand, biochar mainly stimulated bacterial F-type ATPase activities by 28.4%, likely facilitating direct interspecies electron transfer between Geobacter and Methanosarcina for syntrophic methanogenesis. The combined addition of Cu2+/Zn2+ and biochar resulted in "win-win" benefits, significantly increasing the maximum methane production rate from 40.3 mL CH4/d to 53.7 mL CH4/d. Moreover, the introduction of biochar into AD of SW facilitated the transformation of more Cu2+/Zn2+ from a reducible Fe-Mn oxides form to a residual form, which potentially reduced the metallic toxicity of the digestate for soil amendment. The findings of this study provide novel insights into understanding the synergistic impacts of heavy metals and biochar in regulating SW during AD, as well as the management of associated digestate.
Collapse
Affiliation(s)
- Gaojun Wang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China
| | - Changxi Sun
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China
| | - Peng Fu
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China
| | - Bo Zhang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China
| | - Jinglin Zhu
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China
| | - Qian Li
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Jianfeng Zhang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China
| | - Rong Chen
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China.
| |
Collapse
|
18
|
Tan H, Zhou A, Jia L, Duan Y, Liu Z, Zhao W, He Z, Liu W, Yue X. Tailored short-chain fatty acids conversion from waste activated sludge fermentation via persulfate oxidation and C3-C5 io-SRB metabolizers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118967. [PMID: 37714089 DOI: 10.1016/j.jenvman.2023.118967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Boosting acetate production from waste activated sludge (WAS) fermentation is often hindered by the inefficient solubilization in the hydrolysis step and the high hydrogen pressure ( [Formula: see text] ) during the acidogenesis of C3-C5 short-chain fatty acid (SCFAs), i.e., propionate (HPr), butyrate (HBu) and valerate (HVa). Therefore, this study employed persulfate (PS) oxidation and C3-C5 incomplete-oxidative sulfate reducing bacteria (io-SRB) metabolizers to tailor SCFAs conversion from WAS fermentation. The decomposition efficiency, performance of SCFAs production was investigated. Results showed that the PS significantly promoted WAS decomposition, with a dissolution rate of 39.4%, which is 26.0% higher than the un-treated test. Furthermore, SCFAs yields were increased to 462.7 ± 42 mg COD/g VSS in PS-HBu-SRB, which was 7.4 and 2.2 times higher than that of un-treated and sole PS tests, respectively. In particular, the sum of acetate and HPr reached the peak value of 85%, indicating that HBu-SRB mediation promoted the biotransformation of HBu and macromolecular organics by reducing the [Formula: see text] restriction. Meanwhile, sulfate radical (SO4∙-)-based oxidation (SR-AOPs) was effective in the decomposition of WAS, the oxidative product, i.e., sulfate served the necessary electron acceptor for the metabolism of io-SRB. Further analysis of Mantel test revealed the cluster of the functional genus and their interaction with environmental variables. Additionally, molecular ecological network analysis explored the potential synergistic and competitive relationships between critical genera. Additionally, the potential synergistic and competitive relationships between critical genera was explored by molecular ecological network analysis. This study provides new insights into the integration of SR-AOPs with microbial mediation in accelerating SCFAs production from WAS fermentation.
Collapse
Affiliation(s)
- Huijie Tan
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi Shanan Lide Environmental Science & Technology Co., LTD, Taiyuan, 030032, China.
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China.
| | - Lijun Jia
- Shanxi Shanan Lide Environmental Science & Technology Co., LTD, Taiyuan, 030032, China.
| | - Yanqing Duan
- Department of Environmental and Safety Engineering, Taiyuan Institute of Technology, Taiyuan, 030008, China.
| | - Zhihong Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Wenjing Zhao
- Shanxi Shanan Lide Environmental Science & Technology Co., LTD, Taiyuan, 030032, China.
| | - Zhangwei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Wenzong Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 51805, China.
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China; Shanxi Engineer Research Institute of Sludge Disposition and Resources, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
19
|
Yang P, Gao Y, Wang N, Zhu Y, Xue L, Han Y, Liu J, He W, Feng Y. The restricted mass transfer inside the anode pore channel affects the electroactive biofilms formation, community composition and the power production in microbial electrochemical systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165448. [PMID: 37442459 DOI: 10.1016/j.scitotenv.2023.165448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
Porous anodes improve system performance in microbial electrochemical systems by increasing the specific surface area for electroactive bacteria. In this study, multilayer anodes with different pore diameters were constructed to assess the impact of pore size and depth on anode performance. This layered structure makes detecting electroactive biofilms more accessible layer by layer, which is the first study to examine electroactive biofilms' molecular biology and electrochemical properties at different depths in pores with varied pore sizes. The millimeter-scale pores inside the bioanode have a limited effect in increasing power. The larger the pore diameter, the higher the maximum power density (Pmax) obtained. The Pmax of anodes with 4 mm pore (1.91 ± 0.15 W m-2) was 1.4 times higher than that of the non-perforated (1.37 ± 0.07 W m-2) and 0.5 mm pore anodes (1.39 ± 0.04 W m-2). Electricigens can colonize into pore channels for at least 10 mm with a pore diameter ≥3 mm and current densities >0.05 A m-2. However, in the pores channel with 0.5 mm diameter, electricigens can only colonize to a depth of 2 mm. The biofilm thickness, electricity output, metabolic activity, and biocommunity changed with pore depth and were restricted by the limited mass transfer. The Geobacter sp. was the dominant species in inter-pore biofilms, with 43.8 %-78.6 % in abundance and decreased in quantity as pore depth increased. The inter-pore biofilms on the outer layer contributed a current density of 0.17 ± 0.003 A m-2, while that of the inner layer was only 0.02 ± 0.01 A m-2. Further studies found that the pore edge mass transfer effect can contribute up to 75 % of the current. The mass transfer process at the pore edge region could be a multidirectional mass transfer rather than a pore channel mass transfer.
Collapse
Affiliation(s)
- Pinpin Yang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Yaqian Gao
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Naiyu Wang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Yujie Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lefei Xue
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Yu Han
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Weihua He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District, 300072 Tianjin, China
| |
Collapse
|
20
|
Singh Y, Rani J, Kushwaha J, Priyadarsini M, Pandey KP, Sheth PN, Yadav SK, Mahesh MS, Dhoble AS. Scientific characterization methods for better utilization of cattle dung and urine: a concise review. Trop Anim Health Prod 2023; 55:274. [PMID: 37470864 DOI: 10.1007/s11250-023-03691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Cattle are usually raised for food, manure, leather, therapeutic, and draught purposes. Biowastes from cattle, such as dung and urine, harbor a diverse group of crucial compounds, metabolites/chemicals, and microorganisms that may benefit humans for agriculture, nutrition, therapeutics, industrial, and other utility products. Several bioactive compounds have been identified in cattle dung and urine, which possess unique properties and may vary based on agro-climatic zones and feeding practices. Therefore, cattle dung and urine have great significance, and a balanced nutritional diet may be a key to improved quality of these products/by-products. This review primarily focuses on the scientific aspects of biochemical and microbial characterization of cattle biowastes. Various methods including genomics for analyzing cattle dung and gas chromatography-mass spectroscopy for cattle urine have been reviewed. The presented information might open doors for the further characterization of cattle resources for heterogeneous applications in the production of utility items and addressing research gaps. Methods for cattle's dung and urine characterization.
Collapse
Affiliation(s)
- Yashpal Singh
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, Varanasi, India
| | - Jyoti Rani
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, Varanasi, India
| | - Jeetesh Kushwaha
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, Varanasi, India
| | - Madhumita Priyadarsini
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, Varanasi, India
| | - Kailash Pati Pandey
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, Varanasi, India
| | - Pratik N Sheth
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India
| | - Sushil Kumar Yadav
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India
| | - M S Mahesh
- Livestock Farm Complex, Faculty of Veterinary and Animal Sciences, Banaras Hindu University, Rajiv Gandhi South Campus, Mirzapur, 231001, Uttar Pradesh, India
| | - Abhishek S Dhoble
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, Varanasi, India.
| |
Collapse
|
21
|
Ni Z, Zhou L, Lin Z, Kuang B, Zhu G, Jia J, Wang T. Iron-modified biochar boosts anaerobic digestion of sulfamethoxazole pharmaceutical wastewater: Performance and microbial mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131314. [PMID: 37030222 DOI: 10.1016/j.jhazmat.2023.131314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/26/2023] [Accepted: 03/26/2023] [Indexed: 05/03/2023]
Abstract
The accumulation of volatile fatty acids (VFAs) caused by antibiotic inhibition significantly reduces the treatment efficiency of sulfamethoxazole (SMX) wastewater. Few studies have been conducted to study the VFAs gradient metabolism of extracellular respiratory bacteria (ERB) and hydrogenotrophic methanogen (HM) under high-concentration sulfonamide antibiotics (SAs). And the effects of iron-modified biochar on antibiotics are unknown. Here, the iron-modified biochar was added to an anaerobic baffled reactor (ABR) to intensify the anaerobic digestion of SMX pharmaceutical wastewater. The results demonstrated that ERB and HM were developed after adding iron-modified biochar, promoting the degradation of butyric, propionic and acetic acids. The content of VFAs reduced from 1166.0 mg L-1 to 291.5 mg L-1. Therefore, chemical oxygen demand (COD) and SMX removal efficiency were improved by 22.76% and 36.51%, and methane production was enhanced by 6.19 times. Furthermore, the antibiotic resistance genes (ARGs) such as sul1, sul2, intl1 in effluent were decreased by 39.31%, 43.33%, 44.11%. AUTHM297 (18.07%), Methanobacterium (16.05%), Geobacter (6.05%) were enriched after enhancement. The net energy after enhancement was 0.7122 kWh m-3. These results confirmed that ERB and HM were enriched via iron-modified biochar to achieve high efficiency of SMX wastewater treatment.
Collapse
Affiliation(s)
- Zhili Ni
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Lilin Zhou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Ziyang Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Bin Kuang
- Jiangmen Polytechnic, Jiangmen 529020, PR China; Department of Civil and Environmental Engineering, University of Surrey, Surrey GU2 7XH, United Kingdom
| | - Gefu Zhu
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, PR China
| | - Jianbo Jia
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China.
| | - Tao Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China.
| |
Collapse
|
22
|
Jin Y, Lu Y. Syntrophic Propionate Oxidation: One of the Rate-Limiting Steps of Organic Matter Decomposition in Anoxic Environments. Appl Environ Microbiol 2023; 89:e0038423. [PMID: 37097179 PMCID: PMC10231205 DOI: 10.1128/aem.00384-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Syntrophic propionate oxidation is one of the rate-limiting steps during anaerobic decomposition of organic matter in anoxic environments. Syntrophic propionate-oxidizing bacteria (SPOB) are members of the "rare biosphere" living at the edge of the thermodynamic limit in most natural habitats. Hitherto, only 10 bacterial species capable of syntrophic propionate oxidization have been identified. SPOB employ different metabolisms for propionate oxidation (e.g., methylmalonyl-CoA pathway and C6 dismutation pathway) and show diverse life strategies (e.g., obligately and facultatively syntrophic lifestyle). The flavin-based electron bifurcation/confurcation (FBEB/C) systems have been proposed to help solve the thermodynamic dilemma during the formation of the low-potential products H2 and formate. Molecular ecological approaches, such as DNA stable isotope probing (DNA-SIP) and metagenomics, have been used to detect SPOB in natural environments. Furthermore, the biogeographical pattern of SPOB has been recently described in paddy soils. A comprehensive understanding of SPOB is essential for better predicting and managing organic matter decomposition and carbon cycling in anoxic environments. In this review, we described the critical role of syntrophic propionate oxidation in anaerobic decomposition of organic matter, phylogenetic and metabolic diversity, life strategies and ecophysiology, composition of syntrophic partners, and pattern of biogeographic distribution of SPOB in natural environments. We ended up with a few perspectives for future research.
Collapse
Affiliation(s)
- Yidan Jin
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
23
|
Mu L, Wang Y, Xu F, Li J, Tao J, Sun Y, Song Y, Duan Z, Li S, Chen G. Emerging Strategies for Enhancing Propionate Conversion in Anaerobic Digestion: A Review. Molecules 2023; 28:3883. [PMID: 37175291 PMCID: PMC10180298 DOI: 10.3390/molecules28093883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Anaerobic digestion (AD) is a triple-benefit biotechnology for organic waste treatment, renewable production, and carbon emission reduction. In the process of anaerobic digestion, pH, temperature, organic load, ammonia nitrogen, VFAs, and other factors affect fermentation efficiency and stability. The balance between the generation and consumption of volatile fatty acids (VFAs) in the anaerobic digestion process is the key to stable AD operation. However, the accumulation of VFAs frequently occurs, especially propionate, because its oxidation has the highest Gibbs free energy when compared to other VFAs. In order to solve this problem, some strategies, including buffering addition, suspension of feeding, decreased organic loading rate, and so on, have been proposed. Emerging methods, such as bioaugmentation, supplementary trace elements, the addition of electronic receptors, conductive materials, and the degasification of dissolved hydrogen, have been recently researched, presenting promising results. But the efficacy of these methods still requires further studies and tests regarding full-scale application. The main objective of this paper is to provide a comprehensive review of the mechanisms of propionate generation, the metabolic pathways and the influencing factors during the AD process, and the recent literature regarding the experimental research related to the efficacy of various strategies for enhancing propionate biodegradation. In addition, the issues that must be addressed in the future and the focus of future research are identified, and the potential directions for future development are predicted.
Collapse
Affiliation(s)
- Lan Mu
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Yifan Wang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Fenglian Xu
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Jinhe Li
- Tianjin Capital Environmental Protection Group Co., Ltd., Tianjin 300133, China
| | - Junyu Tao
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Yunan Sun
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Yingjin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China;
| | - Zhaodan Duan
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Siyi Li
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| |
Collapse
|
24
|
Wang S, Wang Z, Usman M, Zheng Z, Zhao X, Meng X, Hu K, Shen X, Wang X, Cai Y. Two microbial consortia obtained through purposive acclimatization as biological additives to relieve ammonia inhibition in anaerobic digestion. WATER RESEARCH 2023; 230:119583. [PMID: 36638729 DOI: 10.1016/j.watres.2023.119583] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Ammonia inhibition is a challenging issue in the anaerobic digestion (AD) of nitrogen-rich substrates and hinders the energy recovery from organic wastes. Bioaugmentation is promising strategy to stabilize AD systems with high ammonia concentration. The composition of microbial consortia often determines their effectiveness in bioaugmentation. Up to now, the effect of various microbial consortia as biological additives on the AD systems is not fully understood. In this study, two microbial consortia (syntrophic microbial consortium, MC, and hydrogenotrophic methanogen consortium, SS) were obtained through two domestication methods, and were applied in a nitrogen-rich AD system. The results showed that the MC and SS treatments could restore AD performance within 21 days and 83 days, respectively. The recovery of digestion performance depended on the methanogenic archaea Methanospirillum, Methanothermobacter, and Methanoculleus in the early and later stages. Analysis of the 13C isotope indicated that both MC and SS enhanced the hydrogenotrophic pathway. The KEGG analysis showed that the MC not only promoted the key enzyme genes in the hydrogenotrophic pathway but also had a positive effect on the related enzyme genes of propionate and butyrate degradation, which was affected by the abundant short-chain fatty acids degrading bacteria, such as Syntrophomonas, Syntrophobacter, and Tissierella in the MC. After recovery of digestion performance, there was no significant difference (p > 0.05) in methane yield between the MS and SS treatments. Therefore, the best intervention period for bioaugmentation is when the digestion performance of the AD system is unstable.
Collapse
Affiliation(s)
- Shilei Wang
- School of Chemical Engineering, Zhengzhou University, Ke xue Dadao 100, Zhengzhou, 450001, China
| | - Zhi Wang
- School of Chemical Engineering, Zhengzhou University, Ke xue Dadao 100, Zhengzhou, 450001, China
| | - Muhammad Usman
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada
| | - Zehui Zheng
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing, 100193, China
| | - Xiaoling Zhao
- School of Chemical Engineering, Zhengzhou University, Ke xue Dadao 100, Zhengzhou, 450001, China
| | - Xingyao Meng
- Beijing Technology and Business University, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing, 100048, China
| | - Kai Hu
- Shenzhen Derun Biomass Investment Co., Ltd. Shenzhen, 518066, China
| | - Xia Shen
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A and F University, Yangling, Shaanxi, 712100, China
| | - Xiaofen Wang
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing, 100193, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, Ke xue Dadao 100, Zhengzhou, 450001, China.
| |
Collapse
|
25
|
Kižys K, Zinovičius A, Jakštys B, Bružaitė I, Balčiūnas E, Petrulevičienė M, Ramanavičius A, Morkvėnaitė-Vilkončienė I. Microbial Biofuel Cells: Fundamental Principles, Development and Recent Obstacles. BIOSENSORS 2023; 13:221. [PMID: 36831987 PMCID: PMC9954062 DOI: 10.3390/bios13020221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
This review focuses on the development of microbial biofuel cells to demonstrate how similar principles apply to the development of bioelectronic devices. The low specificity of microorganism-based amperometric biosensors can be exploited in designing microbial biofuel cells, enabling them to consume a broader range of chemical fuels. Charge transfer efficiency is among the most challenging and critical issues while developing biofuel cells. Nanomaterials and particular redox mediators are exploited to facilitate charge transfer between biomaterials and biofuel cell electrodes. The application of conductive polymers (CPs) can improve the efficiency of biofuel cells while CPs are well-suitable for the immobilization of enzymes, and in some specific circumstances, CPs can facilitate charge transfer. Moreover, biocompatibility is an important issue during the development of implantable biofuel cells. Therefore, biocompatibility-related aspects of conducting polymers with microorganisms are discussed in this review. Ways to modify cell-wall/membrane and to improve charge transfer efficiency and suitability for biofuel cell design are outlined.
Collapse
Affiliation(s)
- Kasparas Kižys
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Antanas Zinovičius
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
- Faculty of Mechanics, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Baltramiejus Jakštys
- Faculty of Natural Sciences, Vytautas Magnus University, LT-44248 Kaunas, Lithuania
| | - Ingrida Bružaitė
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
- Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Evaldas Balčiūnas
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Milda Petrulevičienė
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Arūnas Ramanavičius
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
- Faculty of Chemistry and Geosciences, Vilnius University, LT-01513 Vilnius, Lithuania
| | - Inga Morkvėnaitė-Vilkončienė
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
- Faculty of Mechanics, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| |
Collapse
|
26
|
Wang T, Kuang B, Ni Z, Guo B, Li Y, Zhu G. Stimulating Anaerobic Degradation of Butyrate via Syntrophomonas wolfei and Geobacter sulfurreducens: Characteristics and Mechanism. MICROBIAL ECOLOGY 2023; 85:535-543. [PMID: 35254501 DOI: 10.1007/s00248-022-01981-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Anaerobic digestion (AD) has been widely applied for the degradation of organic wastewater due to its advantages of high-load operation and energy recovery. However, some challenges, such as low treatment capacity and instability caused by the accumulation of volatile fatty acids, limit its further application. Here, S. wolfei and G. sulfurreducens were initially co-cultured in the anaerobic anode of bio-electrochemical system for degrading butyric acid. Butyrate degradation characteristics in different conditions were quantitatively described. Moreover, G. sulfurreducens simultaneously strengthened the consumption of H2 and acetic acid via direct interspecies electron transfer, thereby strengthening the degradation of butyric acid via a co-metabolic process. During butyrate degradation, the co-culture of S. wolfei and G. sulfurreducens showed more advantages than that of S. wolfei and methanogens. This present study provides a new perspective of butyrate metabolism, which was independent of methanogens in an AD process.
Collapse
Affiliation(s)
- Tao Wang
- School of Environment and Nature Resources, Renmin University of China, Beijing, 100872, People's Republic of China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, People's Republic of China
| | - Bin Kuang
- School of Economics and Management, Jiangmen Polytechnic, Jiangmen, 529020, People's Republic of China
| | - Zhili Ni
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, People's Republic of China
| | - Bing Guo
- Department of Civil and Environmental Engineering, University of Surrey, Surrey, GU2 7XH, UK
| | - Yuying Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, People's Republic of China
| | - Gefu Zhu
- School of Environment and Nature Resources, Renmin University of China, Beijing, 100872, People's Republic of China.
| |
Collapse
|
27
|
Wang Z, Zhang W, Xing X, Li X, Zheng D, Bao H, Xing L. Effects of ferroferric oxide on propionate methanogenesis in sequencing batch reactors: Microbial community structure and metagenomic analysis. BIORESOURCE TECHNOLOGY 2022; 363:127909. [PMID: 36089127 DOI: 10.1016/j.biortech.2022.127909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the effects of ferroferric oxide (Fe3O4) on propionate methanogenesis in anaerobic sequencing batch reactor (ASBR). Compared to ASBRC (without Fe3O4 addition), the addition of 10 g/L Fe3O4 (ASBRFe) decreased the maximum methane production rate by 69.6 % when propionate was used as the sole substrate. The addition of Fe3O4 reduced the contents of humic substances, riboflavin and nicotinamide adenine dinucleotide in extracellular polymeric substances. Therefore, Fe3O4 inhibited interspecies electron transfer of microorganisms through electronic mediators. Microbial community analysis revealed that Fe3O4 addition increased the relative abundance of acetate oxidizing bacterium (Mesotoga), but decreased the abundance of hydrogenotrophic methanogen (Methanobacterium). Further metagenomics analysis indicated that Fe3O4 increased the abundance of acetate oxidation genes and decreased that of hydrogenotrophic methanogenesis, quorum sensing and V/A-type ATPase genes. Thus, Fe3O4 reduced propionate methanogenesis during anaerobic digestion. The overall results indicate that Fe3O4 addition inhibits methanogenesis for treatment of propionate-contaminated wastewater in ASBR.
Collapse
Affiliation(s)
- Zifan Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Weikang Zhang
- Tong Yuan Design Group Co., Ltd., Jinan 250000, China
| | - Xiujuan Xing
- Everbright Water (Jinan) Co., Ltd., Jinan 250000, China
| | - Xiu Li
- Chengdu Botanical Garden, Chengdu 610000, China
| | - Derui Zheng
- Shandong Urban and Rural Planning Design Research Institute Co., Ltd., Jinan 250000, China
| | - Huanyu Bao
- School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Lizhen Xing
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| |
Collapse
|
28
|
Wu B, Lin R, Ning X, Kang X, Deng C, Dobson ADW, Murphy JD. An assessment of how the properties of pyrochar and process thermodynamics impact pyrochar mediated microbial chain elongation in steering the production of medium-chain fatty acids towards n-caproate. BIORESOURCE TECHNOLOGY 2022; 358:127294. [PMID: 35550922 DOI: 10.1016/j.biortech.2022.127294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Microbial chain elongation fermentation is an alternative technology for medium-chain fatty acid (MCFA) production. This paper proposed the addition of pyrochar and graphene in chain elongation to improve MCFA production using ethanol and acetate as substrates. Results showed that the yield of, and selectivity towards, C6 n-caproate were significantly enhanced with pyrochar addition. At the optimal mass ratio of pyrochar to substrate of 2 g/g, the maximum n-caproate yield of 13.67 g chemical oxygen demand/L and the corresponding selectivity of 56.8% were obtained; this represents an increase of 115% and 128% respectively as compared with no pyrochar addition. Such improvements were postulated as due to the high electrical conductivity and surface redox groups of pyrochar. The optimal ethanol to acetate molar ratio of 2 mol/mol achieved the highest MCFA yield under pyrochar mediated chain elongation conditions. Thermodynamic calculations modelled an energy benefit of 93.50 kJ/mol reaction for pyrochar mediated n-caproate production.
Collapse
Affiliation(s)
- Benteng Wu
- MaREI Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T12 YN60, Ireland
| | - Richen Lin
- MaREI Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 211189, PR China.
| | - Xue Ning
- MaREI Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T12 YN60, Ireland
| | - Xihui Kang
- MaREI Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T12 YN60, Ireland
| | - Chen Deng
- MaREI Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T12 YN60, Ireland
| | - Alan D W Dobson
- MaREI Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Microbiology, University College Cork, Cork T12 K8AF, Ireland
| | - Jerry D Murphy
- MaREI Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T12 YN60, Ireland
| |
Collapse
|
29
|
Li Y, Wang M, Qian J, Hong Y, Huang T. Enhanced degradation of phenolic compounds in coal gasification wastewater by an iron‑carbon micro-electric field coupled with anaerobic co-digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:151991. [PMID: 34848265 DOI: 10.1016/j.scitotenv.2021.151991] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Coal gasification wastewater contains many refractory and toxic pollutants, especially high concentrations of total phenols, which are difficult to degrade by microorganisms. The aim of our study is to explore the anaerobically enhanced degradation of coal gasification wastewater by an iron‑carbon micro-electric field coupled with anaerobic co-digestion. The optimal ratio of activated carbon to iron and the optimal dosage of co-substrate (glucose = 1500 mg/L) were investigated by batch tests. In the long-term operation of the iron‑carbon reactor, 1500 mg/L glucose was added into the influent, and carbon and iron in a ratio of 2:1 were added to the anaerobic sludge. The average effluent COD and total phenols concentrations were kept at approximately 455 and 56.3 mg/L, respectively, and removal rates of both reached 90% after treatment with the iron‑carbon micro-electric field coupled with anaerobic co-digestion in the iron‑carbon reactor. Moreover, compared with the control reactor, the methane production from the iron‑carbon reactor increased to 200 mL/day, with an increase in the methane production rate by 90%. Microbial community analysis indicated that hydrogenotrophic methanogens were enriched, and syntrophic metabolism via interspecies hydrogen transfer was enhanced. Direct interspecies electron transfer might occur between the potential electroactive bacteria Clostridium, Bacteroidetes, and Anaerolinea and the methanogens Methanosaeta, Methanobacterialies, and Methanobacterium for syntrophic metabolism through the iron‑carbon process coupled with anaerobic co-digestion.
Collapse
Affiliation(s)
- Yajie Li
- School of Environmental Science and Engineering, Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu Province, China
| | - Mengyan Wang
- School of Environmental Science and Engineering, Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu Province, China
| | - Jingli Qian
- School of Environmental Science and Engineering, Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu Province, China
| | - Yaoliang Hong
- School of Environmental Science and Engineering, Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu Province, China
| | - Tianyin Huang
- School of Environmental Science and Engineering, Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu Province, China.
| |
Collapse
|
30
|
Wang YX, Hou N, Liu XL, Mu Y. Advances in interfacial engineering for enhanced microbial extracellular electron transfer. BIORESOURCE TECHNOLOGY 2022; 345:126562. [PMID: 34910968 DOI: 10.1016/j.biortech.2021.126562] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
The extracellular electron transfer (EET) efficiency between electroactive microbes (EAMs) and electrode is a key factor determining the development of microbial electrochemical technology (MET). Currently, the low EET efficiency of EAMs limits the application of MET in the fields of organic matter degradation, electric energy production, seawater desalination, bioremediation and biosensing. Enhancement of the interaction between EAMs and electrode by interfacial engineering methods brings bright prospects for the improvement of the EET efficiency of EAMs. In view of the research in recent years, this mini-review systematically summarizes various interfacial engineering strategies ranging from electrode surface modification to hybrid biofilm formation, then to single cell interfacial engineering and intracellular reformation for promoting the electron transfer between EAMs and electrode, focusing on the applicability and limitations of these methodologies. Finally, the possible key directions, challenges and opportunities for future interfacial engineering to strengthen the microbial EET are proposed in this mini-review.
Collapse
Affiliation(s)
- Yi-Xuan Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Nannan Hou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Xiao-Li Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
31
|
Mollaei M, Suarez-Diez M, Sedano-Nunez VT, Boeren S, Stams AJM, Plugge CM. Proteomic Analysis of a Syntrophic Coculture of Syntrophobacter fumaroxidans MPOB T and Geobacter sulfurreducens PCA T. Front Microbiol 2021; 12:708911. [PMID: 34950111 PMCID: PMC8691401 DOI: 10.3389/fmicb.2021.708911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/04/2021] [Indexed: 12/31/2022] Open
Abstract
We established a syntrophic coculture of Syntrophobacter fumaroxidans MPOBT (SF) and Geobacter sulfurreducens PCAT (GS) growing on propionate and Fe(III). Neither of the bacteria was capable of growth on propionate and Fe(III) in pure culture. Propionate degradation by SF provides acetate, hydrogen, and/or formate that can be used as electron donors by GS with Fe(III) citrate as electron acceptor. Proteomic analyses of the SF-GS coculture revealed propionate conversion via the methylmalonyl-CoA (MMC) pathway by SF. The possibility of interspecies electron transfer (IET) via direct (DIET) and/or hydrogen/formate transfer (HFIT) was investigated by comparing the differential abundance of associated proteins in SF-GS coculture against (i) SF coculture with Methanospirillum hungatei (SF-MH), which relies on HFIT, (ii) GS pure culture growing on acetate, formate, hydrogen as propionate products, and Fe(III). We noted some evidence for DIET in the SF-GS coculture, i.e., GS in the coculture showed significantly lower abundance of uptake hydrogenase (43-fold) and formate dehydrogenase (45-fold) and significantly higher abundance of proteins related to acetate metabolism (i.e., GltA; 62-fold) compared to GS pure culture. Moreover, SF in the SF-GS coculture showed significantly lower abundance of IET-related formate dehydrogenases, Fdh3 (51-fold) and Fdh5 (29-fold), and the rate of propionate conversion in SF-GS was 8-fold lower than in the SF-MH coculture. In contrast, compared to GS pure culture, we found lower abundance of pilus-associated cytochrome OmcS (2-fold) and piliA (5-fold) in the SF-GS coculture that is suggested to be necessary for DIET. Furthermore, neither visible aggregates formed in the SF-GS coculture, nor the pili-E of SF (suggested as e-pili) were detected. These findings suggest that the IET mechanism is complex in the SF-GS coculture and can be mediated by several mechanisms rather than one discrete pathway. Our study can be further useful in understanding syntrophic propionate degradation in bioelectrochemical and anaerobic digestion systems.
Collapse
Affiliation(s)
- Monir Mollaei
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | | | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, Netherlands
| | - Alfons J. M. Stams
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Caroline M. Plugge
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|