1
|
Lu X, Wang L, Li J, Li W, Yan R, Duan X, Tang Y. Microplastics inhibit lead binding to sediment components: Influence of surface functional groups and charge environment. WATER RESEARCH 2025; 281:123661. [PMID: 40280004 DOI: 10.1016/j.watres.2025.123661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/07/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
The coexistence of heavy metals and microplastics in sediments is well recognized, yet the interactions within ternary systems remain underexplored, and comprehensive studies addressing the diverse sequences of sediment-microplastic-heavy metal coexistence are lacking. In this study, we systematically investigated the interactions among lead (Pb), polystyrene (PS) microplastics, and sediments (using goethite (Goe) and goethite-humic acid composite (GH) as examples) under different coexistence orders. The presence of PS significantly inhibited Pb adsorption by both Goe and GH. For Goe, adsorption kinetics and hydrochemical condition effects showed that PS reduced the electrostatic repulsion between Goe and Pb, leading to a fourfold increase in the mass transfer rate of Pb to the Goe surface. However, Pb 4f deconvolution indicated competition between PS and Pb for hydroxyl groups on Goe, resulting in a 7.4% reduction in Pb adsorption. In the GH system, hydrophobic interactions and coordination complexes between PS and humic acid on GH inhibited the electrostatic adsorption and mass transfer processes between Pb and GH. Pb adsorption behavior and changes in Pb-O content under different coexistence orders further verified that competition between PS and Pb for carboxyl and hydroxyl groups on GH led to a 28.0% reduction in Pb adsorption. This study highlights the inhibitory effect of PS on Pb adsorption by Goe and GH, providing a theoretical basis for understanding the migration and transformation patterns of microplastics and heavy metals in sediments.
Collapse
Affiliation(s)
- Xiao Lu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005, Australia
| | - Lijuan Wang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Jiawei Li
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Wenqiu Li
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Ruoqun Yan
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005, Australia
| | - Yuanyuan Tang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China.
| |
Collapse
|
2
|
Shao H, Wang Q, Wang L, Dai S, Ye X, Mao XZ. Typical migration patterns and fates of microplastics with varying properties in bays and their impacts on coastal ecologically sensitive areas. WATER RESEARCH 2025; 282:123635. [PMID: 40245805 DOI: 10.1016/j.watres.2025.123635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
Rapid urbanization has intensified microplastic pollution in many global bays, yet the mechanisms driving microplastic behavior in these environments remain unclear. This study utilized field surveys, statistical analysis, and modeling methods to address this issue. The findings revealed three typical migration patterns of microplastics in bays. Microplastics less dense than seawater were easily transported by currents, drifting extensively throughout the bay, with about 37.2 % temporarily hovering in tidal channels and low-lying areas, ultimately leaving with ebb tides. Spherical microplastics denser than seawater were predominantly concentrated near the shore, primarily lingering in the subsurface layers. In contrast, fibrous microplastics, which are denser than seawater and the most prevalent type in human-impacted bays, displayed a unique behavior. The combined effects of their density and shape resulted in over 80 % being trapped in intertidal ecologically sensitive areas (ESAs). As a result, local ESAs, such as mangroves, bird habitats, and aquaculture, faced significant threats from fibrous microplastics and their sorption complexes associated with Cu, Pb, Cd, and Hg. Additionally, bay sediments acted as a source-sink community for microplastics. In Shenzhen Bay, China, approximately 27.1 × 1011 microplastic items were buried annually in sediments under normal hydrological conditions. However, if annual rainfall exceeded a threshold, these microplastics could be washed into ocean, serving as a source. Coastal raft aquaculture emerged as a significant contributor to marine microplastics, releasing about 3 %-8 % of terrestrial sources in Shenzhen Bay. This study enhances our understanding of microplastic behaviors and risks in bays.
Collapse
Affiliation(s)
- Huaihao Shao
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Qiankun Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Linlin Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| | - Shuangliang Dai
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xin Ye
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xian-Zhong Mao
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Key Laboratory of Marine IntelliSense and Computation, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
3
|
Suljević D, Karlsson P, Fočak M, Brulić MM, Sulejmanović J, Šehović E, Särndahl E, Engwall M, Alijagic A. Microplastics and nanoplastics co-exposure modulates chromium bioaccumulation and physiological responses in rats. ENVIRONMENT INTERNATIONAL 2025; 198:109421. [PMID: 40168788 DOI: 10.1016/j.envint.2025.109421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/21/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025]
Abstract
The environmental fragmentation of plastics generates a mixture of plastic particles of various sizes, which frequently co-occur with other mobile and persistent environmental pollutants. Despite the prevalence of such scenarios, the interaction between micro- and nanoplastics (MNPs) and their combined effects with environmental pollutants, such as highly toxic hexavalent chromium (Cr(VI)), remain almost entirely unexplored in mammalian species. This study demonstrated that nanoplastic and microplastic particles co-aggregate and together influence Cr bioaccumulation patterns and related physiological alterations in rats. Following a four-week repeated intragastric exposure of Wistar rats to MNPs and Cr(VI), either alone or in combination, MNPs significantly enhanced Cr bioaccumulation in the liver, heart, brain, and skin. Under co-exposure conditions, Cr(VI) was the primary driver of cellular effects observed in the blood, including shifts in immune cell subpopulations (e.g., neutrophils, lymphocytes) and alterations in red blood cell indices, while serum biochemistry reflected limited physiological stress. MNPs per se decreased creatine kinase activity and increased cholesterol levels. In summary, polystyrene MNPs increase Cr(VI) distribution and bioavailability, but co-exposure does not uniformly exacerbate toxicity. Instead, their interaction may selectively alter physiological responses, emphasizing the need for a deeper understanding of their combined effects and potential health risks.
Collapse
Affiliation(s)
- Damir Suljević
- Department of Biology, Faculty of Science, University of Sarajevo 71 000 Sarajevo, Bosnia and Herzegovina
| | - Patrik Karlsson
- Department of Mechanical Engineering, Örebro University, Örebro SE-701 82, Sweden
| | - Muhamed Fočak
- Department of Biology, Faculty of Science, University of Sarajevo 71 000 Sarajevo, Bosnia and Herzegovina
| | - Maja Mitrašinović Brulić
- Department of Biology, Faculty of Science, University of Sarajevo 71 000 Sarajevo, Bosnia and Herzegovina
| | - Jasmina Sulejmanović
- Department of Chemistry, Faculty of Science, University of Sarajevo 71 000 Sarajevo, Bosnia and Herzegovina
| | - Elma Šehović
- Department of Chemistry, Faculty of Science, University of Sarajevo 71 000 Sarajevo, Bosnia and Herzegovina
| | - Eva Särndahl
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, SE-701 82 Örebro, Sweden; Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
| | - Andi Alijagic
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, SE-701 82 Örebro, Sweden; Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden; Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden.
| |
Collapse
|
4
|
Ma Q, Sun Y, Zhou S, Yin X, Sun H. The transport of polystyrene microplastics in saturated porous media: Impacts of functional groups and solution chemistry. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124696. [PMID: 40020367 DOI: 10.1016/j.jenvman.2025.124696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/25/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Global attention to microplastics (MPs) pollution has been increasing as it has become a novel environmental issue. Natural aging processes alter MPs surface properties, introducing charged functional groups that affect their transport in porous media. This study investigated the transport of polystyrene microplastics (PSMPs) in saturated porous media through column experiments, including non-functionalized PSMPs (PS-Bare), carboxyl-modified PSMPs (PS-COOH), and amino-modified PSMPs (PS-NH2). Unlike previous studies focusing on pristine microplastics, our research integrated the effects of surface functionalization with complex solution chemistry, including ionic strength, cation valence, and pH. Results indicated that surface functional groups and solution chemistry combined to impact PSMPs migration through zeta potential and hydrodynamic size. Increasing ionic strength decreased migration rates due to double-layer compression and charge screening. Higher cation valence and lower pH decreased PS-Bare and PS-COOH migration rates, while PS-NH2 showed the opposite trend due to differences in surface charges. As pH increased, carboxyl groups dissociated, enhancing the negative charge on PS-COOH and promoting its migration, while amino groups deprotonated, reducing the positive charge on PS-NH2 and inhibiting its migration. PS-NH2 exhibited higher mobility than expected. Despite its positive charge, PS-NH2 preferentially occupied active sites on sand surfaces, reducing aggregation and enhancing transport. In the presence of Al3+, PSMPs recovery rates were PS-NH2 (94.60%) > PS-COOH (41.48%) > PS-Bare (41.12%). This study enhances understanding of functionalized microplastics transport and its potential impact on groundwater contamination.
Collapse
Affiliation(s)
- Qiang Ma
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, Shaanxi, 710075, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, Shaanxi, 710021, PR China
| | - Yingying Sun
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, Shaanxi, 710075, PR China; Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, Shaanxi, 710021, PR China
| | - Shi Zhou
- College of Urban and Environmental Sciences, Northwest University, Xi'an, Shaanxi, 710127, PR China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
5
|
Li J, Peng Z, Zhao W, Chu X, Tian Y. Effects of polystyrene microplastics on the distribution behaviors and mechanisms of metalloid As(III) and As(V) on pipe scales in drinking water distribution systems. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136542. [PMID: 39591933 DOI: 10.1016/j.jhazmat.2024.136542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
Pipe scales have long been considered the primary adsorption medium for trace heavy metals in drinking water distribution systems (DWDSs). Microplastics (MPs) potentially affect the distribution of metalloid arsenic (As) pollutants in DWDSs. Herein, the accumulation behaviors of As(Ⅲ) and As(V) on pipe scales and polystyrene microplastics (PSMPs) under different water conditions were studied. Additionally, As(Ⅲ) and As(V) accumulation behaviors on pipe scales coexisting with PSMPs were investigated. Results showed that pipe scales played a key role in the accumulation of As (pipe scales = 1.08-4.80 mg/g > PSMPs = 0.02-3.38 mg/g). The adsorption amount of As(Ⅲ) on PSMPs was higher than that of As(V). The addition of PSMPs promoted the accumulation of As(Ⅲ) on pipe scales at pH = 3-8 while inhibiting the accumulation of As(V) on pipe scales at pH = 3-10 due to the competitive adsorption. The oxidation of As(III) and the reduction of As(V) occurred during the accumulation of As(Ⅲ) and As(V) on pipe scales. Notably, PSMPs accumulated on pipe scales were beneficial to the oxidation of As(Ⅲ), potentially reducing the As-related risks. Overall, our results provide new insights into the hazards posed by MPs in DWDSs.
Collapse
Affiliation(s)
- Jiaxin Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Southwest Municipal Engineering Design & Research Institute of China, Chengdu, Sichuan 610081, China
| | - Zhu Peng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Weigao Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xianxian Chu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yimei Tian
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
6
|
Xiong W, Hu M, He S, Ye Y, Xiang Y, Peng H, Chen Z, Xu Z, Zhang H, Li W, Peng S. Microplastics enhance the adsorption capacity of zinc oxide nanoparticles: Interactive mechanisms and influence factors. J Environ Sci (China) 2025; 147:665-676. [PMID: 39003081 DOI: 10.1016/j.jes.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 07/15/2024]
Abstract
Microplastics (MPs) are of particular concern due to their ubiquitous occurrence and propensity to interact and concentrate various waterborne contaminants from aqueous surroundings. Studies on the interaction and joint toxicity of MPs on engineered nanoparticles (ENPs) are exhaustive, but limited research on the effect of MPs on the properties of ENPs in multi-solute systems. Here, the effect of MPs on adsorption ability of ENPs to antibiotics was investigated for the first time. The results demonstrated that MPs enhanced the adsorption affinity of ENPs to antibiotics and MPs before and after aging showed different effects on ENPs. Aged polyamide prevented aggregation of ZnONPs by introducing negative charges, whereas virgin polyamide affected ZnONPs with the help of electrostatic attraction. FT-IR and XPS analyses were used to probe the physicochemical interactions between ENPs and MPs. The results showed no chemical interaction and electrostatic interaction was the dominant force between them. Furthermore, the adsorption rate of antibiotics positively correlated with pH and humic acid but exhibited a negative correlation with ionic strength. Our study highlights that ENPs are highly capable of accumulating and transporting antibiotics in the presence of MPs, which could result in a widespread distribution of antibiotics and an expansion of their environmental risks and toxic effects on biota. It also improves our understanding of the mutual interaction of various co-existing contaminants in aqueous environments.
Collapse
Affiliation(s)
- Weiping Xiong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China; Hunan Boke Environmental Engineering Co. Ltd., Hengyang 421099, China.
| | - Min Hu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Siying He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yuhang Ye
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yinping Xiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Haihao Peng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhaomeng Chen
- Hunan Boke Environmental Engineering Co. Ltd., Hengyang 421099, China; College of Environmental Protection and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zhengyong Xu
- Hunan Modern Environmental Technology Co. Ltd., Changsha 410004, China
| | - Honglin Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Weixiang Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Shudian Peng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
7
|
Huang J, Tan X, Ali I, Ok YS, Duan Z, Liang J, Zhu R. Efficient removal of nanoplastics by iron-modified biochar: Understanding the removal mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125121. [PMID: 39426478 DOI: 10.1016/j.envpol.2024.125121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/02/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Tiny plastic particles, particularly nanoplastics, are becoming major threats to aquatic and biotic life owing to their unique physico-chemical characteristics. Thus, in the present work, biochar (BC) was fabricated using "Ulva prolifera green tide" as a biowaste raw material by slow pyrolysis technique to examine its potential in removing nanoplastics from the environment. The findings depicted that nanoplastics removal efficiency by BC was V-shaped with initial pH increased from 2 to 11, and the main removal mechanism changed from adsorption to heterogeneous aggregation between nanoplastics, biochar colloids, and leached substances from BC. When the solution pH crossed the pHpzc of BC (2.3), the aggregation kinetics were well-fitted by the logistic model and displayed as an S-shaped curve with a lag period. Characterization results indicated that biochar colloids were the key enabler with a critical concentration of 72.01 mg L-1 at neutral pH. Keeping in mind the removal mechanisms and contribution of biochar colloids, iron-modified biochar (Fe-BC) was produced to enhance the overall removal efficiency. The Fe-BC demonstrated a two-phase removal process of pre-adsorption and post-aggregation, successfully realized to minimize lag time and enhance aggregation performance. The theoretical removal capacity of Fe-BC against nanoplastics could reach up to 1626.3 mg g-1, which was three-fold higher than that of BC. Further, the Fe-BC was suggested to be recycled and reused at least three times by ultrasound, followed by co-pyrolysis for green and efficient degradation of nanoplastics. Overall, the findings offer a promising approach for removing and recycling nanoplastics in the environment.
Collapse
Affiliation(s)
- Jiang Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Imran Ali
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program and Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Zhipeng Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jia Liang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Rui Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
8
|
Zhang J, Lu G, Wang M, Zhang P, Ding K. Adsorption and desorption of parachlormetaxylenol by aged microplastics and molecular mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175682. [PMID: 39173768 DOI: 10.1016/j.scitotenv.2024.175682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
The addition of active ingredients such as antibacterial agent and non-active ingredients such as plastic microspheres (MPs) in personal care products (PCPs) are the common pollutants in the aquatic environment, and their coexistence poses potential threat to the aquatic ecosystem. As a substitute for the traditional antibacterial ingredients triclosan and triclocarban, the usage of parachlormetaxylenol (PCMX) is on the rise and is widely used in PCPs. In this study, the adsorption and desorption behaviors of PCMX were investigated with two typical MPs, polyvinyl chloride (PVC) and polyethylene (PE), and the effects of different aging modes and molecular mechanisms were explored through batch experiments and density functional theory calculation. Both laboratory aging and field aging resulted in surface wrinkles of MPs, along with an increased proportion of oxygen-containing functional groups (CO, -OH). At the same aging time, the degree of laboratory aging was stronger than that of field aging, and the aging degree of PVC was greater that of PE. The aging process enhanced the adsorption capacity of MPs for PCMX. The equilibrium adsorption capacity of PVC increased from 3.713 mg/g (virgin) to 3.823 mg/g (field aging) and 3.969 mg/g (laboratory aging), while that of PE increased from 3.509 mg/g to 3.879 mg/g and 4.109 mg/g, respectively. Meanwhile, aging also resulted in an increase in the desorption capacity of PCMX from PVC and PE. Oxygen-containing functional groups in aged MPs could serve as adsorption sites for PCMX and improved the electrostatic adsorption capacity. Oxygen-containing groups generated on the surface of aged MPs formed hydrogen bonding with the phenolic hydroxyl groups of PCMX, which became the main driving force for adsorption. Our results reveal the potential impact and mechanism of aging on the adsorption of PCMX by MPs, which provides new insights for the interaction mechanism between environmental MPs and associated contaminants.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Min Wang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Peng Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Keqiang Ding
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| |
Collapse
|
9
|
Zhang M, Huang M, Rui L, Huan X, Li Y, Huang Y, Wei W. Polystyrene microplastics as carriers for nano-hydroxyapatite particles: Impact of surface functionalization and mechanistic insights. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135680. [PMID: 39213774 DOI: 10.1016/j.jhazmat.2024.135680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The potential of microplastics (MPs) to act as carriers for contaminants or engineered nanomaterials is of rising concern. However, directly determining the vector effect of polystyrene (PS) MPs towards nano-hydroxyapatite (nHAP) particles, a typical nano phosphorus fertilizer and soil remediation material, has been rarely studied. In this study, the interaction of differentially surface functionalized PS MPs with nHAP were investigated through batch experiments under different solution chemistry conditions. The results demonstrated that nHAP had the highest attachment/adsorption affinity onto carboxyl-functionalized PS, followed by bare PS and amino-functionalized PS under near-neutral pH conditions. Adsorption of nHAP exhibited a strong pH-dependent behavior with PS MPs, increasing under acidic-neutral pH (3-7) and decreasing at higher pH values. The presence of humic acid and NaCl hindered the adsorption of nHAP onto MPs. Scanning electron microscopy observations revealed a rod-like morphology for adsorbed nHAP, which was randomly distributed on MPs surface. Surface complexation and cation-π interaction were mainly responsible for the adsorption of nHAP as revealed by multiple spectroscopic analyses. These results provide mechanistic insights into nHAP-PS interactions and expound the effect of surface functionalization of PS on binding mechanisms, and thus bring important clues for better understanding the vector effects of MPs towards nanoparticles.
Collapse
Affiliation(s)
- Mengjia Zhang
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
| | - Mengjie Huang
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China
| | - Linping Rui
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China
| | - Xinyu Huan
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China
| | - Yuanyi Li
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China
| | - Yao Huang
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Wei Wei
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China.
| |
Collapse
|
10
|
Yu Q, Dong S, Sheng L, Su X, Wang L, Fan W, Yu Y. Cotransport of 6PPD-Q and pristine/aged microplastics in porous media: An insight based on transport forms and mechanisms. WATER RESEARCH 2024; 265:122254. [PMID: 39153450 DOI: 10.1016/j.watres.2024.122254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/24/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
The environmental fate and risks of microplastics (MPs) and their associated contaminants have attracted increasing concern in recent years. In this study, the cotransport of six kinds of pristine and aged MPs and the antiager ozonation product N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q) were investigated via a series of batch and transport experiments, and characteristic analysis (e.g., SEM, FTIR and XPS). Generally, pristine MPs exhibit higher adsorption ability than aged MPs due to the hydrophobic interaction. The 6PPD-Q usually exhibited both free moving and bond-MPs moving during transport process in presence of MPs, but none free 6PPD-Q was detected in presence of pristine PP MPs. The mobility of 6PPD-Q was generally facilitated in presence of MPs by bond-MPs moving due to the hydrogen bonding, halogen bonding, π-π interaction (the maximum total mass recovery of 84.11%), which efficiency was influenced with the combined effect of adsorption ability and mobility of MPs. The pristine PVC MPs showed highest facilitation on 6PPD-Q transport. The retained 6PPD-Q in porous media also was released by various MPs with different mass recovery ranged from 15.72% to 56.26% via surface moving of MPs around porous media. Both the dissolved and retained 6PPD-Q decreased the MPs mobility with the minimum mass recovery of 34.02%. Findings from this study contribute to the prediction and assessment of the combined risks of MPs and 6PPD-Q.
Collapse
Affiliation(s)
- Qianhui Yu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Shunan Dong
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China.
| | - Liting Sheng
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Xiaoting Su
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Lei Wang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Weiya Fan
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Yulu Yu
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
11
|
Karwadiya J, Lützenkirchen J, Darbha GK. Retention of ZnO nanoparticles onto polypropylene and polystyrene microplastics: Aging-associated interactions and the role of aqueous chemistry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124097. [PMID: 38703985 DOI: 10.1016/j.envpol.2024.124097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Microplastics (MPs) are pervasive and undergo environmental aging processes, which alters potential interaction with the co-contaminants. Hence, to assess their contaminant-carrying capacity, mimicking the weathering characteristics of secondary MPs is crucial. To this end, the present study investigated the interaction of Zinc oxide (nZnO) nanoparticles with non-irradiated (NI) and UV-irradiated (UI) forms of the most abundant MPs, such as polypropylene (PP) and polystyrene (PS), in aqueous environments. SEM images revealed mechanical abrasions on the surfaces of NI-MPs and their subsequent photoaging caused the formation of close-ended and open-ended cracks in UI-PP and UI-PS, respectively. Batch-sorption experiments elucidated nZnO uptake kinetics by PP and PS MPs, suggesting a sorption-desorption pathway due to weaker and stronger sorption sites until equilibrium was achieved. UI-PP showed higher nZnO (∼3000 mg/kg) uptake compared to NI-PP, while UI-PS showed similar or slightly decreased nZnO (∼2000 mg/kg) uptake compared to NI-PS. FTIR spectra and zeta potential measurements revealed electrostatic interaction as the dominant interaction mechanism. Higher nZnO uptake by MPs was noted between pH 6.5 and 8.5, whereas it decreased beyond this range. Despite DOM, MPs always retained ∼874 mg/kg nZnO irrespective of MPs type and extent of aging. The experimental results in river water showed higher nZnO uptake on MPs compared to DI water, attributed to mutual effect of ionic competition, DOM, and MP hydrophobicity. In the case of humic acids, complex synthetic and natural water matrices, NI-MPs retained more nZnO than UI-MPs, suggesting that photoaged MPs sorb less nZnO under environmental conditions than non-photoaged MPs. These findings enhance our understanding on interaction of the MPs with co-contaminants in natural environments.
Collapse
Affiliation(s)
- Jayant Karwadiya
- Environmental nanoscience laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Johannes Lützenkirchen
- Institute of Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Gopala Krishna Darbha
- Environmental nanoscience laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India.
| |
Collapse
|
12
|
Zhang M, Wei W, Chen Y, Han X. Effects of Cr(VI) oxyanion, humic acid and solution chemistry on the aggregation and colloidal stability of green synthesized chlorapatite nanoparticles. CHEMOSPHERE 2023; 342:140147. [PMID: 37716557 DOI: 10.1016/j.chemosphere.2023.140147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/19/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
Aggregation is a crucial process determining the fate, mobility and ecological risks of nanomaterials. Chlorapatite nanoparticles (nClAP) exhibit widely applications in environmental remediation and consequently will inevitably enter aquatic systems. However, the aggregation characteristics of nClAP are still mostly uncovered. This study investigated the aggregation kinetics and colloidal stability of nClAP as a function of pH, humic acid (HA), Cr(VI) oxyanions, monovalent and divalent electrolytes. Results showed that pH values from 5 to 9 had a notable impact on the aqueous behaviors of nClAP. The addition of HA made the zeta potential (ZP) of nClAP more negative and thus enhanced nClAP stability through electrostatic and steric effects. Similarly, the adsorption of Cr(VI) on the surface of nClAP created a physical barrier and negative charge, improving the stability of nClAP by inducing steric force. Lower ZP and hydrodynamic diameter (HDD) reflected that the enhanced stability of nClAP by HA was more significant than Cr(VI). In comparison, the presence of Ca2+ ions were more effective than monovalent Na + ions in promoting the aggregation of nClAP. The classical DLVO theory incorporating the steric repulsion were used to interpret the aggregation and dispersion of nClAP, making it was easier to overcome energy barriers and agglomerate. This study provides new mechanistic insights which could help better understand the effects of Cr(VI) oxyanions and HA on nClAP's colloidal stability.
Collapse
Affiliation(s)
- Mengjia Zhang
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
| | - Wei Wei
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China.
| | - Yang Chen
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing, 210023, China
| | - Xuan Han
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
13
|
Devi K, Singh AD, Dhiman S, Kour J, Bhardwaj T, Sharma N, Madaan I, Khanna K, Ohri P, Singh AP, Sirhindi G, Bhardwaj R, Kumar V. Current studies on the degradation of microplastics in the terrestrial and aquatic ecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102010-102026. [PMID: 37670091 DOI: 10.1007/s11356-023-29640-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
Soil and water are two important basic ecosystems for the survival of different organisms. The excessive microplastic pollutants in soil have been directly discharged into the terrestrial ecosystems. Microplastic pollutants (MPs) constitute a ubiquitous global menace due to their durability, flexibility, and tough nature. MPs posed threat to the sustainability of the ecosystem due to their small size and easy transportation via ecological series resulting in the accumulation of MPs in aquatic and terrestrial ecosystems. After being emitted into the terrestrial ecosystem, the MPs might be aged by oxidative degeneration (photo/thermal), reprecipitation (bioturbation), and hetero-accumulation. The mechanism of adsorption, degradation, and breakdown of MPs into unaffected plastic debris is accomplished by using several biological, physical, and chemical strategies. This review presents the importance of ecosystems, occurrence and sources of MPs, its toxicity, and the alteration in the ecology of the ecosystems. The inhibitory impact of MPs on the ecosystems also documents to unveil the ecological hazards of MPs. Further research is required to study the immobilization and recovery efficiency of MPs on a larger scale.
Collapse
Affiliation(s)
- Kamini Devi
- Department of Botanical and Environmental Sciences, Amritsar, Punjab, 143005, India
| | - Arun Dev Singh
- Department of Botanical and Environmental Sciences, Amritsar, Punjab, 143005, India
| | - Shalini Dhiman
- Department of Botanical and Environmental Sciences, Amritsar, Punjab, 143005, India
| | - Jaspreet Kour
- Department of Botanical and Environmental Sciences, Amritsar, Punjab, 143005, India
| | - Tamanna Bhardwaj
- Department of Botanical and Environmental Sciences, Amritsar, Punjab, 143005, India
| | - Neerja Sharma
- Department of Botanical and Environmental Sciences, Amritsar, Punjab, 143005, India
| | - Isha Madaan
- Government College of Education, Jalandhar, Punjab, 144001, India
- Department of Botany, Punjabi University, Patiala, Punjab, 147002, India
| | - Kanika Khanna
- Department of Botany, D.A.V. University, Jalandhar, Punjab, 144001, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Amrit Pal Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Geetika Sirhindi
- Department of Botany, Punjabi University, Patiala, Punjab, 147002, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Amritsar, Punjab, 143005, India
| | - Vinod Kumar
- Department of Botany, Government Degree College, Jammu and Kashmir, Ramban, India.
| |
Collapse
|
14
|
Razmara P, Zink L, Doering JA, Miller JGP, Wiseman SB, Pyle GG. The Combined Effect of Copper Nanoparticles and Microplastics on Transcripts Involved in Oxidative Stress Pathway in Rainbow Trout (Oncorhynchus Mykiss) Hepatocytes. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:47. [PMID: 37740756 DOI: 10.1007/s00128-023-03811-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Copper nanoparticles (CuNPs) and microplastics (MPs) are two emerging contaminants of freshwater systems. Despite their co-occurrence in many water bodies, the combined effects of CuNPs and MPs on aquatic organisms are not well-investigated. In this study, primary cultures of rainbow trout hepatocytes were exposed to dissolved Cu, CuNPs, MPs, or a combination of MPs and CuNPs for 48 h, and the transcript abundances of oxidative stress-related genes were investigated. Exposure to CuNPs or dissolved Cu resulted in a significant increase in the transcript abundances of two antioxidant enzymes, catalase (CAT) and superoxide dismutase (SOD). Exposure to CuNPs also led to an upregulation in the expression of Na+/K+ ATPase alpha 1 subunit (ATP1A1). Microplastics alone or in combination with CuNPs did not have a significant effect on abundances of the target gene transcripts. Overall, our findings suggested acute exposure to CuNPs or dissolved ions may induce oxidative stress in hepatocytes, and the Cu-induced effect on target gene transcripts was not associated with MPs.
Collapse
Affiliation(s)
- Parastoo Razmara
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| | - Lauren Zink
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Jon A Doering
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Justin G P Miller
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Steve B Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Gregory G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
15
|
Mozafarjalali M, Hamidian AH, Sayadi MH. Microplastics as carriers of iron and copper nanoparticles in aqueous solution. CHEMOSPHERE 2023; 324:138332. [PMID: 36893866 DOI: 10.1016/j.chemosphere.2023.138332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
In recent years, microplastics have attracted a lot of attention due to their excessive spread in the environment, especially in aquatic ecosystems. By sorbing metal nanoparticles on their surface, microplastics can act as carriers of these pollutants in aquatic environments and thus cause adverse effects on the health of living organisms and humans. This study, investigated the adsorption of iron and copper nanoparticles on three different microplastics i.e. polypropylene (PP), polyvinyl chloride (PVC) and polystyrene (PS). In this regard, the effects of parameters such as; pH, duration of contact and initial concentration of nanoparticle solution were investigated. By using atomic absorption spectroscopic analysis, the amount of adsorption of metal nanoparticles by microplastics was measured. The maximum amount of adsorption occurred at pH = 11, after a duration time of 60 min and at the initial concentration of 50 mg L-1. Scanning electron microscope (SEM) images showed that microplastics have different surface characteristics. The spectra obtained from Fourier transform infrared analysis (FTIR) before and after the adsorption of iron and copper nanoparticles on microplastics were not different, which showed that the adsorption of iron and copper nanoparticles on microplastics was physically and no new functional group was formed. X-ray energy diffraction spectroscopy (EDS) showed the adsorption of iron and copper nanoparticles on microplastics. By examining Langmuir and Freundlich adsorption isotherms and adsorption kinetics, it was found that the adsorption of iron and copper nanoparticles on microplastics is more consistent with the Freundlich adsorption isotherm. Also, pseudo-second-order kinetics is more suitable than pseudo-first-order kinetics. The adsorption ability of microplastics was as follows: PVC > PP > PS, and in general copper nanoparticles were adsorbed more than iron nanoparticles on microplastics.
Collapse
Affiliation(s)
- Malihe Mozafarjalali
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, P.O. Box 4314, Karaj, 31587-77878, Iran
| | - Amir Hossein Hamidian
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, P.O. Box 4314, Karaj, 31587-77878, Iran.
| | - Mohammad Hossein Sayadi
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran
| |
Collapse
|
16
|
Liu S, Huang J, He W, Zhang W, Yi K, Zhang C, Pang H, Huang D, Zha J, Ye C. Impact of microplastics on lead-contaminated riverine sediments: Based on the enzyme activities, DOM fractions, and bacterial community structure. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130763. [PMID: 36641852 DOI: 10.1016/j.jhazmat.2023.130763] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/29/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are able to interact with diverse contaminants in sediments. However, the impacts of MPs on sediment properties and bacterial community structure in heavy metal-contaminated sediments remain unclear. In this study, we investigated the adsorption of Pb(II) by sediment-MPs mixtures and the effects of different concentration MPs on sediment enzyme activities, DOM fractions, and Pb bioavailability in riverine sediments, and further explored the response of sediment microbial community to Pb in the presence of MPs. The results indicated that the addition of MPs significantly decreased the adsorption amount of Pb(II) by sediments, especially decreased by 12.6% at 10% MPs treatment. Besides, the changes in enzyme activities, DOM fractions exhibited dose-dependent effects of MPs. The higher level of MPs (5% and 10%) tends to transform Pb into more bioavailable fractions in sediments. Also, MPs amendment was observed to alter sediment bacterial community structures, and community differences were evident in the uncontaminated and lead-contaminated sediments. Therein, significant increase of Bacteroidota, Proteobacteria and decrease of Firmicutes abundance in Pb-contaminated sediment at the phylum level were observed. These findings are expected to provide comprehensive information for assessing the combined ecological risks of heavy metals and MPs in riverine sediments.
Collapse
Affiliation(s)
- Si Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - JinHui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - WenJuan He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - KaiXin Yi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - ChenYu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - HaoLiang Pang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - DanLian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jun Zha
- Hunan Yixin Environmental Engineering Co., Ltd., Changsha 410004, Hunan, PR China
| | - Cong Ye
- Hunan Yixin Environmental Engineering Co., Ltd., Changsha 410004, Hunan, PR China
| |
Collapse
|
17
|
Nie X, Xing X, Xie R, Wang J, Yang S, Wan Q, Zeng EY. Impact of iron/aluminum (hydr)oxide and clay minerals on heteroaggregation and transport of nanoplastics in aquatic environment. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130649. [PMID: 36587598 DOI: 10.1016/j.jhazmat.2022.130649] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Nanoplastics (NPs) are emerging contaminants in the environment, where the transport and fate of NPs would be greatly affected by interactions between NPs and minerals. In the present study, the interactions of two types of polystyrene nanoplastics (PSNPs), i.e., bare-PSNPs and carboxylated PSNPs-COOH, with iron (hydr)oxides (hematite, goethite, magnetite, and ferrihydrite), aluminum (hydr)oxides (boehmite and gibbsite), and clay minerals (kaolinite, montmorillonite, and illite) were investigated. The positively charged iron/aluminum (hydr)oxide minerals could form heteroaggregates with negatively charged PSNPs. Electrostatic and hydrophobic interaction dominate for the heteroaggregation of bare-PSNPs with iron/aluminum (hydr)oxide minerals, while ligand exchange and electrostatic interaction are involved in the heteroaggregation of PSNPs-COOH with iron/aluminum (hydr)oxides minerals. However, heteroaggregation between PSNPs and negatively charged clay minerals was negligible. Humic acid markedly suppressed such heteroaggregation between PSNPs and minerals due to enhanced electrostatic repulsion, steric hindrance, and competition of surface attachment sites. The heteroaggregation rates of both bare-PSNPs and PSNPs-COOH with hematite decreased with increasing solution pH. Increased ionic strength enhanced the heteroaggregation of PSNPs-COOH but inhibited that of bare-PSNPs. The results of the present study suggested that the heteroaggregation of PSNPs in environments could be strongly affected by minerals, solution pH, humic acid, and ionic strength.
Collapse
Affiliation(s)
- Xin Nie
- State Key Laboratory of Ore Deposit Geochemistry, Research Center of Ecological Environment and Resource Utilization, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xiaohui Xing
- Guangdong Provincial Engineering Technology Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Ruiyin Xie
- State Key Laboratory of Ore Deposit Geochemistry, Research Center of Ecological Environment and Resource Utilization, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Guangdong Provincial Engineering Technology Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jingxin Wang
- Guangdong Provincial Engineering Technology Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Shuguang Yang
- State Key Laboratory of Ore Deposit Geochemistry, Research Center of Ecological Environment and Resource Utilization, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Quan Wan
- State Key Laboratory of Ore Deposit Geochemistry, Research Center of Ecological Environment and Resource Utilization, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; CAS Center for Excellence in Comparative Planetology, Hefei 230026, China.
| | - Eddy Y Zeng
- Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
18
|
Sun Y, Peng BY, Wang X, Li Y, Wang Y, Zhang Y, Xia S, Zhao J. Adsorption and desorption mechanisms of oxytetracycline on poly(butylene adipate-co-terephthalate) microplastics after degradation: The effects of biofilms, Cu(II), water pH, and dissolved organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160866. [PMID: 36526173 DOI: 10.1016/j.scitotenv.2022.160866] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
As the application of biodegradable polymers has grown, so has the interest in exploring the environmental behaviors of biodegradable microplastics (MPs). In this study, we investigated the interaction of oxytetracycline (OTC) with poly(butylene adipate-co-terephthalate) (PBAT) MPs after biodegradation, and explored the effect of the coexisting Cu(II) on OTC adsorption and desorption processes. The maximum adsorption amounts of virgin PBAT, biofilm PBAT, and degraded PBAT reached 692.05 μg·g-1, 1396.21 μg·g-1, and 1869.93 μg·g-1, respectively, and the presence of Cu(II) increased the OTC adsorption capacities by 431.16 %, 165.99 %, and 132.94 %, respectively. The enhanced adsorption capacities were attributed to the formation of PBAT-Cu-OTC complexes. The remarkable desorption hysteresis of OTC was observed on the degraded PBAT but not on the biofilm PBAT when Cu(II) was present, due to the complexation between Cu(II) and biofilms. The effect of Cu(II) varied depending on the MP physiochemical properties (e.g., surface areas, zeta potentials, and functional groups) and the environmental factors (e.g., the solution pH and coexisting dissolved organic matter). Fourier transform infrared spectroscopy (FTIR) coupled with X-ray photoelectron spectroscopy (XPS) identified the Cu(II) bridging effect, and various interaction forces between PBAT and OTC, including hydrogen-bonding, π-π, cation-π, and electrostatic interactions.
Collapse
Affiliation(s)
- Ying Sun
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Bo-Yu Peng
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xuejiang Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yuan Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuan Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Yanan Zhang
- College of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Siqing Xia
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jianfu Zhao
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
19
|
Liu X, Fu L, Liu H, Zhang D, Xiong C, Wang S, Zhang L. Design of Zr-MOFs by Introducing Multiple Ligands for Efficient and Selective Capturing of Pb(II) from Aqueous Solutions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5974-5989. [PMID: 36649205 DOI: 10.1021/acsami.2c21546] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The existence of lead ions seriously affects the quality of many metal products in metallurgical enterprises. Currently, the various methods of lead-ion removal tried by researchers will affect valuable metals in the removal process, thus resulting in low economic efficiency. In this study, a novel metal-organic framework adsorbent (UiO-FHD) which efficiently and selectively captures lead ions is developed by introducing multiple ligands. The maximum adsorption capacity of lead ions is 433.15 mg/g at pH 5. The adsorption process accords with the pseudo-second-order kinetic and the Langmuir isotherm models at room temperature. Thermodynamic experiments indicate that the removal of Pb(II) is facilitated by appropriate temperature reduction. The performance tests indicate that UiO-FHD maintains a high removal rate of 90.35% for Pb(II) after four consecutive adsorption-desorption cycles. The distribution coefficient of lead ions (26.7 L/g) shows that UiO-FHD has excellent selective adsorption for lead ions. It is revealed that the chelation of the sulfhydryl groups and the electrostatic interaction of the hydroxyl groups are the dominant factors to improve the removal rate of Pb(II) by density functional theory calculations. This study clarifies the value of self-designed novel organic ligands in metal-organic framework materials that selectively capture heavy-metal ions.
Collapse
Affiliation(s)
- Xiang Liu
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, 650093 Yunnan, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093 Yunnan, China
| | - Likang Fu
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, 650093 Yunnan, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093 Yunnan, China
| | - Hongliang Liu
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, 650093 Yunnan, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093 Yunnan, China
| | - Dekun Zhang
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, 650093 Yunnan, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093 Yunnan, China
| | - Chao Xiong
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 Guangdong, China
| | - Shixing Wang
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, 650093 Yunnan, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093 Yunnan, China
| | - Libo Zhang
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, 650093 Yunnan, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093 Yunnan, China
| |
Collapse
|
20
|
Zhao H, Huang X, Yang Y, Wang L, Zhao X, Yan F, Yang Y, Gao P, Ji P. The role of available nitrogen in the adsorption of polystyrene nanoplastics on magnetic materials. WATER RESEARCH 2023; 229:119481. [PMID: 36521314 DOI: 10.1016/j.watres.2022.119481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Several studies have been conducted on nanoplastics (NPs). However, few studies have investigated the complexity of the interactions between NPs and other aqueous pollutants in multi-solute media. In this study, the adsorption of polystyrene nanoplastics (PSNPs) on magnetic materials (MS) in the presence of available nitrogen (AN) was studied. The results demonstrated that the adsorbed amount of PSNPs increased in the presence of ammonium nitrogen (NH4+-N), whereas no significant difference was detected on the adsorbed amount of PSNPs using nitrate nitrogen (NO3--N) as a cosolute. The increase in the adsorbed amount of PSNPs was attributed to the formation of an MS-PSNPs-NH4+-N complex. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and zeta potential analyses indicated that the PSNPs with NH4+-N as a cosolute can be bound on the MS surfaces. Moreover, the change in the PSNPs amount adsorbed by MS depends on the valence state, electronegativity of the coexisting ions, and the surface properties and functional groups of PSNPs. Additionally, the ionic strength, dissolved organic matter, solution pH, metal cations and the subsequent release of MS-coated PSNPs and NH4+-N changed considerably in different aquatic systems and artificial nitrating fluids. Among different natural aquatic systems, the PSNPs adsorption on MS was excellent in lake water. The results indicate high potential for the attachment of PSNPs to MS in the presence of AN and further deepen the understanding of removing NPs using magnetic materials in aqueous systems with various coexisting contaminants.
Collapse
Affiliation(s)
- Hanghang Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xunrong Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Yinan Yang
- Meteorological Bureau of Chengcheng County, Weinan, 715200, China
| | - Lu Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xin Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Fan Yan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Yue Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Pengcheng Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Puhui Ji
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; Shaanxi Ghanshan Cui Environmental Protection Technology Co., Ltd., Room 202-2, Zone A, China-South Korea Industrial Park, Gaoke 3rd Road, Shaanxi Province, 712000, China.
| |
Collapse
|
21
|
Tang S, Sun P, Ma S, Jin W, Zhao Y. The interfacial behaviors of different arsenic species on polyethylene mulching film microplastics: Roles of the plastic additives. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130037. [PMID: 36179620 DOI: 10.1016/j.jhazmat.2022.130037] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/25/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Plastic additives widely existed in plastic mulching films, but their roles in microplastics (MPs) derived from these plastics as vectors of pollutants were not clear. This work clarified the role of plastic additives on the sorption-desorption behaviors of four arsenic species (arsenite (As(Ⅲ)), arsenate (As(Ⅴ)), roxarsone (ROX), and p-arsanilic acid (p-ASA)) on/from virgin polyethylene (V-PE), white PE mulching film (W-PE, with Si-containing additives), and black PE mulching film (B-PE, with CaCO3 and TiO2 additives) MPs. The maximum sorption amounts of arsenic species on V-PE (3.33-20.10 mg/kg) and W-PE MPs (4.78-21.93 mg/kg) had no significant difference, while those on B-PE (43.02-252.19 mg/kg) facilitated by its additives were up to one order of magnitude greater than V-PE or W-PE (p < 0.05). Desorption hysteresis index (HI) indicated the irreversible arsenic sorption on three PE MPs, especially for B-PE containing additives that can co-precipitate and complex with arsenicals. The effects of pH, humic substances, and coexisting anions on arsenic sorption by B-PE were more obvious than that by V-PE or W-PE MPs, attributing to electrostatic interaction enhanced by CaCO3 and TiO2 additives. This work provides theoretical basis for migration of arsenic species on MPs containing plastic additives and their potential environmental risk assessment.
Collapse
Affiliation(s)
- Shuai Tang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, School of Ecological and Environmental Sciences, and Institute of Eco-Chongming, East China Normal University, Shanghai 200241, China
| | - Peipei Sun
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, School of Ecological and Environmental Sciences, and Institute of Eco-Chongming, East China Normal University, Shanghai 200241, China
| | - Shengjia Ma
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, School of Ecological and Environmental Sciences, and Institute of Eco-Chongming, East China Normal University, Shanghai 200241, China
| | - Wei Jin
- School of Environmental Science and Engineering, Tongji University, Shanghai 200000, China.
| | - Yaping Zhao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, School of Ecological and Environmental Sciences, and Institute of Eco-Chongming, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
22
|
Amaneesh C, Anna Balan S, Silpa PS, Kim JW, Greeshma K, Aswathi Mohan A, Robert Antony A, Grossart HP, Kim HS, Ramanan R. Gross Negligence: Impacts of Microplastics and Plastic Leachates on Phytoplankton Community and Ecosystem Dynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5-24. [PMID: 36534053 DOI: 10.1021/acs.est.2c05817] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plastic debris is an established environmental menace affecting aquatic systems globally. Recently, microplastics (MP) and plastic leachates (PL) have been detected in vital human organs, the vascular system, and in vitro animal studies positing severe health hazards. MP and PL have been found in every conceivable aquatic ecosystem─from open oceans and deep sea floors to supposedly pristine glacier lakes and snow covered mountain catchment sites. Many studies have documented the MP and PL impacts on a variety of aquatic organisms, whereby some exclusively focus on aquatic microorganisms. Yet, the specific MP and PL impacts on primary producers have not been systematically analyzed. Therefore, this review focuses on the threats posed by MP, PL, and associated chemicals on phytoplankton, their comprehensive impacts at organismal, community, and ecosystem scales, and their endogenous amelioration. Studies on MP- and PL-impacted individual phytoplankton species reveal the production of reactive oxygen species, lipid peroxidation, physical damage of thylakoids, and other physiological and metabolic changes, followed by homo- and heteroaggregations, ultimately eventuating in decreased photosynthesis and primary productivity. Likewise, analyses of the microbial community in the plastisphere show a radically different profile compared to the surrounding planktonic diversity. The plastisphere also enriches multidrug-resistant bacteria, cyanotoxins, and pollutants, accelerating microbial succession, changing the microbiome, and thus, affecting phytoplankton diversity and evolution. These impacts on cellular and community scales manifest in changed ecosystem dynamics with widespread bottom-up and top-down effects on aquatic biodiversity and food web interactions. These adverse effects─through altered nutrient cycling─have "knock-on" impacts on biogeochemical cycles and greenhouse gases. Consequently, these impacts affect provisioning and regulating ecosystem services. Our citation network analyses (CNA) further demonstrate dire effects of MP and PL on all trophic levels, thereby unsettling ecosystem stability and services. CNA points to several emerging nodes indicating combined toxicity of MP, PL, and their associated hazards on phytoplankton. Taken together, our study shows that ecotoxicity of plastic particles and their leachates have placed primary producers and some aquatic ecosystems in peril.
Collapse
Affiliation(s)
- C Amaneesh
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| | - Shankari Anna Balan
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford, Oxfordshire OX10 8BB, United Kingdom
- Wageningen University & Research, P.O. Box 8000, 6700 EA, Wageningen, Netherlands
| | - P S Silpa
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| | - Ji Won Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 34113, Daejeon, Republic of Korea
| | - Kozhumal Greeshma
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| | - A Aswathi Mohan
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| | - Aiswarya Robert Antony
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| | - Hans-Peter Grossart
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Plankton and Microbial Ecology, 12587 Berlin, Germany
- Potsdam University, Institute of Biochemistry and Biology, 14469 Potsdam, Germany
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 34113, Daejeon, Republic of Korea
| | - Rishiram Ramanan
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Centre for Policy Research & Governance, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| |
Collapse
|
23
|
Interactions between graphene oxide and polyester microplastics changed their phototransformation process and potential environmental risks: Mechanism insights. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Hu L, Zhao Y, Xu H. Trojan horse in the intestine: A review on the biotoxicity of microplastics combined environmental contaminants. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129652. [PMID: 35901632 DOI: 10.1016/j.jhazmat.2022.129652] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 05/14/2023]
Abstract
With the reported ability of microplastics (MPs) to act as "Trojan horses" carrying other environmental contaminants, the focus of researches has shifted from their ubiquitous occurrence to interactive toxicity. In this review, we provided the latest knowledge on the processes and mechanisms of interaction between MPs and co-contaminants (heavy metals, persistent organic pollutants, pathogens, nanomaterials and other contaminants) and discussed the influencing factors (environmental conditions and characteristics of polymer and contaminants) that affect the adsorption/desorption process. In addition, the bio-toxicological outcomes of mixtures are elaborated based on the damaging effects on the intestinal barrier. Our review showed that the interaction processes and toxicological outcomes of mixture are complex and variable, and the intestinal barrier should receive more attention as the first line of defensing against MPs and environmental contaminants invasion. Moreover, we pointed out several knowledge gaps in this new research area and suggested directions for future studies in order to understand the multiple factors involved, such as epidemiological assessment, nanoplastics, mechanisms for toxic alteration and the fate of mixtures after desorption.
Collapse
Affiliation(s)
- Liehai Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
25
|
Wen X, Yin L, Zhou Z, Kang Z, Sun Q, Zhang Y, Long Y, Nie X, Wu Z, Jiang C. Microplastics can affect soil properties and chemical speciation of metals in yellow-brown soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113958. [PMID: 35987081 DOI: 10.1016/j.ecoenv.2022.113958] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/22/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Although the influence of microplastics (MPs) in different soil environments has been investigated, their effects on the physiochemical properties and chemical speciation of heavy metals in yellow-brown soil remains unknown. This study aimed to determine the effects of various concentrations of linear low-density polyethylene (LLDPE), polyamide (PA), polyurethane (PU), polystyrene (PS), and low-density polyethylene (LDPE) MPs on the yellow-brown soil environment and chemical speciation of the heavy metals cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn). MPs influenced the physicochemical properties and chemical speciation of heavy metals in yellow-brown soil. The physicochemical properties of yellow-brown soil can be altered by changing the concentrations of LDPE MP. The relationship between changes in field capacity (FC) and LDPE concentrations was approximately linear. The physiochemical properties of yellow-brown soil containing added PA, PU, and LDPE MPs were substantially improved (control vs. MPs): FC, 39 % vs. 42.50 % for PU, cation exchange capacity (CEC) 45.77, 56.65, and 57.44 cmol.kg-1 for PA, PU, and LDPE respectively, and organic matter (OM) content, 40.16 vs. 51.68 g.kg-1 for PA. The LLDPE and PU MPs also simultaneously affected the chemical speciation of heavy metals in yellow-brown soil. The LLDPE MPs increased the acid-soluble (45.17-54.67 % (Cd-F1), 7.24-11.30 % (Cu-F1), 4.20-7.23 % (Pb-F1), 21.21-31.47 % (Zn-F1)) and reducible (24.02-29.41 % (Cd-F2), 25.69-34.95 % (Cu-F2), 74.29-81.07 % (Pb-F2), 28.77-34.19 % (Zn-F2)) fractions of heavy metals, which increased their bioavailability. However, PU MPs reduced the ecological risk of heavy metals in yellow-brown soil by increasing the content of the residual fraction (26.11-40.21 % (Cd-F4), 47.63-59.67 % (Cu-F4), 17.25-26.76 % (Pb-F4), 32.63-50.46 % (Zn-F4)). Changes in the properties of yellow-brown soil and the impact of MPs on heavy metals, might change the chemical speciation of heavy metals. The impact of MPs on heavy metals in yellow-brown soil requires further investigation.
Collapse
Affiliation(s)
- Xiaofeng Wen
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, China
| | - Lingshi Yin
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, China
| | - Zhenyu Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Ziyi Kang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Qiaoling Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - You Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yuannan Long
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, China
| | - Xiaobao Nie
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, China
| | - Zhiyuan Wu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, China
| | - Changbo Jiang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, China.
| |
Collapse
|
26
|
Song X, Zhuang W, Cui H, Liu M, Gao T, Li A, Gao Z. Interactions of microplastics with organic, inorganic and bio-pollutants and the ecotoxicological effects on terrestrial and aquatic organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156068. [PMID: 35598660 DOI: 10.1016/j.scitotenv.2022.156068] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
As emerging contaminants, microplastics (MPs) have attracted global attention. They are a potential risk to organisms, ecosystems and human health. MPs are characterized by small particle sizes, weak photodegradability, and are good environmental carriers. They can physically adsorb or chemically react with organic, inorganic and bio-pollutants to generate complex binary pollutants or change the environmental behaviors of these pollutants. We systematically reviewed the following aspects of MPs: (i) Adsorption of heavy metals and organic pollutants by MPs and the key environmental factors affecting adsorption behaviors; (ii) Enrichment and release of antibiotic resistance genes (ARGs) on MPs and the effects of MPs on ARG migration in the environment; (iii) Formation of "plastisphere" and interactions between MPs and microorganisms; (iv) Ecotoxicological effects of MPs and their co-exposures with other pollutants. Finally, scientific knowledge gaps and future research areas on MPs are summarized, including standardization of study methodologies, ecological effects and human health risks of MPs and their combination with other pollutants.
Collapse
Affiliation(s)
- Xiaocheng Song
- Institute of Eco-environmental Forensics, Shandong University, Qingdao, Shandong 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Wen Zhuang
- Institute of Eco-environmental Forensics, Shandong University, Qingdao, Shandong 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Qingdao Institute of Humanities and Social Sciences, Shandong University, Qingdao, Shandong 266237, China; Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China.
| | - Huizhen Cui
- Public (Innovation) Center of Experimental Teaching, Shandong University, Qingdao, Shandong 266237, China
| | - Min Liu
- Institute of Eco-environmental Forensics, Shandong University, Qingdao, Shandong 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Teng Gao
- Institute of Eco-environmental Forensics, Shandong University, Qingdao, Shandong 266237, China; Qingdao Institute of Humanities and Social Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Ao Li
- Institute of Eco-environmental Forensics, Shandong University, Qingdao, Shandong 266237, China; Qingdao Institute of Humanities and Social Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Zhenhui Gao
- Institute of Eco-environmental Forensics, Shandong University, Qingdao, Shandong 266237, China; Qingdao Institute of Humanities and Social Sciences, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
27
|
Wu J, Zhao X, Gao L, Li Y, Wang D. Use of Interspecies Correlation Estimation (ICE) Models to Derive Water Quality Criteria of Microplastics for Protecting Aquatic Organisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10307. [PMID: 36011942 PMCID: PMC9407957 DOI: 10.3390/ijerph191610307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) in the water environment pose a potential threat to aquatic organisms. The Species Sensitivity Distribution (SSD) method was used to assess the ecological risks of microplastics on aquatic organisms in this study. However, the limited toxicity data of aquatic organisms made it impossible to derive water quality criteria (WQC) for MPs and difficult to implement an accurately ecological risk assessment. To solve the data gaps, the USEPA established the interspecies correlation estimation (ICE) model, which could predict toxicity data to a wider range of aquatic organisms and could also be utilized to develop SSD and HC5 (hazardous concentration, 5th percentile). Herein, we collected the acute toxicity data of 11 aquatic species from 10 families in 5 phyla to fit the metrical-based SSDs, meanwhile generating the ICE-based-SSDs using three surrogate species (Oncorhynchus mykiss, Hyalella Azteca, and Daphnia magna), and finally compared the above SSDs, as well as the corresponding HC5. The results showed that the measured HC5 for acute MPs toxicity data was 112.3 μg/L, and ICE-based HC5 was 167.2 μg/L, which indicated there were no significant differences between HC5 derived from measured acute and ICE-based predicted values thus the ICE model was verified as a valid approach for generating SSDs with limited toxicity data and deriving WQC for MPs.
Collapse
Affiliation(s)
- Jiangyue Wu
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People’s Republic of China, Beijing 100194, China
| | - Xiaohui Zhao
- Department of Water Ecology and Environment, Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Lin Gao
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People’s Republic of China, Beijing 100194, China
| | - Yan Li
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People’s Republic of China, Beijing 100194, China
| | - Dan Wang
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People’s Republic of China, Beijing 100194, China
| |
Collapse
|
28
|
Zhao H, Li P, Su F, He X, Elumalai V. Adsorption behavior of aged polybutylece terephthalate microplastics coexisting with Cd(II)-tetracycline. CHEMOSPHERE 2022; 301:134789. [PMID: 35504470 DOI: 10.1016/j.chemosphere.2022.134789] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/29/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) are one of the emerging classes of pollutants that can be infiltrated into any aqueous solutions from disposed toxic metals and antibiotics, further exacerbating the potential biotoxicity of MPs. However, the research on the interaction between MPs and various pollutants is limited. Therefore, in this study, the changes in toxicity of polybutylece terephthalate (PBT) MPs were assessed following adsorption of heavy metals and antibiotics. The adsorption behavior of Cd(II) and tetracycline (TC) on ultraviolet (UV) light-aged PBT was investigated. The results demonstrated that the Cd(II) adsorption behavior could be described by the pseudo-second-order kinetic and Langmuir isothermal models, while the TC adsorption behavior has well fitted using Elovich and Sips models. The whole adsorption process occurred via either external diffusion or internal diffusion. The interactions between aged PBT and pollutants were evaluated under different environmental conditions, such as solution pH and the concentrations of dissolved organic matter and cations. The amounts of Cd(II) and TC adsorbed were higher in the competitive systems than the single solution, which might attribute to the formation of Cd(II)-TC complexes and aged PBT functional group changes. The results of two-dimensional correlation spectroscopy (2D-COS) describes the sequence of functional group transformation during the uptake of Cd(II)-TC by aged PBT in binary systems. These findings identify a strong interaction between aged PBT and contaminants, establishing the potential fate of aged MPs under natural aquatic environment conditions.
Collapse
Affiliation(s)
- Hanghang Zhao
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
| | - Fengmei Su
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Xiaodong He
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | | |
Collapse
|
29
|
Zhao M, Huang L, Arulmani SRB, Yan J, Wu L, Wu T, Zhang H, Xiao T. Adsorption of Different Pollutants by Using Microplastic with Different Influencing Factors and Mechanisms in Wastewater: A Review. NANOMATERIALS 2022; 12:nano12132256. [PMID: 35808092 PMCID: PMC9268391 DOI: 10.3390/nano12132256] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 02/06/2023]
Abstract
The studies on microplastics are significant in the world. According to the literature, microplastics have greatly specific surface areas, indicating high adsorption capacities for highly toxic pollutants in aquatic and soil environments, and these could be used as adsorbents. The influencing factors of microplastic adsorption, classification of microplastics, and adsorption mechanisms using microplastics for adsorbing organic, inorganic, and mixed pollutants are summarized in the paper. Furthermore, the influence of pH, temperature, functional groups, aging, and other factors related to the adsorption performances of plastics are discussed in detail. We found that microplastics have greater advantages in efficient adsorption performance and cost-effectiveness. In this paper, the adsorptions of pollutants by microplastics and their performance is proposed, which provides significant guidance for future research in this field.
Collapse
Affiliation(s)
- Meng Zhao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (M.Z.); (L.H.); (S.R.B.A.); (J.Y.); (L.W.); (T.W.); (T.X.)
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (M.Z.); (L.H.); (S.R.B.A.); (J.Y.); (L.W.); (T.W.); (T.X.)
| | - Samuel Raj Babu Arulmani
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (M.Z.); (L.H.); (S.R.B.A.); (J.Y.); (L.W.); (T.W.); (T.X.)
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (M.Z.); (L.H.); (S.R.B.A.); (J.Y.); (L.W.); (T.W.); (T.X.)
| | - Lirong Wu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (M.Z.); (L.H.); (S.R.B.A.); (J.Y.); (L.W.); (T.W.); (T.X.)
| | - Tao Wu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (M.Z.); (L.H.); (S.R.B.A.); (J.Y.); (L.W.); (T.W.); (T.X.)
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (M.Z.); (L.H.); (S.R.B.A.); (J.Y.); (L.W.); (T.W.); (T.X.)
- Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, China
- Correspondence:
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; (M.Z.); (L.H.); (S.R.B.A.); (J.Y.); (L.W.); (T.W.); (T.X.)
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|
30
|
Liu S, Huang J, Zhang W, Shi L, Yi K, Zhang C, Pang H, Li J, Li S. Investigation of the adsorption behavior of Pb(II) onto natural-aged microplastics as affected by salt ions. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128643. [PMID: 35359106 DOI: 10.1016/j.jhazmat.2022.128643] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/26/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
In this study, the adsorption behavior of Pb(II) on natural-aged and virgin microplastics in different electrolyte solutions was investigated. The results demonstrated that natural-aged microplastics exhibited higher adsorption capacity for Pb(II) compared to virgin ones, and the addition of CaCl2 strongly inhibited the adsorption amount of Pb(II). The adsorption kinetics of Pb(II) adsorption were better fitted by the pseudo-second order model and Elovich equation, and were slowed down greatly at higher ionic strength. The rate-limiting steps of adsorption process were dominated by intra-particle diffusion. The adsorption isotherm of Pb(II) onto microplastics affected by salt ions can be well described by Freundlich model, the greater adsorption efficiency of natural-aged microplastics proved that adsorption process was multilayer and heterogeneous. In addition, pH significantly influenced the adsorption of Pb(II) due to the changes electrostatic interactions. The effect of fulvic acid in the electrolyte solutions was also revealed and attributed to the complexation with Na+ and Ca2+. Furthermore, the higher pH and ionic strength in different environmental water dramatically decreased adsorption capacity onto microplastics. Finally, it's confirmed that the adsorption mechanisms affected by salt ions mainly involve electrostatic interaction, surface complexation, and ionic exchange. These findings indicate that salt ions exert an important influence on the adsorption of heavy metals for MPs, which should be further concerned.
Collapse
Affiliation(s)
- Si Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - JinHui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - LiXiu Shi
- College of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - KaiXin Yi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - ChenYu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - HaoLiang Pang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - JiaoNi Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - SuZhou Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
31
|
Li QG, Liu GH, Qi L, Wang HC, Ye ZF, Zhao QL. Heavy metal-contained wastewater in China: Discharge, management and treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152091. [PMID: 34863767 DOI: 10.1016/j.scitotenv.2021.152091] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 05/22/2023]
Abstract
A large amount of heavy metal-contained wastewater (HMW) was discharged during Chinese industry development, which has caused many environmental problems. This study reviewed discharge, management and treatment of HMW in China through collecting and analyzing data from China's official statistical yearbook, standards, technical specifications, government reports, case reports, and research paper. Results showed that industry wastewater discharged by an amount of about 221.6 × 108 t (in 2012), where emission of heavy metals including Pb, Hg, Cd, Cr(VI), T-Cr was around 388.4 t (in 2012). Heavy metal emission with wastewater in east China and central south China was observed to be graver than that in other areas. However, control of heavy metals in Pb and Cd in northwest China was more difficult compared with other areas. In terms of management, China's government has issued many wastewater discharge standards, strict management policies for controlling HMW discharge in recent years, resulting in reduced HMW discharge. In addition, main HMW treatment technology in China was chemical precipitation, and other technologies such as membrane separation, adsorption, ion exchange, electrochemical and biological methods were also occasionally applied. In the future, chemical industries will be concentrated in northwest China, therefore control of HMW discharge should be paid much more attention in those areas. In addition, more effective and environment-friendly heavy metal removal and regeneration technologies should be developed, such as biomaterials adsorbent.
Collapse
Affiliation(s)
- Qian-Gang Li
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China
| | - Guo-Hua Liu
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China.
| | - Lu Qi
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China
| | - Hong-Chen Wang
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China
| | - Zheng-Fang Ye
- Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Quan-Lin Zhao
- Department of Environmental Engineering, Peking University, Beijing 100871, China
| |
Collapse
|