1
|
Gao Q, Zhu F, Wang M, Shao S. A new perspective on the simultaneous removal of nitrogen, tetracycline, and phosphorus by moving bed biofilm reactor under co-metabolic substances. J Environ Sci (China) 2025; 155:431-441. [PMID: 40246478 DOI: 10.1016/j.jes.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 04/19/2025]
Abstract
With the burgeoning growth of aquaculture industry, high concentration of NH4+-N, phosphorus and tetracycline are the prevalent pollutants in aquaculture wastewater posing a significant health risk to aquatic organisms. Therefore, an effective method for treating aquaculture wastewater should be urgently explored. Simultaneous removal of NH4+-N, phosphorus, tetracycline, and chemical oxygen demand (COD) in aquaculture wastewater was developed by moving bed biofilm reactor (MBBR) under co-metabolic substances. The result showed that co-metabolism substances had different effects on MBBR performance, and 79.4 % of tetracycline, 68.2 % of NH4+-N, 61.3 % of total nitrogen, 88.3 % of COD, and 38.1 % of total phosphorus (TP) were synchronously removed with sodium acetate as a co-metabolic carbon source. Protein (PN), polysaccharide (PS), and electron transfer system activity were used to evaluate the MBBR performances, suggesting that PN/PS ratio was 1.48, 0.91, 1.07, 3.58, and 0.79 at phases I-V. Additionally, a mode of tetracycline degradation and TP removal was explored, and the cell apoptosis was evaluated by flow cytometry. The result suggested that 74 %, 83 %, and 83 % of tetracycline were degraded by extracellular extracts, intracellular extracts, and cell debris, and there was no difference between extracts and non-enzyme in TP removal. The ratio of viable and dead cells from biofilm reached 33.3 % and 7.68 % with sodium acetate as a co-metabolic carbon source. Furthermore, Proteobacteria and Bacteroidetes in biofilm were identified as the dominant phyla for tetracycline and nutrients removal. This study provides a new strategy for tetracycline and nutrients removal from aquaculture wastewater through co-metabolism.
Collapse
Affiliation(s)
- Qijuan Gao
- School of Computer and Artificial Intelligence, Hefei Normal University, Hefei 230061, China; Post-doctoral research station of Xie Yuda Tea Co., Ltd., Huangshan, Anhui 245999, China
| | - Fang Zhu
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| | - Minghui Wang
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| | - Sicheng Shao
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China.
| |
Collapse
|
2
|
Yang W, Li F, Li Q, Zheng X, Tao L, Chen X, Zhang Y, Du S, Gao C, Fang X, He F, Feng H, Huang J, Xu X, Hou P, Han W. Treatment and prediction of wastewater from waste transfer station in the eastern rural area of China by a combined system of anaerobic-oxic-anoxic-oxic, coagulation and adsorption. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123706. [PMID: 39700918 DOI: 10.1016/j.jenvman.2024.123706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
In this study, a combined system of anaerobic-oxic-anoxic-oxic, coagulation and adsorption (AOAOCA) was used to treat the real waste transfer station (WTS) wastewater. The effects of hydraulic retention time (HRT), sludge reflux ratio (SRR), mixed liquid reflux ratio (MLRR), coagulant and zeolite on the contaminants removal efficiency were investigated. When the AOAOCA system was operated at the optimal conditions (HRT of 8 d, SRR of 70%, MLRR of 200%, PAFC as coagulant with dosage of 750 ppm and 1-3 mm zeolite with filling rate of 60%), the effluent COD, NH3-N and TP could reach 82.5 mg/L, 3.7 mg/L and 1.8 mg/L with the highest removal rates of 98.7%, 99.4% and 98.8%, respectively. The effluent of AOAOCA system could meet the "Pollution Control Standard for Domestic Garbage Landfill of China" (GB16889-2024). The greatest contribution to the COD, NH3-N and TP removal rates were from the anaerobic-oxic-anoxic-oxic process (91.2%-97.4%), while the contribution of coagulation and zeolite were 1.8%-6% and 0.8%-2.8%, respectively. The operating cost for WTS wastewater treatment by the proposed AOAOCA system was 17.72 RMB/t based on the costs for electricity, reagent and tap water consumption. The XGBoost model could be effectively used to predict the effluent of the proposed AOAOCA. This study could provide a highly feasible reference about the treatment of WTS wastewater for practical application.
Collapse
Affiliation(s)
- Wenjing Yang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Feiyue Li
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Qingquan Li
- Zhejiang Province Association of Environmental Protection Industry, Hangzhou, 310012, China
| | - Xietian Zheng
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Lu Tao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xikai Chen
- Department of Chemical, Biological and Environmental Engineering, Escola D'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Yue Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shiqi Du
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Chao Gao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xiaomeng Fang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Fan He
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China; School of Automation, The Belt and Road Information Research Institute, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Huajun Feng
- School of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Jingang Huang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China; School of Automation, The Belt and Road Information Research Institute, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xiaobin Xu
- School of Automation, The Belt and Road Information Research Institute, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Pingzhi Hou
- School of Automation, The Belt and Road Information Research Institute, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Wei Han
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China; School of Automation, The Belt and Road Information Research Institute, Hangzhou Dianzi University, Hangzhou, 310018, China.
| |
Collapse
|
3
|
Yang Y, Zhu Y, Gan D, Cai X, Li X, Liu X, Xia S. Enhancing biofilm formation with powder carriers for efficient nitrogen and phosphorus removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175812. [PMID: 39197770 DOI: 10.1016/j.scitotenv.2024.175812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/13/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
This study assesses the improvement in nitrogen and phosphorus removal from wastewater achieved through the integration of zeolite and attapulgite carrier materials into the activated sludge (AS) process. It was found that the addition of these materials significantly enhanced the processing performance of the reactor. Specifically, the use of zeolite and attapulgite powders increased sludge particle sizes to averages of 231.56 μm and 219.62 μm, respectively. This facilitated micro-granule formation, substantially improving the settling characteristics of the sludge and boosting the activity and proliferation of essential microbes. Illumina MiSeq sequencing demonstrated significant accumulations of DGAOs (Candidatus_Competibacter) and DPAOs (Candidatus_Accumulibacter). Furthermore, these carriers augmented the protein content in extracellular polymers, enhancing the hydrophobicity of the sludge and promoting aggregation. Comparative analysis based on the extended Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory indicated a preferential adhesion affinity of sludge for zeolite compared to attapulgite, attributed primarily to Lewis acid-base and electric double-layer interactions. These findings underscore zeolite's enhanced efficacy in biomass fixation and suggest significant potential for the technological advancement of wastewater treatment plants.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuting Zhu
- Tongji Architectural Design (Group) Co., Ltd., Shanghai 200092, China
| | - Defu Gan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiang Cai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaodi Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xinchao Liu
- Tongji Architectural Design (Group) Co., Ltd., Shanghai 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
4
|
Zheng X, Zhang W, Wu Y, Wu J, Chen Y, Long M. Biodegradation of organosulfur with extra carbon source: Insights into biofilm formation and bacterial metabolic processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175758. [PMID: 39182787 DOI: 10.1016/j.scitotenv.2024.175758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/11/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Organosulfur compounds are prevalent in wastewater, presenting challenges for biodegradation, particularly in low-carbon environments. Supplementing additional carbon sources not only provides essential nutrients for microbial growth but also serves as regulators, influencing adaptive changes in biofilm and enhancing the survival of microorganisms in organosulfur-induced stress bioreactors. This study aims to elucidate the biodegradation of organosulfur under varying carbon source levels, placing specific emphasis on functional bacteria and metabolic processes. It has been observed that higher levels of carbon supplementation led to significantly improved total sulfur (TS) removal efficiencies, exceeding 83 %, and achieve a high organosulfur CH3SH removal efficiency of ~100 %. However, in the reactor with no external carbon source added, the oxidation end-product SO42- accumulated significantly, surpassing 120 mEq/m2-day. Furthermore, the TB-EPS concentration consistently increasedwith the ascending glucose concentration. The analysis of bacterial community reveals the enrichment of functional bacteria involved in sulfur metabolism and biofilm formation (e.g. Ferruginibacter, Rhodopeudomonas, Gordonia, and Thiobacillus). Correspondingly, the gene expressions related to the pathway of organosulfur to SO42- were notably enhanced (e.g. MTO increased by 27.7 %). In contrast, extra carbon source facilitated the transfer of organosulfur into amino acids in sulfur metabolism and promoted assimilation. These metabolic insights, coupled with kinetic transformation results, further validate distinct sulfur pathways under different carbon source conditions. The intricate interplay between bacteria growth regulation, pollutant biodegradation, and microbial metabolites underscores a complex network relationship that significantly contributes to efficient operation of bioreactors.
Collapse
Affiliation(s)
- Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Min Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
5
|
Li Z, Wang Q, Lei Z, Zheng H, Zhang H, Huang J, Ma Q, Li F. Biofilm formation and microbial interactions in moving bed-biofilm reactors treating wastewater containing pharmaceuticals and personal care products: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122166. [PMID: 39154385 DOI: 10.1016/j.jenvman.2024.122166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/20/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
The risk of pharmaceuticals and personal care products (PPCPs) has been paid more attention after the outbreak of COVID-19, threatening the ecology and human health resulted from the massive use of drugs and disinfectants. Wastewater treatment plants are considered the final stop to restrict PPCPs from wide spreading into the environment, but the performance of conventional treatment is limited due to their concentrations and characteristics. Previous studies have shown the unreplaceable capability of moving bed-biofilm reactor (MBBR) as a cost-effective method with layered microbial structure for treating wastewater even with toxic compounds. The biofilm community and microbial interactions are essential for the MBBR process in completely degrading or converting types of PPCPs to secondary metabolites, which still need further investigation. This review starts with discussing the initiation of MBBR formation and its influencing parameters according to the research on MBBRs in the recent years. Then the efficiency of MBBRs and the response of biofilm after exposure to PPCPs are further addressed, followed by the bottlenecks proposed in this field. Some critical approaches are also recommended for mitigating the deficiencies of MBBRs based on the recently published publications to reduce the environmental risk of PPCPs. Finally, this review provides fundamental information on PPCPs removal by MBBRs with the main focus on microbial interactions, promoting the MBBRs to practical application in the real world of wastewater treatment.
Collapse
Affiliation(s)
- Zhichen Li
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Qingdao, 266003, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Qian Wang
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Qingdao, 266003, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hao Zheng
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Qingdao, 266003, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266003, China; Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Haoshuang Zhang
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Qingdao, 266003, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266003, China; Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Jiale Huang
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Qingdao, 266003, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Qihao Ma
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Qingdao, 266003, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Fengmin Li
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Qingdao, 266003, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266003, China; Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China.
| |
Collapse
|
6
|
Kaiser T, Fundneider T, Lackner S. Biodegradation kinetics of organic micropollutants in biofilters for advanced wastewater treatment - Impact of operational conditions and biomass origin on removal. WATER RESEARCH X 2024; 24:100235. [PMID: 39114807 PMCID: PMC11304067 DOI: 10.1016/j.wroa.2024.100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Biofiltration processes are often part of advanced wastewater treatment (aWWT) technologies for the removal of organic micropollutants (OMP) from conventional wastewater treatment plant (WWTP) effluents. Although biological effects are not always the main focus of these technologies (e.g. filtration through granular activated carbon), they have been shown to contribute significantly to total OMP removal. While OMP biodegradation kinetics in conventional biological wastewater treatment are well researched, no systematic comparison to biomass from aWWT is available. This biomass faces different growth conditions and higher OMP concentrations relative to the background organic matter. Adaptation to these conditions could be possible and could lead to faster OMP biodegradation kinetics, which would show in a larger pseudo first-order biodegradation kinetic constant kbiol. In this work, kbiol values for biomass obtained from aWWT biofilters were determined by evaluating OMP removals measured in lab-scale biofilters using a mechanistic model of the experimental setup. A comparison to kbiol values from literature for conventional wastewater treatment (with nutrient removal) revealed similar OMP biodegradation kinetics without any advantages of biomass from aWWT. A conceptual evaluation of influencing factors on OMP removal in biofilters showed that operational parameters (such as the biomass concentration or the empty bed contact time) and the affinity of OMPs to adsorb on biomass have a significant additional effect on biological OMP removal. Therefore, kbiol values alone are not sufficient to estimate biological OMP removal in biofilters and further information about the system is required.
Collapse
Affiliation(s)
- Tobias Kaiser
- Technical University of Darmstadt, Institute IWAR, Chair of Water and Environmental Biotechnology, Franziska-Braun-Straße 7, 64287 Darmstadt, Germany
| | - Thomas Fundneider
- Technical University of Darmstadt, Institute IWAR, Chair of Water and Environmental Biotechnology, Franziska-Braun-Straße 7, 64287 Darmstadt, Germany
- Mecana AG, Industriestrasse 39, 8864 Reichenburg, Switzerland
| | - Susanne Lackner
- Technical University of Darmstadt, Institute IWAR, Chair of Water and Environmental Biotechnology, Franziska-Braun-Straße 7, 64287 Darmstadt, Germany
| |
Collapse
|
7
|
Kushwaha A, Goswami L, Kim BS, Lee SS, Pandey SK, Kim KH. Constructed wetlands for the removal of organic micropollutants from wastewater: Current status, progress, and challenges. CHEMOSPHERE 2024; 360:142364. [PMID: 38768790 DOI: 10.1016/j.chemosphere.2024.142364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
In this work, the practical utility of constructed wetlands (CWs) is described as a promising treatment option for micropollutants (MPs) in wastewater with the aid of their eco-friendly, low-energy, economically feasible, and ecologically sustainable nature. This paper offers a comprehensive review on CW technology with respect to the key strategies for MP removal such as phytoremediation, substrate adsorption, and microbial degradation. It explores the important factors controlling the performance of CWs (e.g., in terms of configurations, substrates, plant-microbe interactions, temperature, pH, oxygen levels, hydraulic loading rate, and retention time) along with the discussions on the pivotal role of microbial populations in CWs and plant-microbe cooperative remediation dynamics, particularly in relation to diverse organic MP patterns in CWs. As such, this review aims to provide valuable insights into the key strategies for optimizing MP treatment and for enhancing the efficacy of CW systems. In addition, the process-based models of constructed wetlands along with the numerical simulations based on the artificial neural network (ANN) method are also described in association with the data exploratory techniques. This work is thus expected to help open up new possibilities for the application of plant-microbe cooperative remediation approaches against diverse patterns of organic MPs present in CWs.
Collapse
Affiliation(s)
- Anamika Kushwaha
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Lalit Goswami
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sang Soo Lee
- Department of Environmental & Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Sudhir Kumar Pandey
- Department of Botany, Guru Ghasidas Vishwavidyalaya (a central University) Bilaspur, Chhattisgarh, 495009, India
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
8
|
Geng H, Xu Y, Liu R, Yang D, Dai X. Magnetic porous microspheres enhancing the anaerobic digestion of sewage sludge: Synergistic free and attached methanogenic consortia. WATER RESEARCH 2024; 254:121393. [PMID: 38428236 DOI: 10.1016/j.watres.2024.121393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
The addition of exogenous materials is a commonly reported method for promoting the anaerobic digestion (AD) of sludge. However, most exogenous materials are nano-sized and their use encounters problems relating to a need for continuous replenishment, uncontrollability and non-recyclability. Here, magnetic porous microspheres (MPMs), which can be controlled by magnetic forces, were prepared and used to enhance the methanogenesis of sludge. It was observed that the MPMs were spherical particles with diameters of approximately 100 µm and had a stable macroporous hybrid structure of magnetic cores and polymeric shells. Furthermore, the MPMs had good magnetic properties and a strong solid-liquid interfacial electron transfer ability, suggesting that MPMs are excellent carriers for methanogenic consortia. Experimental results showed that the addition of MPMs increased methane production and the proportion of methane in biogas from AD by 100.0 % and 21.2 %, respectively, indicating the MPMs notably enhanced the methanogenesis of sludge. Analyses of variations in key enzyme activities and electron transfer in sludge samples with and without MPMs in AD revealed that the MPMs significantly enhanced the activities of key enzymes involved in hydrolysis, acidification and methanation. This was achieved mainly by enhancing the extracellular electron transfer to strengthen the proton motive force on the cell membrane, which provides more energy generation for methanogenic metabolism. A careful examination of the variations in the morphology, pore structure and magnetism of the MPMs before and after AD revealed that the MPMs increased the prevalence of many highly active anaerobes, and that this did not weaken the magnetic performance. The microbial community structure and metatranscriptomic analysis further indicated that the acetotrophic methanogens (i.e., Methanosaeta) were mainly in a free state and that CO2-reducing methanogens (i.e., Methanolinea and Methanobacterium) mainly adhered to the MPMs. The above synergistic metabolism led to efficient methanogenesis, which indicates that the MPMs optimised the spatial ecological niche of methanogenic consortia. These findings provide an important reference for the development of magnetic porous materials promoting AD.
Collapse
Affiliation(s)
- Hui Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Rui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
9
|
Liang C, Svendsen SB, de Jonge N, Carvalho PN, Nielsen JL, Bester K. Eat seldom is better than eat frequently: Pharmaceuticals degradation kinetics, enantiomeric profiling and microorganisms in moving bed biofilm reactors are affected by feast famine cycle times. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133739. [PMID: 38401210 DOI: 10.1016/j.jhazmat.2024.133739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/05/2024] [Accepted: 02/05/2024] [Indexed: 02/26/2024]
Abstract
Feast-famine (FF) regimes improved the removal of recalcitrant pharmaceuticals in moving bed biofilm reactors (MBBRs), but the optimal FF cycle remained unresolved. The effects of FF cycle time on the removal of bulk substrates (organic carbon and nitrogen) and trace pharmaceuticals by MBBR are systematically evaluated in this study. The feast to famine ratio was fixed to 1:2 to keep the same loading rate, but the time for the FF cycles varied from 18 h to 288 h. The MBBR adapted to the longest FF cycle time (288 h equaling 48 × HRT) resulted in significantly higher degradation rates (up to +183%) for 12 out of 28 pharmaceuticals than a continuously fed (non-FF) reactor. However, other FF cycle times (18, 36, 72 and 144 h) only showed a significant up-regulation for 2-3 pharmaceuticals compared to the non-FF reactor. Enantioselective degradation of metoprolol and propranolol occurred in the second phase of a two phase degradation, which was different for the longer FF cycle time. N-oxidation and N-demethylation pathways of tramadol and venlafaxine differed across the FF cycle time suggestin the FF cycle time varied the predominant transformation pathways of pharmaceuticals. The abundance of bacteria in the biofilms varied considerably between different FF cycle times, which possibly caused the biofilm to remove more recalcitrant bulk organic C and pharmaceuticals under long cycle times.
Collapse
Affiliation(s)
- Chuanzhou Liang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China; Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Sif B Svendsen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Nadieh de Jonge
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Pedro N Carvalho
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark.
| |
Collapse
|
10
|
Sohn W, Jiang J, Su Z, Zheng M, Wang Q, Phuntsho S, Kyong Shon H. Microbial community analysis of membrane bioreactor incorporated with biofilm carriers and activated carbon for nitrification of urine. BIORESOURCE TECHNOLOGY 2024; 397:130462. [PMID: 38369083 DOI: 10.1016/j.biortech.2024.130462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
The integration of powdered activated carbon and biofilm carriers in a membrane bioreactor (MBR) presents a promising approach to address the challenge of long hydraulic retention time (HRT) for nitrification of hydrolysed urine. This study investigated the effect of the incorporation in the MBR on microbial dynamics, focusing on dominant nitrifying bacteria. The results showed that significant shifts in microbial compositions were observed with the feed transition to full-strength urine and across different sludge growth forms. Remarkably, the nitrite-oxidizing bacteria Nitrospira were highly enriched in the suspended sludge. Simultaneously, ammonia-oxidizing bacteria, Nitrosococcaceae thrived in the attached biomass, showing a significant seven-fold increase in relative abundance compared to its suspended counterpart. Consequently, the incorporated MBR displayed 36% higher nitrification rate and 40% HRT reduction compared to the conventional MBR. This study provides valuable insights on the potential development of household or building scale on-site nutrient recovery from urine to fertiliser.
Collapse
Affiliation(s)
- Weonjung Sohn
- Australian Research Council Research Hub for Nutrients in a Circular Economy, Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Jiaxi Jiang
- Australian Research Council Research Hub for Nutrients in a Circular Economy, Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Zicheng Su
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Qilin Wang
- Australian Research Council Research Hub for Nutrients in a Circular Economy, Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Sherub Phuntsho
- Australian Research Council Research Hub for Nutrients in a Circular Economy, Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Ho Kyong Shon
- Australian Research Council Research Hub for Nutrients in a Circular Economy, Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
11
|
Xu Y, Wang X, Gu Y, Liang C, Guo W, Ngo HH, Peng L. Optimizing ciprofloxacin removal through regulations of trophic modes and FNA levels in a moving bed biofilm reactor performing sidestream partial nitritation. WATER RESEARCH X 2024; 22:100216. [PMID: 38831973 PMCID: PMC11144728 DOI: 10.1016/j.wroa.2024.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 06/05/2024]
Abstract
The performance of partial nitritation (PN)-moving bed biofilm reactor (MBBR) in removal of antibiotics in the sidestream wastewater has not been investigated so far. In this work, the removal of ciprofloxacin was assessed under varying free nitrous acid (FNA) levels and different trophic modes. For the first time, a positive correlation was observed between ciprofloxacin removal and FNA levels, either in the autotrophic PN-MBBR or in the mixotrophic PN-MBBR, mainly ascribed to the FNA-stimulating effect on heterotrophic bacteria (HB)-induced biodegradation. The maximum ciprofloxacin removal efficiency (∼98 %) and removal rate constant (0.021 L g-1 SS h-1) were obtained in the mixotrophic PN-MBBR at an average FNA level of 0.056 mg-N L-1, which were 5.8 and 51.2 times higher than the corresponding values in the autotrophic PN-MBBR at 0 mg FNA-N L-1. Increasing FNA from 0.006 to 0.056 mg-N L-1 would inhibit ammonia oxidizing bacteria (AOB)-induced cometabolism and metabolism from 10.2 % and 6.9 % to 6.2 % and 6.4 %, respectively, while HB-induced cometabolism and metabolism increased from 31.2 % and 22.7 % to 41.9 % and 34.5 %, respectively. HB-induced cometabolism became the predominant biodegradation pathway (75.9 %-85.8 %) in the mixotrophic mode. Less antimicrobial biotransformation products without the piperazine or fluorine were newly identified to propose potential degradation pathways, corresponding to microbial-induced metabolic types and FNA levels. This work shed light on enhancing antibiotic removal via regulating both FNA accumulation and organic carbon addition in the PN-MBBR process treating sidestream wastewater.
Collapse
Affiliation(s)
- Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Xi Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Ying Gu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| |
Collapse
|
12
|
Saidulu D, Agrawal S, Bhatnagar A, Gupta AK. Sulfamethoxazole removal from wastewater via anoxic/oxic moving bed biofilm reactor: Degradation pathways and toxicity assessment. BIORESOURCE TECHNOLOGY 2024; 392:129998. [PMID: 37956948 DOI: 10.1016/j.biortech.2023.129998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
The effects of sulfamethoxazole (SMZ), an antibiotic commonly detected in the water environment, on the performance of a single staged anoxic/oxic moving bed biofilm reactor (A/O MBBR), was investigated. The anoxic zone played a key role in the removal of SMZ with a percentage of contribution accounting for around 85% in the overall removal. Denitrifying heterotrophic microbes present in the anoxic zone showed relatively more resistance to higher SMZ loads. It was found that in extracellular polymeric substances, protein content was increased consistently with the increase in SMZ concentration. Based on the detected biotransformation products, four degradation pathways were proposed and the toxicity was evaluated. Metagenomic analysis revealed that at higher SMZ load the activity of genera, such as Proteobacteria and Actinobacteria was significantly affected. In summary, proper design and operation of staged A/O MBBR can offer a resilient and robust treatment towards SMZ removal from wastewater.
Collapse
Affiliation(s)
- Duduku Saidulu
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Shivangi Agrawal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli FI-50130, Finland
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
13
|
Ahmadi N, Abbasi M, Torabian A, van Loosdrecht MCM, Ducoste J. Biotransformation of micropollutants in moving bed biofilm reactors under heterotrophic and autotrophic conditions. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132232. [PMID: 37690201 DOI: 10.1016/j.jhazmat.2023.132232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/06/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023]
Abstract
We investigated the transformation of four pharmaceuticals (Diclofenac, Naproxen, Ibuprofen and Carbamazepine) in a moving bed biofilm reactor subjected to different COD/N ratios in four experimental phases. The shift from medium to high range COD/N ratio (i.e., 5:1 to 100:1) intensified the competition between heterotrophs and nitrifying communities, leading to a transition from co-existence of heterotrophic and autotrophic conditions with high COD removal and nitrification rate in phase I to dominant heterotrophic conditions in phase II. At lower range COD/N ratios (i.e., 1:2 and 1:8) in phase III and IV, autotrophic conditions prevailed, resulting in increased nitrification rates and high abundance of amoA gene in the biofilm. Such shifts in the operating condition were accompanied by notable changes in the biofilm concentrations, composition and abundance of microbial populations as well as biodiversity in the biofilms, which collectively affected the degradation rates of the pharmaceuticals. We observed higher kinetic rates per unit of biofilm concentration under autotrophic conditions compared to heterotrophic conditions for all compounds except Naproxen, indicating the importance of nitrification in the transformation of such compounds. The results also revealed a positive relationship between biodiversity and biomass-normalized kinetic rates of most compounds.
Collapse
Affiliation(s)
- Navid Ahmadi
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran.
| | - Mona Abbasi
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Ali Torabian
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629Hz Delft, the Netherlands
| | - Joel Ducoste
- Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
14
|
Zhang F, Chen Y, Shi X, Lu M, Qin K, Qin F, Guo R, Feng Q. Characterization of the microbial community and prediction of metabolic functions in an anaerobic/oxic system with magnetic micropolystyrene as a biocarrier. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108023-108034. [PMID: 37743451 DOI: 10.1007/s11356-023-29982-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
Polystyrene (PS) and magnetic polystyrene (MPS) materials have been used extensively in wastewater treatment. In this research, a 55-day anaerobic/oxic process was carried out to evaluate the effects of PS and MPS on microorganisms under aerobic and anaerobic conditions. Scanning electron microscopy results revealed differences in the entanglement state of the sludge with the biocarrier due to differences in surface morphology. High-throughput sequencing analysis showed that the microbial communities differed considerably in the presence of PS and MPS addition under both aerobic and anaerobic conditions. The highest abundance and diversity were observed in the PS reactor, with 929 observed species and a PD_whole_tree index of 91.58 under anaerobic conditions. MPS promoted the enrichment of bacteria related to nitrogen recycling such as Nitrospirota which increased from 1.13% in the seeding sludge to 3.48% and 10.07% in the aerobic reactors with PS and MPS, respectively. Moreover, advanced analysis showed that PS inhibited many microbial functions (e.g., protein export, nitrogen metabolism), and MPS alleviated this inhibition. This study provides significant insights into the microbial effects of PS and MPS and may shed light on biocarrier selection in future studies.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China
| | - Ying Chen
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China
| | - Xiaoshuang Shi
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China
| | - Mingyi Lu
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China
| | - Kang Qin
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Fan Qin
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China
| | - Rongbo Guo
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China
| | - Quan Feng
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China.
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China.
| |
Collapse
|
15
|
Belete B, Desye B, Ambelu A, Yenew C. Micropollutant Removal Efficiency of Advanced Wastewater Treatment Plants: A Systematic Review. ENVIRONMENTAL HEALTH INSIGHTS 2023; 17:11786302231195158. [PMID: 37692976 PMCID: PMC10492480 DOI: 10.1177/11786302231195158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 07/28/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Various review papers have been published regarding the occurrence and fate of micropollutants (MPs). MPs in the aquatic environment are still not well reviewed to generate comprehensive summaries with a special focus on their removal from wastewater using conventional and advanced treatment processes. Therefore, this review aimed to provide a synopsis of the efficiency of the advanced wastewater treatment plants in the removal of MPs. MATERIALS AND METHODS A systematic search of published literature was conducted on the National Library of Medicine (NLM) database, Web of Science, Joanna Briggs Institute (JBI) database, Scopus, and Google Scholar, based on studies with evidence of removal of MPs in the wastewater treatment process. Screening of the published articles was made using pre-specified inclusion and exclusion criteria. RESULTS Amongst the 1545 studies searched, 21 full-length articles were analyzed that showed 7 treatment options related to the removal of MPs from wastewater. MPs from wastewater effluents were successfully and effectively removed by advanced treatment techniques. Advanced Oxidation Processes (AOPs), membrane processes, and adsorption processes have all been shown to be potential solutions for the removal of MPs in advanced treatment plants (WWTPs). But, there are 2 critical issues associated with the application of the advanced treatment options which are high operational cost and the formation of dangerous by-products and concentrated residues. CONCLUSION This study identified that the removal of MPs using WWTPs was commonly incomplete with varying removal efficiency. Therefore, the adaptation and scale-up of the cost-effective and efficient combined wastewater treatment technology are vital to creating an absolute barrier to MPs emissions.
Collapse
Affiliation(s)
- Biniam Belete
- Department of Public Health, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Belay Desye
- Department of Environmental Health Sciences, College of Health Sciences, Wollo University, Dessie, Ethiopia
| | - Argaw Ambelu
- Division of Water and Health, Ethiopian Institute of Water Resources, Addis Ababa University, Addis Ababa, Ethiopia
| | - Chalachew Yenew
- Public Health, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
16
|
Zhang R, Hao L, Cheng K, Xin B, Sun J, Guo J. Research progress of electrically-enhanced membrane bioreactor (EMBR) in pollutants removal and membrane fouling alleviation. CHEMOSPHERE 2023; 331:138791. [PMID: 37105306 DOI: 10.1016/j.chemosphere.2023.138791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023]
Abstract
Membrane bioreactor (MBR), as a biological unit for wastewater treatment, has been proven to have the advantages of simple structure and high pollutant removal rate. However, membrane fouling limits its wide application, and it is crucial to adopt effective membrane fouling control methods. As a new type of membrane fouling control technology, electrically-enhanced MBR (EMBR) has attracted more interest recently. It uses the driving force of electric field to make pollutants flocculate or move away from the membrane surface to achieve the purpose of inhibiting membrane fouling. This paper expounds the configuration of EMBR in recent years, including the location of membrane components, the way of electric field application and the selection of electrode and membrane materials, and provides the latest development information in various aspects. The enhanced effect of electric field on the removal of comprehensive and refractory pollutants is outlined in detail. And from the perspective of sludge properties (EPS, SMP, sludge particle size, zeta potential and microbial activity), the influence of electric field on sludge characteristics and the relationship between the changes of sludge properties in EMBR and membrane fouling are discussed. Moreover, the electrochemical mechanisms of electric field alleviating membrane fouling are elucidated from electrophoresis, electrostatic repulsion, electroflocculation, electroosmosis, and electrochemical oxidation, and the regeneration and stability of EMBR are assessed. The existing challenges and future research directions are also proposed. This review could provide theoretical guidance and further studies for subsequent topic, and promoting the wide engineering applications of EMBR.
Collapse
Affiliation(s)
- Rong Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment Chang'an University, Xi'an, 710054, PR China.
| | - Liying Hao
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment Chang'an University, Xi'an, 710054, PR China.
| | - Kai Cheng
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment Chang'an University, Xi'an, 710054, PR China.
| | - Beiyu Xin
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment Chang'an University, Xi'an, 710054, PR China.
| | - Junqi Sun
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment Chang'an University, Xi'an, 710054, PR China.
| | - Jifeng Guo
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment Chang'an University, Xi'an, 710054, PR China.
| |
Collapse
|
17
|
Kong B, Jin L, Zhao Y, Huang H, Wang Y, Ren H. Adaptive Evolution Laws of Biofilm under Emerging Pollutant-Induced Stress: Community Assembly-Driven Structure Response. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10721-10732. [PMID: 37433138 DOI: 10.1021/acs.est.3c01899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The widely used biofilm process in advanced wastewater treatment is currently challenged by numerous exotic emerging pollutants (EPs), and the underlying principle of the challenge is the adaptive evolution laws of biofilm under EP stress. However, there is still a knowledge gap in exploration of the biofilm adaptive evolution theory. Herein, we comprehensively analyzed the morphological variation, community succession, and assembly mechanism of biofilms to report the mechanism underlying their adaptive evolution under sulfamethoxazole and carbamazepine stress for the first time. The ecological role of the dominant species was driven as a pioneer and assembly hub by EP stress, and the deterministic processes indicated the functional basis of the transformation. In addition, the characteristic responses of dispersal limitation and homogenizing dispersal adequately revealed the assembly pathways in adaptive evolution and the resulting structural variation. Therefore, the "interfacial exposure-structural variation-mass transfer feedback" mechanism was inferred to underly the adaptive evolution process of biofilms. Overall, this study highlighted the internal drivers of the adaptive evolution of the biofilm at the phylogenetic level and deepened our understanding of the mechanism of biofilm development under EP stress in advanced wastewater purification.
Collapse
Affiliation(s)
- Boning Kong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Lili Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ying Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yanru Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| |
Collapse
|
18
|
Song Z, Sun F, Xing D, Liao R, Zhang X, Wang M, Su X, Wen Z, Dong W. Integrating electrochemical pre-treatment with carrier-based membrane bioreactor for efficient treatment of municipal waste transfer stations leachate. BIORESOURCE TECHNOLOGY 2023; 379:129003. [PMID: 37019412 DOI: 10.1016/j.biortech.2023.129003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
An integrated process of electrochemical pre-treatment with carrier-based membrane bioreactor (MBR) was constructed for fresh leachate from waste transfer stations with high organic and NH4+-N content. Results showed that within a hydraulic retention time 40 h, the removal efficiencies of chemical oxygen demand (COD), NH4+-N, suspended solids (SS) and total phosphorus (TP) were over 98.5%, 91.2%, 98.3% and 98.4%, respectively, with the organic removal rate of 18.7 kg/m3. The effluent met the Grade A Standard of China (GB/T31962-2015). Pre-treatment contributed about 70 % of the degraded refractory organics and almost all the SS, with the transformation of the humic-like acid to readily biodegradable organics. Biotreatment further removed over 50% of nitrogen pollutants through simultaneous nitrification and denitrification (SND) and consumed about 30% of organics. Meanwhile, the addition of carriers in the oxic MBR enhanced the attached biomass and denitrification enzyme activity, alleviating membrane fouling.
Collapse
Affiliation(s)
- Zi Song
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Feiyun Sun
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dingyu Xing
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Joint Laboratory of Urban High Strength Wastewater Treatment and Resource Utilization, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Runfeng Liao
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Mingming Wang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xiaoli Su
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zheng Wen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wenyi Dong
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Joint Laboratory of Urban High Strength Wastewater Treatment and Resource Utilization, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
19
|
Svendsen SB, Rebien Jørgensen L, Liang C, Carvalho PN, Bendix Larsen S, Bester K. Mechanistic studies on the effect of easy degradable carbon on pharmaceuticals removal in intermittently fed moving bed biofilm reactors. BIORESOURCE TECHNOLOGY 2023; 380:129084. [PMID: 37100298 DOI: 10.1016/j.biortech.2023.129084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
This study was conducted to provide for the first time systematic data on how intermittent feeding with carbon (ethanol) affects the kinetics of pharmaceuticals degradation in a moving bed biofilm reactor (MBBR). The relationship between the degradation rate constants (K) of 36 pharmaceuticals and the length of famine was tested with 12 different feast-famine ratios: For 17 pharmaceuticals, intermittent feeding increased K with a factor of 3-17, while for six other pharmaceuticals, it decreased K. Concerning intermittent loading, three dependencies were detected: 1) for some compounds (e.g., valsartan, ibuprofen, iohexol), the K decreased linearly with carbon loading, 2) for three compounds (2 sulfonamides and benzotriazole) K increased linearly with carbon loading 3) for most compounds (e.g., beta blockers, macrocyclic antibiotics, candesartan, citalopram, clindamycin, gabapentin) K had a maximum around 6 d famine (with 2 d feast). Optimizing processes on MBBRs need therefore be conducted based on a prioritization of compounds.
Collapse
Affiliation(s)
- Sif B Svendsen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark; WATEC - Centre for Water Technology, Aarhus University, Ny Munkegade 120, Aarhus 8000, DK, Denmark
| | - Lucas Rebien Jørgensen
- Institute for Green Technology, University of Southern Denmark, Campusvej 55, 5230 Odense, DK, Denmark; Kalundborg Utility, Dokhavnsvej 15, 4400 Kalundborg, DK, Denmark
| | - Chuanzhou Liang
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark; WATEC - Centre for Water Technology, Aarhus University, Ny Munkegade 120, Aarhus 8000, DK, Denmark; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | - Pedro N Carvalho
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark; WATEC - Centre for Water Technology, Aarhus University, Ny Munkegade 120, Aarhus 8000, DK, Denmark
| | - Sille Bendix Larsen
- Kalundborg Utility, Dokhavnsvej 15, 4400 Kalundborg, DK, Denmark; Novozymes, Hallas Alle 1, 4400 Kalundborg, DK, Denmark
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark; WATEC - Centre for Water Technology, Aarhus University, Ny Munkegade 120, Aarhus 8000, DK, Denmark.
| |
Collapse
|
20
|
Xu Y, Gu Y, Peng L, Wang N, Chen S, Liang C, Liu Y, Ni BJ. Unravelling ciprofloxacin removal in a nitrifying moving bed biofilm reactor: Biodegradation mechanisms and pathways. CHEMOSPHERE 2023; 320:138099. [PMID: 36764613 DOI: 10.1016/j.chemosphere.2023.138099] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/13/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Although moving bed biofilm reactors (MBBRs) have shown excellent antibiotic removal potentials, the information on underlying mechanisms is yet limited. This work assessed the removal of ciprofloxacin in an enriched nitrifying MBBR by clarifying the contribution of adsorption and microbial-induced biodegradation. Results demonstrated the considerable biomass adsorption (55%) in first 30 min. Limiting nitrite oxidizing bacteria growth or inhibiting nitrification would lead to lower adsorption capacities. The highest ciprofloxacin biodegradation rate constant was 0.082 L g SS-1 h-1 in the presence of ammonium, owing to ammonia oxidizing bacteria (AOB)-induced cometabolism, while heterotrophs played an insignificant role (∼9%) in ciprofloxacin biodegradation. The developed model also suggested the importance of AOB-induced cometabolism and metabolism over heterotrophs-induced biodegradation by analyzing the respective biodegradation coefficients. Cometabolic biodegradation pathways of ciprofloxacin mainly involved the piperazine ring cleavage, probably alleviating antimicrobial activities. It implies the feasibility of nitrifying biofilm systems towards efficient antibiotic removal from wastewater.
Collapse
Affiliation(s)
- Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; Shenzhen Research Institute of Wuhan University of Technology, Shenzhen, 518000, Guangdong, China
| | - Ying Gu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; Shenzhen Research Institute of Wuhan University of Technology, Shenzhen, 518000, Guangdong, China.
| | - Ning Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Shi Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; Shenzhen Research Institute of Wuhan University of Technology, Shenzhen, 518000, Guangdong, China.
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|
21
|
Di Marcantonio C, Chiavola A, Gioia V, Leoni S, Cecchini G, Frugis A, Ceci C, Spizzirri M, Boni MR. A step forward on site-specific environmental risk assessment and insight into the main influencing factors of CECs removal from wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116541. [PMID: 36419300 DOI: 10.1016/j.jenvman.2022.116541] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The presence of Contaminants of Emerging Concern (CECs) in water systems has been recognized as a potential source of risk for human health and the ecosystem. The present paper aims at evaluating the effects of different characteristics of full-scale Wastewater Treatment Plants (WWTPs) on the removal of 14 selected CECs belonging to the classes of caffeine, illicit drugs and pharmaceuticals. Particularly, the investigated plants differed because of the treatment lay-out, the type of biological process, the value of the operating parameters, the fate of the treated effluent (i.e. release into surface water or reuse), and the treatment capacity. The activity consisted of measuring concentrations of the selected CECs and also traditional water quality parameters (i.e. COD, phosphorous, nitrogen species and TSS) in the influent and effluent of 8 plants. The study highlights that biodegradable CECs (cocaine, methamphetamine, amphetamine, benzoylecgonine, 11-nor-9carboxy-Δ9-THC, lincomycin, trimethoprim, sulfamethoxazole, sulfadiazine, sulfadimethoxine, carbamazepine, ketoprofen, warfarin and caffeine) were well removed by all the WWTPs, with the best performance achieved by the MBR for antibiotics. Carbamazepine was removed at the lowest extent by all the WWTPs. The environmental risk assessed by using the site-specific value of the dilution factor resulted to be high in 3 out of 8 WWTPs for carbamazepine and less frequently for caffeine. However, the risk was reduced when the dilution factor was assumed equal to the default value of 10 as proposed by EU guidelines. Therefore, a specific determination of this factor is needed taking into account the hydraulic characteristics of the receiving water body.
Collapse
Affiliation(s)
- Camilla Di Marcantonio
- Sapienza University of Rome, Department of Civil, Constructional and Environmental Engineering (DICEA), Via Eudossiana 18, Rome, Italy, Zip code 00184.
| | - Agostina Chiavola
- Sapienza University of Rome, Department of Civil, Constructional and Environmental Engineering (DICEA), Via Eudossiana 18, Rome, Italy, Zip code 00184
| | | | - Simone Leoni
- ACEA ELABORI SpA, Via Vitorchiano 165, Rome, Italy
| | | | | | - Claudia Ceci
- ACEA ATO 2 SpA, Viale di Porta Ardeatina 129, 00154, Rome, Italy
| | | | - Maria Rosaria Boni
- Sapienza University of Rome, Department of Civil, Constructional and Environmental Engineering (DICEA), Via Eudossiana 18, Rome, Italy, Zip code 00184
| |
Collapse
|
22
|
Burzio C, Ekholm J, Modin O, Falås P, Svahn O, Persson F, van Erp T, Gustavsson DJI, Wilén BM. Removal of organic micropollutants from municipal wastewater by aerobic granular sludge and conventional activated sludge. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129528. [PMID: 35999740 DOI: 10.1016/j.jhazmat.2022.129528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/02/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Removal performances of organic micropollutants by conventional activated sludge (CAS) and aerobic granular sludge (AGS) were investigated at a full-scale wastewater treatment plant. Lab-scale kinetic experiments were performed to assess the micropollutant transformation rates under oxic and anoxic conditions. Transformation rates were used to model the micropollutant removal in the full-scale processes. Metagenomic sequencing was used to compare the microbial communities and antimicrobial resistance genes of the CAS and AGS systems. Higher transformation ability was observed for CAS compared to AGS for most compounds, both at the full-scale plant and in the complementary batch experiments. Oxic conditions supported the transformation of several micropollutants with faster and/or comparable rates compared to anoxic conditions. The estimated transformation rates from batch experiments adequately predicted the removal for most micropollutants in the full-scale processes. While the compositions in microbial communities differed between AGS and CAS, the full-scale biological reactors shared similar resistome profiles. Even though granular biomass showed lower potential for micropollutant transformation, AGS systems had somewhat higher gene cluster diversity compared to CAS, which could be related to a higher functional diversity. Micropollutant exposure to biomass or mass transfer limitations, therefore played more important roles in the observed differences in OMP removal.
Collapse
Affiliation(s)
- Cecilia Burzio
- Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden.
| | - Jennifer Ekholm
- Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Oskar Modin
- Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Per Falås
- Department of Chemical Engineering, Lund University, PO Box 124, Lund 22100, Sweden
| | - Ola Svahn
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad 29139, Sweden
| | - Frank Persson
- Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Tim van Erp
- Strömstad Municipality, Wastewater Treatment Plant Österröd, Strömstad 45233, Sweden
| | | | - Britt-Marie Wilén
- Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden
| |
Collapse
|
23
|
Muñoz-Palazon B, Rosa-Masegosa A, Vilchez-Vargas R, Link A, Gorrasi S, Gonzalez-Lopez J, Gonzalez-Martinez A. Biological removal processes in aerobic granular sludge for treating synthetic hospital wastewater: Effect of temperature. JOURNAL OF WATER PROCESS ENGINEERING 2022; 47:102691. [DOI: 10.1016/j.jwpe.2022.102691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
|
24
|
Chen F, Ma J, Zhu Y, Li X, Yu H, Sun Y. Biodegradation performance and anti-fouling mechanism of an ICME/electro-biocarriers-MBR system in livestock wastewater (antibiotic-containing) treatment. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128064. [PMID: 34922131 DOI: 10.1016/j.jhazmat.2021.128064] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Livestock wastewater is an important reservoir of antibiotic resistance genes (ARGs) and antibiotic residues. Membrane fouling is one of the most challenging problems confining the operation and application of membrane bioreactor (MBR). In this work, a novel iron-carbon micro-electrolysis (ICME)/electro-biocarriers-MBR system was established to explore the performance of pollutant removal and anti-fouling for an actual livestock wastewater. A light-weight porous ceramsite (bulk density 0.98 g/cm3) was used as the MBR biocarriers. The electrons generated from iron corrosion in the ICME tank traveled through external wires to the stainless steel membrane modules of MBR and the protons were transferred from the MBR tank to the ICME tank through a salt bridge, thus producing a spontaneous electric field. Under the optimized conditions, the system exhibited chemical oxygen demand removal of 76.0%, total suspended solids removal of 100%, antibiotic removal of 86.4%, NH4+-N removal of 91.1%, and ARGs reduction of 6-8 orders of magnitude. The quality of the final effluent can reach the national Class I-A discharge criteria. Adding ceramsite could not only effectively improve biodegradation performance but also alleviate membrane fouling through the migration and enrichment of microbial flora to the ceramsite. The self-generated electric field had no significant improvement effect on pollutant removal, but exhibited good anti-membrane fouling behavior which could be ascribed to (i) oxidization of membrane foulants by the electrochemical products (such as H2O2 and •OH radicals), and (ii) electrostatic repulsion of negatively charged foulants and bacterial cells. The bacterial community structure and diversity were studied using high-throughput pyrosequencing, and the results demonstrated the roles of electric field and biocarriers in enrichment of anti-fouling communities and repulsion of biofouling-creating communities.
Collapse
Affiliation(s)
- Fu Chen
- School of Public Administration, Hohai University, Nanjing 210098, China; Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221116, China.
| | - Jing Ma
- School of Public Administration, Hohai University, Nanjing 210098, China; Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221116, China
| | - Yanfeng Zhu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China
| | - Xiaoxiao Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haochen Yu
- School of Public Administration, Hohai University, Nanjing 210098, China; Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221116, China
| | - Yan Sun
- School of Public Administration, Hohai University, Nanjing 210098, China
| |
Collapse
|
25
|
Saidulu D, Srivastava A, Gupta AK. Enhancement of wastewater treatment performance using 3D printed structures: A major focus on material composition, performance, challenges, and sustainable assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114461. [PMID: 35032942 DOI: 10.1016/j.jenvman.2022.114461] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
In order to enhance the performance and sustainability of wastewater treatment technologies, researchers are showing keen interest in the development of novel materials which can overcome the drawbacks associated with conventional materials. In this context, 3D printing gained significant attention due to its capability of fabricating complex geometrics using different material compositions. The present review focuses on recent advancements of 3D printing applications in various physicochemical and biological wastewater treatment techniques. In physicochemical treatment methods, substantial research has been aimed at fabricating feed spacers and other membrane parts, photocatalytic feed spacers, catalysts, scaffolds, monoliths, and capsules. Several advantages, such as membrane fouling mitigation, enhanced degradation efficiency, and recovery and reusability potential, have been associated with the aforementioned 3D printed materials. While in biofilm-based biological treatment methods, the use of 3D printed bio-carriers has led to enhanced mass transfer efficiency and microbial activities. Moreover, the application of these bio-carriers has shown better removal efficiency of chemical oxygen demand (∼90%), total nitrogen (∼73%), ammonia nitrogen (95%), and total phosphorous (∼100%). Although the removal efficiencies were comparable with conventional carriers, 3D printed carriers led to ∼40% reduction in hydraulic retention time, which could significantly save capital and operational expenditures. This review also emphasizes the challenges and sustainability aspects of 3D printing technology and outlines future recommendations which could be vital for further research in this field.
Collapse
Affiliation(s)
- Duduku Saidulu
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Ashish Srivastava
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
26
|
Zhou Y, Li X. Effect of addition sites on bioaugmentation of tea polyphenols-NZVI/PE composite packing: Nitrogen removal efficiency and service life. CHEMOSPHERE 2022; 290:133258. [PMID: 34914945 DOI: 10.1016/j.chemosphere.2021.133258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Although efficient improvement of the nitrogen removal from wastewater by adding iron was achieved in wastewater process, the influence mechanism of addition sites is unclear. The study was based on the A/O-MBR treating simulated domestic wastewater, and tea polyphenol-nano zero-valent iron/polyethylene packing (TP-NZVI/PE) was added into the anoxic tank, aerobic tank and membrane effluent end of the process, respectively. The effect of the different addition sites on the nitrogen removal performance of A/O-MBR was investigated. Combine with the corrosion rate of NZVI on the packing surface to optimize TP-NZVI/PE addition site. The enhancement mechanism of TP-NZVI/PE under different addition site was explored through the calculation of the materials balance (carbon, nitrogen, phosphorus). The results showed that the pollutant removal of A/O-MBR was significantly increased with the TP-NZVI/PE added. In particular, the TP-NZVI/PE was added into the aerobic tank, and the pollutant removal rate was increased 31.71% (TN) and 53.00% (total phosphorus), respectively. Meanwhile, the service life of TP-NZVI/PE in the aerobic tank was 66 days. The anti-oxidation and dispersion of NZVI was improved with the encapsulation of tea polyphenols and support of packing, and it also played a certain slow-release effect, so that the service life of NZVI was further prolonged in aerobic condition. Combined with the material balance analysis, the result showed that the environmental structure made diversity in the aerobic tank by added the TP-NZVI/PE, and the simultaneous nitrification and denitrification process was achieved. The dependence of the denitrification process on the carbon source was greatly reduced. Besides, it promoted the adsorption and chemical precipitation process of the system for phosphor pollutant and achieved the denitrifying phosphorus removal performance.
Collapse
Affiliation(s)
- Yu Zhou
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, PR China; Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, PR China
| | - Xiufen Li
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, PR China; Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, PR China.
| |
Collapse
|
27
|
Pan D, Shao S, Zhong J, Wang M, Wu X. Performance and mechanism of simultaneous nitrification-denitrification and denitrifying phosphorus removal in long-term moving bed biofilm reactor (MBBR). BIORESOURCE TECHNOLOGY 2022; 348:126726. [PMID: 35093525 DOI: 10.1016/j.biortech.2022.126726] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
The long-term moving bed biofilm reactor (MBBR) with carrier-attached biofilm was successfully operated for simultaneous removal of nitrogen, phosphorus, and COD at various C/N ratios. Results indicated that 99.60%, 63.58%, 78.94%, and 59.64% of NH4+-N, NO3--N, TN, and TP were removed at C/N ratio, hydraulic retention time (HRT), and carrier film amount of 5, 40 h, and 1.2 mg·g-1. Nitrogen balance analysis showed that more than 89% of nitrogen (C/N = 20, 15, 10, 5) was converted to gas products. Extracellular polymeric substances (EPS), electron transport system activity (ETSA), and enzyme activity of biofilm were evaluated. Protein (PN)/polysaccharose (PS) values and ETSA decreased with the decrease of C/N ratios. Metagenomics sequencing further revealed that the prominent phyla for nitrogen and phosphorus removal were identified including Proteobacteria, Acidobacteria, Nitrospirae, and Chloroflexi. Proteobacteriaand Gammaproteobacteria were identified as the dominant denitrifying phosphate accumulating organisms (PAO) at the phylum and class level, respectively.
Collapse
Affiliation(s)
- Dandan Pan
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Sicheng Shao
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Jinfeng Zhong
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Minghui Wang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China.
| |
Collapse
|
28
|
Rich SL, Zumstein MT, Helbling DE. Identifying Functional Groups that Determine Rates of Micropollutant Biotransformations Performed by Wastewater Microbial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:984-994. [PMID: 34939795 DOI: 10.1021/acs.est.1c06429] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The goal of this research was to identify functional groups that determine rates of micropollutant (MP) biotransformations performed by wastewater microbial communities. To meet this goal, we performed a series of incubation experiments seeded with four independent wastewater microbial communities and spiked them with a mixture of 40 structurally diverse MPs. We collected samples over time and used high-resolution mass spectrometry to estimate biotransformation rate constants for each MP in each experiment and to propose structures of 46 biotransformation products. We then developed random forest models to classify the biotransformation rate constants based on the presence of specific functional groups or observed biotransformations. We extracted classification importance metrics from each random forest model and compared them across wastewater microbial communities. Our analysis revealed 30 functional groups that we define as either biotransformation promoters, biotransformation inhibitors, structural features that can be biotransformed based on uncharacterized features of the wastewater microbial community, or structural features that are not rate-determining. Our experimental data and analysis provide novel insights into MP biotransformations that can be used to more accurately predict MP biotransformations or to inform the design of new chemical products that may be more readily biodegradable during wastewater treatment.
Collapse
Affiliation(s)
- Stephanie L Rich
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Michael T Zumstein
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
- Division of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Wien 1090 Austria
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|