1
|
Ikeda K, Suda Y, Tomochi H, Hatama S, Iwamaru Y. Development of an allele-specific quantitative polymerase chain reaction assay for differentiating the RLB 106 strain from the wild-type viruses of Varicellovirus bovinealpha1. J Virol Methods 2025; 336:115148. [PMID: 40194663 DOI: 10.1016/j.jviromet.2025.115148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 04/09/2025]
Abstract
Varicellovirus bovinealpha1 (BoAHV1) is an important causal agent of various pathological conditions, such as respiratory and reproductive diseases, in cattle. An intranasal vaccine containing a temperature-sensitive mutant RLB 106 strain is used to control BoAHV1-related diseases. To monitor the invasion of BoAHV1 wild-type viruses in vaccinated populations, it is essential to develop a simple method for differentiating between the RLB 106 strain and BoAHV1 wild-type viruses. In this study, we developed an allele-specific quantitative polymerase chain reaction (AS-qPCR) assay that targets the point mutation G23136A located in UL40 for detecting the RLB 106 strain. We calculated the difference in Cq values (ΔCq) obtained from a paired qPCR using each point mutation site-targeting primer set and established the cutoff ΔCq for differentiation. The accuracy of differentiation was confirmed by the DNA partial sequencing of UL40. Results demonstrated that differentiation by AS-qPCR was consistent with the results obtained by DNA sequencing, and the field isolates classified as the RLB 106 strain exhibited a temperature-sensitive phenotype. Hence, the AS-qPCR assay developed in this study could be a promising method for the simple differentiation between the RLB 106 strain and wild-type viruses in a single-step reaction.
Collapse
Affiliation(s)
- Keigo Ikeda
- Division of Infectious Animal Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Yuto Suda
- Division of Infectious Animal Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan
| | | | - Shinichi Hatama
- Research Integrity Office, Department of Internal Control, Headquarters, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Yoshifumi Iwamaru
- Division of Infectious Animal Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan.
| |
Collapse
|
2
|
Kabir MP, Mercier É, Eid W, Plaza-Diaz J, D'Aoust PM, Landgraff C, Goodridge L, Lawal OU, Wan S, Hegazy N, Nguyen T, Wong C, Thakali O, Pisharody L, Stephenson S, Graber TE, Delatolla R. Diagnostic performance of allele-specific RT-qPCR and genomic sequencing in wastewater-based surveillance of SARS-CoV-2. ECO-ENVIRONMENT & HEALTH 2025; 4:100135. [PMID: 40226805 PMCID: PMC11992540 DOI: 10.1016/j.eehl.2025.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/10/2024] [Accepted: 01/13/2025] [Indexed: 04/07/2025]
Abstract
Clinical genomic surveillance is regarded as the gold standard for monitoring SARS-CoV-2 variants globally. However, as the pandemic wanes, reduced testing poses a risk to effectively tracking the trajectory of these variants within populations. Wastewater-based genomic surveillance that estimates variant frequency based on its defining set of alleles derived from clinical genomic surveillance has been successfully implemented. This method has its challenges, and allele-specific (AS) RT-qPCR or RT-dPCR may instead be used as a complementary method for estimating variant prevalence. Demonstrating equivalent performance of these methods is a prerequisite for their continued application in current and future pandemics. Here, we compared single-allele frequency using AS-RT-qPCR, to single-allele or haplotype frequency estimations derived from amplicon-based sequencing to estimate variant prevalence in wastewater during emergent and prevalent periods of Delta, Omicron, and two sub-lineages of Omicron. We found that all three methods of frequency estimation were concordant and contained sufficient information to describe the trajectory of variant prevalence. We further confirmed the accuracy of these methods by quantifying the diagnostic performance through Youden's index. The Youden's index of AS-RT-qPCR was reduced during the low prevalence period of a particular variant while the same allele in sequencing was negatively influenced due to insufficient read depth. Youden's index of haplotype-based calls was negatively influenced when alleles were common between variants. Coupling AS-RT-qPCR with sequencing can overcome the shortcomings of either platform and provide a comprehensive picture to the stakeholders for public health responses.
Collapse
Affiliation(s)
- Md Pervez Kabir
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Élisabeth Mercier
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Walaa Eid
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Julio Plaza-Diaz
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Patrick M. D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Chrystal Landgraff
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Lawrence Goodridge
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Opeyemi U. Lawal
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Shen Wan
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Nada Hegazy
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Tram Nguyen
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Chandler Wong
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Lakshmi Pisharody
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Sean Stephenson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Tyson E. Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Kelley JJ, Grigoriev A. Patterns of Isoform Variation for N Gene Subgenomic mRNAs in Betacoronavirus Transcriptomes. Viruses 2024; 17:36. [PMID: 39861825 PMCID: PMC11769239 DOI: 10.3390/v17010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
The nucleocapsid (N) protein is the most expressed protein in later stages of SARS-CoV-2 infection with several important functions. It is translated from a subgenomic mRNA (sgmRNA) formed by template switching during transcription. A recently described translation initiation site (TIS) with a CTG codon in the leader sequence (TIS-L) is out of frame with most structural and accessory genes including the N gene and may act as a translation suppressor. We analyzed multiple sequenced samples infected by SARS-CoV-2 and found that any single variant of this virus produces multiple isoforms of the N sgmRNA. The main isoform starting at TIS-L is out of frame, but two secondary dominant isoforms (present in nearly all samples) were found to restore the reading frame and likely involved in the regulation of N protein production. Analysis of sequenced samples infected by other coronaviruses revealed that such isoforms are also produced in their transcriptomes. In SARS-CoV, they restore the reading frame for a putative TIS (also a CTG codon) in the same relative position as in SARS-CoV-2. Positions of junction breakpoints relative to stem loop 3 in the 5'-UTR suggest similar mechanisms in SARS-CoV, SARS-CoV-2, and OC43, but not in MERS-CoV. These observations may be pertinent for antisense-based antiviral strategies.
Collapse
Affiliation(s)
| | - Andrey Grigoriev
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA;
| |
Collapse
|
4
|
Spiess K, Petrillo M, Paracchini V, Leoni G, Lassaunière R, Polacek C, Marving EL, Larsen NB, Gunalan V, Ring A, Bull M, Buttinger G, Veneri C, Suffredini E, La Rosa G, Corbisier P, Querci M, Rasmussen M, Marchini A. Development of new RT-PCR assays for the specific detection of BA.2.86 SARS-CoV-2 and its descendent sublineages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176365. [PMID: 39299334 DOI: 10.1016/j.scitotenv.2024.176365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/14/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
The SARS-CoV-2 BA.2.86 variant, also known as Pirola, has acquired over 30 amino acid changes in the Spike protein, evolving into >150 sublineages within ten months of its emergence. Among these, the JN.1, has been rapidly increasing globally becoming the most prevalent variant. To facilitate the identification of BA.2.86 sublineages, we designed the PiroMet-1 and PiroMet-2 assays in silico and validated them using BA.2.86 viral RNA and clinical samples to ascertain analytical specificity and sensitivity. Both assays resulted very specific with limit of detection of about 1-2 RNA copies/μL. The assays were then applied in a digital RT-PCR format to wastewater samples, combined with the OmMet assay (which identifies Omicron sublineages except BA.2.86 and its descendants) and the JRC-UCE.2 assay (which can universally recognize all SARS-CoV-2 variants). When used together with the OmMet and JRC-CoV-UCE.2 assays, the PiroMet assays accurately quantified BA.2.86 sublineages in wastewater samples. Our findings support the integration of these assays into routine SARS-CoV-2 wastewater surveillance as a timely and cost-effective complement to sequencing for monitoring the prevalence and spread of BA.2.86 sublineages within communities.
Collapse
Affiliation(s)
- Katja Spiess
- Virus Research & Development, Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut (SSI), Denmark
| | | | | | - Gabriele Leoni
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Ria Lassaunière
- Virus Research & Development, Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut (SSI), Denmark
| | - Charlotta Polacek
- Virus Research & Development, Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut (SSI), Denmark
| | - Ellinor Lindberg Marving
- Virus Research & Development, Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut (SSI), Denmark
| | - Nicolai Balle Larsen
- Virus Research & Development, Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut (SSI), Denmark
| | - Vithiagaran Gunalan
- Virus Research & Development, Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut (SSI), Denmark
| | - Aleksander Ring
- Virus Research & Development, Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut (SSI), Denmark
| | - Maireid Bull
- Virus Research & Development, Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut (SSI), Denmark
| | | | - Carolina Veneri
- National Center for Water Safety (CeNSiA), Istituto Superiore di Sanità, Rome, Italy
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppina La Rosa
- National Center for Water Safety (CeNSiA), Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Morten Rasmussen
- Virus Research & Development, Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut (SSI), Denmark
| | - Antonio Marchini
- European Commission, Joint Research Centre (JRC), Geel, Belgium.
| |
Collapse
|
5
|
Li J, Cheng R, Bian Z, Niu J, Xia J, Mao G, Liu H, Wu C, Hao C. Development of multiplex allele-specific RT-qPCR assays for differentiation of SARS-CoV-2 Omicron subvariants. Appl Microbiol Biotechnol 2024; 108:35. [PMID: 38183475 DOI: 10.1007/s00253-023-12941-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 01/08/2024]
Abstract
Quick differentiation of current circulating variants and the emerging recombinant variants of SARS-CoV-2 is essential to monitor their transmissions. However, the widely applied gene sequencing method is time-consuming and costly especially when facing recombinant variants, because a large part or whole genome sequencing is required. Allele-specific reverse transcriptase real time RT-PCR (RT-qPCR) represents a quick and cost-effective method for SNP (single nucleotide polymorphism) genotyping and has been successfully applied for SARS-CoV-2 variant screening. In the present study, we developed a panel of 5 multiplex allele-specific RT-qPCR assays targeting 20 key mutations for quick differentiation of the Omicron subvariants (BA.1 to BA.5 and their descendants) and the recombinant variants (XBB.1 and XBB.1.5). Two parallel multiplex RT-qPCR reactions were designed to separately target the prototype allele and the mutated allele of each mutation in the allele-specific RT-qPCR assay. Optimal annealing temperatures, primer and probe dosage, and time for annealing/extension for each reaction were determined by multi-factor and multi-level orthogonal test. The variation of Cp (crossing point) values (ΔCp) between the two multiplex RT-qPCR reactions was applied to determine if a mutation occurs or not. SARS-CoV-2 subvariants and related recombinant variants were differentiated by their unique mutation patterns. The developed multiplex allele-specific RT-qPCR assays exhibited excellent analytical sensitivities (with limits of detection (LoDs) of 1.47-18.52 copies per reaction), wide linear detection ranges (109-100 copies per reaction), good amplification efficiencies (88.25 to 110.68%), excellent reproducibility (coefficient of variations (CVs) < 5% in both intra-assay and inter-assay tests), and good clinical performances (99.5-100% consistencies with Sanger sequencing). The developed multiplex allele-specific RT-qPCR assays in the present study provide an alternative tool for quick differentiation of the SARS-CoV-2 Omicron subvariants and their recombinant variants. KEY POINTS: • A panel of five multiplex allele-specific RT-qPCR assays for quick differentiation of 11 SARS-CoV-2 Omicron subvariants (BA.1, BA.2, BA.4, BA.5, and their descendants) and 2 recombinant variants (XBB.1 and XBB.1.5). • The developed assays exhibited good analytical sensitivities and reproducibility, wide linear detection ranges, and good clinical performances, providing an alternative tool for quick differentiation of the SARS-CoV-2 Omicron subvariants and their recombinant variants.
Collapse
Affiliation(s)
- Jianguo Li
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, People's Republic of China.
| | - Ruiling Cheng
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Zixin Bian
- College of Life Sciences, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Jiahui Niu
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Juan Xia
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Guoli Mao
- Shanxi Guoxin Caregeno Biotechnology Co., Ltd., Taiyuan, 030032, People's Republic of China
| | - Hulong Liu
- Shanxi Guoxin Caregeno Biotechnology Co., Ltd., Taiyuan, 030032, People's Republic of China
| | - Changxin Wu
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Chunyan Hao
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China.
| |
Collapse
|
6
|
Shelton K, Deshpande GN, Sanchez GJ, Vogel JR, Miller AC, Florea G, Jeffries ER, De Leόn KB, Stevenson B, Kuhn KG. Real-Time Monitoring of SARS-CoV-2 Variants in Oklahoma Wastewater through Allele-Specific RT-qPCR. Microorganisms 2024; 12:2001. [PMID: 39458310 PMCID: PMC11509313 DOI: 10.3390/microorganisms12102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
During the COVID-19 pandemic, wastewater surveillance was used to monitor community transmission of SARS-CoV-2. As new genetic variants emerged, the need for timely identification of these variants in wastewater became an important focus. In response to increased reports of Omicron transmission across the United States, the Oklahoma Wastewater Surveillance team utilized allele-specific RT-qPCR assays to detect and differentiate variants, such as Omicron, from other variants found in wastewater in Oklahoma. The PCR assays showed presence of the Omicron variant in Oklahoma on average two weeks before official reports, which was confirmed through genomic sequencing of selected wastewater samples. Through continued surveillance from November 2021 to January 2022, we also demonstrated the transition from prevalence of the Delta variant to prevalence of the Omicron variant in local communities. We further assessed how this transition correlated with certain demographic factors characterizing each community. Our results highlight RT-qPCR assays as a rapid, simple, and cost-effective method for monitoring the community spread of SARS-CoV-2 genetic variants in wastewater. Additionally, they demonstrate that specific demographic factors such as ethnic composition and household income can correlate with the timing of SARS-CoV-2 variant introduction and spread.
Collapse
Affiliation(s)
- Kristen Shelton
- School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK 73071, USA; (K.S.); (G.J.S.); (J.R.V.); (A.C.M.)
| | - Gargi N. Deshpande
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Gilson J. Sanchez
- School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK 73071, USA; (K.S.); (G.J.S.); (J.R.V.); (A.C.M.)
| | - Jason R. Vogel
- School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK 73071, USA; (K.S.); (G.J.S.); (J.R.V.); (A.C.M.)
| | - A. Caitlin Miller
- School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK 73071, USA; (K.S.); (G.J.S.); (J.R.V.); (A.C.M.)
| | - Gabriel Florea
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
| | - Erin R. Jeffries
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA; (E.R.J.); (K.B.D.L.); (B.S.)
| | - Kara B. De Leόn
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA; (E.R.J.); (K.B.D.L.); (B.S.)
| | - Bradley Stevenson
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA; (E.R.J.); (K.B.D.L.); (B.S.)
- Earth and Planetary Science, Northwestern University, Evanston, IL 60208, USA
| | - Katrin Gaardbo Kuhn
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| |
Collapse
|
7
|
Tang L, Guo Z, Lu X, Zhao J, Li Y, Yang K. Wastewater multiplex PCR amplicon sequencing revealed community transmission of SARS-CoV-2 lineages during the outbreak of infection in Chinese Mainland. Heliyon 2024; 10:e35332. [PMID: 39166043 PMCID: PMC11334792 DOI: 10.1016/j.heliyon.2024.e35332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
During the COVID-19, wastewater-based epidemiology (WBE) has become a powerful epidemic surveillance tool widely used worldwide. However, the development and application of this technology in Chinese Mainland are relatively lagging. Herein, we for the first time monitored the community circulation of SARS-CoV-2 lineages using WBE methods in Chinese Mainland. During the peak period of infection outbreak at the end of 2022, six precious sewage samples were collected from the manhole in the student dormitory area on Wangjiang Campus of Sichuan University. RT-qPCR revealed that the six sewage samples were all positive for SARS-CoV-2 RNA. Multiplex PCR amplicon sequencing of the sewage samples reflected the local transmission of SARS-CoV-2 variants. The results of two deconvolution methods indicate that the main virus lineages have clear evolutionary genetic correlations. Furthermore, the sampling time is consistent with the timeline of concern for these virus lineages, as well as the timeline of uploading the nucleic acid sequences from the corresponding lineages in Sichuan to the database. These results demonstrate the reliability of the sewage sequencing results. Multiplex PCR amplicon sequencing is by far the most powerful analytical tool of WBE, enabling quantitative detection of virus lineages transmission and evolution at the community level.
Collapse
Affiliation(s)
| | | | - Xiaoyi Lu
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Junqiao Zhao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yonghong Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Kun Yang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
8
|
Tiwari A, Lehto KM, Paspaliari DK, Al-Mustapha AI, Sarekoski A, Hokajärvi AM, Länsivaara A, Hyder R, Luomala O, Lipponen A, Oikarinen S, Heikinheimo A, Pitkänen T. Developing wastewater-based surveillance schemes for multiple pathogens: The WastPan project in Finland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171401. [PMID: 38467259 DOI: 10.1016/j.scitotenv.2024.171401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Wastewater comprises multiple pathogens and offers a potential for wastewater-based surveillance (WBS) to track the prevalence of communicable diseases. The Finnish WastPan project aimed to establish wastewater-based pandemic preparedness for multiple pathogens (viruses, bacteria, parasites, fungi), including antimicrobial resistance (AMR). This article outlines WastPan's experiences in this project, including the criteria for target selection, sampling locations, frequency, analysis methods, and results communication. Target selection relied on epidemiological and microbiological evidence and practical feasibility. Within the WastPan framework, wastewater samples were collected between 2021 and 2023 from 10 wastewater treatment plants (WWTPs) covering 40 % of Finland's population. WWTP selection was validated for reported cases of Extended Spectrum Beta-lactamase-producing bacterial pathogens (Escherichia coli and Klebsiella pneumoniae) from the National Infectious Disease Register. The workflow included 24-h composite influent samples, with one fraction for culture-based analysis (bacteria and fungi) and the rest of the sample was reserved for molecular analysis (viruses, bacteria, antibiotic resistance genes, and parasites). The reproducibility of the monitoring workflow was assessed for SARS-CoV-2 through inter-laboratory comparisons using the N2 and N1 assays. Identical protocols were applied to same-day samples, yielding similar positivity trends in the two laboratories, but the N2 assay achieved a significantly higher detection rate (Laboratory 1: 91.5 %; Laboratory 2: 87.4 %) than the N1 assay (76.6 %) monitored only in Laboratory 2 (McNemar, p < 0.001 Lab 1, = 0.006 Lab 2). This result indicates that the selection of monitoring primers and assays may impact monitoring sensitivity in WBS. Overall, the current study recommends that the selection of sampling frequencies and population coverage of the monitoring should be based on pathogen-specific epidemiological characteristics. For example, pathogens that are stable over time may need less frequent annual sampling, while those that are occurring across regions may require reduced sample coverage. Here, WastPan successfully piloted WBS for monitoring multiple pathogens, highlighting the significance of one-litre community composite wastewater samples for assessing community health. The infrastructure established for COVID-19 WBS is valuable for monitoring various pathogens. The prioritization of the monitoring targets optimizes resource utilization. In the future legislative support in target selection, coverage determination, and sustained funding for WBS is recomended.
Collapse
Affiliation(s)
- Ananda Tiwari
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland.
| | - Kirsi-Maarit Lehto
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Dafni K Paspaliari
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland; ECDC Fellowship Programme, Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Ahmad I Al-Mustapha
- University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland; Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Anniina Sarekoski
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland; University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland.
| | - Anna-Maria Hokajärvi
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland.
| | - Annika Länsivaara
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Rafiqul Hyder
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Oskari Luomala
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland.
| | - Anssi Lipponen
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland.
| | - Sami Oikarinen
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Annamari Heikinheimo
- University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland; Finnish Food Authority, Seinäjoki, Finland.
| | - Tarja Pitkänen
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland; University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland.
| |
Collapse
|
9
|
Rashid SA, Rajendiran S, Nazakat R, Mohammad Sham N, Khairul Hasni NA, Anasir MI, Kamel KA, Muhamad Robat R. A scoping review of global SARS-CoV-2 wastewater-based epidemiology in light of COVID-19 pandemic. Heliyon 2024; 10:e30600. [PMID: 38765075 PMCID: PMC11098849 DOI: 10.1016/j.heliyon.2024.e30600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024] Open
Abstract
Recently, wastewater-based epidemiology (WBE) research has experienced a strong impetus during the Coronavirus disease 2019 (COVID-19) pandemic. However, a few technical issues related to surveillance strategies, such as standardized procedures ranging from sampling to testing protocols, need to be resolved in preparation for future infectious disease outbreaks. This review highlights the study characteristics, potential use of WBE and overview of methods, as well as methods utilized to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) including its variant in wastewater. A literature search was performed electronically in PubMed and Scopus according to PRISMA guidelines for relevant peer-reviewed articles published between January 2020 and March 2022. The search identified 588 articles, out of which 221 fulfilled the necessary criteria and are discussed in this review. Most global WBE studies were conducted in North America (n = 75, 34 %), followed by Europe (n = 68, 30.8 %), and Asia (n = 43, 19.5 %). The review also showed that most of the application of WBE observed were to correlate SARS-CoV-2 ribonucleic acid (RNA) trends in sewage with epidemiological data (n = 90, 40.7 %). The techniques that were often used globally for sample collection, concentration, preferred matrix recovery control and various sample types were also discussed. Overall, this review provided a framework for researchers specializing in WBE to apply strategic approaches to their research questions in achieving better functional insights. In addition, areas that needed more in-depth analysis, data collection, and ideas for new initiatives were identified.
Collapse
Affiliation(s)
- Siti Aishah Rashid
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Sakshaleni Rajendiran
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Raheel Nazakat
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Noraishah Mohammad Sham
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Nurul Amalina Khairul Hasni
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Mohd Ishtiaq Anasir
- Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Khayri Azizi Kamel
- Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Rosnawati Muhamad Robat
- Occupational & Environmental Health Unit, Public Health Division, Selangor State Health Department, Ministry of Health Malaysia, Malaysia
| |
Collapse
|
10
|
Parkins MD, Lee BE, Acosta N, Bautista M, Hubert CRJ, Hrudey SE, Frankowski K, Pang XL. Wastewater-based surveillance as a tool for public health action: SARS-CoV-2 and beyond. Clin Microbiol Rev 2024; 37:e0010322. [PMID: 38095438 PMCID: PMC10938902 DOI: 10.1128/cmr.00103-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024] Open
Abstract
Wastewater-based surveillance (WBS) has undergone dramatic advancement in the context of the coronavirus disease 2019 (COVID-19) pandemic. The power and potential of this platform technology were rapidly realized when it became evident that not only did WBS-measured SARS-CoV-2 RNA correlate strongly with COVID-19 clinical disease within monitored populations but also, in fact, it functioned as a leading indicator. Teams from across the globe rapidly innovated novel approaches by which wastewater could be collected from diverse sewersheds ranging from wastewater treatment plants (enabling community-level surveillance) to more granular locations including individual neighborhoods and high-risk buildings such as long-term care facilities (LTCF). Efficient processes enabled SARS-CoV-2 RNA extraction and concentration from the highly dilute wastewater matrix. Molecular and genomic tools to identify, quantify, and characterize SARS-CoV-2 and its various variants were adapted from clinical programs and applied to these mixed environmental systems. Novel data-sharing tools allowed this information to be mobilized and made immediately available to public health and government decision-makers and even the public, enabling evidence-informed decision-making based on local disease dynamics. WBS has since been recognized as a tool of transformative potential, providing near-real-time cost-effective, objective, comprehensive, and inclusive data on the changing prevalence of measured analytes across space and time in populations. However, as a consequence of rapid innovation from hundreds of teams simultaneously, tremendous heterogeneity currently exists in the SARS-CoV-2 WBS literature. This manuscript provides a state-of-the-art review of WBS as established with SARS-CoV-2 and details the current work underway expanding its scope to other infectious disease targets.
Collapse
Affiliation(s)
- Michael D. Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute of Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bonita E. Lee
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nicole Acosta
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maria Bautista
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Casey R. J. Hubert
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Steve E. Hrudey
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, Calgary, Alberta, Canada
| | - Xiao-Li Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Provincial Health Laboratory, Alberta Health Services, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Oh C, Xun G, Lane ST, Petrov VA, Zhao H, Nguyen TH. Portable, single nucleotide polymorphism-specific duplex assay for virus surveillance in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168701. [PMID: 37992833 DOI: 10.1016/j.scitotenv.2023.168701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
The Argonaute protein from the archaeon Pyrococcus furiosus (PfAgo) is a DNA-guided nuclease that targets DNA with any sequence. We designed a virus detection assay in which the PfAgo enzyme cleaves the reporter probe, thus generating fluorescent signals when amplicons from a reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) assay contain target sequences. We confirmed that the RT-LAMP-PfAgo assay for the SARS-CoV-2 Delta variant produced significantly higher fluorescent signals (p < 0.001) when a single nucleotide polymorphism (SNP), exclusive to the Delta variant, was present, compared to the samples without the SNP. Additionally, the duplex assay for Pepper mild mottle virus (PMMOV) and SARS-CoV-2 detection produced specific fluorescent signals (FAM or ROX) only when the corresponding sequences were present. Furthermore, the RT-LAMP-PfAgo assay does not require dilution to reduce the impact of environmental inhibitors. The limit of detection of the PMMOV assay, determined with 30 wastewater samples, was 28 gc/μL, with a 95 % confidence interval of [11,103]. Finally, using a point-of-use device, the RT-LAMP-PfAgo assay successfully detected PMMOV in wastewater samples. Based on our findings, we conclude that the RT-LAMP-PfAgo assay can be used as a portable, SNP-specific duplex assay, which will significantly improve virus surveillance in wastewater.
Collapse
Affiliation(s)
- Chamteut Oh
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA.
| | - Guanhua Xun
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Stephan Thomas Lane
- Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, United States
| | - Vassily Andrew Petrov
- Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, United States
| | - Huimin Zhao
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, United States; Departments of Chemical and Biomolecular Engineering, Chemistry, and Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, United States; Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
12
|
Thakali O, Mercier É, Eid W, Wellman M, Brasset-Gorny J, Overton AK, Knapp JJ, Manuel D, Charles TC, Goodridge L, Arts EJ, Poon AFY, Brown RS, Graber TE, Delatolla R, DeGroot CT. Real-time evaluation of signal accuracy in wastewater surveillance of pathogens with high rates of mutation. Sci Rep 2024; 14:3728. [PMID: 38355869 PMCID: PMC10866965 DOI: 10.1038/s41598-024-54319-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/11/2024] [Indexed: 02/16/2024] Open
Abstract
Wastewater surveillance of coronavirus disease 2019 (COVID-19) commonly applies reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to quantify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA concentrations in wastewater over time. In most applications worldwide, maximal sensitivity and specificity of RT-qPCR has been achieved, in part, by monitoring two or more genomic loci of SARS-CoV-2. In Ontario, Canada, the provincial Wastewater Surveillance Initiative reports the average copies of the CDC N1 and N2 loci normalized to the fecal biomarker pepper mild mottle virus. In November 2021, the emergence of the Omicron variant of concern, harboring a C28311T mutation within the CDC N1 probe region, challenged the accuracy of the consensus between the RT-qPCR measurements of the N1 and N2 loci of SARS-CoV-2. In this study, we developed and applied a novel real-time dual loci quality assurance and control framework based on the relative difference between the loci measurements to the City of Ottawa dataset to identify a loss of sensitivity of the N1 assay in the period from July 10, 2022 to January 31, 2023. Further analysis via sequencing and allele-specific RT-qPCR revealed a high proportion of mutations C28312T and A28330G during the study period, both in the City of Ottawa and across the province. It is hypothesized that nucleotide mutations in the probe region, especially A28330G, led to inefficient annealing, resulting in reduction in sensitivity and accuracy of the N1 assay. This study highlights the importance of implementing quality assurance and control criteria to continually evaluate, in near real-time, the accuracy of the signal produced in wastewater surveillance applications that rely on detection of pathogens whose genomes undergo high rates of mutation.
Collapse
Affiliation(s)
- Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Élisabeth Mercier
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Walaa Eid
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - Martin Wellman
- The Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON, K1Y 4E9, Canada
| | - Julia Brasset-Gorny
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - Alyssa K Overton
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Jennifer J Knapp
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Douglas Manuel
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
- Department of Family Medicine, University of Ottawa, 75 Laurier Ave. E, Ottawa, ON, K1N 6N5, Canada
- School of Epidemiology and Public Health, University of Ottawa, 75 Laurier Ave. E, Ottawa, ON, K1N 6N5, Canada
| | - Trevor C Charles
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Lawrence Goodridge
- Department of Food Science, Canadian Research Institute for Food Safety, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Eric J Arts
- Department of Microbiology and Immunology, Western University, London, ON, N6A 3K7, Canada
| | - Art F Y Poon
- Department of Microbiology and Immunology, Western University, London, ON, N6A 3K7, Canada
| | - R Stephen Brown
- School of Environmental Studies and Department of Chemistry, Queen's University, Kingston, ON, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Christopher T DeGroot
- Department of Mechanical and Materials Engineering, Western University, London, ON, N6A 5B9, Canada.
| |
Collapse
|
13
|
Champredon D, Becker D, Peterson SW, Mejia E, Hizon N, Schertzer A, Djebli M, Oloye FF, Xie Y, Asadi M, Cantin J, Pu X, Osunla CA, Brinkmann M, McPhedran KN, Servos MR, Giesy JP, Mangat C. Emergence and spread of SARS-CoV-2 variants of concern in Canada: a retrospective analysis from clinical and wastewater data. BMC Infect Dis 2024; 24:139. [PMID: 38287244 PMCID: PMC10823614 DOI: 10.1186/s12879-024-08997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/09/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND The spread of SARS-CoV-2 has been studied at unprecedented levels worldwide. In jurisdictions where molecular analysis was performed on large scales, the emergence and competition of numerous SARS-CoV-2lineages have been observed in near real-time. Lineage identification, traditionally performed from clinical samples, can also be determined by sampling wastewater from sewersheds serving populations of interest. Variants of concern (VOCs) and SARS-CoV-2 lineages associated with increased transmissibility and/or severity are of particular interest. METHOD Here, we consider clinical and wastewater data sources to assess the emergence and spread of VOCs in Canada retrospectively. RESULTS We show that, overall, wastewater-based VOC identification provides similar insights to the surveillance based on clinical samples. Based on clinical data, we observed synchrony in VOC introduction as well as similar emergence speeds across most Canadian provinces despite the large geographical size of the country and differences in provincial public health measures. CONCLUSION In particular, it took approximately four months for VOC Alpha and Delta to contribute to half of the incidence. In contrast, VOC Omicron achieved the same contribution in less than one month. This study provides significant benchmarks to enhance planning for future VOCs, and to some extent for future pandemics caused by other pathogens, by quantifying the rate of SARS-CoV-2 VOCs invasion in Canada.
Collapse
Affiliation(s)
- David Champredon
- Public Health Agency of Canada, National Microbiology Laboratory, Public Health Risk Sciences Division, Guelph, ON, Canada.
| | - Devan Becker
- Public Health Agency of Canada, National Microbiology Laboratory, Public Health Risk Sciences Division, Guelph, ON, Canada
| | - Shelley W Peterson
- Public Health Agency of Canada, National Microbiology Laboratory, One Health Division, Winnipeg, MB, Canada
| | - Edgard Mejia
- Public Health Agency of Canada, National Microbiology Laboratory, One Health Division, Winnipeg, MB, Canada
| | - Nikho Hizon
- Public Health Agency of Canada, National Microbiology Laboratory, One Health Division, Winnipeg, MB, Canada
| | - Andrea Schertzer
- Public Health Agency of Canada, Centre for Immunization and Respiratory Infectious Diseases, Ottawa, ON, Canada
| | - Mohamed Djebli
- Public Health Agency of Canada, Centre for Immunization and Respiratory Infectious Diseases, Ottawa, ON, Canada
| | - Femi F Oloye
- Toxicology Program, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Chemistry, Division of Physical and Computational Sciences, University of Pittsburgh at Bradford, Bradford, United States.
| | - Yuwei Xie
- Toxicology Program, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mohsen Asadi
- Department of Civil, Geological and Environmental Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jenna Cantin
- Toxicology Program, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xia Pu
- Toxicology Program, University of Saskatchewan, Saskatoon, SK, Canada
| | - Charles A Osunla
- Toxicology Program, University of Saskatchewan, Saskatoon, SK, Canada
| | - Markus Brinkmann
- Toxicology Program, University of Saskatchewan, Saskatoon, SK, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kerry N McPhedran
- Department of Civil, Geological and Environmental Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - John P Giesy
- Toxicology Program, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Environmental Sciences, Baylor University, Waco, TX, USA.
- Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA.
| | - Chand Mangat
- Public Health Agency of Canada, National Microbiology Laboratory, One Health Division, Winnipeg, MB, Canada
| |
Collapse
|
14
|
Anand A, Long C, Chandran K. NYC metropolitan wastewater reveals links between SARS-CoV-2 amino acid mutations and disease outcomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:167971. [PMID: 37914132 DOI: 10.1016/j.scitotenv.2023.167971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/01/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
Since late 2020, diverse SARS-CoV-2 variants with enhanced infectivity and transmissibility have emerged. In contrast to the focus on amino acid mutations in the spike protein, mutations in non-spike proteins and their associated impacts remain relatively understudied. New York City metropolitan wastewater revealed over 60 % of the most frequently occurring amino acid mutations in regions outside the spike protein. Strikingly, ~50 % of the mutations detected herein remain uncharacterized for functional impacts. Our results suggest that there are several understudied mutations within non-spike proteins N, ORF1a, ORF1b, ORF9b, and ORF9c, that could increase transmissibility, and infectivity among human populations. We also demonstrate significant correlations of P314L, D614G, T95I, G50E, G50R, G204R, R203K, G662S, P10S, and P13L with documented mortality rates, hospitalization rates, and percent positivity suggesting that amino acid mutations are likely to be indicators of COVID-19 infection outcomes.
Collapse
Affiliation(s)
- Archana Anand
- Department of Earth and Environmental Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, United States of America
| | - Chenghua Long
- Department of Earth and Environmental Engineering, Columbia University, 500 W. 120th Street, New York, NY 10027, United States of America
| | - Kartik Chandran
- Department of Earth and Environmental Engineering, Columbia University, 500 W. 120th Street, New York, NY 10027, United States of America.
| |
Collapse
|
15
|
Sun J, Yang MI, Peng J, Khan I, Lopez JJ, Chan R, Edwards EA, Peng H. Underestimation of SARS-CoV-2 in wastewater due to single or double mutations in the N1 qPCR probe binding region. WATER RESEARCH X 2024; 22:100221. [PMID: 38590726 PMCID: PMC11000202 DOI: 10.1016/j.wroa.2024.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
Wastewater surveillance using RT-qPCR has now been widely adopted to track circulating levels of SARS-CoV-2 virus in many sewersheds. The CDC qPCR assays targeting two regions (N1 and N2) within the N gene are commonly used, but a discrepancy between the two biomarkers has been noticed by independent studies using these methods since late 2021. The reason is presumed to be due to mutations in regions targeted by the N1 qPCR probe. In this study, we systematically investigated and unequivocally confirmed that the underlying reason for this discrepancy was mutations in the N1 probe target, and that a single mutation could cause a significant drop in signal. We first confirmed the proportion of related mutations in wastewater samples (Jan 2021-Dec 2022) using nested PCR and LC-MS. Based on relative proportions of N1 alleles, we separated the wastewater data into four time periods corresponding to different variant waves: Period I (Alpha and Delta waves with 0 mutation), Period II (BA.1/BA.2 waves with a single mutation found in all Omicron strains), Period III (BA.5.2* wave with two mutations), and Period IV (BQ.1* wave with two mutations). Significantly lower N1 copies relative to N2 copies in samples from Periods II-IV compared to those from Period I was observed in wastewater. To further pinpoint the extent to which each mutation impacted N1 quantification, we compared the qPCR response among different synthetic oligomers with corresponding mutations. This study highlighted the impact of even just one or two mutations on qPCR-based wastewater surveillance of SARS-CoV-2.
Collapse
Affiliation(s)
- Jianxian Sun
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, ON, M5S 3H6, Canada
| | - Minqing Ivy Yang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Jiaxi Peng
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, ON, M5S 3H6, Canada
| | - Ismail Khan
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, ON, M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Jhoselyn Jaramillo Lopez
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, ON, M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Ronny Chan
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, ON, M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Elizabeth A. Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, ON, M5S 3H6, Canada
- School of the Environment, University of Toronto, 80 St George Street, Toronto, ON, M5S 3H6, Canada
| |
Collapse
|
16
|
Baz Lomba JA, Pires J, Myrmel M, Arnø JK, Madslien EH, Langlete P, Amato E, Hyllestad S. Effectiveness of environmental surveillance of SARS-CoV-2 as an early-warning system: Update of a systematic review during the second year of the pandemic. JOURNAL OF WATER AND HEALTH 2024; 22:197-234. [PMID: 38295081 PMCID: wh_2023_279 DOI: 10.2166/wh.2023.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The aim of this updated systematic review was to offer an overview of the effectiveness of environmental surveillance (ES) of SARS-CoV-2 as a potential early-warning system (EWS) for COVID-19 and new variants of concerns (VOCs) during the second year of the pandemic. An updated literature search was conducted to evaluate the added value of ES of SARS-CoV-2 for public health decisions. The search for studies published between June 2021 and July 2022 resulted in 1,588 publications, identifying 331 articles for full-text screening. A total of 151 publications met our inclusion criteria for the assessment of the effectiveness of ES as an EWS and early detection of SARS-CoV-2 variants. We identified a further 30 publications among the grey literature. ES confirms its usefulness as an EWS for detecting new waves of SARS-CoV-2 infection with an average lead time of 1-2 weeks for most of the publication. ES could function as an EWS for new VOCs in areas with no registered cases or limited clinical capacity. Challenges in data harmonization and variant detection require standardized approaches and innovations for improved public health decision-making. ES confirms its potential to support public health decision-making and resource allocation in future outbreaks.
Collapse
Affiliation(s)
- Jose Antonio Baz Lomba
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway E-mail:
| | - João Pires
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway; ECDC fellowship Programme, Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Mette Myrmel
- Faculty of Veterinary Medicine, Virology Unit, Norwegian University of Life Science (NMBU), Oslo, Norway
| | - Jorunn Karterud Arnø
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Elisabeth Henie Madslien
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Petter Langlete
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Ettore Amato
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Susanne Hyllestad
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
17
|
Ding J, Xu X, Deng Y, Zheng X, Zhang T. Circulation of SARS-CoV-2 Omicron sub-lineages revealed by multiplex genotyping RT-qPCR assays for sewage surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166300. [PMID: 37591390 DOI: 10.1016/j.scitotenv.2023.166300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
Sewage surveillance has proven to be an essential complementary tool to clinical diagnosis in combating the COVID-19 pandemic by tracking the spread of the SARS-CoV-2 virus and evaluating infection levels in populations. With the striking spreading and continuous evolution of SARS-CoV-2 Omicron VOC that characterized with higher transmissibility and potential immune evasion, there is an urgent need for the rapid surveillance of this prevalent strain and its sub-lineages in sewage. In this study, based on three multiplex allele-specific (AS) RT-qPCR assays, we established a rapid and high-throughput detection workflow for the simultaneous discrimination of Omicron sub-lineages BA.2.2, BA.2.12.1, BA.4 and BA.5 (hereafter referred to as BA.4/BA.5) to track their community circulation in Hong Kong. All primer-probe sets in the multiplex assays could correctly discriminate and quantitate their target genotypes with high sensitivity and specificity, even when multiple variants co-existed in the sewage samples. Using the established multiplex assays, the trends of SARS-CoV-2 total viral load and variant dynamics in influent samples collected from 11 wastewater treatment plants (WWTPs) during June 2022 and September 2022, aligned with the clinical data, successfully unveiling the swift emergence and predominance of Omicron BA.4/BA.5 in Hong Kong. The study highlights the feasibility and applicability of multiplex RT-qPCR assays for monitoring epidemic trends and tracking variant displacement dynamics in sewage samples, providing a more rapid, high-throughput and cost-effective alternative to enhance the current sewage surveillance system.
Collapse
Affiliation(s)
- Jiahui Ding
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiawan Zheng
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
18
|
Xu X, Deng Y, Ding J, Shi X, Zheng X, Wang D, Yang Y, Liu L, Wang C, Li S, Gu H, Poon LLM, Zhang T. Refining detection methods for emerging SARS-CoV-2 mutants in wastewater: A case study on the Omicron variants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166215. [PMID: 37591380 DOI: 10.1016/j.scitotenv.2023.166215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
COVID-19 is an ongoing public health threat worldwide driven by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Wastewater surveillance has emerged as a complementary tool to clinical surveillance to control the COVID-19 pandemic. With the emergence of new variants of SARS-CoV-2, accumulated mutations that occurred in the SARS-CoV-2 genome raise new challenges for RT-qPCR diagnosis used in wastewater surveillance. There is a pressing need to develop refined methods for modifying primer/probes to better detect these emerging variants in wastewater. Here, we exemplified this process by focusing on the Omicron variants, for which we have developed and validated a modified detection method. We first modified the primers/probe mismatches of three assays commonly used in wastewater surveillance according to in silico analysis results for the mutations of 882 sequences collected during the fifth-wave outbreak in Hong Kong, and then evaluated them alongside the seven original assays. The results showed that five of seven original assays had better sensitivity for detecting Omicron variants, with the limits of detection (LoDs) ranging from 1.53 to 2.76 copies/μL. UCDC-N1 and Charité-E sets had poor performances, having LoDs higher than 10 copies/μL and false-positive/false-negative results in wastewater testing, probably due to the mismatch and demonstrating the need for modification of primer/probe sequences. The modified assays exhibited higher sensitivity and specificity, along with better reproducibility in detecting 81 wastewater samples. In addition, the sequencing results of six wastewater samples by Illumina also validated the presence of mismatches in the primer/probe binding sites of the three assays. This study highlights the importance of re-configuration of the primer-probe sets and refinements for the sequences to ensure the diagnostic effectiveness of RT-qPCR detection.
Collapse
Affiliation(s)
- Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jiahui Ding
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xianghui Shi
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiawan Zheng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Dou Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yu Yang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chunxiao Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Shuxian Li
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Haogao Gu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China
| | - Leo L M Poon
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; HKU-Pasteur Research Pole, The University of Hong Kong, Sassoon Road, Hong Kong, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
19
|
Hasing ME, Lee BE, Gao T, Li Q, Qiu Y, Ellehoj E, Graber TE, Fuzzen M, Servos M, Landgraff C, Delatolla R, Tipples G, Zelyas N, Hinshaw D, Maal-Bared R, Sikora C, Parkins M, Hubert CRJ, Frankowski K, Hrudey SE, Pang XL. Wastewater surveillance monitoring of SARS-CoV-2 variants of concern and dynamics of transmission and community burden of COVID-19. Emerg Microbes Infect 2023; 12:2233638. [PMID: 37409382 PMCID: PMC10408568 DOI: 10.1080/22221751.2023.2233638] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/04/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Wastewater-based surveillance is a valuable approach for monitoring COVID-19 at community level. Monitoring SARS-CoV-2 variants of concern (VOC) in wastewater has become increasingly relevant when clinical testing capacity and case-based surveillance are limited. In this study, we ascertained the turnover of six VOC in Alberta wastewater from May 2020 to May 2022. Wastewater samples from nine wastewater treatment plants across Alberta were analysed using VOC-specific RT-qPCR assays. The performance of the RT-qPCR assays in identifying VOC in wastewater was evaluated against next generation sequencing. The relative abundance of each VOC in wastewater was compared to positivity rate in COVID-19 testing. VOC-specific RT-qPCR assays performed comparatively well against next generation sequencing; concordance rates ranged from 89% to 98% for detection of Alpha, Beta, Gamma, Omicron BA.1 and Omicron BA.2, with a slightly lower rate of 85% for Delta (p < 0.01). Elevated relative abundance of Alpha, Delta, Omicron BA.1 and BA.2 were each associated with increased COVID-19 positivity rate. Alpha, Delta and Omicron BA.2 reached 90% relative abundance in wastewater within 80, 111 and 62 days after their initial detection, respectively. Omicron BA.1 increased more rapidly, reaching a 90% relative abundance in wastewater after 35 days. Our results from VOC surveillance in wastewater correspond with clinical observations that Omicron is the VOC with highest disease burden over the shortest period in Alberta to date. The findings suggest that changes in relative abundance of a VOC in wastewater can be used as a supplementary indicator to track and perhaps predict COVID-19 burden in a population.
Collapse
Affiliation(s)
- Maria E. Hasing
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Bonita E. Lee
- Department of Paediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Tiejun Gao
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Qiaozhi Li
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Yuanyuan Qiu
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Erik Ellehoj
- Ellehoj Redmond Consulting, Edmonton, Alberta, Canada
| | - Tyson E. Graber
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Meghan Fuzzen
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Mark Servos
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Chrystal Landgraff
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Graham Tipples
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada
| | - Nathan Zelyas
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada
| | - Deena Hinshaw
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Christopher Sikora
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Casey R. J. Hubert
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, Calgary, Alberta, Canada
| | - Steve E. Hrudey
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaoli L. Pang
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada
| |
Collapse
|
20
|
Fuzzen M, Harper NBJ, Dhiyebi HA, Srikanthan N, Hayat S, Bragg LM, Peterson SW, Yang I, Sun JX, Edwards EA, Giesy JP, Mangat CS, Graber TE, Delatolla R, Servos MR. An improved method for determining frequency of multiple variants of SARS-CoV-2 in wastewater using qPCR assays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163292. [PMID: 37030387 PMCID: PMC10079313 DOI: 10.1016/j.scitotenv.2023.163292] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 06/01/2023]
Abstract
Wastewater-based surveillance has become an effective tool around the globe for indirect monitoring of COVID-19 in communities. Variants of Concern (VOCs) have been detected in wastewater by use of reverse transcription polymerase chain reaction (RT-PCR) or whole genome sequencing (WGS). Rapid, reliable RT-PCR assays continue to be needed to determine the relative frequencies of VOCs and sub-lineages in wastewater-based surveillance programs. The presence of multiple mutations in a single region of the N-gene allowed for the design of a single amplicon, multiple probe assay, that can distinguish among several VOCs in wastewater RNA extracts. This approach which multiplexes probes designed to target mutations associated with specific VOC's along with an intra-amplicon universal probe (non-mutated region) was validated in singleplex and multiplex. The prevalence of each mutation (i.e. VOC) is estimated by comparing the abundance of the targeted mutation with a non-mutated and highly conserved region within the same amplicon. This is advantageous for the accurate and rapid estimation of variant frequencies in wastewater. The N200 assay was applied to monitor frequencies of VOCs in wastewater extracts from several communities in Ontario, Canada in near real time from November 28, 2021 to January 4, 2022. This includes the period of the rapid replacement of the Delta variant with the introduction of the Omicron variant in these Ontario communities in early December 2021. The frequency estimates using this assay were highly reflective of clinical WGS estimates for the same communities. This style of qPCR assay, which simultaneously measures signal from a non-mutated comparator probe and multiple mutation-specific probes contained within a single qPCR amplicon, can be applied to future assay development for rapid and accurate estimations of variant frequencies.
Collapse
Affiliation(s)
- Meghan Fuzzen
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | | | - Hadi A Dhiyebi
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Nivetha Srikanthan
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Samina Hayat
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Leslie M Bragg
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Shelley W Peterson
- One-Health Division, Wastewater Surveillance Unit, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3M4, Canada
| | - Ivy Yang
- Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - J X Sun
- Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Elizabeth A Edwards
- Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, USA; Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Chand S Mangat
- One-Health Division, Wastewater Surveillance Unit, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3M4, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
21
|
Peterson S, Daigle J, Dueck C, Nagasawa A, Mulvey M, Mangat CS. Real-time quantitative reverse transcription polymerase chain reaction detection of SARS-CoV-2 Delta variant in Canadian wastewater. CANADA COMMUNICABLE DISEASE REPORT = RELEVE DES MALADIES TRANSMISSIBLES AU CANADA 2023; 49:213-220. [PMID: 38414535 PMCID: PMC10898651 DOI: 10.14745/ccdr.v49i05a07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern are associated with increased infectivity, severity, and mortality of coronavirus disease 2019 (COVID-19) and have been increasingly detected in clinical and wastewater surveillance in Canada and internationally. In this study, we present a real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) assay for detection of the N gene D377Y mutation associated with the SARS-CoV-2 Delta variant in wastewater. Methods Wastewater samples (n=980) were collected from six cities and 17 rural communities across Canada from July to November 2021 and screened for the D377Y mutation. Results The Delta variant was detected in all major Canadian cities and northern remote regions, and half of the southern rural communities. The sensitivity and specificity of this assay were sufficient for detection and quantitation of the Delta variant in wastewater to aid in rapid population-level screening and surveillance. Conclusion This study demonstrates a novel cost-effective RT-qPCR assay for tracking the spread of the SARS-CoV-2 Delta variant. This rapid assay can be easily integrated into current wastewater surveillance programs to aid in population-level variant tracking.
Collapse
Affiliation(s)
- Shelley Peterson
- Wastewater Surveillance Unit, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB
| | - Jade Daigle
- Wastewater Surveillance Unit, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB
| | - Codey Dueck
- Wastewater Surveillance Unit, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB
| | - Audra Nagasawa
- Centre for Population Health Data, Statistics Canada, Ottawa, ON
| | - Michael Mulvey
- Wastewater Surveillance Unit, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB
| | - Chand S Mangat
- Wastewater Surveillance Unit, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB
| |
Collapse
|
22
|
Tangwangvivat R, Wacharapluesadee S, Pinyopornpanish P, Petcharat S, Hearn SM, Thippamom N, Phiancharoen C, Hirunpatrawong P, Duangkaewkart P, Supataragul A, Chaiden C, Wechsirisan W, Wandee N, Srimuang K, Paitoonpong L, Buathong R, Klungthong C, Pawun V, Hinjoy S, Putcharoen O, Iamsirithaworn S. SARS-CoV-2 Variants Detection Strategies in Wastewater Samples Collected in the Bangkok Metropolitan Region. Viruses 2023; 15:v15040876. [PMID: 37112855 PMCID: PMC10145351 DOI: 10.3390/v15040876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Wastewater surveillance is considered a promising approach for COVID-19 surveillance in communities. In this study, we collected wastewater samples between November 2020 and February 2022 from twenty-three sites in the Bangkok Metropolitan Region to detect the presence of SARS-CoV-2 and its variants for comparison to standard clinical sampling. A total of 215 wastewater samples were collected and tested for SARS-CoV-2 RNA by real-time PCR with three targeted genes (N, E, and ORF1ab); 102 samples were positive (42.5%). The SARS-CoV-2 variants were determined by a multiplex PCR MassARRAY assay to distinguish four SARS-CoV-2 variants, including Alpha, Beta, Delta, and Omicron. Multiple variants of Alpha-Delta and Delta-Omicron were detected in the wastewater samples in July 2021 and January 2022, respectively. These wastewater variant results mirrored the country data from clinical specimens deposited in GISAID. Our results demonstrated that wastewater surveillance using multiple signature mutation sites for SARS-CoV-2 variant detection is an appropriate strategy to monitor the presence of SARS-CoV-2 variants in the community at a low cost and with rapid turn-around time. However, it is essential to note that sequencing surveillance of wastewater samples should be considered complementary to whole genome sequencing of clinical samples to detect novel variants.
Collapse
Affiliation(s)
- Ratanaporn Tangwangvivat
- Division of Communicable Diseases, Department of Disease Control, Ministry of Public Health, Muang, Nonthaburi 11000, Thailand
| | - Supaporn Wacharapluesadee
- Thai Red Cross Emerging Infectious Disease Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Pathumwan, Bangkok 10330, Thailand
- School of Global Health, Faculty of Medicine, Chulalongkorn University, Rama IV Road, Pathumwan, Bangkok 10330, Thailand
| | - Papassorn Pinyopornpanish
- Division of Communicable Diseases, Department of Disease Control, Ministry of Public Health, Muang, Nonthaburi 11000, Thailand
| | - Sininat Petcharat
- Thai Red Cross Emerging Infectious Disease Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Pathumwan, Bangkok 10330, Thailand
| | - Suthida Muangnoicharoen Hearn
- Division of Epidemiology, Department of Disease Control, Ministry of Public Health, Muang, Nonthaburi 11000, Thailand
| | - Nattakarn Thippamom
- Thai Red Cross Emerging Infectious Disease Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Pathumwan, Bangkok 10330, Thailand
| | - Chadaporn Phiancharoen
- Division of Communicable Diseases, Department of Disease Control, Ministry of Public Health, Muang, Nonthaburi 11000, Thailand
| | - Piyapha Hirunpatrawong
- Thai Red Cross Emerging Infectious Disease Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Pathumwan, Bangkok 10330, Thailand
| | - Phattra Duangkaewkart
- Division of Communicable Diseases, Department of Disease Control, Ministry of Public Health, Muang, Nonthaburi 11000, Thailand
| | - Ananporn Supataragul
- Thai Red Cross Emerging Infectious Disease Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Pathumwan, Bangkok 10330, Thailand
| | - Chadaporn Chaiden
- Division of Communicable Diseases, Department of Disease Control, Ministry of Public Health, Muang, Nonthaburi 11000, Thailand
| | - Wiriyachayon Wechsirisan
- Division of Epidemiology, Department of Disease Control, Ministry of Public Health, Muang, Nonthaburi 11000, Thailand
| | - Nantaporn Wandee
- National Institute of Animal Health, Department of Livestock Development, Ministry of Agriculture and Cooperatives, Chatuchak, Bangkok 10900, Thailand
| | - Krongkan Srimuang
- Thai Red Cross Emerging Infectious Disease Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Pathumwan, Bangkok 10330, Thailand
| | - Leilani Paitoonpong
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Rama IV Road, Pathumwan, Bangkok 10330, Thailand
| | - Rome Buathong
- Department of Disease Control, Ministry of Public Health, Muang, Nonthaburi 11000, Thailand
| | - Chonticha Klungthong
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Vichan Pawun
- Division of Communicable Diseases, Department of Disease Control, Ministry of Public Health, Muang, Nonthaburi 11000, Thailand
| | - Soawapak Hinjoy
- Department of Disease Control, Ministry of Public Health, Muang, Nonthaburi 11000, Thailand
| | - Opass Putcharoen
- Thai Red Cross Emerging Infectious Disease Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Pathumwan, Bangkok 10330, Thailand
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Rama IV Road, Pathumwan, Bangkok 10330, Thailand
| | - Sopon Iamsirithaworn
- Department of Disease Control, Ministry of Public Health, Muang, Nonthaburi 11000, Thailand
| |
Collapse
|
23
|
Langeveld J, Schilperoort R, Heijnen L, Elsinga G, Schapendonk CEM, Fanoy E, de Schepper EIT, Koopmans MPG, de Graaf M, Medema G. Normalisation of SARS-CoV-2 concentrations in wastewater: The use of flow, electrical conductivity and crAssphage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161196. [PMID: 36581271 PMCID: PMC9791714 DOI: 10.1016/j.scitotenv.2022.161196] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 05/12/2023]
Abstract
Over the course of the Corona Virus Disease-19 (COVID-19) pandemic in 2020-2022, monitoring of the severe acute respiratory syndrome coronavirus 2 ribonucleic acid (SARS-CoV-2 RNA) in wastewater has rapidly evolved into a supplementary surveillance instrument for public health. Short term trends (2 weeks) are used as a basis for policy and decision making on measures for dealing with the pandemic. Normalisation is required to account for the dilution rate of the domestic wastewater that can strongly vary due to time- and location-dependent sewer inflow of runoff, industrial discharges and extraneous waters. The standard approach in sewage surveillance is normalisation using flow measurements, although flow based normalisation is not effective in case the wastewater volume sampled does not match the wastewater volume produced. In this paper, two alternative normalisation methods, using electrical conductivity and crAssphage have been studied and compared with the standard approach using flow measurements. For this, a total of 1116 24-h flow-proportional samples have been collected between September 2020 and August 2021 at nine monitoring locations. In addition, 221 stool samples have been analysed to determine the daily crAssphage load per person. Results show that, although crAssphage shedding rates per person vary greatly, on a population-level crAssphage loads per person per day were constant over time and similar for all catchments. Consequently, crAssphage can be used as a quantitative biomarker for populations above 5595 persons. Electrical conductivity is particularly suitable to determine dilution rates relative to dry weather flow concentrations. The overall conclusion is that flow normalisation is necessary to reliably determine short-term trends in virus circulation, and can be enhanced using crAssphage and/or electrical conductivity measurement as a quality check.
Collapse
Affiliation(s)
- Jeroen Langeveld
- Sanitary Engineering, Delft University of Technology, Stevinweg 1, 2628CN Delft, the Netherlands; Partners4UrbanWater, Graafseweg 274, 6532 ZV Nijmegen, the Netherlands.
| | - Remy Schilperoort
- Partners4UrbanWater, Graafseweg 274, 6532 ZV Nijmegen, the Netherlands
| | - Leo Heijnen
- KWR Water Research Institute, Groningenhaven 7, 3433PE Nieuwegein, the Netherlands
| | - Goffe Elsinga
- KWR Water Research Institute, Groningenhaven 7, 3433PE Nieuwegein, the Netherlands
| | - Claudia E M Schapendonk
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Ewout Fanoy
- GGD Department public health, municipality Rotterdam, Schiedamsedijk 95, 3000 LP Rotterdam, the Netherlands
| | - Evelien I T de Schepper
- Department of General Practice, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Miranda de Graaf
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Gertjan Medema
- Sanitary Engineering, Delft University of Technology, Stevinweg 1, 2628CN Delft, the Netherlands; KWR Water Research Institute, Groningenhaven 7, 3433PE Nieuwegein, the Netherlands; Natural resources, Michigan State University, 1405 S Harrison Rd, East-Lansing 48823, MI, USA
| |
Collapse
|
24
|
Tiwari A, Adhikari S, Zhang S, Solomon TB, Lipponen A, Islam MA, Thakali O, Sangkham S, Shaheen MNF, Jiang G, Haramoto E, Mazumder P, Malla B, Kumar M, Pitkänen T, Sherchan SP. Tracing COVID-19 Trails in Wastewater: A Systematic Review of SARS-CoV-2 Surveillance with Viral Variants. WATER 2023; 15:1018. [DOI: 10.3390/w15061018] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The emergence of new variants of SARS-CoV-2 associated with varying infectivity, pathogenicity, diagnosis, and effectiveness against treatments challenged the overall management of the COVID-19 pandemic. Wastewater surveillance (WWS), i.e., monitoring COVID-19 infections in communities through detecting viruses in wastewater, was applied to track the emergence and spread of SARS-CoV-2 variants globally. However, there is a lack of comprehensive understanding of the use and effectiveness of WWS for new SARS-CoV-2 variants. Here we systematically reviewed published articles reporting monitoring of different SARS-CoV-2 variants in wastewater by following the PRISMA guidelines and provided the current state of the art of this study area. A total of 80 WWS studies were found that reported different monitoring variants of SARS-CoV-2 until November 2022. Most of these studies (66 out of the total 80, 82.5%) were conducted in Europe and North America, i.e., resource-rich countries. There was a high variation in WWS sampling strategy around the world, with composite sampling (50/66 total studies, 76%) as the primary method in resource-rich countries. In contrast, grab sampling was more common (8/14 total studies, 57%) in resource-limited countries. Among detection methods, the reverse transcriptase polymerase chain reaction (RT-PCR)-based sequencing method and quantitative RT-PCR method were commonly used for monitoring SARS-CoV-2 variants in wastewater. Among different variants, the B1.1.7 (Alpha) variant that appeared earlier in the pandemic was the most reported (48/80 total studies), followed by B.1.617.2 (Delta), B.1.351 (Beta), P.1 (Gamma), and others in wastewater. All variants reported in WWS studies followed the same pattern as the clinical reporting within the same timeline, demonstrating that WWS tracked all variants in a timely way when the variants emerged. Thus, wastewater monitoring may be utilized to identify the presence or absence of SARS-CoV-2 and follow the development and transmission of existing and emerging variants. Routine wastewater monitoring is a powerful infectious disease surveillance tool when implemented globally.
Collapse
Affiliation(s)
- Ananda Tiwari
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
| | | | - Shuxin Zhang
- School of Civil, Mining, Environmental and Architecture Engineering, University of Wollongong, Wollongong 2522, Australia
| | | | - Anssi Lipponen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
| | - Md. Aminul Islam
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj 2310, Bangladesh
| | - Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Sarawut Sangkham
- Department of Environmental Health, School of Public Health, University of Phayao, Muang District, Phayao 56000, Thailand
| | - Mohamed N. F. Shaheen
- Department of Water Pollution Research, Environment and Climate Change Research Institute, National Research Center, Giza 2310, Egypt
| | - Guangming Jiang
- School of Civil, Mining, Environmental and Architecture Engineering, University of Wollongong, Wollongong 2522, Australia
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong 2522, Australia
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511, Yamanashi, Japan
| | - Payal Mazumder
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511, Yamanashi, Japan
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun 248007, Uttarakhand, India
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo Leon, Mexico
| | - Tarja Pitkänen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Samendra P. Sherchan
- Department of Biology, Morgan State University, Baltimore, MD 11428, USA
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
25
|
Acosta N, Bautista MA, Waddell BJ, Du K, McCalder J, Pradhan P, Sedaghat N, Papparis C, Beaudet AB, Chen J, Van Doorn J, Xiang K, Chan L, Vivas L, Low K, Lu X, Lee J, Westlund P, Chekouo T, Dai X, Cabaj J, Bhatnagar S, Ruecker N, Achari G, Clark RG, Pearce C, Harrison JJ, Meddings J, Leal J, Ellison J, Missaghi B, Kanji JN, Larios O, Rennert‐May E, Kim J, Hrudey SE, Lee BE, Pang X, Frankowski K, Conly J, Hubert CRJ, Parkins MD. Surveillance for SARS-CoV-2 and its variants in wastewater of tertiary care hospitals correlates with increasing case burden and outbreaks. J Med Virol 2023; 95:e28442. [PMID: 36579780 PMCID: PMC9880705 DOI: 10.1002/jmv.28442] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022]
Abstract
Wastewater-based SARS-CoV-2 surveillance enables unbiased and comprehensive monitoring of defined sewersheds. We performed real-time monitoring of hospital wastewater that differentiated Delta and Omicron variants within total SARS-CoV-2-RNA, enabling correlation to COVID-19 cases from three tertiary-care facilities with >2100 inpatient beds in Calgary, Canada. RNA was extracted from hospital wastewater between August/2021 and January/2022, and SARS-CoV-2 quantified using RT-qPCR. Assays targeting R203M and R203K/G204R established the proportional abundance of Delta and Omicron, respectively. Total and variant-specific SARS-CoV-2 in wastewater was compared to data for variant specific COVID-19 hospitalizations, hospital-acquired infections, and outbreaks. Ninety-six percent (188/196) of wastewater samples were SARS-CoV-2 positive. Total SARS-CoV-2 RNA levels in wastewater increased in tandem with total prevalent cases (Delta plus Omicron). Variant-specific assessments showed this increase to be mainly driven by Omicron. Hospital-acquired cases of COVID-19 were associated with large spikes in wastewater SARS-CoV-2 and levels were significantly increased during outbreaks relative to nonoutbreak periods for total SARS-CoV2, Delta and Omicron. SARS-CoV-2 in hospital wastewater was significantly higher during the Omicron-wave irrespective of outbreaks. Wastewater-based monitoring of SARS-CoV-2 and its variants represents a novel tool for passive COVID-19 infection surveillance, case identification, containment, and potentially to mitigate viral spread in hospitals.
Collapse
Affiliation(s)
- Nicole Acosta
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
| | | | - Barbara J. Waddell
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
| | - Kristine Du
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
| | - Janine McCalder
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
- Department of Biological SciencesUniversity of CalgaryCalgaryCanada
| | - Puja Pradhan
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
- Department of Biological SciencesUniversity of CalgaryCalgaryCanada
| | - Navid Sedaghat
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
- Department of Biological SciencesUniversity of CalgaryCalgaryCanada
| | - Chloe Papparis
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
- Department of Biological SciencesUniversity of CalgaryCalgaryCanada
| | | | - Jianwei Chen
- Department of Biological SciencesUniversity of CalgaryCalgaryCanada
| | | | - Kevin Xiang
- Department of Biological SciencesUniversity of CalgaryCalgaryCanada
| | - Leslie Chan
- Department of Biological SciencesUniversity of CalgaryCalgaryCanada
| | - Laura Vivas
- Department of Biological SciencesUniversity of CalgaryCalgaryCanada
| | - Kashtin Low
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
| | - Xuewen Lu
- Department of Mathematics and StatisticsUniversity of CalgaryCalgaryCanada
| | - Jangwoo Lee
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
| | | | - Thierry Chekouo
- Department of Mathematics and StatisticsUniversity of CalgaryCalgaryCanada
- Division of Biostatistics, School of Public HealthUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Xiaotian Dai
- Department of Mathematics and StatisticsUniversity of CalgaryCalgaryCanada
| | - Jason Cabaj
- Department of Community Health SciencesUniversity of CalgaryCalgaryCanada
- Department of MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
- Provincial Population & Public HealthAlberta Health ServicesCalgaryCanada
- O'Brien Institute for Public HealthUniversity of CalgaryCalgaryCanada
| | - Srijak Bhatnagar
- Faculty of Science and TechnologyAthabasca UniversityAthabascaAlbertaCanada
| | | | - Gopal Achari
- Department of Civil EngineeringUniversity of CalgaryCalgaryCanada
| | - Rhonda G. Clark
- Department of Biological SciencesUniversity of CalgaryCalgaryCanada
| | - Craig Pearce
- Infection Prevention and ControlAlberta Health ServicesCalgaryCanada
| | - Joe J. Harrison
- Department of Biological SciencesUniversity of CalgaryCalgaryCanada
- Snyder Institute for Chronic DiseasesUniversity of Calgary and Alberta Health ServicesCalgaryCanada
| | - Jon Meddings
- Department of MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
| | - Jenine Leal
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
- Department of Community Health SciencesUniversity of CalgaryCalgaryCanada
- O'Brien Institute for Public HealthUniversity of CalgaryCalgaryCanada
- Infection Prevention and ControlAlberta Health ServicesCalgaryCanada
| | - Jennifer Ellison
- Infection Prevention and ControlAlberta Health ServicesCalgaryCanada
| | - Bayan Missaghi
- Department of MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
- Infection Prevention and ControlAlberta Health ServicesCalgaryCanada
| | - Jamil N. Kanji
- Department of MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
- Department of Laboratory Medicine and PathologyUniversity of AlbertaEdmontonAlbertaCanada
- Alberta Precision Laboratories, Public Health LaboratoryAlberta Health ServicesEdmontonAlbertaCanada
- Department of Pathology and Laboratory MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
| | - Oscar Larios
- Department of MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
- Infection Prevention and ControlAlberta Health ServicesCalgaryCanada
- Alberta Precision Laboratories, Public Health LaboratoryAlberta Health ServicesEdmontonAlbertaCanada
| | - Elissa Rennert‐May
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
- Department of Community Health SciencesUniversity of CalgaryCalgaryCanada
- Department of MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
- O'Brien Institute for Public HealthUniversity of CalgaryCalgaryCanada
- Snyder Institute for Chronic DiseasesUniversity of Calgary and Alberta Health ServicesCalgaryCanada
| | - Joseph Kim
- Department of MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
- Infection Prevention and ControlAlberta Health ServicesCalgaryCanada
| | - Steve E. Hrudey
- Department of Laboratory Medicine and PathologyUniversity of AlbertaEdmontonAlbertaCanada
- Department of Analytical and Environmental ToxicologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Bonita E. Lee
- Department of PediatricsUniversity of AlbertaEdmontonAlbertaCanada
- Women & Children's Health Research InstituteEdmontonAlbertaCanada
- Li Ka Shing Institute of VirologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Xiaoli Pang
- Department of Laboratory Medicine and PathologyUniversity of AlbertaEdmontonAlbertaCanada
- Alberta Precision Laboratories, Public Health LaboratoryAlberta Health ServicesEdmontonAlbertaCanada
- Li Ka Shing Institute of VirologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Kevin Frankowski
- Advancing Canadian Water AssetsUniversity of CalgaryCalgaryCanada
| | - John Conly
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
- Department of MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
- O'Brien Institute for Public HealthUniversity of CalgaryCalgaryCanada
- Infection Prevention and ControlAlberta Health ServicesCalgaryCanada
- Snyder Institute for Chronic DiseasesUniversity of Calgary and Alberta Health ServicesCalgaryCanada
- Department of Pathology and Laboratory MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
| | | | - Michael D. Parkins
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryCanada
- Department of MedicineUniversity of Calgary and Alberta Health ServicesCalgaryCanada
- Snyder Institute for Chronic DiseasesUniversity of Calgary and Alberta Health ServicesCalgaryCanada
| |
Collapse
|
26
|
Hegazy N, Cowan A, D'Aoust PM, Mercier É, Towhid ST, Jia JJ, Wan S, Zhang Z, Kabir MP, Fang W, Graber TE, MacKenzie AE, Guilherme S, Delatolla R. Understanding the dynamic relation between wastewater SARS-CoV-2 signal and clinical metrics throughout the pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158458. [PMID: 36075428 PMCID: PMC9444583 DOI: 10.1016/j.scitotenv.2022.158458] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 05/27/2023]
Abstract
Wastewater surveillance (WWS) of SARS-CoV-2 was proven to be a reliable and complementary tool for population-wide monitoring of COVID-19 disease incidence but was not as rigorously explored as an indicator for disease burden throughout the pandemic. Prior to global mass immunization campaigns and during the spread of the wildtype COVID-19 and the Alpha variant of concern (VOC), viral measurement of SARS-CoV-2 in wastewater was a leading indicator for both COVID-19 incidence and disease burden in communities. As the two-dose vaccination rates escalated during the spread of the Delta VOC in Jul. 2021 through Dec. 2021, relations weakened between wastewater signal and community COVID-19 disease incidence and maintained a strong relationship with clinical metrics indicative of disease burden (new hospital admissions, ICU admissions, and deaths). Further, with the onset of the vaccine-resistant Omicron BA.1 VOC in Dec. 2021 through Mar. 2022, wastewater again became a strong indicator of both disease incidence and burden during a period of limited natural immunization (no recent infection), vaccine escape, and waned vaccine effectiveness. Lastly, with the populations regaining enhanced natural and vaccination immunization shortly prior to the onset of the Omicron BA.2 VOC in mid-Mar 2022, wastewater is shown to be a strong indicator for both disease incidence and burden. Hospitalization-to-wastewater ratio is further shown to be a good indicator of VOC virulence when widespread clinical testing is limited. In the future, WWS is expected to show moderate indication of incidence and strong indication of disease burden in the community during future potential seasonal vaccination campaigns.
Collapse
Affiliation(s)
- Nada Hegazy
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Aaron Cowan
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Élisabeth Mercier
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Jian-Jun Jia
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Shen Wan
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Zhihao Zhang
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Md Pervez Kabir
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Wanting Fang
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Stéphanie Guilherme
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
27
|
D'Aoust PM, Tian X, Towhid ST, Xiao A, Mercier E, Hegazy N, Jia JJ, Wan S, Kabir MP, Fang W, Fuzzen M, Hasing M, Yang MI, Sun J, Plaza-Diaz J, Zhang Z, Cowan A, Eid W, Stephenson S, Servos MR, Wade MJ, MacKenzie AE, Peng H, Edwards EA, Pang XL, Alm EJ, Graber TE, Delatolla R. Wastewater to clinical case (WC) ratio of COVID-19 identifies insufficient clinical testing, onset of new variants of concern and population immunity in urban communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158547. [PMID: 36067855 PMCID: PMC9444156 DOI: 10.1016/j.scitotenv.2022.158547] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/10/2022] [Accepted: 09/01/2022] [Indexed: 05/14/2023]
Abstract
Clinical testing has been the cornerstone of public health monitoring and infection control efforts in communities throughout the COVID-19 pandemic. With the anticipated reduction of clinical testing as the disease moves into an endemic state, SARS-CoV-2 wastewater surveillance (WWS) will have greater value as an important diagnostic tool. An in-depth analysis and understanding of the metrics derived from WWS is required to interpret and utilize WWS-acquired data effectively (McClary-Gutierrez et al., 2021; O'Keeffe, 2021). In this study, the SARS-CoV-2 wastewater signal to clinical cases (WC) ratio was investigated across seven cities in Canada over periods ranging from 8 to 21 months. This work demonstrates that significant increases in the WC ratio occurred when clinical testing eligibility was modified to appointment-only testing, identifying a period of insufficient clinical testing (resulting in a reduction to testing access and a reduction in the number of daily tests) in these communities, despite increases in the wastewater signal. Furthermore, the WC ratio decreased significantly in 6 of the 7 studied locations, serving as a potential signal of the emergence of the Alpha variant of concern (VOC) in a relatively non-immunized community (40-60 % allelic proportion), while a more muted decrease in the WC ratio signaled the emergence of the Delta VOC in a relatively well-immunized community (40-60 % allelic proportion). Finally, a significant decrease in the WC ratio signaled the emergence of the Omicron VOC, likely because of the variant's greater effectiveness at evading immunity, leading to a significant number of new reported clinical cases, even when community immunity was high. The WC ratio, used as an additional monitoring metric, could complement clinical case counts and wastewater signals as individual metrics in its potential ability to identify important epidemiological occurrences, adding value to WWS as a diagnostic technology during the COVID-19 pandemic and likely for future pandemics.
Collapse
Affiliation(s)
- Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | - Xin Tian
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | | | - Amy Xiao
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Elisabeth Mercier
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | - Nada Hegazy
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | - Jian-Jun Jia
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | - Shen Wan
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | - Md Pervez Kabir
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | - Wanting Fang
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | - Meghan Fuzzen
- Department of Biology, University of Waterloo, Waterloo, Canada
| | - Maria Hasing
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Minqing Ivy Yang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, Canada
| | - Julio Plaza-Diaz
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Zhihao Zhang
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | - Aaron Cowan
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada
| | - Walaa Eid
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Sean Stephenson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo, Canada
| | - Matthew J Wade
- Data, Analytics and Surveillance Group, UK Health Security Agency, London, United Kingdom
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, Canada
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Xiao-Li Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Eric J Alm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
28
|
Wurtzer S, Levert M, Dhenain E, Accrombessi H, Manco S, Fagour N, Goulet M, Boudaud N, Gaillard L, Bertrand I, Challant J, Masnada S, Azimi S, Gillon-Ritz M, Robin A, Mouchel JM, Sig O, Moulin L. From Alpha to Omicron BA.2: New digital RT-PCR approach and challenges for SARS-CoV-2 VOC monitoring and normalization of variant dynamics in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157740. [PMID: 35917966 PMCID: PMC9338838 DOI: 10.1016/j.scitotenv.2022.157740] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 05/17/2023]
Abstract
Throughout the COVID-19 pandemic, new variants have continuously emerged and spread in populations. Among these, variants of concern (VOC) have been the main culprits of successive epidemic waves, due to their transmissibility, pathogenicity or ability to escape the immune response. Quantification of the SARS-CoV-2 genomes in raw wastewater is a reliable approach well-described and widely deployed worldwide to monitor the spread of SARS-CoV-2 in human populations connected to sewage systems. Discrimination of VOCs in wastewater is also a major issue and can be achieved by genome sequencing or by detection of specific mutations suggesting the presence of VOCs. This study aimed to date the emergence of these VOCs (from Alpha to Omicron BA.2) by monitoring wastewater from the greater Paris area, France, but also to model the propagation dynamics of these VOCs and to characterize the replacement kinetics of the prevalent populations. These dynamics were compared to various individual-centered public health data, such as regional incidence and the proportions of VOCs identified by sequencing of strains isolated from patient. The viral dynamics in wastewater highlighted the impact of the vaccination strategy on the viral circulation within human populations but also suggested its potential effect on the selection of variants most likely to be propagated in immunized populations. Normalization of concentrations to capture population movements appeared statistically more reliable using variations in local drinking water consumption rather than using PMMoV concentrations because PMMoV fecal shedding was subject to variability and was not sufficiently relevant in this study. The dynamics of viral spread was observed earlier (about 13 days on the wave related to Omicron VOC) in raw wastewater than the regional incidence alerting to a possible risk of decorrelation between incidence and actual virus circulation probably resulting from a lower severity of infection in vaccinated populations.
Collapse
Affiliation(s)
- Sebastien Wurtzer
- Eau de Paris, Research & Development, 33 avenue Jean Jaures, FR-94200 Ivry sur Seine, France.
| | - Morgane Levert
- Sorbonne Universite, CNRS, EPHE, UMR 7619 Metis, e-LTER Zone Atelier Seine, F-75005 Paris, France
| | - Eloïse Dhenain
- Sorbonne Universite, CNRS, EPHE, UMR 7619 Metis, e-LTER Zone Atelier Seine, F-75005 Paris, France
| | - Heberte Accrombessi
- Eau de Paris, Research & Development, 33 avenue Jean Jaures, FR-94200 Ivry sur Seine, France
| | - Sandra Manco
- Eau de Paris, Research & Development, 33 avenue Jean Jaures, FR-94200 Ivry sur Seine, France
| | - Nathalie Fagour
- Eau de Paris, Research & Development, 33 avenue Jean Jaures, FR-94200 Ivry sur Seine, France
| | - Marion Goulet
- Eau de Paris, Research & Development, 33 avenue Jean Jaures, FR-94200 Ivry sur Seine, France
| | | | - Lucie Gaillard
- ACTALIA, Food Safety Department, F-50000 Saint-Lô, France
| | | | - Julie Challant
- University of Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Sophie Masnada
- SIAM - STV, Avenue de la courtiere, FR-77400 Saint Thibault des vignes, France
| | - Sam Azimi
- SIAAP, Innovation Department, 82 Avenue Kléber, FR-92700 Colombes, France
| | - Miguel Gillon-Ritz
- Direction de la Proprete et de l'Eau - Service Technique de l'Eau et de l'Assainissement, Rue du Commandeur, FR-75014 Paris, France
| | - Alban Robin
- Eau de Paris, Research & Development, 33 avenue Jean Jaures, FR-94200 Ivry sur Seine, France
| | - Jean-Marie Mouchel
- Sorbonne Universite, CNRS, EPHE, UMR 7619 Metis, e-LTER Zone Atelier Seine, F-75005 Paris, France
| | - Obepine Sig
- Sorbonne Universite, CNRS, EPHE, UMR 7619 Metis, e-LTER Zone Atelier Seine, F-75005 Paris, France
| | - Laurent Moulin
- Eau de Paris, Research & Development, 33 avenue Jean Jaures, FR-94200 Ivry sur Seine, France
| |
Collapse
|
29
|
Xie Y, Challis JK, Oloye FF, Asadi M, Cantin J, Brinkmann M, McPhedran KN, Hogan N, Sadowski M, Jones PD, Landgraff C, Mangat C, Servos MR, Giesy JP. RNA in Municipal Wastewater Reveals Magnitudes of COVID-19 Outbreaks across Four Waves Driven by SARS-CoV-2 Variants of Concern. ACS ES&T WATER 2022; 2:1852-1862. [PMID: 37552734 PMCID: PMC8887651 DOI: 10.1021/acsestwater.1c00349] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 05/07/2023]
Abstract
There are no standardized protocols for quantifying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater to date, especially for population normalization. Here, a pipeline was developed, applied, and assessed to quantify SARS-CoV-2 and key variants of concern (VOCs) RNA in wastewater at Saskatoon, Canada. Normalization approaches using recovery ratio and extraction efficiency, wastewater parameters, or population indicators were assessed by comparing to daily numbers of new cases. Viral load was positively correlated with daily new cases reported in the sewershed. Wastewater surveillance (WS) had a lead time of approximately 7 days, which indicated surges in the number of new cases. WS revealed the variant α and δ driving the third and fourth wave, respectively. The adjustment with the recovery ratio and extraction efficiency improved the correlation between viral load and daily new cases. Normalization of viral concentration to concentrations of the artificial sweetener acesulfame K improved the trend of viral load during the Christmas and New Year holidays when populations were dynamic and variable. Acesulfame K performed better than pepper mild mottle virus, creatinine, and ammonia for population normalization. Hence, quality controls to characterize recovery ratios and extraction efficiencies and population normalization with acesulfame are promising for precise WS programs supporting decision-making in public health.
Collapse
Affiliation(s)
- Yuwei Xie
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
| | - Jonathan K. Challis
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
| | - Femi F. Oloye
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
| | - Mohsen Asadi
- Department of Civil, Geological and Environmental
Engineering, College of Engineering, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5A9,
Canada
| | - Jenna Cantin
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
| | - Markus Brinkmann
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
- School of Environment and Sustainability,
University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
- Global Institute for Water Security,
University of Saskatchewan, Saskatoon, Saskatchewan S7N 3H5,
Canada
| | - Kerry N. McPhedran
- Department of Civil, Geological and Environmental
Engineering, College of Engineering, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5A9,
Canada
- Global Institute for Water Security,
University of Saskatchewan, Saskatoon, Saskatchewan S7N 3H5,
Canada
| | - Natacha Hogan
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
- College of Agriculture and Bioresources, Department of
Animal and Poultry Sciences, University of Saskatchewan,
Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Mike Sadowski
- Wastewater Treatment Plant, Saskatoon Water Department,
City of Saskatoon, Saskatoon, Saskatchewan S7M 1X5,
Canada
| | - Paul D. Jones
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
- School of Environment and Sustainability,
University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
| | - Chrystal Landgraff
- Division of Enteric Diseases, National Microbiology
Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba
R3E 3R2, Canada
- Food Science Department, University of
Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Chand Mangat
- Antimicrobial Resistance and Nosocomial Infections,
National Microbiology Laboratory, Public Health Agency of
Canada, Winnipeg, Manitoba R3E 3R2, Canada
| | - Mark R. Servos
- Department of Biology, University of
Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - John P. Giesy
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
- Department of Veterinary Biomedical Sciences,
University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4,
Canada
- Department of Environmental Sciences,
Baylor University, Waco, Texas 76706, United
States
- Department of Zoology and Center for Integrative
Toxicology, Michigan State University, East Lansing, Michigan
48824, United States
| |
Collapse
|
30
|
Langan LM, O’Brien M, Lovin LM, Scarlett KR, Davis H, Henke AN, Seidel SE, Archer N, Lawrence E, Norman RS, Bojes HK, Brooks BW. Quantitative Reverse Transcription PCR Surveillance of SARS-CoV-2 Variants of Concern in Wastewater of Two Counties in Texas, United States. ACS ES&T WATER 2022; 2:2211-2224. [PMID: 37552718 PMCID: PMC9291321 DOI: 10.1021/acsestwater.2c00103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 06/02/2023]
Abstract
After its emergence in late November/December 2019, the severe acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2) rapidly spread globally. Recognizing that this virus is shed in feces of individuals and that viral RNA is detectable in wastewater, testing for SARS-CoV-2 in sewage collections systems has allowed for the monitoring of a community's viral burden. Over a 9 month period, the influents of two regional wastewater treatment facilities were concurrently examined for wild-type SARS-CoV-2 along with variants B.1.1.7 and B.1.617.2 incorporated as they emerged. Epidemiological data including new confirmed COVID-19 cases and associated hospitalizations and fatalities were tabulated within each location. RNA from SARS-CoV-2 was detectable in 100% of the wastewater samples, while variant detection was more variable. Quantitative reverse transcription PCR (RT-qPCR) results align with clinical trends for COVID-19 cases, and increases in COVID-19 cases were positively related with increases in SARS-CoV-2 RNA load in wastewater, although the strength of this relationship was location specific. Our observations demonstrate that clinical and wastewater surveillance of SARS-CoV-2 wild type and constantly emerging variants of concern can be combined using RT-qPCR to characterize population infection dynamics. This may provide an early warning for at-risk communities and increases in COVID-19 related hospitalizations.
Collapse
Affiliation(s)
- Laura M. Langan
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Megan O’Brien
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
- Department of Public Health, Baylor
University, One Bear Place #97343, Waco, Texas 76798, United
States
| | - Lea M. Lovin
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Kendall R. Scarlett
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Haley Davis
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Abigail N. Henke
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
- Department of Biology, Baylor
University, One Bear Place #97388, Waco, Texas 76798, United
States
| | - Sarah E. Seidel
- Center for Health
Statistics, Texas Department of State Health Services, Austin, Texas
78756, United States
| | - Natalie Archer
- Environmental Epidemiology and Disease Registries
Section, Texas Department of State Health Services, Austin,
Texas 78756, United States
| | - Eric Lawrence
- Environmental Epidemiology and Disease Registries
Section, Texas Department of State Health Services, Austin,
Texas 78756, United States
| | - R. Sean Norman
- Department of Environmental Health Sciences, Arnold School of
Public Health, University of South Carolina, 921 Assembly
Street Columbia, South Carolina 29208, United States
| | - Heidi K. Bojes
- Environmental Epidemiology and Disease Registries
Section, Texas Department of State Health Services, Austin,
Texas 78756, United States
| | - Bryan W. Brooks
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
- Department of Public Health, Baylor
University, One Bear Place #97343, Waco, Texas 76798, United
States
| |
Collapse
|
31
|
Oloye FF, Xie Y, Asadi M, Cantin J, Challis JK, Brinkmann M, McPhedran KN, Kristian K, Keller M, Sadowski M, Jones PD, Landgraff C, Mangat C, Fuzzen M, Servos MR, Giesy JP. Rapid transition between SARS-CoV-2 variants of concern Delta and Omicron detected by monitoring municipal wastewater from three Canadian cities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156741. [PMID: 35716745 PMCID: PMC9212401 DOI: 10.1016/j.scitotenv.2022.156741] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 05/21/2023]
Abstract
Monitoring the communal incidence of COVID-19 is important for both government and residents of an area to make informed decisions. However, continuous reliance on one means of monitoring might not be accurate because of biases introduced by government policies or behaviours of residents. Wastewater surveillance was employed to monitor concentrations of SARS-CoV-2 RNA in raw influent wastewater from wastewater treatment plants serving three Canadian Prairie cities with different population sizes. Data obtained from wastewater are not directly influenced by government regulations or behaviours of individuals. The means of three weekly samples collected using 24 h composite auto-samplers were determined. Viral loads were determined by RT-qPCR, and whole-genome sequencing was used to charaterize variants of concern (VOC). The dominant VOCs in the three cities were the same but with different proportions of sub-lineages. Sub-lineages of Delta were AY.12, AY.25, AY.27 and AY.93 in 2021, while the major sub-lineage of Omicron was BA.1 in January 2022, and BA.2 subsequently became a trace-level sub-variant then the predominant VOC. When each VOC was first detected varied among cities; However, Saskatoon, with the largest population, was always the first to present new VOCs. Viral loads varied among cities, but there was no direct correlation with population size, possibly because of differences in flow regimes. Population is one of the factors that affects trends in onset and development of local outbreaks during the pandemic. This might be due to demography or the fact that larger populations had greater potential for inter- and intra-country migration. Hence, wastewater surveillance data from larger cities can typically be used to indicate what to expect in smaller communities.
Collapse
Affiliation(s)
- Femi F Oloye
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Yuwei Xie
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Mohsen Asadi
- Department of Civil, Geological and Environmental Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jenna Cantin
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jonathan K Challis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kerry N McPhedran
- Department of Civil, Geological and Environmental Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kevin Kristian
- Wastewater Treatment Plant, Public Work Department, City of Prince Albert, Prince Albert, SK, Canada
| | - Mark Keller
- Wastewater Treatment Plant, City Operations, City of North Battleford, North Battleford, SK, Canada
| | - Mike Sadowski
- Wastewater Treatment Plant, Saskatoon Water Department, City of Saskatoon, Saskatoon, SK, Canada
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Chrystal Landgraff
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Chand Mangat
- Wastewater Surveillance Unit, National Microbiology Laboratory Winnipeg, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Meghan Fuzzen
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, USA; Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
32
|
Oloye FF, Xie Y, Asadi M, Cantin J, Challis JK, Brinkmann M, McPhedran KN, Kristian K, Keller M, Sadowski M, Jones PD, Landgraff C, Mangat C, Fuzzen M, Servos MR, Giesy JP. Rapid transition between SARS-CoV-2 variants of concern Delta and Omicron detected by monitoring municipal wastewater from three Canadian cities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022:acsestwater.1c00349. [PMID: 35716745 PMCID: PMC8887651 DOI: 10.1021/acsestwater.1c00349&ref=pdf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Monitoring the communal incidence of COVID-19 is important for both government and residents of an area to make informed decisions. However, continuous reliance on one means of monitoring might not be accurate because of biases introduced by government policies or behaviours of residents. Wastewater surveillance was employed to monitor concentrations of SARS-CoV-2 RNA in raw influent wastewater from wastewater treatment plants serving three Canadian Prairie cities with different population sizes. Data obtained from wastewater are not directly influenced by government regulations or behaviours of individuals. The means of three weekly samples collected using 24 h composite auto-samplers were determined. Viral loads were determined by RT-qPCR, and whole-genome sequencing was used to charaterize variants of concern (VOC). The dominant VOCs in the three cities were the same but with different proportions of sub-lineages. Sub-lineages of Delta were AY.12, AY.25, AY.27 and AY.93 in 2021, while the major sub-lineage of Omicron was BA.1 in January 2022, and BA.2 subsequently became a trace-level sub-variant then the predominant VOC. When each VOC was first detected varied among cities; However, Saskatoon, with the largest population, was always the first to present new VOCs. Viral loads varied among cities, but there was no direct correlation with population size, possibly because of differences in flow regimes. Population is one of the factors that affects trends in onset and development of local outbreaks during the pandemic. This might be due to demography or the fact that larger populations had greater potential for inter- and intra-country migration. Hence, wastewater surveillance data from larger cities can typically be used to indicate what to expect in smaller communities.
Collapse
Affiliation(s)
- Femi F Oloye
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Yuwei Xie
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Mohsen Asadi
- Department of Civil, Geological and Environmental Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jenna Cantin
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jonathan K Challis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kerry N McPhedran
- Department of Civil, Geological and Environmental Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kevin Kristian
- Wastewater Treatment Plant, Public Work Department, City of Prince Albert, Prince Albert, SK, Canada
| | - Mark Keller
- Wastewater Treatment Plant, City Operations, City of North Battleford, North Battleford, SK, Canada
| | - Mike Sadowski
- Wastewater Treatment Plant, Saskatoon Water Department, City of Saskatoon, Saskatoon, SK, Canada
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Chrystal Landgraff
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Chand Mangat
- Wastewater Surveillance Unit, National Microbiology Laboratory Winnipeg, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Meghan Fuzzen
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, USA; Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
33
|
Hubert CRJ, Acosta N, Waddell BJM, Hasing ME, Qiu Y, Fuzzen M, Harper NBJ, Bautista MA, Gao T, Papparis C, Van Doorn J, Du K, Xiang K, Chan L, Vivas L, Pradhan P, McCalder J, Low K, England WE, Kuzma D, Conly J, Ryan MC, Achari G, Hu J, Cabaj JL, Sikora C, Svenson L, Zelyas N, Servos M, Meddings J, Hrudey SE, Frankowski K, Parkins MD, Pang XL, Lee BE. Tracking Emergence and Spread of SARS-CoV-2 Omicron Variant in Large and Small Communities by Wastewater Monitoring in Alberta, Canada. Emerg Infect Dis 2022. [PMID: 35867051 DOI: 10.1101/2022.03.07.22272055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
Wastewater monitoring of SARS-CoV-2 enables early detection and monitoring of the COVID-19 disease burden in communities and can track specific variants of concern. We determined proportions of the Omicron and Delta variants across 30 municipalities covering >75% of the province of Alberta (population 4.5 million), Canada, during November 2021-January 2022. Larger cities Calgary and Edmonton exhibited more rapid emergence of Omicron than did smaller and more remote municipalities. Notable exceptions were Banff, a small international resort town, and Fort McMurray, a medium-sized northern community that has many workers who fly in and out regularly. The integrated wastewater signal revealed that the Omicron variant represented close to 100% of SARS-CoV-2 burden by late December, before the peak in newly diagnosed clinical cases throughout Alberta in mid-January. These findings demonstrate that wastewater monitoring offers early and reliable population-level results for establishing the extent and spread of SARS-CoV-2 variants.
Collapse
|
34
|
Hamill V, Noll L, Lu N, Tsui WNT, Porter EP, Gray M, Sebhatu T, Goerl K, Brown S, Palinski R, Thomason S, Almes K, Retallick J, Bai J. Molecular detection of SARS-CoV-2 strains and differentiation of Delta variant strains. Transbound Emerg Dis 2022; 69:2879-2889. [PMID: 34964565 PMCID: PMC9240106 DOI: 10.1111/tbed.14443] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/22/2021] [Indexed: 12/20/2022]
Abstract
The Delta variant of SARS-CoV-2 has now become the predominant strain in the global COVID-19 pandemic. Strain coverage of some detection assays developed during the early pandemic stages has declined due to periodic mutations in the viral genome. We have developed a real-time RT-PCR (RT-qPCR) for SARS-CoV-2 detection that provides nearly 100% strain coverage, and differentiation of highly transmissible Delta variant strains. All full or nearly full (≥28 kb) SARS-CoV-2 genomes (n = 403,812), including 6422 Delta and 280 Omicron variant strains, were collected from public databases at the time of analysis and used for assay design. The two amino acid deletions in the spike gene (S-gene, Δ156-157) that is characteristic of the Delta variant were targeted during the assay design. Although strain coverage for the Delta variant was very high (99.7%), detection coverage for non-Delta wild-type strains was 93.9%, mainly due to the confined region of design. To increase strain coverage of the assay, the design for CDC N1 target was added to the assay. In silico analysis of 403,812 genomes indicated a 95.4% strain coverage for the CDC N1 target, however, in combination with our new non-Delta S-gene target, total coverage for non-Delta wild-type strains increased to 99.8%. A human 18S rRNA gene was also analyzed and used as an internal control. The final four-plex RT-qPCR assay generated PCR amplification efficiencies between 95.4% and 102.0% with correlation coefficients (R2 ) of >0.99 for cloned positive controls; Delta and non-Delta human clinical samples generated PCR efficiencies of 93.4%-97.0% and R2 > 0.99. The assay also detects 98.6% of 280 Omicron sequences. Assay primers and probes have no match to other closely related human coronaviruses, and did not produce a signal from samples positive to selected animal coronaviruses. Genotypes of selected clinical samples identified by the RT-qPCR were confirmed by Sanger sequencing.
Collapse
Affiliation(s)
- Vaughn Hamill
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
| | - Lance Noll
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, United States
| | - Nanyan Lu
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
- Division of Biology, Kansas State University, Manhattan, KS 66506, United States
| | - Wai Ning Tiffany Tsui
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
| | - Elizabeth Poulsen Porter
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
| | - Mark Gray
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
| | - Tesfaalem Sebhatu
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
| | - Kyle Goerl
- Lafene Health Center, Kansas State University, Manhattan, KS 66506, United States
| | - Susan Brown
- Division of Biology, Kansas State University, Manhattan, KS 66506, United States
| | - Rachel Palinski
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, United States
| | - Sasha Thomason
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, United States
| | - Kelli Almes
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, United States
| | - Jamie Retallick
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, United States
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, United States
| |
Collapse
|
35
|
Hubert CRJ, Acosta N, Waddell BJM, Hasing ME, Qiu Y, Fuzzen M, Harper NBJ, Bautista MA, Gao T, Papparis C, Van Doorn J, Du K, Xiang K, Chan L, Vivas L, Pradhan P, McCalder J, Low K, England WE, Kuzma D, Conly J, Ryan MC, Achari G, Hu J, Cabaj JL, Sikora C, Svenson L, Zelyas N, Servos M, Meddings J, Hrudey SE, Frankowski K, Parkins MD, Pang XL, Lee BE. Tracking Emergence and Spread of SARS-CoV-2 Omicron Variant in Large and Small Communities by Wastewater Monitoring in Alberta, Canada. Emerg Infect Dis 2022; 28:1770-1776. [PMID: 35867051 PMCID: PMC9423933 DOI: 10.3201/eid2809.220476] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Wastewater monitoring of SARS-CoV-2 enables early detection and monitoring of the COVID-19 disease burden in communities and can track specific variants of concern. We determined proportions of the Omicron and Delta variants across 30 municipalities covering >75% of the province of Alberta (population 4.5 million), Canada, during November 2021-January 2022. Larger cities Calgary and Edmonton exhibited more rapid emergence of Omicron than did smaller and more remote municipalities. Notable exceptions were Banff, a small international resort town, and Fort McMurray, a medium-sized northern community that has many workers who fly in and out regularly. The integrated wastewater signal revealed that the Omicron variant represented close to 100% of SARS-CoV-2 burden by late December, before the peak in newly diagnosed clinical cases throughout Alberta in mid-January. These findings demonstrate that wastewater monitoring offers early and reliable population-level results for establishing the extent and spread of SARS-CoV-2 variants.
Collapse
|
36
|
Li J, Gao Z, Chen J, Cheng R, Niu J, Zhang J, Yang Y, Yuan X, Xia J, Mao G, Liu H, Dong Y, Wu C. Development of a panel of three multiplex allele-specific qRT-PCR assays for quick differentiation of recombinant variants and Omicron subvariants of SARS-CoV-2. Front Cell Infect Microbiol 2022; 12:953027. [PMID: 36061868 PMCID: PMC9433905 DOI: 10.3389/fcimb.2022.953027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Quick differentiation of the circulating variants and the emerging recombinant variants of SARS-CoV-2 is essential to monitor their transmission. However, the widely used gene sequencing method is time-consuming and costly when facing the viral recombinant variants, because partial or whole genome sequencing is required. Allele-specific real time RT-PCR (qRT-PCR) represents a quick and cost-effective method in SNP genotyping and has been successfully applied for SARS-CoV-2 variant screening. In the present study, we developed a panel of 3 multiplex allele-specific qRT-PCR assays targeting 12 key differential mutations for quick differentiation of SARS-CoV-2 recombinant variants (XD and XE) and Omicron subvariants (BA.1 and BA.2). Two parallel multiplex qRT-PCR reactions were designed to separately target the protype allele and the mutated allele of the four mutations in each allele-specific qRT-PCR assay. The variation of Cp values (ΔCp) between the two multiplex qRT-PCR reactions was applied for mutation determination. The developed multiplex allele-specific qRT-PCR assays exhibited outstanding analytical sensitivities (with limits of detection [LoDs] of 2.97-27.43 copies per reaction), wide linear detection ranges (107-100 copies per reaction), good amplification efficiencies (82% to 95%), good reproducibility (Coefficient of Variations (CVs) < 5% in both intra-assay and inter-assay tests) and clinical performances (99.5%-100% consistency with Sanger sequencing). The developed multiplex allele-specific qRT-PCR assays in this study provide an alternative tool for quick differentiation of SARS-CoV-2 recombinant variants (XD and XE) and Omicron subvariants (BA.1 and BA.2).
Collapse
Affiliation(s)
- Jianguo Li
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- *Correspondence: Jianguo Li, ; Changxin Wu,
| | - Zefeng Gao
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Jing Chen
- Shanxi Provincial Key Laboratory for Major Infectious Disease Response, Shanxi Provincial Center for Disease Control and Prevention, Taiyuan, China
| | - Ruiling Cheng
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Jiahui Niu
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Jialei Zhang
- College of Life Sciences, Shanxi University, Taiyuan, China
| | - You Yang
- College of Life Sciences, Shanxi University, Taiyuan, China
| | - Ximei Yuan
- College of Life Sciences, Shanxi University, Taiyuan, China
| | - Juan Xia
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Guoli Mao
- Laboratory, Shanxi Guoxin Caregeno Biotechnology Co., Ltd, Taiyuan, China
| | - Hulong Liu
- Laboratory, Shanxi Guoxin Caregeno Biotechnology Co., Ltd, Taiyuan, China
| | - Yongkang Dong
- Administrative Office, the Fourth People's Hospital of Taiyuan, Taiyuan, China
| | - Changxin Wu
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- *Correspondence: Jianguo Li, ; Changxin Wu,
| |
Collapse
|
37
|
Novoa B, Ríos-Castro R, Otero-Muras I, Gouveia S, Cabo A, Saco A, Rey-Campos M, Pájaro M, Fajar N, Aranguren R, Romero A, Panebianco A, Valdés L, Payo P, Alonso AA, Figueras A, Cameselle C. Wastewater and marine bioindicators surveillance to anticipate COVID-19 prevalence and to explore SARS-CoV-2 diversity by next generation sequencing: One-year study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155140. [PMID: 35421481 PMCID: PMC8996449 DOI: 10.1016/j.scitotenv.2022.155140] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 05/13/2023]
Abstract
This study presents the results of SARS-CoV-2 surveillance in sewage water of 11 municipalities and marine bioindicators in Galicia (NW of Spain) from May 2020 to May 2021. An integrated pipeline was developed including sampling, pre-treatment and biomarker quantification, RNA detection, SARS-CoV-2 sequencing, mechanistic mathematical modeling and forecasting. The viral load in the inlet stream to the wastewater treatment plants (WWTP) was used to detect new outbreaks of COVID-19, and the data of viral load in the wastewater in combination with data provided by the health system was used to predict the evolution of the pandemic in the municipalities under study within a time horizon of 7 days. Moreover, the study shows that the viral load was eliminated from the treated sewage water in the WWTP, mainly in the biological reactors and the disinfection system. As a result, we detected a minor impact of the virus in the marine environment through the analysis of seawater, marine sediments and, wild and aquacultured mussels in the final discharge point of the WWTP.
Collapse
Affiliation(s)
- Beatriz Novoa
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | - Raquel Ríos-Castro
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | - Irene Otero-Muras
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain; Institute for Integrative Systems Biology I2SYSBIO (UV, CSIC), Spanish National Research Council, 46980 València, Spain
| | - Susana Gouveia
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain; University of Vigo, BiotecnIA Group, Department of Chemical Engineering, 36310 Vigo, Spain
| | - Adrián Cabo
- University of Vigo, BiotecnIA Group, Department of Chemical Engineering, 36310 Vigo, Spain; GESECO Aguas S.A. Vigo, Spain
| | - Amaro Saco
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | - Magalí Rey-Campos
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | - Manuel Pájaro
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain; CITIC Research Center, Department of Applied Mathematics, University of A Coruña, 15071 A Coruña, Spain
| | - Noelia Fajar
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | - Raquel Aranguren
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | - Alejandro Romero
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | - Antonella Panebianco
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | - Lorena Valdés
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | | | - Antonio A Alonso
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | - Antonio Figueras
- Marine Research Institute IIM-CSIC, Spanish National Research Council, 36208 Vigo, Spain
| | - Claudio Cameselle
- University of Vigo, BiotecnIA Group, Department of Chemical Engineering, 36310 Vigo, Spain.
| |
Collapse
|
38
|
Zahmatkesh S, Sillanpaa M, Rezakhani Y, Wang C. Review of concerned SARS-CoV-2 variants like Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529), as well as novel methods for reducing and inactivating SARS-CoV-2 mutants in wastewater treatment facilities. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2022; 7:100140. [PMID: 37520798 PMCID: PMC9349052 DOI: 10.1016/j.hazadv.2022.100140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 12/23/2022]
Abstract
The coronavirus known as COVID-19, which causes pandemics, is causing a global epidemic at a critical stage today. Furthermore, novel mutations in the SARS-CoV-2 spike protein have been discovered in an entirely new strain, impacting the clinical and epidemiological features of COVID-19. Variants of these viruses can increase the transmission in wastewater, lead to reinfection, and reduce immunity provided by monoclonal antibodies and vaccinations. According to the research, a large quantity of viral RNA was discovered in wastewater, suggesting that wastewater can be a crucial source of epidemiological data and health hazards. The purpose of this paper is to introduce a few basic concepts regarding wastewater surveillance as a starting point for comprehending COVID-19's epidemiological aspects. Next, the observation of Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) in wastewater is discussed in detail. Secondly, the essential information for the initial, primary, and final treating sewage in SARS-CoV-2 is introduced. Following that, a thorough examination is provided to highlight the newly developed methods for eradicating SARS-CoV-2 using a combination of solar water disinfection (SODIS) and ultraviolet radiation A (UVA (315-400 nm)), ultraviolet radiation B (UVB (280-315 nm)), and ultraviolet radiation C (UVC (100-280 nm)) processes. SARS-CoV-2 eradication requires high temperatures (above 56°C) and UVC. However, SODIS technologies are based on UVA and operate at cooler temperatures (less than 45°C). Hence, it is not appropriate for sewage treatment (or water consumption) to be conducted using SODIS methods in the current pandemic. Finally, SARS-CoV-2 may be discovered in sewage utilizing the wastewater-based epidemiology (WBE) monitoring method.
Collapse
Affiliation(s)
- Sasan Zahmatkesh
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, P.O. Box 48518-78195, Behshahr, Iran
| | - Mika Sillanpaa
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa
| | - Yousof Rezakhani
- Department of Civil Engineer in g, Pardis Branch, Islamic Azad University, Pardis, Iran
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
39
|
Lee WL, Armas F, Guarneri F, Gu X, Formenti N, Wu F, Chandra F, Parisio G, Chen H, Xiao A, Romeo C, Scali F, Tonni M, Leifels M, Chua FJD, Kwok GW, Tay JY, Pasquali P, Thompson J, Alborali GL, Alm EJ. Rapid displacement of SARS-CoV-2 variant Delta by Omicron revealed by allele-specific PCR in wastewater. WATER RESEARCH 2022; 221:118809. [PMID: 35841797 PMCID: PMC9250349 DOI: 10.1016/j.watres.2022.118809] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/18/2022] [Accepted: 07/01/2022] [Indexed: 05/06/2023]
Abstract
On November 26, 2021, the B.1.1.529 COVID-19 variant was classified as the Omicron variant of concern (VOC). Reports of higher transmissibility and potential immune evasion triggered flight bans and heightened health control measures across the world to stem its distribution. Wastewater-based surveillance has demonstrated to be a useful complement for clinical community-based tracking of SARS-CoV-2 variants. Using design principles of our previous assays that detect SARS-CoV-2 variants (Alpha and Delta), we developed an allele-specific RT-qPCR assay which simultaneously targets the stretch of mutations from Q493R to Q498R for quantitative detection of the Omicron variant in wastewater. We report their validation against 10-month longitudinal samples from the influent of a wastewater treatment plant in Italy. SARS-CoV-2 RNA concentrations and variant frequencies in wastewater determined using these variant assays agree with clinical cases, revealing rapid displacement of the Delta variant by the Omicron variant within three weeks. These variant trends, when mapped against vaccination rates, support clinical studies that found the rapid emergence of SARS-CoV-2 Omicron variant being associated with an infection advantage over Delta in vaccinated persons. These data reinforce the versatility, utility and accuracy of these open-sourced methods using allele-specific RT-qPCR for tracking the dynamics of variant displacement in communities through wastewater for informed public health responses.
Collapse
Affiliation(s)
- Wei Lin Lee
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Federica Armas
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Flavia Guarneri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini" (IZSLER), Italy
| | - Xiaoqiong Gu
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Nicoletta Formenti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini" (IZSLER), Italy
| | - Fuqing Wu
- Center for Infectious Disease, Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
| | - Franciscus Chandra
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Giovanni Parisio
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini" (IZSLER), Italy
| | - Hongjie Chen
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Amy Xiao
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, USA; Department of Biological Engineering, Massachusetts Institute of Technology, USA
| | - Claudia Romeo
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini" (IZSLER), Italy
| | - Federico Scali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini" (IZSLER), Italy
| | - Matteo Tonni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini" (IZSLER), Italy
| | - Mats Leifels
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Feng Jun Desmond Chua
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Germaine Wc Kwok
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Joey Yr Tay
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Paolo Pasquali
- Dipartimento di Sicurezza Alimentare, Nutrizione e Sanità Pubblica Veterinaria, Istituto Superiore di Sanità, Italy
| | - Janelle Thompson
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; Asian School of the Environment, Nanyang Technological University, Singapore.
| | - Giovanni Loris Alborali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini" (IZSLER), Italy
| | - Eric J Alm
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, USA; Department of Biological Engineering, Massachusetts Institute of Technology, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
40
|
Xu X, Deng Y, Ding J, Zheng X, Li S, Liu L, Chui HK, Poon LLM, Zhang T. Real-time allelic assays of SARS-CoV-2 variants to enhance sewage surveillance. WATER RESEARCH 2022; 220:118686. [PMID: 35679788 PMCID: PMC9148393 DOI: 10.1016/j.watres.2022.118686] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 05/21/2023]
Abstract
To effectively control the ongoing outbreaks of fast-spreading SARS-CoV-2 variants, there is an urgent need to add rapid variant detection and discrimination methods to the existing sewage surveillance systems established worldwide. We designed eight assays based on allele-specific RT-qPCR for real-time allelic discrimination of eight SARS-CoV-2 variants (Alpha, Beta, Gamma, Delta, Omicron, Lambda, Mu, and Kappa) in sewage. In silico analysis of the designed assays for identifying SARS-CoV-2 variants using more than four million SARS-CoV-2 variant sequences yielded ∼100% specificity and >90% sensitivity. All assays could sensitively discriminate and quantify target variants at levels as low as 10 viral RNA copy/µL with minimal cross-reactivity to the corresponding nontarget genotypes, even for sewage samples containing mixtures of SARS-CoV-2 variants with differential abundances. Integration of this method into the routine sewage surveillance in Hong Kong successfully identified the Beta variant in a community sewage. Complete concordance was observed between the results of viral whole-genome sequencing and those of our novel assays in sewage samples that contained exclusively the Delta variant discharged by a clinically diagnosed COVID-19 patient living in a quarantine hotel. Our assays in this method also provided real-time discrimination of the newly emerging Omicron variant in sewage two days prior to clinical test results in another quarantine hotel in Hong Kong. These novel allelic discrimination assays offer a rapid, sensitive, and specific way for detecting multiple SARS-CoV-2 variants in sewage and can be directly integrated into the existing sewage surveillance systems.
Collapse
Affiliation(s)
- Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jiahui Ding
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xiawan Zheng
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Shuxian Li
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Ho-Kwong Chui
- Environmental Protection Department, The Government of Hong Kong SAR, Tamar, Hong Kong SAR, China
| | - Leo L M Poon
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong SAR, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| |
Collapse
|
41
|
Peng J, Sun J, Yang MI, Gibson RM, Arts EJ, Olabode AS, Poon AFY, Wang X, Wheeler AR, Edwards EA, Peng H. Early Warning Measurement of SARS-CoV-2 Variants of Concern in Wastewaters by Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2022; 9:638-644. [PMID: 37552744 PMCID: PMC9236213 DOI: 10.1021/acs.estlett.2c00280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 05/24/2023]
Abstract
Wastewater surveillance has rapidly emerged as an early warning tool to track COVID-19. However, the early warning measurement of new SARS-CoV-2 variants of concern (VOCs) in wastewaters remains a major challenge. We herein report a rapid analytical strategy for quantitative measurement of VOCs, which couples nested polymerase chain reaction and liquid chromatography-mass spectrometry (nPCR-LC-MS). This method showed a greater selectivity than the current allele-specific quantitative PCR (AS-qPCR) for tracking new VOC and allowed the detection of multiple signature mutations in a single measurement. By measuring the Omicron variant in wastewaters across nine Ontario wastewater treatment plants serving over a three million population, the nPCR-LC-MS method demonstrated a better quantification accuracy than next-generation sequencing (NGS), particularly at the early stage of community spreading of Omicron. This work addresses a major challenge for current SARS-CoV-2 wastewater surveillance by rapidly and accurately measuring VOCs in wastewaters for early warning.
Collapse
Affiliation(s)
- Jiaxi Peng
- Department of Chemistry, University of
Toronto, 80 St George Street, Toronto, Ontario M5S 3H6,
Canada
- Donnelly Centre for Cellular and Biomolecular
Research, University of Toronto, 160 College Street, Toronto,
Ontario M5S 3E1, Canada
- Institute of Biomedical Engineering,
University of Toronto, 164 College Street, Toronto, Ontario
M5S 3G9, Canada
| | - Jianxian Sun
- Department of Chemistry, University of
Toronto, 80 St George Street, Toronto, Ontario M5S 3H6,
Canada
| | - Minqing Ivy Yang
- Department of Chemical Engineering and Applied
Chemistry, University of Toronto, 200 College Street, Toronto,
Ontario M5S 3E5, Canada
| | - Richard M. Gibson
- Department of Microbiology and Immunology,
Western University, 1151 Richmond Street, London, Ontario N6A
5C1, Canada
| | - Eric J. Arts
- Department of Microbiology and Immunology,
Western University, 1151 Richmond Street, London, Ontario N6A
5C1, Canada
| | - Abayomi S. Olabode
- Department of Microbiology and Immunology,
Western University, 1151 Richmond Street, London, Ontario N6A
5C1, Canada
| | - Art F. Y. Poon
- Department of Microbiology and Immunology,
Western University, 1151 Richmond Street, London, Ontario N6A
5C1, Canada
| | - Xianyao Wang
- Department of Chemistry, University of
Toronto, 80 St George Street, Toronto, Ontario M5S 3H6,
Canada
| | - Aaron R. Wheeler
- Department of Chemistry, University of
Toronto, 80 St George Street, Toronto, Ontario M5S 3H6,
Canada
- Donnelly Centre for Cellular and Biomolecular
Research, University of Toronto, 160 College Street, Toronto,
Ontario M5S 3E1, Canada
- Institute of Biomedical Engineering,
University of Toronto, 164 College Street, Toronto, Ontario
M5S 3G9, Canada
| | - Elizabeth A. Edwards
- Department of Chemical Engineering and Applied
Chemistry, University of Toronto, 200 College Street, Toronto,
Ontario M5S 3E5, Canada
| | - Hui Peng
- Department of Chemistry, University of
Toronto, 80 St George Street, Toronto, Ontario M5S 3H6,
Canada
- School of the Environment, University of
Toronto, 80 St George Street, Toronto, Ontario M5S 3H6,
Canada
| |
Collapse
|
42
|
Zheng X, Deng Y, Xu X, Li S, Zhang Y, Ding J, On HY, Lai JCC, In Yau C, Chin AWH, Poon LLM, Tun HM, Zhang T. Comparison of virus concentration methods and RNA extraction methods for SARS-CoV-2 wastewater surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153687. [PMID: 35134418 PMCID: PMC8816846 DOI: 10.1016/j.scitotenv.2022.153687] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/16/2022] [Accepted: 02/01/2022] [Indexed: 05/02/2023]
Abstract
Wastewater surveillance is a promising tool for population-level monitoring of the spread of infectious diseases, such as the coronavirus disease 2019 (COVID-19). Different from clinical specimens, viruses in community-scale wastewater samples need to be concentrated before detection because viral RNA is highly diluted. The present study evaluated eleven different virus concentration methods for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater. First, eight concentration methods of different principles were compared using spiked wastewater at a starting volume of 30 mL. Ultracentrifugation was the most effective method with a viral recovery efficiency of 25 ± 6%. The second-best option, AlCl3 precipitation method, yielded a lower recovery efficiency, only approximately half that of the ultracentrifugation method. Second, the potential of increasing method sensitivity was explored using three concentration methods starting with a larger volume of 1000 mL. Although ultracentrifugation using a large volume outperformed the other two large-volume methods, it only yielded a comparable method sensitivity as the ultracentrifugation using a small volume (30 mL). Thus, ultracentrifugation using less volume of wastewater is more preferable considering the sample processing throughput. Third, a comparison of two viral RNA extraction methods showed that the lysis-buffer-based extraction method resulted in higher viral recovery efficiencies, with cycle threshold (Ct) values 0.9-4.2 lower than those obtained for the acid-guanidinium-phenol-based method using spiked samples. These results were further confirmed by using positive wastewater samples concentrated by ultracentrifugation and extracted separately by the two viral RNA extraction methods. In summary, concentration using ultracentrifugation followed by the lysis buffer-based extraction method enables sensitive and robust detection of SARS-CoV-2 for wastewater surveillance.
Collapse
Affiliation(s)
- Xiawan Zheng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Shuxian Li
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yulin Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jiahui Ding
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hei Yin On
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China; HKU-Pasteur Research Pole, Pokfulam Road, Hong Kong, China
| | - Jimmy C C Lai
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China; HKU-Pasteur Research Pole, Pokfulam Road, Hong Kong, China
| | - Chung In Yau
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Alex W H Chin
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Leo L M Poon
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China; HKU-Pasteur Research Pole, Pokfulam Road, Hong Kong, China
| | - Hein M Tun
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China; HKU-Pasteur Research Pole, Pokfulam Road, Hong Kong, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
43
|
Ahmed W, Bivins A, Smith WJM, Metcalfe S, Stephens M, Jennison AV, Moore FAJ, Bourke J, Schlebusch S, McMahon J, Hewitson G, Nguyen S, Barcelon J, Jackson G, Mueller JF, Ehret J, Hosegood I, Tian W, Wang H, Yang L, Bertsch PM, Tynan J, Thomas KV, Bibby K, Graber TE, Ziels R, Simpson SL. Detection of the Omicron (B.1.1.529) variant of SARS-CoV-2 in aircraft wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153171. [PMID: 35051459 PMCID: PMC8762835 DOI: 10.1016/j.scitotenv.2022.153171] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 05/21/2023]
Abstract
On the 26th of November 2021, the World Health Organization (WHO) designated the newly detected B.1.1.529 lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) the Omicron Variant of Concern (VOC). The genome of the Omicron VOC contains more than 50 mutations, many of which have been associated with increased transmissibility, differing disease severity, and potential to evade immune responses developed for previous VOCs such as Alpha and Delta. In the days since the designation of B.1.1.529 as a VOC, infections with the lineage have been reported in countries around the globe and many countries have implemented travel restrictions and increased border controls in response. We putatively detected the Omicron variant in an aircraft wastewater sample from a flight arriving to Darwin, Australia from Johannesburg, South Africa on the 25th of November 2021 via positive results on the CDC N1, CDC N2, and del(69-70) RT-qPCR assays per guidance from the WHO. The Australian Northern Territory Health Department detected one passenger onboard the flight who was infected with SARS-CoV-2, which was determined to be the Omicron VOC by sequencing of a nasopharyngeal swab sample. Subsequent sequencing of the aircraft wastewater sample using the ARTIC V3 protocol with Nanopore and ATOPlex confirmed the presence of the Omicron variant with a consensus genome that clustered with the B.1.1.529 BA.1 sub-lineage. Our detection and confirmation of a single onboard Omicron infection via aircraft wastewater further bolsters the important role that aircraft wastewater can play as an independent and unintrusive surveillance point for infectious diseases, particularly coronavirus disease 2019.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia.
| | - Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, 3255 Patrick F. Taylor Hall, Baton Rouge, LA 70803, USA
| | - Wendy J M Smith
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - Suzanne Metcalfe
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - Mikayla Stephens
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - Amy V Jennison
- Public Health Microbiology and Virology, Queensland Public Health and Infectious Diseases Reference Genomics, Forensic and Scientific Services, Queensland Department of Health, Coopers Plains, QLD, Australia
| | - Frederick A J Moore
- Public Health Microbiology and Virology, Queensland Public Health and Infectious Diseases Reference Genomics, Forensic and Scientific Services, Queensland Department of Health, Coopers Plains, QLD, Australia
| | - Jayden Bourke
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - Sanmarie Schlebusch
- Public Health Microbiology and Virology, Queensland Public Health and Infectious Diseases Reference Genomics, Forensic and Scientific Services, Queensland Department of Health, Coopers Plains, QLD, Australia
| | - Jamie McMahon
- Public Health Microbiology and Virology, Queensland Public Health and Infectious Diseases Reference Genomics, Forensic and Scientific Services, Queensland Department of Health, Coopers Plains, QLD, Australia
| | - Glen Hewitson
- Public Health Microbiology and Virology, Queensland Public Health and Infectious Diseases Reference Genomics, Forensic and Scientific Services, Queensland Department of Health, Coopers Plains, QLD, Australia
| | - Son Nguyen
- Public Health Microbiology and Virology, Queensland Public Health and Infectious Diseases Reference Genomics, Forensic and Scientific Services, Queensland Department of Health, Coopers Plains, QLD, Australia
| | - Jean Barcelon
- Public Health Microbiology and Virology, Queensland Public Health and Infectious Diseases Reference Genomics, Forensic and Scientific Services, Queensland Department of Health, Coopers Plains, QLD, Australia
| | - Greg Jackson
- Water Unit, Health Protection Branch, Prevention Division, Queensland Health, QLD, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | - John Ehret
- Qantas Airways Limited, 10 Bourke Rd Mascot, 2020, NSW, Australia
| | - Ian Hosegood
- Qantas Airways Limited, 10 Bourke Rd Mascot, 2020, NSW, Australia
| | - Wei Tian
- MGI Australia Pty Ltd, 300 Herston Road, Herston, Brisbane, QLD 4006, Australia
| | - Haofei Wang
- MGI Australia Pty Ltd, 300 Herston Road, Herston, Brisbane, QLD 4006, Australia
| | - Lin Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; MGI, BGI-Shenzhen, Shenzhen 518083, China
| | - Paul M Bertsch
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - Josh Tynan
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, IN 46556, USA
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Ryan Ziels
- Department of Civil Engineering, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | | |
Collapse
|
44
|
Wolfe M, Hughes B, Duong D, Chan-Herur V, Wigginton KR, White BJ, Boehm AB. Detection of SARS-CoV-2 Variants Mu, Beta, Gamma, Lambda, Delta, Alpha, and Omicron in Wastewater Settled Solids Using Mutation-Specific Assays Is Associated with Regional Detection of Variants in Clinical Samples. Appl Environ Microbiol 2022; 88:e0004522. [PMID: 35380449 DOI: 10.1101/2022.01.17.22269439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
Changes in the circulation of SARS-CoV-2 variants of concern (VOCs) may require changes in the public health response to the COVID-19 pandemic, as they have the potential to evade vaccines and pharmaceutical interventions and may be more transmissive than other SARS-CoV-2 variants. As such, it is essential to track and prevent their spread in susceptible communities. We developed digital reverse transcription (RT)-PCR assays for mutations characteristic of VOCs and used them to quantify those mutations in samples of wastewater settled solids collected from a publicly owned treatment works (POTW) during different phases of the COVID-19 pandemic. Wastewater concentrations of single mutations characteristic of each VOC, normalized by the concentration of a conserved SARS-CoV-2 N gene, correlate with regional estimates of the proportion of clinical infections caused by each VOC. These results suggest that targeted RT-PCR assays can be used to detect variants circulating in communities and inform the public health response to the pandemic. IMPORTANCE Wastewater represents a pooled biological sample of the contributing community and thus a resource for assessing community health. Here, we show that emergence, spread, and disappearance of SARS-CoV-2 infections caused by variants of concern are reflected in the presence of variant genomic RNA in wastewater settled solids. This work highlights an important public health use case for wastewater.
Collapse
Affiliation(s)
- Marlene Wolfe
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | | | - Dorothea Duong
- Verily Life Sciences, South San Francisco, California, USA
| | | | - Krista R Wigginton
- Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Bradley J White
- Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexandria B Boehm
- Civil and Environmental Engineering, Stanford Universitygrid.168010.e, Stanford, California, USA
| |
Collapse
|
45
|
Detection of SARS-CoV-2 Variants Mu, Beta, Gamma, Lambda, Delta, Alpha, and Omicron in Wastewater Settled Solids Using Mutation-Specific Assays Is Associated with Regional Detection of Variants in Clinical Samples. Appl Environ Microbiol 2022; 88:e0004522. [PMID: 35380449 PMCID: PMC9040616 DOI: 10.1128/aem.00045-22] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Changes in the circulation of SARS-CoV-2 variants of concern (VOCs) may require changes in the public health response to the COVID-19 pandemic, as they have the potential to evade vaccines and pharmaceutical interventions and may be more transmissive than other SARS-CoV-2 variants. As such, it is essential to track and prevent their spread in susceptible communities. We developed digital reverse transcription (RT)-PCR assays for mutations characteristic of VOCs and used them to quantify those mutations in samples of wastewater settled solids collected from a publicly owned treatment works (POTW) during different phases of the COVID-19 pandemic. Wastewater concentrations of single mutations characteristic of each VOC, normalized by the concentration of a conserved SARS-CoV-2 N gene, correlate with regional estimates of the proportion of clinical infections caused by each VOC. These results suggest that targeted RT-PCR assays can be used to detect variants circulating in communities and inform the public health response to the pandemic. IMPORTANCE Wastewater represents a pooled biological sample of the contributing community and thus a resource for assessing community health. Here, we show that emergence, spread, and disappearance of SARS-CoV-2 infections caused by variants of concern are reflected in the presence of variant genomic RNA in wastewater settled solids. This work highlights an important public health use case for wastewater.
Collapse
|
46
|
Peterson SW, Lidder R, Daigle J, Wonitowy Q, Dueck C, Nagasawa A, Mulvey MR, Mangat CS. RT-qPCR detection of SARS-CoV-2 mutations S 69-70 del, S N501Y and N D3L associated with variants of concern in Canadian wastewater samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022. [PMID: 34756912 DOI: 10.1101/2021.05.20.21257536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
SARS-CoV-2 variants of concern (VoC) have been increasingly detected in clinical surveillance in Canada and internationally. These VoC are associated with higher transmissibility rates and in some cases, increased mortality. In this work we present a national wastewater survey of the distribution of three SARS-CoV-2 mutations found in the B.1.1.7 (alpha), B.1.351 (beta), and P.1 (gamma) VoC, namely the S-gene 69-70 deletion, N501Y mutation, and N-gene D3L. RT-qPCR allelic discrimination assays were sufficiently sensitive and specific for detection and relative quantitation of SARS-CoV-2 variants in wastewater to allow for rapid population-level screening and surveillance. We tested 261 samples collected from 5 Canadian cities (Vancouver, Edmonton, Toronto, Montreal, and Halifax) and 6 communities in the Northwest Territories from February 16th to March 28th, 2021. VoC were not detected in the Territorial communities, suggesting the absence of VoC SARS-CoV-2 cases in those communities. Percentage of variant remained low throughout the study period in the majority of the sites tested, however the Toronto sites showed a marked increase from ~25% to ~75% over the study period. The results of this study highlight the utility of population level molecular surveillance of SARS-CoV-2 VoC using wastewater. Wastewater monitoring for VoC can be a powerful tool in informing public health responses, including monitoring trends independent of clinical surveillance and providing early warning to communities.
Collapse
Affiliation(s)
- Shelley W Peterson
- Wastewater Surveillance, One-Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Ravinder Lidder
- Wastewater Surveillance, One-Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Jade Daigle
- Wastewater Surveillance, One-Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Quinn Wonitowy
- Wastewater Surveillance, One-Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Codey Dueck
- Wastewater Surveillance, One-Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Audra Nagasawa
- Centre for Population Health Data, Statistics Canada, Ottawa, Ontario, Canada
| | - Michael R Mulvey
- Wastewater Surveillance, One-Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba. 727 McDermot Avenue, Winnipeg, Manitoba R3E 3P5, Canada
| | - Chand S Mangat
- Wastewater Surveillance, One-Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba. 727 McDermot Avenue, Winnipeg, Manitoba R3E 3P5, Canada.
| |
Collapse
|
47
|
Peterson SW, Lidder R, Daigle J, Wonitowy Q, Dueck C, Nagasawa A, Mulvey MR, Mangat CS. RT-qPCR detection of SARS-CoV-2 mutations S 69-70 del, S N501Y and N D3L associated with variants of concern in Canadian wastewater samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151283. [PMID: 34756912 PMCID: PMC8552806 DOI: 10.1016/j.scitotenv.2021.151283] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 05/02/2023]
Abstract
SARS-CoV-2 variants of concern (VoC) have been increasingly detected in clinical surveillance in Canada and internationally. These VoC are associated with higher transmissibility rates and in some cases, increased mortality. In this work we present a national wastewater survey of the distribution of three SARS-CoV-2 mutations found in the B.1.1.7 (alpha), B.1.351 (beta), and P.1 (gamma) VoC, namely the S-gene 69-70 deletion, N501Y mutation, and N-gene D3L. RT-qPCR allelic discrimination assays were sufficiently sensitive and specific for detection and relative quantitation of SARS-CoV-2 variants in wastewater to allow for rapid population-level screening and surveillance. We tested 261 samples collected from 5 Canadian cities (Vancouver, Edmonton, Toronto, Montreal, and Halifax) and 6 communities in the Northwest Territories from February 16th to March 28th, 2021. VoC were not detected in the Territorial communities, suggesting the absence of VoC SARS-CoV-2 cases in those communities. Percentage of variant remained low throughout the study period in the majority of the sites tested, however the Toronto sites showed a marked increase from ~25% to ~75% over the study period. The results of this study highlight the utility of population level molecular surveillance of SARS-CoV-2 VoC using wastewater. Wastewater monitoring for VoC can be a powerful tool in informing public health responses, including monitoring trends independent of clinical surveillance and providing early warning to communities.
Collapse
Affiliation(s)
- Shelley W Peterson
- Wastewater Surveillance, One-Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Ravinder Lidder
- Wastewater Surveillance, One-Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Jade Daigle
- Wastewater Surveillance, One-Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Quinn Wonitowy
- Wastewater Surveillance, One-Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Codey Dueck
- Wastewater Surveillance, One-Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Audra Nagasawa
- Centre for Population Health Data, Statistics Canada, Ottawa, Ontario, Canada
| | - Michael R Mulvey
- Wastewater Surveillance, One-Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba. 727 McDermot Avenue, Winnipeg, Manitoba R3E 3P5, Canada
| | - Chand S Mangat
- Wastewater Surveillance, One-Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba. 727 McDermot Avenue, Winnipeg, Manitoba R3E 3P5, Canada.
| |
Collapse
|
48
|
Hrudey SE, Bischel HN, Charrois J, Chik AHS, Conant B, Delatolla R, Dorner S, Graber TE, Hubert C, Isaac-Renton J, Pons W, Safford H, Servos M, Sikora C. Wastewater Surveillance for SARS-CoV-2 RNA in Canada. Facets (Ott) 2022. [DOI: 10.1139/facets-2022-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Wastewater surveillance for SARS-CoV-2 RNA is a relatively recent adaptation of long-standing wastewater surveillance for infectious and other harmful agents. Individuals infected with COVID-19 were found to shed SARS-CoV-2 in their faeces. Researchers around the world confirmed that SARS-CoV-2 RNA fragments could be detected and quantified in community wastewater. Canadian academic researchers, largely as volunteer initiatives, reported proof-of-concept by April 2020. National collaboration was initially facilitated by the Canadian Water Network. Many public health officials were initially skeptical about actionable information being provided by wastewater surveillance even though experience has shown that public health surveillance for a pandemic has no single, perfect approach. Rather, different approaches provide different insights, each with its own strengths and limitations. Public health science must triangulate among different forms of evidence to maximize understanding of what is happening or may be expected. Well-conceived, resourced, and implemented wastewater-based platforms can provide a cost-effective approach to support other conventional lines of evidence. Sustaining wastewater monitoring platforms for future surveillance of other disease targets and health states is a challenge. Canada can benefit from taking lessons learned from the COVID-19 pandemic to develop forward-looking interpretive frameworks and capacity to implement, adapt, and expand such public health surveillance capabilities.
Collapse
Affiliation(s)
- Steve E. Hrudey
- Professor Emeritus, Analytical & Environmental Toxicology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2G3 Canada
| | - Heather N. Bischel
- Associate Professor, Department of Civil & Environmental Engineering, University of California, Davis, Davis, CA 95616 USA
| | - Jeff Charrois
- Senior Manager, Analytical Operations and Process Development Teams, EPCOR Water Services Inc, Edmonton, AB T5K 0A5 Canada
| | - Alex H. S. Chik
- Project Manager, Wastewater Surveillance Initiative, Ontario Clean Water Agency, Mississauga, ON L5A 4G1 Canada
| | - Bernadette Conant
- Past Chief Executive Officer, Canadian Water Network, Waterloo, ON N2L 3G1 Canada
| | - Rob Delatolla
- Professor, Civil Engineering, University of Ottawa, Ottawa, ON K1N 6N5 Canada
| | - Sarah Dorner
- Professor, Civil, Geological & Mining Engineering, Polytechnique Montréal, Montréal, PQ H3T 1J4 Canada
| | - Tyson E. Graber
- Associate Scientist, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1 Canada
| | - Casey Hubert
- Professor, Campus Alberta Innovates Program Chair in Geomicrobiology, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Judy Isaac-Renton
- Professor Emerita, Dept. Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Calgary, AB, T2N 3V9 Canada
| | - Wendy Pons
- Professor, Bachelor of Environmental Health Program Conestoga College Institute of Technology and Advanced Learning, Kitchener, ON N2P 2N6 Canada
| | - Hannah Safford
- Associate Director of Science Policy, Federation of American Scientists, Arlington, VA 22205 USA
| | - Mark Servos
- Professor & Canada Research Chair, Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - Christopher Sikora
- Medical Officer of Health, Edmonton Region, Alberta Health Services, Edmonton, AB T5J 3E4 Canada
| |
Collapse
|
49
|
Itarte M, Bofill-Mas S, Martínez-Puchol S, Torrell H, Ceretó A, Carrasco M, Forés E, Canela N, Girones R, Rusiñol M. Looking for a needle in a haystack. SARS-CoV-2 variant characterization in sewage. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2021; 24:100308. [PMID: 34849439 PMCID: PMC8621506 DOI: 10.1016/j.coesh.2021.100308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
SARS-CoV-2 variants are emerging worldwide, and monitoring them is key in providing early warnings. Here, we summarize the different analytical approaches currently used to study the dissemination of SARS-CoV-2 variants in wastewater and discuss their advantages and disadvantages. We also provide preliminary results of two sensitive and cost-effective approaches: variant-specific reverse transcription-nested PCR assays and a nonvariant-specific amplicon deep sequencing strategy that targets three key regions of the viral spike protein. Next-generation sequencing approaches enable the simultaneous detection of signature mutations of different variants of concern in a single assay and may be the best option to explore the real picture at a particular time. Targeted PCR approaches focused on specific signature mutations will need continuous updating but are sensitive and cost-effective.
Collapse
Affiliation(s)
- Marta Itarte
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology & Statistics Department at the University of Barcelona (UB), Barcelona, Catalonia, Spain
- The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Sílvia Bofill-Mas
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology & Statistics Department at the University of Barcelona (UB), Barcelona, Catalonia, Spain
- The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Sandra Martínez-Puchol
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology & Statistics Department at the University of Barcelona (UB), Barcelona, Catalonia, Spain
- The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Helena Torrell
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Adrià Ceretó
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Marina Carrasco
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology & Statistics Department at the University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Eva Forés
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology & Statistics Department at the University of Barcelona (UB), Barcelona, Catalonia, Spain
- The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Núria Canela
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Rosina Girones
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology & Statistics Department at the University of Barcelona (UB), Barcelona, Catalonia, Spain
- The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Rusiñol
- Institute of Environmental Assessment & Water Research (IDAEA), CSIC, Barcelona, Catalonia, Spain
| |
Collapse
|
50
|
Corchis-Scott R, Geng Q, Seth R, Ray R, Beg M, Biswas N, Charron L, Drouillard KD, D’Souza R, Heath DD, Houser C, Lawal F, McGinlay J, Menard SL, Porter LA, Rawlings D, Scholl ML, Siu KWM, Tong Y, Weisener CG, Wilhelm SW, McKay RML. Averting an Outbreak of SARS-CoV-2 in a University Residence Hall through Wastewater Surveillance. Microbiol Spectr 2021; 9:e0079221. [PMID: 34612693 PMCID: PMC8510253 DOI: 10.1128/spectrum.00792-21] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022] Open
Abstract
A wastewater surveillance program targeting a university residence hall was implemented during the spring semester 2021 as a proactive measure to avoid an outbreak of COVID-19 on campus. Over a period of 7 weeks from early February through late March 2021, wastewater originating from the residence hall was collected as grab samples 3 times per week. During this time, there was no detection of SARS-CoV-2 by reverse transcriptase quantitative PCR (RT-qPCR) in the residence hall wastewater stream. Aiming to obtain a sample more representative of the residence hall community, a decision was made to use passive samplers beginning in late March onwards. Adopting a Moore swab approach, SARS-CoV-2 was detected in wastewater samples just 2 days after passive samplers were deployed. These samples also tested positive for the B.1.1.7 (Alpha) variant of concern (VOC) using RT-qPCR. The positive result triggered a public health case-finding response, including a mobile testing unit deployed to the residence hall the following day, with testing of nearly 200 students and staff, which identified two laboratory-confirmed cases of Alpha variant COVID-19. These individuals were relocated to a separate quarantine facility, averting an outbreak on campus. Aggregating wastewater and clinical data, the campus wastewater surveillance program has yielded the first estimates of fecal shedding rates of the Alpha VOC of SARS-CoV-2 in individuals from a nonclinical setting. IMPORTANCE Among early adopters of wastewater monitoring for SARS-CoV-2 have been colleges and universities throughout North America, many of whom are using this approach to monitor congregate living facilities for early evidence of COVID-19 infection as an integral component of campus screening programs. Yet, while there have been numerous examples where wastewater monitoring on a university campus has detected evidence for infection among community members, there are few examples where this monitoring triggered a public health response that may have averted an actual outbreak. This report details a wastewater-testing program targeting a residence hall on a university campus during spring 2021, when there was mounting concern globally over the emergence of SARS-CoV-2 variants of concern, reported to be more transmissible than the wild-type Wuhan strain. In this communication, we present a clear example of how wastewater monitoring resulted in actionable responses by university administration and public health, which averted an outbreak of COVID-19 on a university campus.
Collapse
Affiliation(s)
- Ryland Corchis-Scott
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - Qiudi Geng
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - Rajesh Seth
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
- Civil and Environmental Engineering, University of Windsor, Windsor, Ontario, Canada
| | - Rajan Ray
- Civil and Environmental Engineering, University of Windsor, Windsor, Ontario, Canada
| | - Mohsan Beg
- Student Counselling Centre, University of Windsor, Windsor, Ontario, Canada
| | - Nihar Biswas
- Civil and Environmental Engineering, University of Windsor, Windsor, Ontario, Canada
| | - Lynn Charron
- Residence Services, University of Windsor, Windsor, Ontario, Canada
| | - Kenneth D. Drouillard
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
- School of the Environment, University of Windsor, Windsor, Ontario, Canada
| | - Ramsey D’Souza
- Windsor-Essex County Health Unit, Windsor, Ontario, Canada
| | - Daniel D. Heath
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | - Chris Houser
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
- School of the Environment, University of Windsor, Windsor, Ontario, Canada
| | - Felicia Lawal
- Windsor-Essex County Health Unit, Windsor, Ontario, Canada
| | - James McGinlay
- Residence Services, University of Windsor, Windsor, Ontario, Canada
| | - Sherri Lynne Menard
- Environmental Health and Safety, University of Windsor, Windsor, Ontario, Canada
| | - Lisa A. Porter
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Diane Rawlings
- Residence Services, University of Windsor, Windsor, Ontario, Canada
| | - Matthew L. Scholl
- Student Health Services, University of Windsor, Windsor, Ontario, Canada
| | - K. W. Michael Siu
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Yufeng Tong
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Christopher G. Weisener
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
- School of the Environment, University of Windsor, Windsor, Ontario, Canada
| | - Steven W. Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
- Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, Ohio, USA
| | - R. Michael L. McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
- School of the Environment, University of Windsor, Windsor, Ontario, Canada
- Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, Ohio, USA
| |
Collapse
|