1
|
Megli CJ, Carlin SM, Giacobe EJ, Hillebrand GH, Hooven TA. Virulence and pathogenicity of group B Streptococcus: Virulence factors and their roles in perinatal infection. Virulence 2025; 16:2451173. [PMID: 39844743 PMCID: PMC11758947 DOI: 10.1080/21505594.2025.2451173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/02/2024] [Accepted: 01/05/2025] [Indexed: 01/24/2025] Open
Abstract
This review summarizes key virulence factors associated with group B Streptococcus (GBS), a significant pathogen particularly affecting pregnant women, fetuses, and infants. Beginning with an introduction to the historical transition of GBS from a zoonotic pathogen to a prominent cause of human infections, particularly in the perinatal period, the review describes major disease manifestations caused by GBS, including sepsis, meningitis, chorioamnionitis, pneumonia, and others, linking each to specific virulence mechanisms. A detailed exploration of the genetic basis for GBS pathogenicity follows, emphasizing the roles of capsules in pathogenesis and immune evasion. The paper also examines the molecular structures and functions of key GBS surface proteins, such as pili, serine-rich repeat proteins, and fibrinogen-binding proteins, which facilitate colonization and disease. Additionally, the review discusses the significance of environmental sensing and response systems, like the two-component systems, in adapting GBS to different host environments. We conclude by addressing current efforts in vaccine development, underscoring the need for effective prevention strategies against this pervasive pathogen.
Collapse
Affiliation(s)
- Christina J. Megli
- Department of Obstetrics and Gynecology, University of Pittsburgh School of Medicine, Pittsburgh, USA
- Magee-Womens Research Institute, UPMC Medical Center, Pittsburgh, USA
| | - Sophia M. Carlin
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Elizabeth J. Giacobe
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Gideon H. Hillebrand
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Thomas A. Hooven
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
- R.K. Mellon Institute for Pediatric Research, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
2
|
Manuel G, Twentyman J, Noble K, Eastman AJ, Aronoff DM, Seepersaud R, Rajagopal L, Adams Waldorf KM. Group B streptococcal infections in pregnancy and early life. Clin Microbiol Rev 2025; 38:e0015422. [PMID: 39584819 PMCID: PMC11905376 DOI: 10.1128/cmr.00154-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
SUMMARYBacterial infections with Group B Streptococcus (GBS) are an important cause of adverse outcomes in pregnant individuals, neonates, and infants. GBS is a common commensal in the genitourinary and gastrointestinal tracts and can be detected in the vagina of approximately 20% of women globally. GBS can infect the fetus either during pregnancy or vaginal delivery resulting in preterm birth, stillbirth, or early-onset neonatal disease (EOD) in the first week of life. The mother can also become infected with GBS leading to postpartum endometritis, and rarely, maternal sepsis. An invasive GBS infection of the neonate may present after the first week of life (late-onset disease, LOD) through transmission from caregivers, breast milk, and other sources. Invasive GBS infections in neonates can result in sepsis, pneumonia, meningitis, neurodevelopmental impairment, death, and lifelong disability. A policy of routine screening for GBS rectovaginal colonization in well-resourced countries can trigger the administration of intrapartum antibiotic prophylaxis (IAP) when prenatal testing is positive, which drastically reduces rates of EOD. However, many countries do not routinely screen pregnant women for GBS colonization but may administer IAP in cases with a high risk of EOD. IAP does not reduce rates of LOD. A global vaccination campaign is needed to reduce the significant burden of invasive GBS disease that remains among infants and pregnant individuals. In this narrative review, we provide a comprehensive overview of the global impact of GBS colonization and infection, virulence factors and pathogenesis, and current and future prophylactics and therapeutics.
Collapse
Affiliation(s)
- Gygeria Manuel
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, USA
| | - Joy Twentyman
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Kristen Noble
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alison J. Eastman
- Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - David M. Aronoff
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ravin Seepersaud
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Lakshmi Rajagopal
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Global Health, University of Washington, Seattle, Washington, USA
| | - Kristina M. Adams Waldorf
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, USA
- Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Flannery DD, Ramachandran V, Schrag SJ. Neonatal Early-Onset Sepsis: Epidemiology, Microbiology, and Controversies in Practice. Clin Perinatol 2025; 52:15-31. [PMID: 39892950 DOI: 10.1016/j.clp.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Early-onset sepsis (EOS) remains a substantial contributor to neonatal morbidity and mortality. Continued epidemiologic surveillance of incidence, risk factors, and microbiology is paramount to developing new prevention strategies and optimizing antibiotic administration. Understanding the risks and benefits of maternal antibiotic exposure and neonatal risk assessment can inform clinical management. Maternal vaccination during pregnancy is a promising avenue for EOS prevention, particularly against group B Streptococcus. When EOS is suspected, ampicillin and gentamicin are the appropriate routine empiric regimen in most cases. Finally, a deeper understanding of the existing disparities in EOS can shed light on how to provide more equitable care.
Collapse
Affiliation(s)
- Dustin D Flannery
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, 800 Spruce Street, Philadelphia, PA 19107, USA; Division of Neonatology, Children's Hospital of Philadelphia, 800 Spruce Street, Philadelphia, PA 19107, USA.
| | - Veena Ramachandran
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road Northeast, Atlanta, GA 30329, USA
| | - Stephanie J Schrag
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road Northeast, Atlanta, GA 30329, USA
| |
Collapse
|
4
|
Khandaker S, Sharma S, Hall T, Lim S, Lehtonen J, Leung S, Ahmed ZB, Gorringe A, Saha SK, Marchant A, Le Doare K, Kadioglu A, French N. Diversity in Naturally Acquired Immunity to Group B Streptococcus: A Comparative Study of Women From Bangladesh, Malawi, and the United Kingdom. J Infect Dis 2025; 231:e456-e467. [PMID: 39692506 PMCID: PMC11841642 DOI: 10.1093/infdis/jiae607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/21/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Significant disparities in group B Streptococcus (GBS) colonization and neonatal disease rates have been documented across different geographic regions. For example, Bangladesh reports notably lower rates as compared with the United Kingdom and Malawi. This study investigates whether this epidemiologic variability correlates with the immune response to GBS in these regions. METHODS Qualitative and quantitative analyses of naturally acquired immunoglobulin G (IgG) antibodies against GBS capsular polysaccharide and the Alp protein family were conducted in serum samples from women of childbearing age in the United Kingdom, Bangladesh, and Malawi. The efficacy of these antibodies in clearing vaginal colonization or protecting newborns from GBS infection was assessed with humanized mouse models. RESULTS Bangladeshi women displayed the highest diversity in serotype distribution, with elevated IgG levels in the serum against GBS capsular polysaccharides Ia, Ib, II, III, IV, and V, as well as Alp family proteins. In contrast, Malawian sera demonstrated the weakest antibody response. Bangladeshi sera also showed heightened IgG-mediated complement deposition, opsonophagocytic killing, and neonatal Fc receptor binding while tested against capsular polysaccharide Ib. In a humanized neonatal Fc receptor mouse model, Bangladeshi sera led to faster clearance of GBS virulent serotype Ib vaginal colonization. Additionally, offspring from dams passively immunized with Bangladeshi sera demonstrated notably increased survival rates. CONCLUSIONS This study demonstrates significant variability in the immune response to GBS across different geographic regions. These findings underscore the importance of understanding GBS-induced immune response in diverse populations, which may significantly affect vaccine efficacy in these regions.
Collapse
Affiliation(s)
- Shadia Khandaker
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Shilpee Sharma
- European Plotkin Institute for Vaccinology, ULB Centre for Research in Immunology, Université libre de Bruxelles, Brussels, Belgium
| | - Tom Hall
- Centre for Neonatal and Paediatric Infection, Institute of Infection and Immunity, St George's, University of London, London, United Kingdom
| | - Suzanna Lim
- Centre for Neonatal and Paediatric Infection, Institute of Infection and Immunity, St George's, University of London, London, United Kingdom
| | | | - Stephanie Leung
- United Kingdom Health Security Agency, Salisbury, United Kingdom
| | | | - Andrew Gorringe
- United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - Samir K Saha
- Child Health Research Foundation, Dhaka, Bangladesh
| | - Arnaud Marchant
- European Plotkin Institute for Vaccinology, ULB Centre for Research in Immunology, Université libre de Bruxelles, Brussels, Belgium
| | - Kirsty Le Doare
- Centre for Neonatal and Paediatric Infection, Institute of Infection and Immunity, St George's, University of London, London, United Kingdom
- United Kingdom Health Security Agency, Salisbury, United Kingdom
- Makerere University–Johns Hopkins University, Kampala, Uganda
- World Health Organization, Geneva, Switzerland
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Neil French
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
- Malawi Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
| |
Collapse
|
5
|
Alexander NG, Cutts WD, Hooven TA, Kim BJ. Mechanisms and Manifestations of Group B Streptococcus Meningitis in Newborns. J Pediatric Infect Dis Soc 2025; 14:piae103. [PMID: 39927629 PMCID: PMC11808573 DOI: 10.1093/jpids/piae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/02/2024] [Indexed: 02/11/2025]
Abstract
Group B Streptococcus (GBS; Streptococcus agalactiae) is a gram-positive colonizer of the healthy intestinal and genitourinary microbiota. During and shortly after birth, neonates and infants can be opportunistically infected leading to sepsis, pneumonia, or meningitis among other illnesses. GBS is the leading cause of neonatal meningitis globally, and while prophylactic treatments have been successful for reducing early-onset disease, no decrease in the incidence of late-onset disease has occurred and no vaccine is currently available. In this review, we describe GBS both from a clinical and molecular standpoint. We first describe the history of GBS perinatal disease and its clinical presentation and treatment, as well as patient outcomes. We then present recently discovered GBS interactions at the blood-brain barrier that contribute to disease and inflammatory responses, and efforts to develop a broadly effective GBS vaccine.
Collapse
Affiliation(s)
- Natalie G Alexander
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - William D Cutts
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Thomas A Hooven
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Richard King Mellon Institute for Pediatric Research, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brandon J Kim
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Convergent Biosciences and Medicine, University of Alabama, Tuscaloosa, Alabama, USA
- Alabama Life Research Institute, University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
6
|
Liu Y, Ai H. Current research update on group B streptococcal infection related to obstetrics and gynecology. Front Pharmacol 2024; 15:1395673. [PMID: 38953105 PMCID: PMC11215423 DOI: 10.3389/fphar.2024.1395673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Group B streptococcal (GBS) is a Gram-positive bacterium that is commonly found in the gastrointestinal tract and urogenital tract. GBS infestation during pregnancy is a significant contributor to maternal and neonatal morbidity and mortality globally. This article aims to discuss the infectious diseases caused by GBS in the field of obstetrics and gynecology, as well as the challenges associated with the detection, treatment, and prevention of GBS.
Collapse
Affiliation(s)
| | - Hao Ai
- Liaoning Provincial Key Laboratory of Follicular Development and Reproductive Health, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
7
|
Pena JMS, Lannes-Costa PS, Nagao PE. Vaccines for Streptococcus agalactiae: current status and future perspectives. Front Immunol 2024; 15:1430901. [PMID: 38947337 PMCID: PMC11211565 DOI: 10.3389/fimmu.2024.1430901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024] Open
Abstract
A maternal vaccine to protect newborns against invasive Streptococcus agalactiae infection is a developing medical need. The vaccine should be offered during the third trimester of pregnancy and induce strong immune responses and placental transfer of protective antibodies. Polysaccharide vaccines against S. agalactiae conjugated to protein carriers are in advanced stages of development. Additionally, protein-based vaccines are also in development, showing great promise as they can provide protection regardless of serotype. Furthermore, safety concerns regarding a new vaccine are the main barriers identified. Here, we present vaccines in development and identified safety, cost, and efficacy concerns, especially in high-need, low-income countries.
Collapse
Affiliation(s)
- João Matheus Sobral Pena
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University - UERJ, Rio de Janeiro, Brazil
| | - Pamella Silva Lannes-Costa
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University - UERJ, Rio de Janeiro, Brazil
| | - Prescilla Emy Nagao
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University - UERJ, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Ji W, Zhou H, Li J, Britto CD, Liu Z, Zhang W, Du J, Madhi SA, Kwatra G, Dangor Z, Jin Z, Zhao H, Zhao Y, Fang Y, Li J. Distributions of candidate vaccine Targets, virulence Factors, and resistance features of invasive group B Streptococcus using Whole-Genome Sequencing: A Multicenter, population-based surveillance study. Vaccine 2024; 42:3564-3571. [PMID: 38692955 DOI: 10.1016/j.vaccine.2024.04.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/09/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Group B Streptococcus (GBS) is a leading cause of morbidity and mortality in young infants worldwide. This study aimed to investigate candidate GBS vaccine targets, virulence factors, and antimicrobial resistance determinants. METHODS We used whole-genome sequencing to characterize invasive GBS isolates from infants < 3 months of age obtained from a multicenter population-based study conducted from 2015 to 2021 in China. RESULTS Overall, seven serotypes were detected from 278 GBS isolates, four (Ia, Ib, III, V) of which accounted for 97.8 %. We detected 30 sequence types (including 10 novel types) that were grouped into six clonal complexes (CCs: CC1, CC10, CC17, CC19, CC23 and CC651); three novel ST groups in CC17 were detected, and the rate of CC17, considered a hyperinvasive neonatal clone complex, was attached to 40.6 % (113/278). A total of 98.9 % (275/278) of isolates harbored at least one alpha-like protein gene. All GBS isolates contained at least one of three pilus backbone determinants and the pilus types PI-2b and PI-1 + PI-2a accounted for 79.8 % of the isolates. The 112 serotype III/CC17 GBS isolates were all positive for hvgA. Most of the isolates (75.2 %) were positive for serine-rich repeat glycoprotein determinants (srr1or srr2). Almost all isolates possessed cfb (99.6 %), c1IE (100 %), lmb (95.3 %) or pavA (100 %) gene. Seventy-seven percent of isolates harboured more than three antimicrobial resistance genes with 28.4 % (79/278) gyrA quinoloneresistancedeterminants mutation, 83.8 % (233/278) carrying tet cluster genes and 77.3 % (215/278) carrying erm genes which mediated fluoroquinolone, tetracycline and clindamycin resistance, respectively." CONCLUSIONS The findings from this large whole-genome sequence of GBS isolates establish important baseline data required for further surveillance and evaluating the impact of future vaccine candidates.
Collapse
Affiliation(s)
- Wenjing Ji
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Center for Drug Safety and Policy Research, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Haijian Zhou
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Carl D Britto
- Boston Children's Hospital, Boston, MA, United States
| | - Zheliang Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; North China University of Science and Technology, China
| | - Wen Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiaxi Du
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Center for Drug Safety and Policy Research, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shabir A Madhi
- South Africa Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
| | - Gaurav Kwatra
- South Africa Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa; Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Ziyaad Dangor
- South Africa Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
| | - Zhengjiang Jin
- Department of Clinical Laboratory, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, China
| | - Hang Zhao
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Center for Drug Safety and Policy Research, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yifei Zhao
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Center for Drug Safety and Policy Research, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yu Fang
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Center for Drug Safety and Policy Research, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Juan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
9
|
Coggins SA, Puopolo KM. Neonatal Group B Streptococcus Disease. Pediatr Rev 2024; 45:63-73. [PMID: 38296778 PMCID: PMC10919294 DOI: 10.1542/pir.2023-006154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Group B Streptococcus (GBS) is an important cause of neonatal sepsis in term and preterm infants. Because GBS colonizes human genitourinary and gastrointestinal tracts, a significant focus of neonatal GBS disease prevention is to interrupt vertical transmission of GBS from mother to infant during parturition. Routine antepartum GBS screening in pregnant women, as well as widespread use of intrapartum antibiotic prophylaxis, have aided in overall reductions in neonatal GBS disease during the past 3 decades. However, neonatal GBS disease persists and may cause mortality and significant short- and long-term morbidity among survivors. Herein, we highlight contemporary epidemiology, microbial pathogenesis, and the clinical presentation spectrum associated with neonatal GBS disease. We summarize obstetric recommendations for antenatal GBS screening, indications for intrapartum antibiotic prophylaxis, and considerations for antibiotic selection. Finally, we review national guidelines for risk assessment and management of infants at risk for GBS disease.
Collapse
MESH Headings
- Infant
- Pregnancy
- Female
- Infant, Newborn
- Humans
- Pregnancy Complications, Infectious/diagnosis
- Pregnancy Complications, Infectious/drug therapy
- Pregnancy Complications, Infectious/epidemiology
- Streptococcal Infections/diagnosis
- Streptococcal Infections/drug therapy
- Streptococcal Infections/epidemiology
- Infant, Premature
- Anti-Bacterial Agents/therapeutic use
- Infant, Newborn, Diseases/diagnosis
- Infant, Newborn, Diseases/therapy
- Streptococcus agalactiae
- Infectious Disease Transmission, Vertical/prevention & control
Collapse
Affiliation(s)
- Sarah A. Coggins
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, US
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
- Clinical Futures, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Karen M. Puopolo
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, US
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
- Clinical Futures, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
10
|
Bjerkhaug AU, Ramalingham S, Mboizi R, Le Doare K, Klingenberg C. The immunogenicity and safety of Group B Streptococcal maternal vaccines: A systematic review. Vaccine 2024; 42:84-98. [PMID: 38072754 DOI: 10.1016/j.vaccine.2023.11.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 01/01/2024]
Abstract
PURPOSE To systematically review immunogenicity and safety data of maternal group B streptococcal (GBS) vaccines in published clinical trials until July 2023. METHODS EMBASE, MEDLINE, Cochrane Library and clinicaltrial.gov. databases were searched for clinical studies that reported immunogenicity and/or safety of GBS vaccine in non-pregnant adults, pregnant women and infants between 1st of January 1996 to 31st of July 2023. Pairs of reviewers independently selected, data extracted, and assessed the risk of bias of the studies. Discrepancies were resolved by consensus. (PROSPERO CRD42020185213). RESULTS We retrieved 1472 records from the literature search; 20 studies and 6 sub-studies were included, involving 4440 non-pregnant participants and 1325 pregnant women with their newborns. There was a significantly higher IgG Geometric Mean Concentration (GMC) and IgG placental transfer ratios in vaccinated compared to placebo groups, with peak response 4-8 weeks after vaccination. Placental transfer ratio varied from 0.4 to 1.4 across five studies. The different clinical trials used different assays that limited direct comparison. There were no significant differences in the risk of serious adverse events (adjusted OR 0.73; 95 % CI 0.49-1.07), serious adverse events leading to withdrawal (adjusted OR 0.44; 95 % CI 0.13-1.51), and systemic illness or fever (adjusted OR 1.05; 95 % CI 0.26-4.19) between the vaccine and placebo groups. CONCLUSIONS The published clinical trials show significant IgG GMC response in subjects receiving the conjugated capsular polysaccharide and surface subunit protein vaccines compared to placebo. In current clinical trials of experimental GBS maternal vaccines, there have been no observed serious adverse events of special interest directly linked to vaccination.
Collapse
Affiliation(s)
- Aline U Bjerkhaug
- Paediatric Research Group, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway; Department of Paediatrics and Adolescence Medicine, University Hospital of North Norway, Tromsø, Norway.
| | - Shouwmika Ramalingham
- Paediatric Research Group, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Robert Mboizi
- Makerere University Johns Hopkins University (MU-JHU) Research Collaboration (MUJHU CARE LTD), Kampala, Uganda
| | - Kirsty Le Doare
- Makerere University Johns Hopkins University (MU-JHU) Research Collaboration (MUJHU CARE LTD), Kampala, Uganda; Centre for Neonatal and Paediatric Infection, Maternal and Neonatal Vaccine Immunology Research Group, St Georgés University of London, United Kingdom
| | - Claus Klingenberg
- Paediatric Research Group, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway; Department of Paediatrics and Adolescence Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
11
|
Greenfield KG, Harlow OS, Witt LT, Dziekan EM, Tamar CR, Meier J, Brumbaugh JE, Levy ER, Knoop KA. Neonatal intestinal colonization of Streptococcus agalactiae and the multiple modes of protection limiting translocation. Gut Microbes 2024; 16:2379862. [PMID: 39042143 PMCID: PMC11268251 DOI: 10.1080/19490976.2024.2379862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
Streptococcus agalactiae, also known as Group B Streptococcus (GBS), is a predominant pathogen of neonatal sepsis, commonly associated with early-onset neonatal sepsis. GBS has also been associated with cases of late-onset sepsis potentially originating from the intestine. Previous findings have shown GBS can colonize the infant intestinal tract as part of the neonatal microbiota. To better understand GBS colonization dynamics in the neonatal intestine, we collected stool and milk samples from prematurely born neonates for identification of potential pathogens in the neonatal intestinal microbiota. GBS was present in approximately 10% of the cohort, and this colonization was not associated with maternal GBS status, delivery route, or gestational weight. Interestingly, we observed the relative abundance of GBS in the infant stool negatively correlated with maternal IgA concentration in matched maternal milk samples. Using a preclinical murine model of GBS infection, we report that both vertical transmission and direct oral introduction resulted in intestinal colonization of GBS; however, translocation beyond the intestine was limited. Finally, vaccination of dams prior to breeding induced strong immunoglobulin responses, including IgA responses, which were associated with reduced mortality and GBS intestinal colonization. Taken together, we show that maternal IgA may contribute to infant immunity by limiting the colonization of GBS in the intestine.
Collapse
Affiliation(s)
| | | | - Lila T Witt
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Jane E Brumbaugh
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Emily R Levy
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kathryn A Knoop
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
12
|
Founou LL, Khan UB, Medugu N, Pinto TCA, Darboe S, Chendi Z, Founou RC, To KN, Jamrozy D, Karampatsas K, Carr VR, Pepper K, Dangor Z, Ip M, Le Doare K, Bentley SD. Molecular epidemiology of Streptococcus agalactiae in non-pregnant populations: a systematic review. Microb Genom 2023; 9. [PMID: 38019122 DOI: 10.1099/mgen.0.001140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Streptococcus agalactiae (group B Streptococcus, GBS) has recently emerged as an important pathogen among adults. However, it is overlooked in this population, with all global efforts being directed towards its containment among pregnant women and neonates. This systematic review assessed the molecular epidemiology and compared how the lineages circulating among non-pregnant populations relate to those of pregnant and neonatal populations worldwide. A systematic search was performed across nine databases from 1 January 2000 up to and including 20 September 2021, with no language restrictions. The Joanna Briggs Institute (JBI) Prevalence Critical Appraisal Tool (PCAT) was used to assess the quality of included studies. The global population structure of GBS from the non-pregnant population was analysed using in silico typing and phylogenetic reconstruction tools. Twenty-four articles out of 13 509 retrieved across 9 databases were eligible. Most studies were conducted in the World Health Organization European region (12/24, 50 %), followed by the Western Pacific region (6/24, 25 %) and the Americas region (6/24, 25 %). Serotype V (23%, 2310/10240) and clonal complex (CC) 1 (29 %, 2157/7470) were the most frequent serotype and CC, respectively. The pilus island PI1 : PI2A combination (29 %, 3931/13751) was the most prevalent surface protein gene, while the tetracycline resistance tetM (55 %, 5892/10624) was the leading antibiotic resistance gene. This study highlights that, given the common serotype distribution identified among non-pregnant populations (V, III, Ia, Ib, II and IV), vaccines including these six serotypes will provide broad coverage. The study indicates advanced molecular epidemiology studies, especially in resource-constrained settings for evidence-based decisions. Finally, the study shows that considering all at-risk populations in an inclusive approach is essential to ensure the sustainable containment of GBS.
Collapse
Affiliation(s)
- Luria Leslie Founou
- Reproductive, Maternal, Newborn and Child Health (ReMARCH) Research Unit, Centre of Expertise and Biological Diagnostic of Cameroon Research Institute (CEDBCAM-RI), Yaoundé, Cameroon
- Bioinformatics and Applied Machine Learning Research Unit, EDEN Biosciences Research Institute (EBRI), EDEN Foundation, Yaoundé, Cameroon
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4041, South Africa
| | - Uzma Basit Khan
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Nubwa Medugu
- Department of Medical Microbiology and Parasitology, National Hospital Abuja, Abuja, Nigeria
| | - Tatiana C A Pinto
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Saffiatou Darboe
- Medical Research Council Unit at London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Zhu Chendi
- Department of Microbiology, the Chinese University of Hong Kong, Hong Kong, PR China
| | - Raspail Carrel Founou
- Antibiotic Resistance Infectious Diseases (ARID) Research Unit, Centre of Expertise and Biological Diagnostic of Cameroon Research Institute (CEDBCAM-RI), Yaoundé, Cameroon
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4041, South Africa
- Department of Microbiology, Hematology and Immunology, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Dschang, Cameroon
| | - Ka-Ning To
- Institute of Infection and Immunity, St George's University of London, London, UK
| | - Dorota Jamrozy
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | | | - Victoria R Carr
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Kevin Pepper
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Ziyaad Dangor
- Vaccines and Infectious Diseases Analytics (VIDA) Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Margaret Ip
- Department of Microbiology, the Chinese University of Hong Kong, Hong Kong, PR China
| | - Kirsty Le Doare
- Medical Research Council Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Stephen D Bentley
- Department of Pathology, University of Cambridge, Cambridge, UK
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| |
Collapse
|
13
|
Wang J, Li W, Li N, Wang B. Immunization with Multiple Virulence Factors Provides Maternal and Neonatal Protection against Group B Streptococcus Serotypes. Vaccines (Basel) 2023; 11:1459. [PMID: 37766135 PMCID: PMC10535937 DOI: 10.3390/vaccines11091459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Group B streptococcus (GBS) commonly colonizes the vaginal tract and is a leading cause of life-threatening neonatal infections and adverse pregnancy outcomes. No effective vaccine is clinically available. Conserved bacterial virulence factors, including those of GBS, have been employed as vaccine components. We investigated serotype-independent protection against GBS by intranasal immunization with six conserved GBS virulence factors (GBSV6). GBSV6 induced systemic and vaginal antibodies and T cell responses in mice. The immunity reduced mouse mortality and vaginal colonization by various GBS serotypes and protected newborn mice of immunized dams against GBS challenge. Intranasal GBSV6 immunization also provided long-lasting protective immunity and had advantages over intramuscular GBSV6 immunization regarding restricting vaginal GBS colonization. Our findings indicate that intranasal immunization targeting multiple conserved GBS virulence factors induces serotype-independent immunity, which protects against GBS infection systemically and vaginally in dams and prevents newborn death. The study presents valuable strategies for GBS vaccine development.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Varnotech Biopharm Ltd., Beijing 100176, China
| | - Wenbo Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Varnotech Biopharm Ltd., Beijing 100176, China
| | - Ning Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Beinan Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
14
|
Williams AN, Croxen MA, Demczuk WHB, Martin I, Tyrrell GJ. Genomic characterization of emerging invasive Streptococcus agalactiae serotype VIII in Alberta, Canada. Eur J Clin Microbiol Infect Dis 2023; 42:747-757. [PMID: 37084119 PMCID: PMC10120474 DOI: 10.1007/s10096-023-04606-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Abstract
Invasive Group B Streptococcus (GBS) can infect pregnant women, neonates, and older adults. Invasive GBS serotype VIII is infrequent in Alberta; however, cases have increased in recent years. Here, genomic analysis was used to characterize fourteen adult invasive serotype VIII isolates from 2009 to 2021. Trends in descriptive clinical data and antimicrobial susceptibility results were evaluated for invasive serotype VIII isolates from Alberta. Isolate genomes were sequenced and subjected to molecular sequence typing, virulence and antimicrobial resistance gene identification, phylogenetic analysis, and pangenome determination. Multilocus sequencing typing identified eight ST42 (Clonal Complex; CC19), four ST1 (CC1), and two ST2 (CC1) profiles. Isolates were susceptible to penicillin, erythromycin, chloramphenicol, and clindamycin, apart from one isolate that displayed erythromycin and inducible clindamycin resistance. All isolates carried genes for peptide antibiotic resistance, three isolates for tetracycline resistance, and one for macrolide, lincosamide, and streptogramin resistance. All genomes carried targets currently being considered for protein-based vaccines (e.g., pili and/or Alpha family proteins). Overall, invasive GBS serotype VIII is emerging in Alberta, primarily due to ST42. Characterization and continued surveillance of serotype VIII will be important for outbreak prevention, informing vaccine development, and contributing to our understanding of the global epidemiology of this rare serotype.
Collapse
Affiliation(s)
- Ashley N Williams
- University of Alberta, Edmonton, AB, Canada
- Alberta Precision Laboratories-Public Health Laboratory (ProvLab), Edmonton, AB, Canada
| | - Matthew A Croxen
- University of Alberta, Edmonton, AB, Canada
- Alberta Precision Laboratories-Public Health Laboratory (ProvLab), Edmonton, AB, Canada
| | - Walter H B Demczuk
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Irene Martin
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Gregory J Tyrrell
- University of Alberta, Edmonton, AB, Canada.
- Alberta Precision Laboratories-Public Health Laboratory (ProvLab), Edmonton, AB, Canada.
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
15
|
Gonzalez-Miro M, Pawlowski A, Lehtonen J, Cao D, Larsson S, Darsley M, Kitson G, Fischer PB, Johansson-Lindbom B. Safety and immunogenicity of the group B streptococcus vaccine AlpN in a placebo-controlled double-blind phase 1 trial. iScience 2023; 26:106261. [PMID: 36915681 PMCID: PMC10005905 DOI: 10.1016/j.isci.2023.106261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/28/2022] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Group B streptococcus (GBS) is a leading cause of life-threatening neonatal infections and subsets of adverse pregnancy outcomes. Essentially all GBS strains possess one allele of the alpha-like protein (Alp) family. A maternal GBS vaccine, consisting of the fused N-terminal domains of the Alps αC and Rib (GBS-NN), was recently demonstrated to be safe and immunogenic in healthy adult women. To enhance antibody responses to all clinically relevant Alps, a second-generation vaccine has been developed (AlpN), also containing the N-terminal domain of Alp1 and the one shared by Alp2 and Alp3. In this study, the safety and immunogenicity of AlpN is assessed in a randomized, double-blind, placebo-controlled, and parallel-group phase I study, involving 60 healthy non-pregnant women. AlpN is well tolerated and elicits similarly robust and persistent antibody responses against all four Alp-N-terminal domains, resulting in enhanced opsonophagocytic killing of all Alp serotypes covered by the vaccine.
Collapse
Affiliation(s)
| | | | - Janne Lehtonen
- Minervax A/S, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| | - Duojia Cao
- Immunology Section, Lund University, BMC D14, Lund, Sweden
| | - Sara Larsson
- Immunology Section, Lund University, BMC D14, Lund, Sweden
| | | | - Geoff Kitson
- Minervax A/S, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| | - Per B Fischer
- Minervax A/S, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| | - Bengt Johansson-Lindbom
- Immunology Section, Lund University, BMC D14, Lund, Sweden.,Minervax A/S, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| |
Collapse
|
16
|
Dangor Z, Kwatra G, Pawlowski A, Fisher PB, Izu A, Lala SG, Johansson-Lindbom B, Madhi SA. Association of infant Rib and Alp1 surface protein N-terminal domain immunoglobulin G and invasive Group B Streptococcal disease in young infants. Vaccine 2023; 41:1679-1683. [PMID: 36754766 PMCID: PMC9996286 DOI: 10.1016/j.vaccine.2023.01.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND Vaccine development for Group B Streptococcus (GBS), a common cause of invasive disease in early-infancy and adverse pregnancy outcomes, include exploring widely-expressed GBS surface proteins as vaccine epitopes. We investigated the association between natural infant serum IgG against the RibN and Alp1N domains and risk of invasive GBS disease caused by isolates expressing these proteins. METHODS We analyzed maternal and infant serum samples from GBS disease cases and infants born to GBS-colonized women controls. Bayesian modelling was used to calculate the GBS homotypic IgG concentration associated with risk reduction of invasive disease in the infant. RESULTS PCR-based typing of 85 GBS invasive isolates showed 46 and 24 possessing the gene for Rib and Alp1, respectively. These were matched to 46 and 36 infant controls whose mothers were colonized with GBS expressing Rib and Alp1, respectively. RibN IgG geometric mean concentrations (GMC) were lower in cases than controls among infants (0.01; 95 %CI: 0.01-0.02 vs 0.04; 95 %CI: 0.03-0.06; p < 0.001), no significant difference was found between maternal RibN IgG GMC in cases compared to controls. Alp1N IgG GMC was also lower in infant cases (0.02; 95 %CI: 0.01-0.03) than controls (0.05; 95 %CI: 0.04-0.07; p < 0.001); albeit not so in mothers. An infant IgG threshold ≥ 0.428 and ≥ 0.112 µg/mL was associated with 90 % risk reduction of invasive GBS disease due to Rib and Alp1 expressing strains, respectively. DISCUSSION Lower serum RibN and Alp1N IgG GMC were evident in infants with invasive GBS disease compared with controls born to women colonized with GBS expressing the homotypic protein. These data support the evaluation of Alp family proteins as potential vaccine candidates against invasive GBS disease.
Collapse
Affiliation(s)
- Ziyaad Dangor
- South African Medical Research Council: Vaccines and Infectious Diseases Analytics Unit, University of the Witwatersrand, South Africa; Department of Paediatrics & Child Health, Faculty of Health Sciences, University of the Witwatersrand, South Africa.
| | - Gaurav Kwatra
- South African Medical Research Council: Vaccines and Infectious Diseases Analytics Unit, University of the Witwatersrand, South Africa; Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | | | | | - Alane Izu
- South African Medical Research Council: Vaccines and Infectious Diseases Analytics Unit, University of the Witwatersrand, South Africa
| | - Sanjay G Lala
- Department of Paediatrics & Child Health, Faculty of Health Sciences, University of the Witwatersrand, South Africa
| | - Bengt Johansson-Lindbom
- Immunology Section, BMC D14, Lund University, Lund, Sweden; MinervaX ApS, DK-2200 Copenhagen N, Denmark
| | - Shabir A Madhi
- South African Medical Research Council: Vaccines and Infectious Diseases Analytics Unit, University of the Witwatersrand, South Africa; African Leadership in Vaccinology Expertise University of the Witwatersrand, South Africa.
| |
Collapse
|
17
|
Janžič L, Repas J, Pavlin M, Zemljić-Jokhadar Š, Ihan A, Kopitar AN. Macrophage polarization during Streptococcus agalactiae infection is isolate specific. Front Microbiol 2023; 14:1186087. [PMID: 37213504 PMCID: PMC10192866 DOI: 10.3389/fmicb.2023.1186087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Streptococcus agalactiae (Group B Streptococcus, GBS), a Gram-positive commensal in healthy adults, remains a major cause of neonatal infections, usually manifesting as sepsis, meningitis, or pneumonia. Intrapartum antibiotic prophylaxis has greatly reduced the incidence of early-onset disease. However, given the lack of effective measures to prevent the risk of late-onset disease and invasive infections in immunocompromised individuals, more studies investigating the GBS-associated pathogenesis and the interplay between bacteria and host immune system are needed. Methods Here, we examined the impact of 12 previously genotyped GBS isolates belonging to different serotypes and sequence types on the immune response of THP-1 macrophages. Results Flow cytometry analysis showed isolate-specific differences in phagocytic uptake, ranging from 10% for isolates of serotype Ib, which possess the virulence factor protein β, to over 70% for isolates of serotype III. Different isolates also induced differential expression of co-stimulatory molecules and scavenger receptors with colonizing isolates inducing higher expression levels of CD80 and CD86 compared to invasive isolates. In addition, real-time measurements of metabolism revealed that macrophages enhanced both glycolysis and mitochondrial respiration after GBS infection, with isolates of serotype III being the most potent activators of glycolysis and glycolytic ATP production. Macrophages also showed differential resistance to GBS-mediated cell cytotoxicity as measured by LDH release and real-time microscopy. The differences were evident both between serotypes and between isolates obtained from different specimens (colonizing or invasive isolates) demonstrating the higher cytotoxicity of vaginal compared with blood isolates. Conclusions Thus, the data suggest that GBS isolates differ in their potential to become invasive or remain colonizing. In addition, colonizing isolates appear to be more cytotoxic, whereas invasive isolates appear to exploit macrophages to their advantage, avoiding the immune recognition and antibiotics.
Collapse
Affiliation(s)
- Larisa Janžič
- Department of Cell Immunology, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Repas
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Pavlin
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Špela Zemljić-Jokhadar
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alojz Ihan
- Department of Cell Immunology, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andreja Nataša Kopitar
- Department of Cell Immunology, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Andreja Nataša Kopitar,
| |
Collapse
|
18
|
Beudeker CR, Vijlbrief DC, van Montfrans J, Rooijakkers SH, van der Flier M. Neonatal sepsis and transient immunodeficiency: Potential for novel immunoglobulin therapies? Front Immunol 2022; 13:1016877. [PMID: 36330515 PMCID: PMC9623314 DOI: 10.3389/fimmu.2022.1016877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/04/2022] [Indexed: 10/30/2023] Open
Abstract
Neonates, especially preterm neonates, have the highest risk of sepsis of all age groups. Transient immaturity of the neonatal immune system is an important risk factor. Neonates suffer from hypogammaglobulinemia as nor IgA nor IgM is transferred over the placenta and IgG is only transferred over the placenta late in gestation. In addition, neutrophil numbers and complement function are also decreased. This mini-review focuses on strategies to improve neonatal host-defense. Both clinical and preclinical studies have attempted to boost neonatal immunity to lower the incidence of sepsis and improve outcome. Recent advances in the development of (monoclonal) antibodies show promising results in preclinical studies but have yet to be tested in clinical trials. Strategies to increase complement activity seem efficient in vitro but potential disadvantages such as hyperinflammation have held back further clinical development. Increase of neutrophil numbers has been tested extensively in clinical trials but failed to show improvement in mortality. Future research should focus on clinical applicability of promising new prevention strategies for neonatal sepsis.
Collapse
Affiliation(s)
- Coco R. Beudeker
- Department of Pediatric Infectious Diseases and Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Daniel C. Vijlbrief
- Department of Neonatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Joris M. van Montfrans
- Department of Pediatric Infectious Diseases and Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Suzan H.M. Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Michiel van der Flier
- Department of Pediatric Infectious Diseases and Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
19
|
The long and the short of Periscope Proteins. Biochem Soc Trans 2022; 50:1293-1302. [PMID: 36196877 DOI: 10.1042/bst20220194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022]
Abstract
Bacteria sense, interact with, and modify their environmental niche by deploying a molecular ensemble at the cell surface. The changeability of this exposed interface, combined with extreme changes in the functional repertoire associated with lifestyle switches from planktonic to adherent and biofilm states necessitate dynamic variability. Dynamic surface changes include chemical modifications to the cell wall; export of diverse extracellular biofilm components; and modulation of expression of cell surface proteins for adhesion, co-aggregation and virulence. Local enrichment for highly repetitive proteins with high tandem repeat identity has been an enigmatic phenomenon observed in diverse bacterial species. Preliminary observations over decades of research suggested these repeat regions were hypervariable, as highly related strains appeared to express homologues with diverse molecular mass. Long-read sequencing data have been interrogated to reveal variation in repeat number; in combination with structural, biophysical and molecular dynamics approaches, the Periscope Protein class has been defined for cell surface attached proteins that dynamically expand and contract tandem repeat tracts at the population level. Here, I review the diverse high-stability protein folds and coherent interdomain linkages culminating in the formation of highly anisotropic linear repeat arrays, so-called rod-like protein 'stalks', supporting roles in bacterial adhesion, biofilm formation, cell surface spatial competition, and immune system modulation. An understanding of the functional impacts of dynamic changes in repeat arrays and broader characterisation of the unusual protein folds underpinning this variability will help with the design of immunisation strategies, and contribute to synthetic biology approaches including protein engineering and microbial consortia construction.
Collapse
|
20
|
Rodgus J, Prakapaite R, Mitsidis P, Grigaleviciute R, Planciuniene R, Kavaliauskas P, Jauneikaite E. Molecular Epidemiology of Group B Streptococci in Lithuania Identifies Multi-Drug Resistant Clones and Sporadic ST1 Serotypes Ia and Ib. Pathogens 2022; 11:1060. [PMID: 36145492 PMCID: PMC9504518 DOI: 10.3390/pathogens11091060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is a leading cause of neonatal infections. Yet, detailed assessment of the genotypic and phenotypic factors associated with GBS carriage, mother-to-baby transmission, and GBS infection in neonates and adults is lacking. Understanding the distribution of GBS genotypes, including the predominance of different serotypes, antimicrobial resistance (AMR) genes, and virulence factors, is likely to help to prevent GBS diseases, as well as inform estimates of the efficacy of future GBS vaccines. To this end, we set out to characterise GBS isolates collected from pregnant and non-pregnant women in Kaunas region in Lithuania. Whole genome sequences of 42 GBS isolates were analysed to determine multi-locus sequence typing (MLST), the presence of acquired AMR and surface protein genes, and the phylogenetic relatedness of isolates. We identified serotypes Ia (42.9%, 18/42), III (33.3%, 14/42), V (21.4%, 9/42), and a single isolate of serotype Ib. Genomic analyses revealed high diversity among the isolates, with 18 sequence types (STs) identified, including three novel STs. 85.7% (36/42) of isolates carried at least one AMR gene: tetM or tetO (35/42), ermB or lsaC (8/42) and ant6-Ia and aph3-III (2/42). This study represents the first genomic analysis of GBS isolated from women in Lithuania and contributes to an improved understanding of the global spread of GBS genotypes and phenotypes, laying the foundations for future GBS surveillance in Lithuania.
Collapse
Affiliation(s)
- Jonah Rodgus
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Ruta Prakapaite
- Institute of Infectious Diseases and Pathogenic Microbiology, 59116 Prienai, Lithuania
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Panagiotis Mitsidis
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Ramune Grigaleviciute
- Biological Research Centre, Lithuanian University of Health Sciences, 47181 Kaunas, Lithuania
| | - Rita Planciuniene
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, 47181 Kaunas, Lithuania
| | - Povilas Kavaliauskas
- Institute of Infectious Diseases and Pathogenic Microbiology, 59116 Prienai, Lithuania
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, New York, NY 10065, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Elita Jauneikaite
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| |
Collapse
|