1
|
Chen C, Zhou X, Gao X, Pan R, He Q, Guo X, Yu S, Wang N, Zhao Q, Wang M, Xu Y, Han X. Immune responses and reinfection of SARS-CoV-2 Omicron variant in patients with lung cancer. Int J Cancer 2024; 155:1409-1421. [PMID: 38837354 DOI: 10.1002/ijc.35038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024]
Abstract
A significant Omicron wave emerged in China in December 2022. To explore the duration of humoral and cellular response postinfection and the efficacy of hybrid immunity in preventing Omicron reinfection in patients with lung cancer, a total of 447 patients were included in the longitudinal study after the Omicron wave from March 2023 to August 2023. Humoral responses were measured at pre-Omicron wave, 3 months and 7 months postinfection. The detected severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) specific antibodies including total antibodies, anti-receptor binding domain (RBD) specific IgG, and neutralizing antibodies against SARS-CoV-2 wild type (WT) and BA.4/5 variant. T cell responses against SARS-CoV-2 WT and Omicron variant were evaluated in 101 patients by ELISpot at 3 months postinfection. The results showed that Omicron-infected symptoms were mild, while fatigue (30.2%), shortness of breath (34.0%) and persistent cough (23.6%) were long-lasting, and vaccines showed efficacy against fever in lung cancer patients. Humoral responses were higher in full or booster vaccinated patients than those unvaccinated (p < .05 for all four antibodies), and the enhanced response persisted for at least 7 months. T cell response to Omicron was higher than WT peptides (21.3 vs. 16.0 SFUs/106 PBMCs, p = .0093). Moreover, 38 (9.74%) patients were reinfected, which had lower antibody responses than non-reinfected patients (all p < .05), and those patients of unvaccinated at late stage receiving anti-cancer immunotherapy alone were at high risk of reinfection. Collectively, these data demonstrate the Omicron infection induces a high and durable immune response in vaccinated patients with lung cancer, which protects vaccinated patients from reinfection.
Collapse
Affiliation(s)
- Chen Chen
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyun Zhou
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoxing Gao
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruili Pan
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi He
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaobei Guo
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Siyuan Yu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na Wang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qian Zhao
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mengzhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Jeong H, Rollon R, Kim S, Gil J, Casel M, Jang H, Choi J, Jang S, Lazarte J, Kim H, Kim J, Choi Y. Enhancing Omicron Sublineage Neutralization: Insights From Bivalent and Monovalent COVID-19 Booster Vaccines and Recent SARS-CoV-2 Omicron Variant Infections. Influenza Other Respir Viruses 2024; 18:e70000. [PMID: 39377176 PMCID: PMC11459205 DOI: 10.1111/irv.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Omicron variants have rapidly diversified into sublineages with mutations that enhance immune evasion, posing challenges for vaccination and antibody responses. This study aimed to compare serum cross-neutralizing antibody responses against various SARS-CoV-2 Omicron sublineages (BA.1, BA.5, XBB.1.17.1, FK.1.1, and JN.1) in recipients of monovalent COVID-19 boosters, bivalent booster recipients, and individuals who had recovered from Omicron BA.5 infections. METHODS We conducted a micro-neutralization assay on serum samples from monovalent BNT162b2 booster recipients (N = 54), bivalent BNT162b2 booster recipients (N = 24), and SARS-CoV-2 Omicron BA.5-recovered individuals (N = 13). The history of SARS-CoV-2 Omicron infection was assessed using ELISA against the SARS-CoV-2 NP protein. RESULTS Bivalent booster recipients exhibited significantly enhanced neutralization efficacy against Omicron sublineages compared to those who had received monovalent booster vaccinations. Omicron BA.5-recovered individuals displayed similar neutralizing antibodies (NAbs) to the bivalent booster recipients. Despite the improved neutralization in bivalent recipients and BA.5-recovered individuals, there were limitations in neutralization against the recently emerged Omicron subvariants: XBB.1.17.1 FK.1.1, and JN.1. In both monovalent and bivalent booster recipients, a history of Omicron breakthrough infection was associated with relatively higher geometric mean titers of NAbs against Omicron BA.1, BA.5, and XBB.1.17.1 variants. CONCLUSION This study underscores the intricate interplay between vaccination strategies, immune imprinting, and the dynamic landscape of SARS-CoV-2 variants. Although bivalent boosters enhance neutralization, addressing the challenge of emerging sublineages like XBB.1.17.1, FK.1.1, and JN.1 may necessitate the development of tailored vaccines, underscoring the need for ongoing adaptation to effectively combat this highly mutable virus.
Collapse
Affiliation(s)
- Hye Won Jeong
- College of Medicine and Medical Research InstituteChungbuk National UniversityCheongjuRepublic of Korea
- Department of Internal MedicineChungbuk National University HospitalCheongjuRepublic of Korea
| | - Rare Rollon
- College of Medicine and Medical Research InstituteChungbuk National UniversityCheongjuRepublic of Korea
- Center for Study of Emerging and Re‐emerging VirusesKorea Virus Research Institute, Institute for Basic Science (IBS)DaejeonRepublic of Korea
| | - Se‐Mi Kim
- Center for Study of Emerging and Re‐emerging VirusesKorea Virus Research Institute, Institute for Basic Science (IBS)DaejeonRepublic of Korea
| | - Juryeon Gil
- College of Medicine and Medical Research InstituteChungbuk National UniversityCheongjuRepublic of Korea
- Center for Study of Emerging and Re‐emerging VirusesKorea Virus Research Institute, Institute for Basic Science (IBS)DaejeonRepublic of Korea
| | - Mark Anthony Casel
- College of Medicine and Medical Research InstituteChungbuk National UniversityCheongjuRepublic of Korea
- Center for Study of Emerging and Re‐emerging VirusesKorea Virus Research Institute, Institute for Basic Science (IBS)DaejeonRepublic of Korea
| | - Hyunwoo Jang
- College of Medicine and Medical Research InstituteChungbuk National UniversityCheongjuRepublic of Korea
- Center for Study of Emerging and Re‐emerging VirusesKorea Virus Research Institute, Institute for Basic Science (IBS)DaejeonRepublic of Korea
| | - Jeong Ho Choi
- College of Medicine and Medical Research InstituteChungbuk National UniversityCheongjuRepublic of Korea
- Center for Study of Emerging and Re‐emerging VirusesKorea Virus Research Institute, Institute for Basic Science (IBS)DaejeonRepublic of Korea
| | - Seung‐Gyu Jang
- College of Medicine and Medical Research InstituteChungbuk National UniversityCheongjuRepublic of Korea
- Center for Study of Emerging and Re‐emerging VirusesKorea Virus Research Institute, Institute for Basic Science (IBS)DaejeonRepublic of Korea
| | - Josea Carmel Lazarte
- College of Medicine and Medical Research InstituteChungbuk National UniversityCheongjuRepublic of Korea
- Center for Study of Emerging and Re‐emerging VirusesKorea Virus Research Institute, Institute for Basic Science (IBS)DaejeonRepublic of Korea
| | - Hee‐Sung Kim
- College of Medicine and Medical Research InstituteChungbuk National UniversityCheongjuRepublic of Korea
- Department of Internal MedicineChungbuk National University HospitalCheongjuRepublic of Korea
| | - Jun Hyoung Kim
- Department of Internal MedicineChungbuk National University HospitalCheongjuRepublic of Korea
| | - Young Ki Choi
- College of Medicine and Medical Research InstituteChungbuk National UniversityCheongjuRepublic of Korea
- Center for Study of Emerging and Re‐emerging VirusesKorea Virus Research Institute, Institute for Basic Science (IBS)DaejeonRepublic of Korea
| |
Collapse
|
3
|
Ou BS, Baillet J, Filsinger Interrante MV, Adamska JZ, Zhou X, Saouaf OM, Yan J, Klich JH, Jons CK, Meany EL, Valdez AS, Carter L, Pulendran B, King NP, Appel EA. Saponin nanoparticle adjuvants incorporating Toll-like receptor agonists drive distinct immune signatures and potent vaccine responses. SCIENCE ADVANCES 2024; 10:eadn7187. [PMID: 39110802 PMCID: PMC11305391 DOI: 10.1126/sciadv.adn7187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Over the past few decades, the development of potent and safe immune-activating adjuvant technologies has become the heart of intensive research in the constant fight against highly mutative and immune evasive viruses such as influenza, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and human immunodeficiency virus (HIV). Herein, we developed a highly modular saponin-based nanoparticle platform incorporating Toll-like receptor agonists (TLRas) including TLR1/2a, TLR4a, and TLR7/8a adjuvants and their mixtures. These various TLRa-saponin nanoparticle adjuvant constructs induce unique acute cytokine and immune-signaling profiles, leading to specific T helper responses that could be of interest depending on the target disease for prevention. In a murine vaccine study, the adjuvants greatly improved the potency, durability, breadth, and neutralization of both COVID-19 and HIV vaccine candidates, suggesting the potential broad application of these adjuvant constructs to a range of different antigens. Overall, this work demonstrates a modular TLRa-SNP adjuvant platform that could improve the design of vaccines and affect modern vaccine development.
Collapse
Affiliation(s)
- Ben S. Ou
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Julie Baillet
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
| | - Maria V. Filsinger Interrante
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Julia Z. Adamska
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Xueting Zhou
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Olivia M. Saouaf
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jerry Yan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - John H. Klich
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Carolyn K. Jons
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
| | - Emily L. Meany
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Adian S. Valdez
- Department of Biochemistry, University of Washington, Seattle, WA 98109, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA 98109, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, WA 98109, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Eric A. Appel
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Pediatrics-Endocrinology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
- Woods Institute for the Environment, Stanford University, Stanford CA 94305, USA
| |
Collapse
|
4
|
Ou BS, Baillet J, Filsinger Interrante MV, Adamska JZ, Zhou X, Saouaf OM, Yan J, Klich JH, Jons CK, Meany EL, Valdez AS, Carter L, Pulendran B, King NP, Appel EA. Saponin Nanoparticle Adjuvants Incorporating Toll-Like Receptor Agonists Drive Distinct Immune Signatures and Potent Vaccine Responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.16.549249. [PMID: 37577608 PMCID: PMC10418080 DOI: 10.1101/2023.07.16.549249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Over the past few decades, the development of potent and safe immune-activating adjuvant technologies has become the heart of intensive research in the constant fight against highly mutative and immune evasive viruses such as influenza, SARS-CoV-2, and HIV. Herein, we developed a highly modular saponin-based nanoparticle platform incorporating toll-like receptor agonists (TLRas) including TLR1/2a, TLR4a, TLR7/8a adjuvants and their mixtures. These various TLRa-SNP adjuvant constructs induce unique acute cytokine and immune-signaling profiles, leading to specific Th-responses that could be of interest depending on the target disease for prevention. In a murine vaccine study, the adjuvants greatly improved the potency, durability, breadth, and neutralization of both COVID-19 and HIV vaccine candidates, suggesting the potential broad application of these adjuvant constructs to a range of different antigens. Overall, this work demonstrates a modular TLRa-SNP adjuvant platform which could improve the design of vaccines for and dramatically impact modern vaccine development. Teaser Saponin-TLRa nanoadjuvants provide distinct immune signatures and drive potent, broad, durable COVID-19 and HIV vaccine responses.
Collapse
|
5
|
Cho BH, Kim J, Jang YS. The Papain-like Protease Domain of Severe Acute Respiratory Syndrome Coronavirus 2 Conjugated with Human Beta-Defensin 2 and Co1 Induces Mucosal and Systemic Immune Responses against the Virus. Vaccines (Basel) 2024; 12:441. [PMID: 38675823 PMCID: PMC11053661 DOI: 10.3390/vaccines12040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Most of the licensed vaccines against SARS-CoV-2 target spike proteins to induce viral neutralizing antibodies. However, currently prevalent SARS-CoV-2 variants contain many mutations, especially in their spike proteins. The development of vaccine antigens with conserved sequences that cross-react with variants of SARS-CoV-2 is needed to effectively defend against SARS-CoV-2 infection. Given that viral infection is initiated in the respiratory mucosa, strengthening the mucosal immune response would provide effective protection. We constructed a mucosal vaccine antigen using the papain-like protease (PLpro) domain of non-structural protein 3 of SARS-CoV-2. To potentiate the mucosal immune response, PLpro was combined with human beta-defensin 2, an antimicrobial peptide with mucosal immune adjuvant activity, and Co1, an M-cell-targeting ligand. Intranasal administration of the recombinant PLpro antigen conjugate into C57BL/6 and hACE2 knock-in (KI) mice induced antigen-specific T-cell and antibody responses with complement-dependent cytotoxic activity. Viral challenge experiments using the Wuhan and Delta strains of SARS-CoV-2 provided further evidence that immunized hACE2 KI mice were protected against viral challenge infections. Our study shows that PLpro is a useful candidate vaccine antigen against SARS-CoV-2 infection and that the inclusion of human beta-defensin 2 and Co1 in the recombinant construct may enhance the efficacy of the vaccine.
Collapse
Affiliation(s)
- Byeol-Hee Cho
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Ju Kim
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Yong-Suk Jang
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea;
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| |
Collapse
|
6
|
Halvorson T, Ivison S, Huang Q, Ladua G, Yotis DM, Mannar D, Subramaniam S, Ferreira VH, Kumar D, Belga S, Levings MK. SARS-CoV-2 Variants Omicron BA.4/5 and XBB.1.5 Significantly Escape T Cell Recognition in Solid-organ Transplant Recipients Vaccinated Against the Ancestral Strain. Transplantation 2024; 108:e49-e62. [PMID: 38012843 DOI: 10.1097/tp.0000000000004873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
BACKGROUND Immune-suppressed solid-organ transplant recipients (SOTRs) display impaired humoral responses to COVID-19 vaccination, but T cell responses are incompletely understood. SARS-CoV-2 variants Omicron BA.4/5 (BA.4/5) and XBB.1.5 escape neutralization by antibodies induced by vaccination or infection with earlier strains, but T cell recognition of these lineages in SOTRs is unclear. METHODS We characterized Spike-specific T cell responses to ancestral SARS-CoV-2 and BA.4/5 peptides in 42 kidney, liver, and lung transplant recipients throughout a 3- or 4-dose ancestral Spike mRNA vaccination schedule. As the XBB.1.5 variant emerged during the study, we tested vaccine-induced T cell responses in 10 additional participants using recombinant XBB.1.5 Spike protein. Using an optimized activation-induced marker assay, we quantified circulating Spike-specific CD4 + and CD8 + T cells based on antigen-stimulated expression of CD134, CD69, CD25, CD137, and/or CD107a. RESULTS Vaccination strongly induced SARS-CoV-2-specific T cells, including BA.4/5- and XBB.1.5-reactive T cells, which remained detectable over time and further increased following a fourth dose. However, responses to BA.4/5 (1.34- to 1.67-fold lower) XBB.1.5 (2.0- to 18-fold lower) were significantly reduced in magnitude compared with ancestral strain responses. CD4 + responses correlated with anti-receptor-binding domain antibodies and predicted subsequent antibody responses in seronegative individuals. Lung transplant recipients receiving prednisone and older adults displayed weaker responses. CONCLUSIONS Ancestral strain vaccination stimulates BA.4/5 and XBB.1.5-cross-reactive T cells in SOTRs, but at lower magnitudes. Antigen-specific T cells can predict future antibody responses. Our data support monitoring both humoral and cellular immunity in SOTRs to track COVID-19 vaccine immunogenicity against emerging variants.
Collapse
Affiliation(s)
- Torin Halvorson
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Sabine Ivison
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Qing Huang
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Gale Ladua
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Infection and Immunity Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Demitra M Yotis
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
| | - Dhiraj Mannar
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Sriram Subramaniam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Victor H Ferreira
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Deepali Kumar
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Sara Belga
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Infection and Immunity Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Lapuente D, Winkler TH, Tenbusch M. B-cell and antibody responses to SARS-CoV-2: infection, vaccination, and hybrid immunity. Cell Mol Immunol 2024; 21:144-158. [PMID: 37945737 PMCID: PMC10805925 DOI: 10.1038/s41423-023-01095-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 prompted scientific, medical, and biotech communities to investigate infection- and vaccine-induced immune responses in the context of this pathogen. B-cell and antibody responses are at the center of these investigations, as neutralizing antibodies (nAbs) are an important correlate of protection (COP) from infection and the primary target of SARS-CoV-2 vaccine modalities. In addition to absolute levels, nAb longevity, neutralization breadth, immunoglobulin isotype and subtype composition, and presence at mucosal sites have become important topics for scientists and health policy makers. The recent pandemic was and still is a unique setting in which to study de novo and memory B-cell (MBC) and antibody responses in the dynamic interplay of infection- and vaccine-induced immunity. It also provided an opportunity to explore new vaccine platforms, such as mRNA or adenoviral vector vaccines, in unprecedented cohort sizes. Combined with the technological advances of recent years, this situation has provided detailed mechanistic insights into the development of B-cell and antibody responses but also revealed some unexpected findings. In this review, we summarize the key findings of the last 2.5 years regarding infection- and vaccine-induced B-cell immunity, which we believe are of significant value not only in the context of SARS-CoV-2 but also for future vaccination approaches in endemic and pandemic settings.
Collapse
Affiliation(s)
- Dennis Lapuente
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Thomas H Winkler
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054, Erlangen, Germany.
| | - Matthias Tenbusch
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054, Erlangen, Germany
| |
Collapse
|
8
|
Machado RRG, Candido ÉD, Aguiar AS, Chalup VN, Sanches PR, Dorlass EG, Amgarten DE, Pinho JRR, Durigon EL, Oliveira DBL. Immune Evasion of SARS-CoV-2 Omicron Subvariants XBB.1.5, XBB.1.16 and EG.5.1 in a Cohort of Older Adults after ChAdOx1-S Vaccination and BA.4/5 Bivalent Booster. Vaccines (Basel) 2024; 12:144. [PMID: 38400128 PMCID: PMC10892985 DOI: 10.3390/vaccines12020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 02/25/2024] Open
Abstract
The recently emerged SARS-CoV-2 Omicron sublineages, including the BA.2-derived XBB.1.5 (Kraken), XBB.1.16 (Arcturus), and EG.5.1 (Eris), have accumulated several spike mutations that may increase immune escape, affecting vaccine effectiveness. Older adults are an understudied group at significantly increased risk of severe COVID-19. Here we report the neutralizing activities of 177 sera samples from 59 older adults, aged 62-97 years, 1 and 4 months after vaccination with a 4th dose of ChAdOx1-S (Oxford/AstraZeneca) and 3 months after a 5th dose of Comirnaty Bivalent Original/Omicron BA.4/BA.5 vaccine (Pfizer-BioNTech). The ChAdOx1-S vaccination-induced antibodies neutralized efficiently the ancestral D614G and BA.4/5 variants, but to a much lesser extent the XBB.1.5, XBB.1.16, and EG.5.1 variants. The results showed similar neutralization titers between XBB.1.16 and EG.5.1 and were lower compared to XBB.1.5. Sera from the same individuals boosted with the bivalent mRNA vaccine contained higher neutralizing antibody titers, providing a better cross-protection against Omicron XBB.1.5, XBB.1.16 and EG.5.1 variants. Previous history of infection during the epidemiological waves of BA.1/BA.2 and BA.4/BA.5, poorly enhanced neutralization activity of serum samples against XBBs and EG.5.1 variants. Our data highlight the continued immune evasion of recent Omicron subvariants and support the booster administration of BA.4/5 bivalent vaccine, as a continuous strategy of updating future vaccine booster doses to match newly emerged SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Rafael Rahal Guaragna Machado
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Érika Donizetti Candido
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Andressa Simoes Aguiar
- Dom Pedro II Geriatric and Convalescent Hospital, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo 02265-002, SP, Brazil
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Vanessa Nascimento Chalup
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Patricia Romão Sanches
- Dom Pedro II Geriatric and Convalescent Hospital, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo 02265-002, SP, Brazil
| | - Erick Gustavo Dorlass
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil
| | | | - João Renato Rebello Pinho
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil
- Laboratório de Medicina Laboratorial (LIM03), Department of Pathology, School of Medicine, University of São Paulo, São Paulo 01246-903, SP, Brazil
- Laboratório de Gastroenterologia Clínica e Experimental (LIM07), Department of Gastroenterology, School of Medicine, University of São Paulo, São Paulo 01246-903, SP, Brazil
| | - Edison Luiz Durigon
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Scientific Platform Pasteur-USP, São Paulo 05508-020, SP, Brazil
| | - Danielle Bruna Leal Oliveira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil
| |
Collapse
|
9
|
Paciello I, Maccari G, Pantano E, Andreano E, Rappuoli R. High-resolution map of the Fc functions mediated by COVID-19-neutralizing antibodies. Proc Natl Acad Sci U S A 2024; 121:e2314730121. [PMID: 38198525 PMCID: PMC10801854 DOI: 10.1073/pnas.2314730121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024] Open
Abstract
A growing body of evidence shows that fragment crystallizable (Fc)-dependent antibody effector functions play an important role in protection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. To unravel the mechanisms that drive these responses, we analyzed the phagocytosis and complement deposition mediated by a panel of 482 human monoclonal antibodies (nAbs) neutralizing the original Wuhan virus, expressed as recombinant IgG1. Our study confirmed that nAbs no longer neutralizing SARS-CoV-2 Omicron variants can retain their Fc functions. Surprisingly, we found that nAbs with the most potent Fc function recognize the N-terminal domain, followed by those targeting class 3 epitopes in the receptor binding domain. Interestingly, nAbs direct against the class 1/2 epitopes in the receptor binding motif, which are the most potent in neutralizing the virus, were the weakest in Fc functions. The divergent properties of the neutralizing and Fc function-mediating antibodies were confirmed by the use of different B cell germlines and by the observation that Fc functions of polyclonal sera differ from the profile observed with nAbs, suggesting that non-neutralizing antibodies also contribute to Fc functions. These data provide a high-resolution picture of the Fc-antibody response to SARS-CoV-2 and suggest that the Fc contribution should be considered for the design of improved vaccines, the selection of therapeutic antibodies, and the evaluation of correlates of protection.
Collapse
Affiliation(s)
- Ida Paciello
- Monoclonal Antibody Discovery Lab, Fondazione Toscana Life Sciences, Siena53100, Italy
| | - Giuseppe Maccari
- Data Science for Health Lab, Fondazione Toscana Life Sciences, Siena53100, Italy
| | - Elisa Pantano
- Monoclonal Antibody Discovery Lab, Fondazione Toscana Life Sciences, Siena53100, Italy
| | - Emanuele Andreano
- Monoclonal Antibody Discovery Lab, Fondazione Toscana Life Sciences, Siena53100, Italy
| | - Rino Rappuoli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena53100, Italy
- Fondazione Biotecnopolo di Siena, Siena53100, Italy
| |
Collapse
|
10
|
Petersen MS, Pérez-Alós L, í Kongsstovu SK, Eliasen EH, Hansen CB, Larsen S, Hansen JL, Bayarri-Olmos R, Fjallsbak JP, Weihe P, Garred P. Diverging humoral and cellular immune responses due to Omicron-a national study from the Faroe Islands. Microbiol Spectr 2023; 11:e0086523. [PMID: 37909772 PMCID: PMC10714973 DOI: 10.1128/spectrum.00865-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/30/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE The immunity following infection and vaccination with the SARS-CoV-2 Omicron variant is poorly understood. We investigated immunity assessed with antibody and T-cell responses under different scenarios in vaccinated and unvaccinated individuals with and without Omicron infection. We found that the humoral response was higher among vaccinated-naïve than unvaccinated convalescent. Unvaccinated with and without infection had comparable low humoral responses, whereas vaccinated with a second or third dose, independent of infection status, had increasingly higher levels. Only a minor fraction of unvaccinated individuals had detectable humoral responses following Omicron infection, while almost all had positive T-cell responses. In conclusion, primary Omicron infection mounts a low humoral immune response, enhanced by prior vaccination. Omicron infection induced a robust T-cell response in both unvaccinated and vaccinated, demonstrating that immune evasion of primary Omicron infection affects humoral immunity more than T-cell immunity.
Collapse
Affiliation(s)
- Maria Skaalum Petersen
- Department of Research, The National Hospital of the Faroe Islands, Tórshavn, Faroe Islands
- Center of Health Science, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Laura Pérez-Alós
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Eina Hansen Eliasen
- Department of Research, The National Hospital of the Faroe Islands, Tórshavn, Faroe Islands
| | - Cecilie Bo Hansen
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Sólrun Larsen
- Chief Medical Officer Office, Tórshavn, Faroe Islands
| | | | - Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Recombinant Protein and Antibody Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Pál Weihe
- Department of Research, The National Hospital of the Faroe Islands, Tórshavn, Faroe Islands
- Center of Health Science, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
11
|
Weber T, Dähling S, Rose S, Affeldt P, Vanshylla K, Ullrich L, Gieselmann L, Teipel F, Gruell H, Di Cristanziano V, Kim DS, Georgiou G, Koch M, Kreer C, Klein F. Enhanced SARS-CoV-2 humoral immunity following breakthrough infection builds upon the preexisting memory B cell pool. Sci Immunol 2023; 8:eadk5845. [PMID: 37976348 DOI: 10.1126/sciimmunol.adk5845] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
The human immune response must continuously adapt to newly emerging SARS-CoV-2 variants. To investigate how B cells respond to repeated SARS-CoV-2 antigen exposure by Wu01 booster vaccination and Omicron breakthrough infection, we performed a molecular longitudinal analysis of the memory B cell pool. We demonstrate that a subsequent breakthrough infection substantially increases the frequency of B cells encoding SARS-CoV-2-neutralizing antibodies. However, this is not primarily attributable to maturation, but to selection of preexisting B cell clones. Moreover, broadly reactive memory B cells arose early and even neutralized highly mutated variants like XBB.1.5 that the individuals had not encountered. Together, our data show that SARS-CoV-2 immunity is largely imprinted on Wu01 over the course of multiple antigen contacts but can respond to new variants through preexisting diversity.
Collapse
Affiliation(s)
- Timm Weber
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sabrina Dähling
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Svea Rose
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Patrick Affeldt
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kanika Vanshylla
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Leon Ullrich
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lutz Gieselmann
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Finn Teipel
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Henning Gruell
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Veronica Di Cristanziano
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Dae Sung Kim
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - George Georgiou
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA
- Department of Chemical Engineering and Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
- Department of Oncology, University of Texas Dell Medical School, Austin, Texas, USA
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Medical Faculty and University of Cologne, Cologne, Germany
| | - Christoph Kreer
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Florian Klein
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Chiang HL, Liang KH, Lu RM, Kuo TW, Lin YL, Wu HC. Broadly neutralizing human antibodies against Omicron subvariants of SARS-CoV-2. J Biomed Sci 2023; 30:59. [PMID: 37525188 PMCID: PMC10388472 DOI: 10.1186/s12929-023-00955-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND The COVID-19 pandemic continues to pose a significant worldwide threat to human health, as emerging SARS-CoV-2 Omicron variants exhibit resistance to therapeutic antibodies and the ability to evade vaccination-induced antibodies. Here, we aimed to identify human antibodies (hAbs) from convalescent patients that are potent and broadly neutralizing toward Omicron sublineages. METHODS Using a single B-cell cloning approach, we isolated BA.5 specific human antibodies. We further examined the neutralizing activities of the most promising neutralizing hAbs toward different variants of concern (VOCs) with pseudotyped virus. RESULTS Sixteen hAbs showed strong neutralizing activities against Omicron BA.5 with low IC50 values (IC50 < 20 ng/mL). Among four of the most promising neutralizing hAbs (RBD-hAb-B22, -B23, -B25 and -B34), RBD-hAb-B22 exhibited the most potent and broad neutralization profiles across Omicron subvariant pseudoviruses, with low IC50 values (7.7-41.6 ng/mL) and a low PRNT50 value (3.8 ng/mL) in plaque assays with authentic BA.5. It also showed potent therapeutic effects in BA.5-infected K18-hACE2 mice. CONCLUSIONS Thus, our efficient screening of BA.5-specific neutralizing hAbs from breakthrough infectious convalescent donors successfully yielded hAbs with potent therapeutic potential against multiple SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Hsiao-Ling Chiang
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, Taiwan
| | - Kang-Hao Liang
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, Taiwan
| | - Ruei-Min Lu
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, Taiwan
| | - Ting-Wen Kuo
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lin
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Sciences (IBMS), Academia Sinica, Taipei, Taiwan
| | - Han-Chung Wu
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, Taiwan.
- Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
13
|
Yang J, Hong W, Lei H, He C, Lei W, Zhou Y, Zhao T, Alu A, Ma X, Li J, Yang L, Wang Z, Wang W, Lu G, Shen G, Lu S, Wu G, Shi H, Wei X. Low levels of neutralizing antibodies against XBB Omicron subvariants after BA.5 infection. Signal Transduct Target Ther 2023; 8:252. [PMID: 37336889 DOI: 10.1038/s41392-023-01495-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/01/2023] [Accepted: 05/07/2023] [Indexed: 06/21/2023] Open
Abstract
The COVID-19 response strategies in Chinese mainland were recently adjusted due to the reduced pathogenicity and enhanced infectivity of Omicron subvariants. In Chengdu, China, an infection wave was predominantly induced by the BA.5 subvariant. It is crucial to determine whether the hybrid anti-SARS-CoV-2 immunity following BA.5 infection, coupled with a variety of immune background, is sufficient to shape the immune responses against newly emerged Omicron subvariants, especially for XBB lineages. To investigate this, we collected serum and nasal swab samples from 108 participants who had been infected in this BA.5 infection wave, and evaluated the neutralization against pseudoviruses. Our results showed that convalescent sera from individuals, regardless of vaccination history, had remarkably compromised neutralization capacities against the newly emerged XBB and XBB.1.5 subvariants. Although post-vaccination with BA.5 breakthrough infection slightly elevated plasma neutralizing antibodies against a part of pseudoviruses, the neutralization activities were remarkably impaired by XBB lineages. Furthermore, we analyzed the impacts of the number of vaccinations, age, and sex on the humoral and cellular immune response after BA.5 infection. Our findings suggest that the neutralization against XBB lineages that elicited by current hybrid immunity after BA.5 infection, are remained at low levels, indicating an urgent need for the development of next-generation of COVID-19 vaccines that designed based on the XBB sub-lineages and other future variants.
Collapse
Affiliation(s)
- Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Hong Lei
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Wenwen Lei
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
| | - Yanan Zhou
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Tingmei Zhao
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Jiong Li
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Li Yang
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Zhenling Wang
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Wei Wang
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Guangwen Lu
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Guobo Shen
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China.
| | - Guizhen Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China.
| | - Huashan Shi
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
14
|
Nakayama EE, Shioda T. SARS-CoV-2 Related Antibody-Dependent Enhancement Phenomena In Vitro and In Vivo. Microorganisms 2023; 11:microorganisms11041015. [PMID: 37110438 PMCID: PMC10145615 DOI: 10.3390/microorganisms11041015] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Antibody-dependent enhancement (ADE) is a phenomenon in which antibodies produced in the body after infection or vaccination may enhance subsequent viral infections in vitro and in vivo. Although rare, symptoms of viral diseases are also enhanced by ADE following infection or vaccination in vivo. This is thought to be due to the production of antibodies with low neutralizing activity that bind to the virus and facilitate viral entry, or antigen-antibody complexes that cause airway inflammation, or a predominance of T-helper 2 cells among the immune system cells which leads to excessive eosinophilic tissue infiltration. Notably, ADE of infection and ADE of disease are different phenomena that overlap. In this article, we will describe the three types of ADE: (1) Fc receptor (FcR)-dependent ADE of infection in macrophages, (2) FcR-independent ADE of infection in other cells, and (3) FcR-dependent ADE of cytokine production in macrophages. We will describe their relationship to vaccination and natural infection, and discuss the possible involvement of ADE phenomena in COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Emi E Nakayama
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Tatsuo Shioda
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
15
|
Maaske J, Sproule S, Falsey AR, Sobieszczyk ME, Luetkemeyer AF, Paulsen GC, Riddler SA, Robb ML, Rolle CP, Sha BE, Tong T, Ahani B, Aksyuk AA, Bansal H, Egan T, Jepson B, Padilla M, Patel N, Shoemaker K, Stanley AM, Swanson PA, Wilkins D, Villafana T, Green JA, Kelly EJ. Robust humoral and cellular recall responses to AZD1222 attenuate breakthrough SARS-CoV-2 infection compared to unvaccinated. Front Immunol 2023; 13:1062067. [PMID: 36713413 PMCID: PMC9881590 DOI: 10.3389/fimmu.2022.1062067] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/06/2022] [Indexed: 01/15/2023] Open
Abstract
Background Breakthrough severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in coronavirus disease 2019 (COVID-19) vaccinees typically produces milder disease than infection in unvaccinated individuals. Methods To explore disease attenuation, we examined COVID-19 symptom burden and immuno-virologic responses to symptomatic SARS-CoV-2 infection in participants (AZD1222: n=177/17,617; placebo: n=203/8,528) from a 2:1 randomized, placebo-controlled, phase 3 study of two-dose primary series AZD1222 (ChAdOx1 nCoV-19) vaccination (NCT04516746). Results We observed that AZD1222 vaccinees had an overall lower incidence and shorter duration of COVID-19 symptoms compared with placebo recipients, as well as lower SARS-CoV-2 viral loads and a shorter median duration of viral shedding in saliva. Vaccinees demonstrated a robust antibody recall response versus placebo recipients with low-to-moderate inverse correlations with virologic endpoints. Vaccinees also demonstrated an enriched polyfunctional spike-specific Th-1-biased CD4+ and CD8+ T-cell response that was associated with strong inverse correlations with virologic endpoints. Conclusion Robust immune responses following AZD1222 vaccination attenuate COVID-19 disease severity and restrict SARS-CoV-2 transmission potential by reducing viral loads and the duration of viral shedding in saliva. Collectively, these analyses underscore the essential role of vaccination in mitigating the COVID-19 pandemic.
Collapse
Affiliation(s)
- Jill Maaske
- Clinical Development, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Stephanie Sproule
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Ann R. Falsey
- University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
- Rochester Regional Health, Rochester, NY, United States
| | - Magdalena E. Sobieszczyk
- Division of Infectious Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, New York-Presbyterian Columbia University Irving Medical Center, New York, NY, United States
| | - Anne F. Luetkemeyer
- Zuckerberg San Francisco General, University of California, San Francisco, San Francisco, CA, United States
| | - Grant C. Paulsen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Pediatric Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Sharon A. Riddler
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Merlin L. Robb
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | | | - Beverly E. Sha
- Division of Infectious Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Tina Tong
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Bahar Ahani
- Bioinformatics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Anastasia A. Aksyuk
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Himanshu Bansal
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Timothy Egan
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Brett Jepson
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Marcelino Padilla
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Nirmeshkumar Patel
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Kathryn Shoemaker
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Ann Marie Stanley
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Phillip A. Swanson
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Deidre Wilkins
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Tonya Villafana
- Clinical Development, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Justin A. Green
- Clinical Development, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Elizabeth J. Kelly
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| |
Collapse
|
16
|
Lee KM, Lin SJ, Wu CJ, Kuo RL. Race with virus evolution: The development and application of mRNA vaccines against SARS-CoV-2. Biomed J 2023; 46:70-80. [PMID: 36642222 PMCID: PMC9837160 DOI: 10.1016/j.bj.2023.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Since the COVID-19 pandemic was declared, vaccines against SARS-CoV-2 have been urgently developed around the world. On the basis of the mRNA vaccine technology developed previously, COVID-19 mRNA vaccines were promptly tested in animals, advanced to clinical trials, and then authorized for emergency use in humans. The administration of COVID-19 mRNA vaccines has successfully reduced the hospitalization and mortality caused by the viral infection, although the virus continuously evolves with its transmission. Therefore, the development of mRNA vaccine technology, including RNA modification and delivery systems, is well recognized for its contribution to moderating the harms caused by the COVID-19 pandemic. The scientists who developed these technologies, Katalin Karikó, Drew Weissman, and Pieter Cullis, were awarded the 2022 Tang Prize in Biopharmaceutical Science. In this review, we summarize the principles, safety and efficacy of as well as the immune response to COVID-19 mRNA vaccines. Since mRNA vaccine approaches could be practical for the prevention of infectious diseases, we also briefly describe mRNA vaccines against other human viral pathogens in clinical trials.
Collapse
Affiliation(s)
- Kuo-Ming Lee
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan,International Master Degree Program for Molecular Medicine in Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan,Division of Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Linkou, Taiwan
| | - Syh-Jae Lin
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Linkou, Taiwan,School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Jung Wu
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Rei-Lin Kuo
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan; International Master Degree Program for Molecular Medicine in Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Linkou, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
17
|
Goto T, Sasaki T, Chong Y, Taniguchi M, Lee JM, Masuda A, Ebihara T, Shiraishi K, Tani N, Yonekawa A, Gondo K, Kuwano H, Shimono N, Ikematsu H, Akashi K, Kusakabe T. SARS-CoV-2 strain-specific anti-spike IgG ELISA utilizing spike protein produced by silkworms. Hum Antibodies 2023; 31:27-33. [PMID: 37458030 DOI: 10.3233/hab-230006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
BACKGROUND A cost-effective and eco-friendly method is needed for the assessment of humoral immunity against SARS-CoV-2 in large populations. OBJECTIVE We investigated the performance of an ELISA that uses silkworm-produced proteins to quantify the strain-specific anti-Spike IgG (anti-S IgG) titer. METHODS The OD values for the anti-His-tag antibody, a standard material of ELISA quantification, were measured. Correlations between the ELISA for each strain and the Abbott SARS-CoV-2 IgG II Quant assay for the wild type were evaluated with serum samples from nine participants with various infection and vaccination statuses. RESULTS Linear dose-responses were confirmed by high coefficients of determination: 0.994, 0.994, and 0.996 for the wild-type, Delta, and Omicron (BA.1) strain assays, respectively. The coefficient of determination for the wild-type and Delta strain assays was high at 0.959 and 0.892, respectively, while the Omicron strain assay had a relatively low value of 0.563. Booster vaccinees showed similar or higher titers against all strains compared to infected persons without vaccination. The Omicron-infected persons without vaccination had lower antibody titers against wild type than did the vaccinated persons. CONCLUSIONS This study provides data indicating that the ELISA with silkworm-produced proteins makes it possible to discriminate and quantify the strain-specific anti-S IgG antibody induced by vaccination or infection.
Collapse
Affiliation(s)
- Takeyuki Goto
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences (The First Department of Internal Medicine), Fukuoka, Japan
| | - Tomoki Sasaki
- R&D Department, KAICO Ltd, Fukuoka, Japan
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yong Chong
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences (The First Department of Internal Medicine), Fukuoka, Japan
| | | | - Jae Man Lee
- Laboratory of Creative Science for Insect Industries Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Akitsu Masuda
- Laboratory of Creative Science for Insect Industries Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Takeru Ebihara
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Kenichiro Shiraishi
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences (The First Department of Internal Medicine), Fukuoka, Japan
| | - Naoki Tani
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences (The First Department of Internal Medicine), Fukuoka, Japan
| | - Akiko Yonekawa
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences (The First Department of Internal Medicine), Fukuoka, Japan
| | - Kei Gondo
- COVID-19 Team, Fukuoka City Hospital, Fukuoka, Japan
| | | | - Nobuyuki Shimono
- Center for the Study of Global Infection, Kyushu University Hospital, Fukuoka, Japan
| | | | - Koichi Akashi
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences (The First Department of Internal Medicine), Fukuoka, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|