1
|
Wrynla XH, Bates TA, Trank-Greene M, Wahedi M, Hinchliff A, Curlin ME, Tafesse FG. Immune imprinting and vaccine interval determine antibody responses to monovalent XBB.1.5 COVID-19 vaccination. COMMUNICATIONS MEDICINE 2025; 5:182. [PMID: 40382525 PMCID: PMC12085693 DOI: 10.1038/s43856-025-00898-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 05/07/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND As COVID-19 becomes endemic and vaccines are annually adapted, exposure intervals and immune imprinting become critical considerations for vaccination strategy. Imprinting by the ancestral spike protein affected bivalent Wuhan-Hu-1/BA.4-5 vaccine responses. We assess the persistence of imprinting in antibody responses to the more recent XBB.1.5 monovalent formulation. METHODS We quantified live virus-neutralizing antibodies by focus reduction neutralization test and ancestral spike receptor-binding isotype titers by immunosorbent assay in individuals before and after XBB.1.5 vaccination. We compared responses between those who previously received three to four doses of Wuhan-Hu-1 vaccine and one dose of bivalent Wuhan-Hu-1/BA.4-5 (bivalent recipients) and those who received three to four doses of Wuhan-Hu-1 (bivalent non-recipients). RESULTS We report that before XBB.1.5 vaccination, bivalent non-recipients have decreased breadth and potency of neutralization. At post-vaccination, non-recipients exhibit greater boosting of neutralizing antibodies against XBB.1.5 (18.4X versus 6.2X), EG.5.1 (30.9X versus 7.0X), and JN.1 (9.2X versus 3.7X) variants with comparable breadth and trends toward greater potency. Greater boosting in non-recipients is similarly observed for spike-binding IgA and total IgG/A/M but not IgG nor IgM. Bivalent non-recipients had longer intervals between vaccination, which may enhance antibody responses; however, bivalent receipt and interval are tightly linked, preventing isolation of individual contributions to boosting. Nonetheless, back-boosting of ancestral SARS-CoV-2 titers in both participant groups provides interval-independent evidence that imprinting persists. CONCLUSIONS Our findings indicate that immune imprinting continues to affect humoral immunity elicited by the XBB.1.5 vaccine. Both imprinting and exposure intervals are important phenomena underlying immunogenicity of future variant-adapted COVID-19 vaccines.
Collapse
Affiliation(s)
- Xammy Huu Wrynla
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Timothy A Bates
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Mila Trank-Greene
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Mastura Wahedi
- Department of Occupational Health, Oregon Health and Science University, Portland, OR, USA
| | - Audrey Hinchliff
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Marcel E Curlin
- Department of Occupational Health, Oregon Health and Science University, Portland, OR, USA.
- Division of Infectious Diseases, Oregon Health and Science University, Portland, OR, USA.
| | - Fikadu G Tafesse
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
2
|
Augello M, Bono V, Rovito R, Tavelli A, Santoro A, Tincati C, Vergori A, Azzini AM, Righi E, Spiteri G, Porru S, Meschi S, Notari S, Maggi F, Antinori A, Tacconelli E, d'Arminio Monforte A, Marchetti G. Long-term immune responses to SARS-CoV-2 Omicron BA.4/5 mRNA booster in people living with HIV. COMMUNICATIONS MEDICINE 2025; 5:92. [PMID: 40148493 PMCID: PMC11950219 DOI: 10.1038/s43856-025-00799-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Variant-adapted vaccines are recommended in vulnerable populations to address the waning immunity and the emergence of immune-escaping SARS-CoV-2 variants, yet data about immune responses to such vaccines in people living with HIV (PLWH) are limited. We therefore aimed to assess long-term immune responses to an original-BA.4/5 mRNA booster in this population. METHODS In this prospective longitudinal study, PLWH receiving either an original-BA.4/5 bivalent booster or an original monovalent booster and HIV-negative healthcare workers (HCWs) receiving a bivalent booster were enrolled and sampled before (T0), 1 month (T1), and 4-9 months (T2) after the vaccine administration. SARS-CoV-2-specific T and B cells, RBD-binding antibodies, and RBD-blocking antibodies against both wild type (WT) and omicron BA.4/5 virus were determined. RESULTS The bivalent booster is able to transiently increase both humoral and polyfunctional T cell responses in PLWH, with humoral responses comparable to those observed in HCWs. While T cell responses are cross-reactive against viral variants and stable over time, humoral immunity is imprinted to the ancestral virus and wanes quickly. Furthermore, whilst previous SARS-CoV-2 infection does not affect the trajectory of vaccine-elicited immune responses, markers of HIV-related T cell dysfunction are associated with lower antibody peak responses and higher antibody waning. Lastly, the bivalent booster was superior to the monovalent one in inducing BA.4/5-reactive RBD-blocking antibodies. CONCLUSIONS The original-BA.4/5 bivalent booster is highly immunogenic in PLWH and superior to the monovalent one in inducing humoral responses against the BA.4/5 virus, although HIV-related T cell dysfunction markers are associated with blunted and less durable antibody immunity.
Collapse
Affiliation(s)
- Matteo Augello
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Valeria Bono
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Roberta Rovito
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | | | - Andrea Santoro
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Camilla Tincati
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Alessandra Vergori
- Viral Immunodeficiencies Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
| | - Anna Maria Azzini
- Division of Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Elda Righi
- Division of Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Gianluca Spiteri
- Occupational Medicine Unit, Verona Hospital, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Stefano Porru
- Occupational Medicine Unit, Verona Hospital, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Silvia Meschi
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
| | - Stefania Notari
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
| | - Andrea Antinori
- Viral Immunodeficiencies Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
| | - Evelina Tacconelli
- Division of Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | | | - Giulia Marchetti
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
3
|
Maltseva M, Galipeau Y, McCluskie P, Castonguay N, Cooper CL, Langlois MA. Systemic and Mucosal Antibody Responses to SARS-CoV-2 Variant-Specific Prime-and-Boost and Prime-and-Spike Vaccination: A Comparison of Intramuscular and Intranasal Bivalent Vaccine Administration in a Murine Model. Vaccines (Basel) 2025; 13:351. [PMID: 40333249 PMCID: PMC12031244 DOI: 10.3390/vaccines13040351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 05/09/2025] Open
Abstract
Background: The rapid genetic evolution of SARS-CoV-2 has led to the emergence of immune-evading, highly transmissible variants of concern (VOCs). This prompts the need for next-generation vaccines that elicit robust mucosal immunity in the airways to directly curb viral infection. Objective: Here, we investigate the impact of heterologous variant prime-boost regimens on humoral responses, focusing on intramuscular (IM) and intranasal (IN) routes of administration. Using a murine model, we assessed the immunogenicity of unadjuvanted protein boosts with Wu-1, Omicron BA.4/5, or Wu-1 + BA.4/5 spike antigens following monovalent or bivalent IM priming with mRNA-LNP vaccines. Results: IM priming induced strong systemic total and neutralizing antibody responses that were further enhanced by IN boosts with BA.4/5. IN boosting achieved the broadest serum neutralization across all VOCs tested. Notably, bivalent mRNA-LNP IM priming induced robust, cross-variant serum neutralizing antibody production, independent of subsequent IN boost combinations. Conclusions: Our findings highlight the benefit of including distinct antigenic variants in the prime vaccination followed by a variant-tailored IN boost to elicit both systemic and mucosal variant-specific responses that are potentially capable of reducing SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Mariam Maltseva
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Pauline McCluskie
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nicolas Castonguay
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Curtis L. Cooper
- The Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Center for Infection, Immunity, and Inflammation (CI3), University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
4
|
Sop J, Mercado A, Figueroa A, Beckey TP, Traut CC, Zhang L, Smith KN, Blankson JN. The XBB.1.5 mRNA booster vaccine does not significantly increase the percentage of XBB.1.5 mono-reactive T cells. Front Immunol 2025; 16:1513175. [PMID: 40145092 PMCID: PMC11936820 DOI: 10.3389/fimmu.2025.1513175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Recent efforts in vaccine development have targeted spike proteins from evolving SARS-CoV-2 variants. In this study, we analyzed T cell responses to the XBB.1.5 and BA.2.86 subvariants in individuals who previously received bivalent vaccines containing mRNA for ancestral and BA.5 spike proteins. T cell-mediated cytokine responses to spike proteins from both variants were largely preserved. To determine the mechanism of this preserved recognition, we utilized the functional expansion of specific T cells (FEST) assay to distinguish between the presence of T cells that cross-recognized ancestral and variant epitopes versus distinct populations of T cells that were mono-reactive for ancestral or variant epitopes. We found the majority of spike-specific T cells cross-recognized the ancestral spike and the XBB.1.5 and BA.2.86 subvariants, with less than 10% of T cells being mono-reactive for either variant. Interestingly, immunization with the XBB.1.5 monovalent booster vaccine did not significantly increase the percentage of XBB.1.5 mono-reactive T cells. Our results suggest a potential limitation in the induction of mono-reactive T cell responses by variant-specific booster vaccines.
Collapse
Affiliation(s)
- Joel Sop
- Department of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Alicia Mercado
- Department of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Alexis Figueroa
- Department of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Tyler P. Beckey
- Department of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Caroline C. Traut
- Department of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Li Zhang
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine, Baltimore, MD, United States
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| | - Kellie N. Smith
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine, Baltimore, MD, United States
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| | - Joel N. Blankson
- Department of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| |
Collapse
|
5
|
Kumar D, Gaikwad K, Gunnale R, Vishwakarma S, Shukla S, Srivastava S, Gopal J, Vaidya B, Saraf A, Gurjar R, Kaviraj S, Singh A, Raghuwanshi A, Agarwal P, Savergave L, Singh S. Cellular immune breadth of an Omicron-specific, self-amplifying monovalent mRNA vaccine booster for COVID-19. NPJ Vaccines 2025; 10:42. [PMID: 40025095 PMCID: PMC11873296 DOI: 10.1038/s41541-025-01076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 01/16/2025] [Indexed: 03/04/2025] Open
Abstract
Selecting a booster vaccine strategy that generates cellular immune breadth is crucial for effectively recalling cellular reservoirs upon infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants. This post hoc analysis from a multicentre, randomized phase 3 study (CTRI/2022/10/046475) compared the cellular immune breadth induced by self-replicating mRNA (samRNA) vaccine GEMCOVAC-OM, encoding Omicron B.1.1.529 Spike protein, with the adenovector vaccine ChAdOx1 nCoV-19, encoding Wuhan variant Spike protein, when administered as a booster. GEMCOVAC-OM elicited significant expansion of memory B-cells (MBCs) specific to Omicron B.1.1.529, compared to ChAdOx1 nCoV-19. GEMCOVAC-OM also induced more B-cells reactive to Omicron XBB.1.5 and BA.2.86 Spike proteins. Additionally, GEMCOVAC-OM triggered higher frequencies of Omicron-Spike-specific T-cells, including stem cell, central, and effector memory subsets. In summary, while ChAdOx1 nCoV-19 showed some cross-reactivity, GEMCOVAC-OM induced a more targeted immune response. GEMCOVAC-OM offers a broader, longer-lasting immunity, making it a promising candidate for future vaccine development and global distribution.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Amit Saraf
- Gennova Biopharmaceutical Limited, Pune, India
| | | | | | - Ajay Singh
- Gennova Biopharmaceutical Limited, Pune, India
| | | | | | | | | |
Collapse
|
6
|
Zhao F, Zhang Y, Zhang Z, Chen Z, Wang X, Wang S, Li R, Li Y, Zhang Z, Zheng W, Wang Y, Zhang Z, Wu S, Yang Y, Zhang J, Zai X, Xu J, Chen W. Epitope-focused vaccine immunogens design using tailored horseshoe-shaped scaffold. J Nanobiotechnology 2025; 23:119. [PMID: 39966941 PMCID: PMC11834273 DOI: 10.1186/s12951-025-03200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025] Open
Abstract
The continuous emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants highlights the need to update coronavirus 2019 disease (COVID-19) vaccine components. Epitope-based vaccine designs targeting conserved and immunorecessive regions of SARS-CoV-2 are critically needed. Here, we report an engineered epitope-focused immunogen design based on a novel horseshoe-shaped natural protein scaffold, named ribonuclease inhibitor 1 (RNH1), that can multiply display of conserved neutralizing epitopes from SARS-CoV-2 S2 stem helix. The designed immunogen RNH1-S1139 demonstrates high binding affinity to S2-specific neutralizing antibodies and elicits robust epitope-targeted antibody responses either through homologous or heterologous vaccination regimens. RNH1-S1139 immune serum has been proven to have similar binding ability against SARS-CoV, SARS-CoV-2 and its variants, providing broad-spectrum protection as a membrane fusion inhibitor. Further studies showed that RNH1 has the potential to serve as a versatile scaffold that displays other helical epitopes from various antigens, including respiratory syncytial virus (RSV) F glycoprotein. Our proposed immunogen engineering strategy via tailored horseshoe-shape nano-scaffold supports the continued development of epitope-focused vaccines as part of a next-generation vaccine design.
Collapse
Affiliation(s)
- Fangxin Zhao
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yue Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Zhiling Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Zhengshan Chen
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiaolin Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Shaoyan Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Ruihua Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yaohui Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Zhang Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Wanru Zheng
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yudong Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Zhe Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Shipo Wu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yilong Yang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Jun Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiaodong Zai
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Junjie Xu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Wei Chen
- School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China.
- Lead Contact, Beijing, China.
| |
Collapse
|
7
|
Wrynla XH, Bates TA, Trank-Greene M, Wahedi M, Hinchliff A, Curlin ME, Tafesse FG. Immune imprinting and vaccination interval underly XBB.1.5 monovalent vaccine immunogenicity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.09.25321965. [PMID: 40034787 PMCID: PMC11875258 DOI: 10.1101/2025.02.09.25321965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
As COVID-19 transitions into endemicity and vaccines are annually updated to circulating SARS-CoV-2 lineages such as JN.1, exposure intervals and immune imprinting become critical considerations for vaccination strategy. Imprinting by the ancestral spike protein has been observed with the bivalent Wuhan-Hu-1/BA.4-5 vaccine and its persistence can be further evaluated in the context of the more recent XBB.1.5 monovalent vaccine. We assessed antibody responses in individuals who received three to four doses of Wuhan-Hu-1, one dose of bivalent Wuhan-Hu-1/BA.4-5, and one dose of XBB.1.5 vaccine (bivalent recipients). We compared these to individuals who received three to four doses of Wuhan-Hu-1 and one dose of XBB.1.5 vaccine without prior bivalent vaccination (bivalent non-recipients). Before XBB.1.5 vaccination, bivalent non-recipients demonstrated decreased breadth and potency of neutralizing antibodies compared to recipients, but at post-vaccination exhibited greater boosting of neutralizing antibodies against XBB.1.5 (18.4X versus 6.2X), EG.5.1 (30.9X versus 7.0X), and JN.1 (9.2X versus 3.7X) variants with trends toward higher neutralizing titers and comparable variant cross-neutralization. Increased boosting in non-recipients were similarly observed for IgA and total IgG/A/M isotypes binding the spike receptor-binding domain but not IgG nor IgM. Bivalent non-recipients had longer intervals between exposures, which has been reported to enhance antibody boosting; however, bivalent receipt and interval were tightly linked variables, preventing the isolation of individual contributions to boosting. Nonetheless, significant "back-boosting" of ancestral SARS-CoV-2 titers upon XBB.1.5 vaccination in both participant groups indicate that immune imprinting continues to affect contemporary vaccines. Altogether, our findings highlight imprinting and exposure intervals as important phenomena underlying variant-adapted COVID-19 vaccine immunogenicity.
Collapse
|
8
|
Yang GJ, Lu M, Chen RR, Wang SQ, Wan S, Song XD, Cao GP, Lv L, He XJ, Zhan BD, Ma MJ. Neutralizing antibody responses to three XBB protein vaccines in older adults. Signal Transduct Target Ther 2025; 10:48. [PMID: 39894858 PMCID: PMC11788433 DOI: 10.1038/s41392-025-02132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/25/2024] [Accepted: 01/07/2025] [Indexed: 02/04/2025] Open
Abstract
The ongoing COVID-19 pandemic has underscored the importance of strong immune defenses against emerging SARS-CoV-2 variants. While COVID-19 vaccines containing XBB subvariants have proven effective in neutralizing new SARS-CoV-2 variants, a gap remains in knowledge regarding neutralizing antibody responses in older adults aged >65 years against these newly emerged variants. This study was therefore undertaken to investigate and compare neutralizing antibody responses to three XBB-containing protein-based vaccines (trivalent XBB.1.5 vaccine, bivalent Omicron XBB vaccine, and tetravalent XBB.1 vaccine) head-to-head in 90 individuals aged >65 years. The results showed that all three XBB-containing vaccines substantially enhanced the neutralizing antibody response, with 100% of vaccinees having detectable antibody titers against ancestral D614G and variants BA.5, XBB.1.5, JN.1, KP.2, and KP.3 after booster immunization. Subsequent analysis indicated that the trivalent XBB.1.5 and tetravalent XBB.1 vaccines elicited higher levels of neutralizing antibodies compared to the bivalent Omicron XBB vaccine. The KP.2 and KP.3 variants displayed antibody resistance comparable to the JN.1 variant. Older adults produce similar neutralizing antibody responses to the vaccines regardless of their underlying medical conditions. These findings indicate that booster vaccination with XBB-containing vaccines can effectively elicit strong neutralizing responses against a number of SARS-CoV-2 variants in older adults over 65 years, which will help guide vaccine strategies in this elderly population.
Collapse
Affiliation(s)
- Guo-Jian Yang
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Mei Lu
- Kaihua Center for Disease Control and Prevention, Quzhou, 324300, China
| | - Rui-Rui Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Qing Wang
- Department of Infectious Disease Control and Prevention, Quzhou Center for Disease Control and Prevention, Quzhou, 324000, China
| | - Sheng Wan
- Department of Infectious Disease Control and Prevention, Quzhou Center for Disease Control and Prevention, Quzhou, 324000, China
| | - Xue-Dong Song
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
- Department of Laboratory Medicine, Handan Central Hospital, Hebei Medical University, Handan, 056001, China
| | - Guo-Ping Cao
- Department of Infectious Disease Control and Prevention, Quzhou Center for Disease Control and Prevention, Quzhou, 324000, China
| | - Lei Lv
- Department of Infectious Disease Control and Prevention, Quzhou Center for Disease Control and Prevention, Quzhou, 324000, China
| | - Xue-Juan He
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Bing-Dong Zhan
- Department of Infectious Disease Control and Prevention, Quzhou Center for Disease Control and Prevention, Quzhou, 324000, China.
| | - Mai-Juan Ma
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China.
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
9
|
Wang Z, Li L, Du R, Chen X, Sun Y, Qin R, Li Y, Feng H, Hu L, Chen X, Lu M, Jiang L, Zuo T. Ancestral SARS-CoV-2 immune imprinting persists on RBD but not NTD after sequential Omicron infections. iScience 2025; 28:111557. [PMID: 39807166 PMCID: PMC11728909 DOI: 10.1016/j.isci.2024.111557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/08/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
Whether Omicron exposures could overcome ancestral SARS-CoV-2 immune imprinting remains controversial. Here we analyzed B cell responses evoked by sequential Omicron infections in vaccinated and unvaccinated individuals. Plasma neutralizing antibody titers against ancestral SARS-CoV-2 and variants indicate that immune imprinting is not consistently induced by inactivated or recombinant protein vaccines. However, once robustly induced, immune imprinting is not countered by successive Omicron challenges. We compared binding specificities, neutralizing capacities, developing origins and targeting epitopes of monoclonal antibodies from those individuals. Although receptor-binding domain (RBD) and N-terminal domain (NTD) of spike are both primary targets for neutralizing antibodies, immune imprinting only shapes antibody responses to RBD by impeding the production of Omicron-specific neutralizing antibodies while facilitating the development of broadly neutralizing antibodies. We propose that immune imprinting can be either neglected by NTD-based vaccines to induce variant-specific antibodies or leveraged by RBD-containing vaccines to induce broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Zuowei Wang
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ling Li
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ruiping Du
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xixian Chen
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yi Sun
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Rongrong Qin
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yunjian Li
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Hualong Feng
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Lin Hu
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xuanyi Chen
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Maosheng Lu
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Liwei Jiang
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Teng Zuo
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
10
|
Suntronwong N, Kanokudom S, Duangchinda T, Chantima W, Pakchotanon P, Klinfueng S, Puenpa J, Thatsanathorn T, Wanlapakorn N, Poovorawan Y. Neutralization of omicron subvariants and antigenic cartography following multiple COVID 19 vaccinations and repeated omicron non JN.1 or JN.1 infections. Sci Rep 2025; 15:1454. [PMID: 39789099 PMCID: PMC11718010 DOI: 10.1038/s41598-024-84138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
The ongoing emergence of SARS-CoV-2 variants, combined with antigen exposures from different waves and vaccinations, poses challenges in updating COVID-19 vaccine antigens. We collected 206 sera from individuals with vaccination-only, hybrid immunity, and single or repeated omicron post-vaccination infections (PVIs), including non-JN.1 and JN.1, and evaluated neutralization against omicron BA.5, BA.2.75, BQ.1.1, XBB.1.16, XBB.1.5, and JN.1. Neutralizing antibodies exhibited a narrow breadth against BA.5 and BA.2.75 and failed to neutralize BQ.1.1 and XBB lineages after three to five doses of the ancestral monovalent vaccine. Hybrid immunity elicited higher neutralizing titers than vaccination alone, but titers remained relatively low. A single omicron PVI elicited lower neutralization titers to all variants compared to wild-type (WT), indicating immunological imprinting. Repeated omicron PVIs, particularly JN.1, slightly mitigated these effects by increasing broad neutralization responses to all variants, though not significantly. Antigenic mapping demonstrated that XBB lineages and JN.1 are antigenically distant from WT and also evaded antibodies induced by earlier omicron variants (BA.1-5) PVIs. However, repeated JN.1 PVIs shortened this antigenic distance, indicating broader neutralization across omicron variants. These findings highlight SARS-CoV-2 immunity following various antigen boosts and the impact of repeated omicron JN.1 exposure on broad immunity, informing future COVID-19 vaccination strategies.
Collapse
Affiliation(s)
- Nungruthai Suntronwong
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sitthichai Kanokudom
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Osteoarthritis and Musculoskeleton, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Thaneeya Duangchinda
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Development Agency, NSTDA, Pathum Thani, 12120, Thailand
| | - Warangkana Chantima
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pattarakul Pakchotanon
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Development Agency, NSTDA, Pathum Thani, 12120, Thailand
| | - Sirapa Klinfueng
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jiratchaya Puenpa
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thaksaporn Thatsanathorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
- The Royal Society of Thailand (FRS(T)), Sanam Sueapa, Dusit, Bangkok, 10330, Thailand.
| |
Collapse
|
11
|
Hofstee MI, Kaczorowska J, Postema A, Zomer E, van Waalwijk M, Jonathans G, de Rond LG, Smits G, van den Hoogen LL, den Hartog G, Buisman AM. High SARS-CoV-2 antibody levels after three consecutive BNT162b2 booster vaccine doses in nursing home residents. Immun Ageing 2025; 22:1. [PMID: 39748353 PMCID: PMC11694371 DOI: 10.1186/s12979-024-00495-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND As older age and having certain comorbidities can influence humoral responses to vaccination, we studied antibody responses after the COVID-19 booster campaigns in nursing home (NH) residents. METHODS In a two year longitudinal study with Dutch NH residents (n = 107), aged 50 years and over, we monitored antibody responses in serum prior to and after vaccination with a third, fourth BNT162b2 (wild-type; WT), and a BNT162b2 bivalent (WT/OMI BA.1) fifth vaccine. Data on vaccinations, infections, comorbidities, and, for some participants, clinical symptoms after infection were obtained with questionnaires. Data were compared to antibody responses of BNT162b2-vaccinated, healthier community-dwelling older adults (n = 32) from the general population. RESULTS The booster vaccinations substantially increased anti-WT and anti-Omicron SARS-CoV-2 Spike S1 (S1) and Spike protein receptor binding domain (RBD)-antibody concentrations of NH residents. This resulted in comparable antibody levels between NH residents and healthier community-dwelling older adults and between infection-naïve and infected NH residents, and in a decline in treatment duration and clinical symptom severity in SARS-CoV-2-infected NH residents. Between one and twelve months after the bivalent fifth dose, anti-Omicron BA.1 antibody levels of the NH residents waned faster than those against the WT strain. CONCLUSIONS The booster vaccinations upheld humoral responses of NH residents to WT and Omicron SARS-CoV-2. This, in addition to the less virulent circulating strains, decreased symptom severity and treatment durations for SARS-CoV-2-infected NH residents. Boosting this vulnerable group should, therefore, be continued to prevent waning of humoral immunity and achieve sufficient protection especially against newly emerging variants of concern.
Collapse
Affiliation(s)
- Marloes I Hofstee
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, 9, 3721MA, The Netherlands
| | - Joanna Kaczorowska
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, 9, 3721MA, The Netherlands
| | - Abigail Postema
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, 9, 3721MA, The Netherlands
| | | | | | - Gustaaf Jonathans
- Amstelring, Location Nursing Home Bornholm, Bornholm 50, Hoofddorp, The Netherlands
| | - Lia Gh de Rond
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, 9, 3721MA, The Netherlands
| | - Gaby Smits
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, 9, 3721MA, The Netherlands
| | - Lotus L van den Hoogen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, 9, 3721MA, The Netherlands
| | - Gerco den Hartog
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, 9, 3721MA, The Netherlands
- Laboratory of Medical Immunology, Radboudumc, Nijmegen, The Netherlands
| | - Anne-Marie Buisman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, 9, 3721MA, The Netherlands.
| |
Collapse
|
12
|
Blanco J, Trinité B, Puig‐Barberà J. Rethinking Optimal Immunogens to Face SARS-CoV-2 Evolution Through Vaccination. Influenza Other Respir Viruses 2025; 19:e70076. [PMID: 39871737 PMCID: PMC11773156 DOI: 10.1111/irv.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/23/2024] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
SARS-CoV-2, which originated in China in late 2019, quickly fueled the global COVID-19 pandemic, profoundly impacting health and the economy worldwide. A series of vaccines, mostly based on the full SARS-CoV-2 Spike protein, were rapidly developed, showing excellent humoral and cellular responses and high efficacy against both symptomatic infection and severe disease. However, viral evolution and the waning humoral neutralizing responses strongly challenged vaccine long term effectiveness, mainly against symptomatic infection, making necessary a strategy of repeated and updated booster shots. In this repeated vaccination context, antibody repertoire diversification was evidenced, although immune imprinting after booster doses or reinfection was also demonstrated and identified as a major determinant of immunological responses to repeated antigen exposures. Considering that a small domain of the SARS-CoV-2 Spike protein, the receptor binding domain (RBD), is the major target of neutralizing antibodies and concentrates most viral mutations, the following text aims to provide insights into the ongoing debate over the best strategies for vaccine boosters. We address the relevance of developing new booster vaccines that target the evolving RBD, thus focusing on the relevant antigenic sites of the SARS-CoV-2 new variants. A combination of this strategy with immunofusing and computerized approaches could minimize immune imprinting, therefore optimizing neutralizing immune responses and booster vaccine efficacy.
Collapse
Affiliation(s)
- Julià Blanco
- IrsiCaixaBadalonaCataloniaSpain
- Germans Trias i Pujol Research Institute (IGTP)BadalonaCataloniaSpain
- CIBER de Enfermedades InfecciosasMadridSpain
- Chair in Infectious Diseases and Immunity, Faculty of MedicineUniversity of Vic‐Central University of Catalonia (UVic‐UCC)VicCataloniaSpain
| | | | - Joan Puig‐Barberà
- Área de Investigación en VacunasFundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat ValencianaValenciaSpain
| |
Collapse
|
13
|
Wang H, Peng Q, Dai X, Ying Z, Wu X, Liu X, Xu H, Li J, Shi L, Liu J, Wang Y, Zhao D, Huang Y, Yang L, Yang R, Yue G, Suo Y, Ye Q, Cao S, Li Y. A SARS-CoV-2 EG.5 mRNA vaccine induces a broad-spectrum immune response in mice. MedComm (Beijing) 2025; 6:e779. [PMID: 39760111 PMCID: PMC11695206 DOI: 10.1002/mco2.779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 01/07/2025] Open
Abstract
The emerging of emergent SARS-CoV-2 subvariants has reduced the protective efficacy of COVID-19 vaccines. Therefore, novel COVID-19 vaccines targeting these emergent variants are needed. We designed and prepared CoV072, an mRNA-based vaccine against SARS-CoV-2 Omicron (EG.5) and other emergent SARS-CoV-2 subvariants that encodes the EG.5 spike protein. Six-week-old female BALB/C mice were used to assess humoral and cellular immune responses and cross-reactive neutralizing activity against various SARS-CoV-2 subvariants. Meanwhile different immunization strategies and doses were performed to detect the immunogenicity of this mRNA vaccine. Our results show that two doses of 5 µg CoV072 or a single dose of 15 µg CoV072 both induced broad-spectrum cross-protection ability in mice. Compared with a single dose of 15 µg CoV072, two doses of 5 µg COV072 exhibited higher levels of pseudovirus neutralizing antibody (PNAb) and cross-reactive IgG responses to multiple variants. Moreover, higher levels of neutralizing antibody (NAb) against live XBB and EG.5 variants were also induced. Th1-biased cellular immune response was induced in all vaccination groups. The antigen design and immunization strategy of this study have reference significance for the research of the next generation of COVID-19 vaccine and other vaccines.
Collapse
Affiliation(s)
- Hongyu Wang
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Qinhua Peng
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Xinxian Dai
- Etiology Laboratory,National Vaccine and Serum InstituteBeijingChina
| | - Zhifang Ying
- Division of Respiratory Virus VaccinesNational Institutes for Food and Drug ControlBeijingChina
| | - Xiaohong Wu
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Xinyu Liu
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Hongshan Xu
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Jia Li
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Leitai Shi
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Jingjing Liu
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Yunpeng Wang
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Danhua Zhao
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Yanqiu Huang
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Lihong Yang
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Ren Yang
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Guangzhi Yue
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Yue Suo
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Qiang Ye
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Shouchun Cao
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| | - Yuhua Li
- Department of Arboviral VaccineNational Institutes for Food and Drug ControlBeijingChina
| |
Collapse
|
14
|
Maltseva M, Keeshan A, Cooper C, Langlois MA. Immune imprinting: The persisting influence of the first antigenic encounter with rapidly evolving viruses. Hum Vaccin Immunother 2024; 20:2384192. [PMID: 39149872 PMCID: PMC11328881 DOI: 10.1080/21645515.2024.2384192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024] Open
Abstract
Immune imprinting is a phenomenon that stems from the fundamentals of immunological memory. Upon recurrent exposures to an evolving pathogen, the immune system must weigh the benefits of rapidly recalling established antibody repertoires with greater affinity to the initial variant or invest additional time and energy in producing de novo responses specific to the emerging variant. In this review, we delve into the mechanistic complexities of immune imprinting and its role in shaping subsequent immune responses, both de novo and recall, against rapidly evolving respiratory viruses such as influenza and coronaviruses. By exploring the duality of immune imprinting, we examine its potential to both enhance or hinder immune protection against disease, while emphasizing the role of host and viral factors. Finally, we explore how different vaccine platforms may affect immune imprinting and comment on vaccine strategies that can favor de novo variant-specific antibody responses.
Collapse
Affiliation(s)
- Mariam Maltseva
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Alexa Keeshan
- School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Curtis Cooper
- School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Infectious Diseases, Ottawa Hospital Research Institute Clinical Epidemiology Program, Ottawa, ON, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
15
|
Malladi SK, Jaiswal D, Ying B, Alsoussi WB, Darling TL, Dadonaite B, Civljak A, Horvath SC, Zhou JQ, Kim W, Turner JS, Schmitz AJ, Han F, Scheaffer SM, Farnsworth CW, Nachbagauer R, Nestorova B, Chalkias S, Klebert MK, Edwards DK, Paris R, Strnad BS, Middleton WD, O’Halloran JA, Presti RM, Bloom JD, Boon ACM, Diamond MS, Bajic G, Ellebedy AH. Defining a highly conserved B cell epitope in the receptor binding motif of SARS-CoV-2 spike glycoprotein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.625234. [PMID: 39713327 PMCID: PMC11661108 DOI: 10.1101/2024.12.06.625234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
SARS-CoV-2 mRNA vaccines induce robust and persistent germinal centre (GC) B cell responses in humans. It remains unclear how the continuous evolution of the virus impacts the breadth of the induced GC B cell response. Using ultrasound-guided fine needle aspiration, we examined draining lymph nodes of nine healthy adults following bivalent booster immunization. We show that 77.8% of the B cell clones in the GC expressed as representative monoclonal antibodies recognized the spike protein, with a third (37.8%) of these targeting the receptor binding domain (RBD). Strikingly, only one RBD-targeting mAb, mAb-52, neutralized all tested SARS-CoV-2 strains, including the recent KP.2 variant. mAb-52 utilizes the IGHV3-66 public clonotype, protects hamsters challenged against the EG.5.1 variant and targets the class I/II RBD epitope, closely mimicking the binding footprint of ACE2. Finally, we show that the remarkable breadth of mAb-52 is due to the somatic hypermutations accumulated within vaccine-induced GC reaction.
Collapse
Affiliation(s)
- Sameer Kumar Malladi
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Deepika Jaiswal
- Department of Microbiology, Icahn School of Medicine at Mount Sinai; New York, NY, USA
| | - Baoling Ying
- Department of Medicine, Washington University School of Medicine; St. Louis, MO, USA
| | - Wafaa B. Alsoussi
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Tamarand L. Darling
- Department of Medicine, Washington University School of Medicine; St. Louis, MO, USA
| | - Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center; Seattle, WA, USA
| | - Alesandro Civljak
- Department of Microbiology, Icahn School of Medicine at Mount Sinai; New York, NY, USA
| | - Stephen C. Horvath
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Julian Q. Zhou
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Wooseob Kim
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- Department of Microbiology, Korea University College of Medicine; Seoul, Korea
| | - Jackson S. Turner
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Aaron J. Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Fangjie Han
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Suzanne M. Scheaffer
- Department of Medicine, Washington University School of Medicine; St. Louis, MO, USA
| | - Christopher W. Farnsworth
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | | | | | | | - Michael K. Klebert
- Clinical Trials Unit, Washington University School of Medicine; St. Louis, MO, USA
| | | | | | - Benjamin S. Strnad
- Mallinckrodt Institute of Radiology, Washington University School of Medicine; St. Louis, MO, USA
| | - William D. Middleton
- Mallinckrodt Institute of Radiology, Washington University School of Medicine; St. Louis, MO, USA
| | - Jane A. O’Halloran
- Division of Infectious Diseases, Washington University School of Medicine; St. Louis, MO, USA
| | - Rachel M. Presti
- Division of Infectious Diseases, Washington University School of Medicine; St. Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine; St. Louis, MO, USA
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center; Seattle, WA, USA
- Howard Hughes Medical Institute; Seattle, WA, USA
| | - Adrianus C. M. Boon
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine; St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine; St. Louis, MO, USA
| | - Michael S. Diamond
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine; St. Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine; St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine; St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine; St. Louis, MO, USA
| | - Goran Bajic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai; New York, NY, USA
| | - Ali H. Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine; St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine; St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine; St. Louis, MO, USA
| |
Collapse
|
16
|
Belik M, Reinholm A, Kolehmainen P, Heroum J, Maljanen S, Altan E, Österlund P, Laine L, Ritvos O, Pasternack A, Naves RA, Iakubovskaia A, Barkoff AM, He Q, Lempainen J, Tähtinen PA, Ivaska L, Jalkanen P, Julkunen I, Kakkola L. Long-term COVID-19 vaccine- and Omicron infection-induced humoral and cell-mediated immunity. Front Immunol 2024; 15:1494432. [PMID: 39640263 PMCID: PMC11617562 DOI: 10.3389/fimmu.2024.1494432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Mutations occurring in the spike (S) protein of SARS-CoV-2 enables the virus to evade COVID-19 vaccine- and infection-induced immunity. Methods Here we provide a comprehensive analysis of humoral and cell-mediated immunity in 111 healthcare workers who received three or four vaccine doses and were followed up to 12 and 6 months, respectively, after the last vaccine dose. Omicron breakthrough infection occurred in 71% of the vaccinees, enabling evaluation of vaccine- and vaccine/infection-induced hybrid immunity. Results Neutralizing antibodies were the highest against the ancestral D614G and were sequentially reduced against the Omicron variants BA.2, BA.5 and XBB.1.5. S1-specific IgG and neutralizing antibody levels were significantly higher in infected than in uninfected vaccinees, and the fourth vaccine dose in combination with a breakthrough infection resulted in high neutralizing antibody levels against all variants. T cell-mediated immunity, instead, was well retained already after two vaccine doses, and was not significantly strengthened by additional booster vaccine doses or Omicron breakthrough infections. Discussion While humoral immunity is sensitive to mutations in the S protein and thus declined rapidly, the cell-mediated immunity is durable to antigenic variation, which may explain the good efficacy of COVID-19 vaccines against a severe disease.
Collapse
Affiliation(s)
- Milja Belik
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Arttu Reinholm
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Jemna Heroum
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sari Maljanen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Eda Altan
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Pamela Österlund
- Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Larissa Laine
- Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Olli Ritvos
- Department of Physiology, Medicum, University of Helsinki, Helsinki, Finland
| | - Arja Pasternack
- Department of Physiology, Medicum, University of Helsinki, Helsinki, Finland
| | - Rauno A. Naves
- Department of Physiology, Medicum, University of Helsinki, Helsinki, Finland
| | - Alina Iakubovskaia
- Department of Physiology, Medicum, University of Helsinki, Helsinki, Finland
| | | | - Qiushui He
- Institute of Biomedicine, University of Turku, Turku, Finland
- InFlames Research Flagship Center, University of Turku, Turku, Finland
| | - Johanna Lempainen
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Paula A. Tähtinen
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Lauri Ivaska
- InFlames Research Flagship Center, University of Turku, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Pinja Jalkanen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Ilkka Julkunen
- Institute of Biomedicine, University of Turku, Turku, Finland
- InFlames Research Flagship Center, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Laura Kakkola
- Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| |
Collapse
|
17
|
Seow J, Jefferson GCE, Keegan MD, Yau Y, Snell LB, Doores KJ. Profiling serum immunodominance following SARS-CoV-2 primary and breakthrough infection reveals distinct variant-specific epitope usage and immune imprinting. PLoS Pathog 2024; 20:e1012724. [PMID: 39556615 DOI: 10.1371/journal.ppat.1012724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024] Open
Abstract
Over the course of the COVID-19 pandemic, variants have emerged with increased mutations and immune evasive capabilities. This has led to breakthrough infections (BTI) in vaccinated individuals, with a large proportion of the neutralizing antibody response targeting the receptor binding domain (RBD) of the SARS-CoV-2 Spike glycoprotein. Immune imprinting, where prior exposure of the immune system to an antigen can influence the response to subsequent exposures, and its role in a population with heterogenous exposure histories has important implications in future vaccine design. Here, we develop an accessible approach to map epitope immunodominance of the neutralizing antibody response in sera. By using a panel of mutant Spike proteins in a pseudotyped virus neutralization assay, we observed distinct epitope usage in convalescent donors infected during wave 1, or infected with the Delta, or BA.1 variants, highlighting the antigenic diversity of the variant Spikes. Analysis of longitudinal serum samples taken spanning 3 doses of COVID-19 vaccine and subsequent breakthrough infection, showed the influence of immune imprinting from the ancestral-based vaccine, where reactivation of existing B cells elicited by the vaccine resulted in the enrichment of the pre-existing epitope immunodominance. However, subtle shifts in epitope usage in sera were observed following BTI by Omicron sub-lineage variants. Antigenic distance of Spike, time after last exposure, and number of vaccine boosters may play a role in the persistence of imprinting from the vaccine. This study provides insight into RBD neutralizing epitope usage in individuals with varying exposure histories and has implications for design of future SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Jeffrey Seow
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - George C E Jefferson
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Michael D Keegan
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Yeuk Yau
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Luke B Snell
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
18
|
Song XD, Yang GJ, Shi C, Jiang XL, Wang XJ, Zhang YW, Wu J, Zhao LX, Wang MM, Chen RR, He XJ, Dai EH, Shen Y, Gao HX, Dong G, Ma MJ. Finite immune imprinting on neutralizing antibody responses to Omicron subvariants by repeated vaccinations. Int J Infect Dis 2024; 147:107198. [PMID: 39117174 DOI: 10.1016/j.ijid.2024.107198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
OBJECTIVE To investigate the effects of repeated vaccination with ancestral SARS-CoV-2 (Wuhan-hu-1)-based inactivated, recombinant protein subunit or vector-based vaccines on the neutralizing antibody response to Omicron subvariants. METHODS Individuals who received four-dose vaccinations with the Wuhan-hu-1 strain, individuals who were infected with the BA.5 variant alone without prior vaccination, and individuals who experienced a BA.5 breakthrough infection (BTI) following receiving 2-4 doses of the Wuhan-hu-1 vaccine were enrolled. Neutralizing antibodies against D614G, BA.5, XBB.1.5, EG.5.1, and BA.2.86 were detected using a pseudovirus-based neutralization assay. Antigenic cartography was used to analyze cross-reactivity patterns among D614G, BA.5, XBB.1.5, EG.5.1, and BA.2.86 and sera from individuals. RESULTS The highest neutralizing antibody titers against D614G were observed in individuals who only received four-dose vaccination and those who experienced BA.5 BTI, which was also significantly higher than the antibody titers against XBB.1.5, EG.5.1, and BA.2.86. In contrast, only BA.5 infection elicited comparable neutralizing antibody titers against the tested variants. While neutralizing antibody titers against D614G or BA.5 were similar across the cohorts, the neutralizing capacity of antibodies against XBB.1.5, EG.5.1, and BA.2.86 was significantly reduced. BA.5 BTI following heterologous booster induced significantly higher neutralizing antibody titers against the variants, particularly against XBB.1.5 and EG.5.1, than uninfected vaccinated individuals, only BA.5 infected individuals, or those with BA.5 BTI after primary vaccination. CONCLUSIONS Our findings suggest that repeated vaccination with the Wuhan-hu-1 strain imprinted a neutralizing antibody response toward the Wuhan-hu-1 strain with limited effects on the antibody response to the Omicron subvariants.
Collapse
Affiliation(s)
- Xue-Dong Song
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China; Department of Laboratory Medicine, Handan Central Hospital, Hebei Medical University, Handan, China; Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China
| | - Guo-Jian Yang
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory of Prevention and Control of Emerging Infectious Diseases and Biosafety in Universities of Shandong, Jinan, China
| | - Chao Shi
- Department of Infectious Disease Control and Prevention, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Xiao-Lin Jiang
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Provincial Center for Disease Control and Prevention, Jinan, China
| | - Xue-Jun Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yu-Wei Zhang
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Provincial Center for Disease Control and Prevention, Jinan, China
| | - Jie Wu
- Department of Infectious Disease Control and Prevention, Binzhou Center for Disease Control and Prevention, Binzhou, China
| | - Lian-Xiang Zhao
- School of Public Health, Binzhou Medical University, Binzhou, China
| | - Ming-Ming Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Rui-Rui Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China; Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xue-Juan He
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China; Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Er-Hei Dai
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China
| | - Yuan Shen
- Department of Infectious Disease Control and Prevention, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Hui-Xia Gao
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China
| | - Gang Dong
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Mai-Juan Ma
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China; Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory of Prevention and Control of Emerging Infectious Diseases and Biosafety in Universities of Shandong, Jinan, China; Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
19
|
Nguyen HC, Lal KG, Balinsky CA, Hontz RD, Lin J, Beye MJ, Smith L, Pan L, Cheng Y, Fox I, Lizewski SE, Foo HS, Krebs SJ, Sun P, Letizia AG. Informing the Need for a SARS-CoV-2 Booster Based on the Immune Responses Among Young Healthy Adults to Variants Circulating in Late 2023. J Infect Dis 2024; 230:645-656. [PMID: 38718223 DOI: 10.1093/infdis/jiae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/07/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND COVID-19 remains a global public health challenge due to new immune-evasive SARS-CoV-2 variants and heterogeneous immunity. METHODS In this cross-sectional study, we evaluated the adaptive immune responses in US active duty personnel who completed a COVID-19 primary vaccine series and had heterogenous SARS-CoV-2 vaccination and infection histories to 3 previously dominant variants (ancestral, Delta, BA.5) and 3 circulating variants (XBB.1.5, EG.5, and BA.2.86) in late 2023. Analyses were based on the most recent exposure in terms of timing (within or beyond 12 months) and type (vaccine or infection). RESULTS Significant reduction was observed in binding antibodies, neutralization antibodies, memory B cells, and CD8+ T cells against circulating variants when compared with previous variants. The reduction in antibody response was more pronounced in those whose most recent exposure was >12 months from enrollment. In contrast, the CD4+ T-cell response was largely consistent across all tested variants. The type of most recent exposure was not a significant factor in determining the magnitude of current immune responses. CONCLUSIONS Administration of the XBB.1.5-based booster is likely to enhance cross-reactive humoral responses against SARS-CoV-2 circulating lineages. Ongoing surveillance of immune responses to emerging variants is needed for informing vaccine composition and timing.
Collapse
Affiliation(s)
- Huy C Nguyen
- US Naval Medical Research Unit INDO PACIFIC, Science Directorate, Singapore, Singapore
| | - Kerri G Lal
- Walter Reed Army Institute of Research, US Military HIV Research Program, B Cell Biology, Silver Spring
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda
| | - Corey A Balinsky
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda
- Naval Medical Research Command, Diagnostics Surveillance Division, Silver Spring
| | - Robert D Hontz
- US Naval Medical Research Unit INDO PACIFIC, Science Directorate, Singapore, Singapore
| | - Jin Lin
- US Naval Medical Research Unit INDO PACIFIC, Science Directorate, Singapore, Singapore
| | - Matthew J Beye
- US Naval Medical Research Unit INDO PACIFIC, Science Directorate, Singapore, Singapore
| | - Lauren Smith
- Walter Reed Army Institute of Research, US Military HIV Research Program, B Cell Biology, Silver Spring
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda
| | - Li Pan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda
| | | | - Isabella Fox
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda
| | - Stephen E Lizewski
- Naval Medical Research Command, Diagnostics Surveillance Division, Silver Spring
| | - Hayley S Foo
- US Naval Medical Research Unit INDO PACIFIC, Science Directorate, Singapore, Singapore
| | - Shelly J Krebs
- Walter Reed Army Institute of Research, US Military HIV Research Program, B Cell Biology, Silver Spring
| | - Peifang Sun
- Naval Medical Research Command, Diagnostics Surveillance Division, Silver Spring
| | - Andrew G Letizia
- US Naval Medical Research Unit INDO PACIFIC, Science Directorate, Singapore, Singapore
| |
Collapse
|
20
|
Wang Q, Mellis IA, Guo Y, Gherasim C, Valdez R, Gordon A, Ho DD, Liu L. Robust SARS-CoV-2-neutralizing antibodies sustained through 6 months post XBB.1.5 mRNA vaccine booster. Cell Rep Med 2024; 5:101701. [PMID: 39208800 PMCID: PMC11524932 DOI: 10.1016/j.xcrm.2024.101701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies are substantially expanded 1 month after a shot of XBB.1.5 monovalent mRNA vaccine (XBB.1.5 MV) booster, but the durability of this response remains unknown. Here, we address this question by performing neutralization assays on four viral variants (D614G, BA.5, XBB.1.5, and JN.1) using sera from participants obtained at ∼1 month, ∼3 months, and ∼6 months post an XBB.1.5 MV booster. Our findings indicate that the resulting neutralizing antibody titers are robust and generally remain at stable levels for the study period, similar to those following XBB infection. Importantly, this durability of neutralizing antibody titers contrasts with the decline observed after a booster of the original monovalent or BA.5 bivalent mRNA vaccine. Our results are in line with the recent national data from the Centers for Disease Control and Prevention, showing that the efficacy against symptomatic SARS-CoV-2 infection is sustained for up to 4 months after an XBB.1.5 MV booster.
Collapse
Affiliation(s)
- Qian Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Pandemic Research Alliance Unit at the Wu Family Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Ian A Mellis
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yicheng Guo
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Carmen Gherasim
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Riccardo Valdez
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aubree Gordon
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Pandemic Research Alliance Unit at the Wu Family Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| | - Lihong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
21
|
Voss WN, Mallory MA, Byrne PO, Marchioni JM, Knudson SA, Powers JM, Leist SR, Dadonaite B, Townsend DR, Kain J, Huang Y, Satterwhite E, Castillo IN, Mattocks M, Paresi C, Munt JE, Scobey T, Seeger A, Premkumar L, Bloom JD, Georgiou G, McLellan JS, Baric RS, Lavinder JJ, Ippolito GC. Hybrid immunity to SARS-CoV-2 arises from serological recall of IgG antibodies distinctly imprinted by infection or vaccination. Cell Rep Med 2024; 5:101668. [PMID: 39094579 PMCID: PMC11384961 DOI: 10.1016/j.xcrm.2024.101668] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/15/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
We describe the molecular-level composition of polyclonal immunoglobulin G (IgG) anti-spike antibodies from ancestral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, vaccination, or their combination ("hybrid immunity") at monoclonal resolution. Infection primarily triggers S2/N-terminal domain (NTD)-reactive antibodies, whereas vaccination mainly induces anti-receptor-binding domain (RBD) antibodies. This imprint persists after secondary exposures wherein >60% of ensuing hybrid immunity derives from the original IgG pool. Monoclonal constituents of the original IgG pool can increase breadth, affinity, and prevalence upon secondary exposures, as exemplified by the plasma antibody SC27. Following a breakthrough infection, vaccine-induced SC27 gained neutralization breadth and potency against SARS-CoV-2 variants and zoonotic viruses (half-maximal inhibitory concentration [IC50] ∼0.1-1.75 nM) and increased its binding affinity to the protective RBD class 1/4 epitope (dissociation constant [KD] < 5 pM). According to polyclonal escape analysis, SC27-like binding patterns are common in SARS-CoV-2 hybrid immunity. Our findings provide a detailed molecular definition of immunological imprinting and show that vaccination can produce class 1/4 (SC27-like) IgG antibodies circulating in the blood.
Collapse
Affiliation(s)
- William N Voss
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Michael A Mallory
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patrick O Byrne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jeffrey M Marchioni
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Sean A Knudson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - John M Powers
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Douglas R Townsend
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jessica Kain
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Yimin Huang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ed Satterwhite
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Izabella N Castillo
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melissa Mattocks
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chelsea Paresi
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Jennifer E Munt
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Trevor Scobey
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Allison Seeger
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA, USA
| | - George Georgiou
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ralph S Baric
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason J Lavinder
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Gregory C Ippolito
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
22
|
da Costa HHM, Silva VO, Amorim GC, Guereschi MG, Sergio LM, Gomes CHR, Hong MA, de Oliveira EL, Brígido LFDM, Lindoso JAL, Prudencio CR. Assessment of an in-house IgG ELISA targeting SARS-CoV-2 RBD: Applications in infected and vaccinated individuals. J Immunol Methods 2024; 530:113683. [PMID: 38759864 DOI: 10.1016/j.jim.2024.113683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
The study evoluated an in-house Spike Receptor Binding Domain Enzyme-Linked Immunosorbent Assay (RBD-IgG-ELISA) for detecting SARS-CoV-2 IgG antibodies in infected and vaccinated individuals. The assay demonstrated a sensitivity of 91%, specificity of 99.25%, and accuracy of 95.13%. Precision and reproducibility were highly consistent. The RBD-IgG-ELISA was able to detect 96.25% of Polymerase chain reaction (PCR) confirmed cases for SARS-CoV-2 infection, demonstrating positive and negative predictive values of 99,18% and 91,69%, respectively. In an epidemiological survey, ELISA, lateral flow immunochromatographic assay (LFIA), and electrochemiluminescence immunoassay (ECLIA) exhibited diagnostic sensitivities of 68.29%, 63.41%, and 70.73%, respectively, along with specificities of 82.93%, 80.49%, and 80.49%, respectively. Agreement between RBD-IgG-ELISA/PCR was moderate (k index 0.512). However, good agreement between different assays (RBD-IgG-ELISA/LFIA k index 0.875, RBD-IgG-ELISA/ECLIA k index 0.901). Test performance on individuals' samples were inferior due to seroconversion time and chronicity. The IgG-RBD-ELISA assay demonstrated its effectiveness in monitoring antibody levels among healthcare professionals, revealing significant differences both before and after the administration of the third vaccine dose, with heightened protection levels observed following the third dose in five Coronavirus disease (COVID-19) vaccine regimens. In conclusion, the RBD-IgG-ELISA exhibits high reproducibility, specificity, and sensitivity, making it a suitable assay validated for serosurveillance and for obtaining information about COVID-19 infections or vaccinations.
Collapse
Affiliation(s)
- Hernan Hermes Monteiro da Costa
- Immunology Center, Institute Adolfo Lutz, São Paulo 01246-902, Brazil; Program Interunits in Biotechnology, University of São Paulo, São Paulo 05508-000, Brazil
| | - Valeria Oliveira Silva
- Virology Center, Institute Adolfo Lutz, São Paulo 01246-902, Brazil; Postgraduate Program in Public Health Surveillance of the Disease Control Coordination, State Health Department, São Paulo 02146-901, Brazil
| | - Gustavo Carvalho Amorim
- Immunology Center, Institute Adolfo Lutz, São Paulo 01246-902, Brazil; Program Interunits in Biotechnology, University of São Paulo, São Paulo 05508-000, Brazil
| | | | | | | | - Marisa Ailin Hong
- Immunology Center, Institute Adolfo Lutz, São Paulo 01246-902, Brazil
| | | | | | - Jose Angelo Lauletta Lindoso
- Institute of Infectology Emilio Ribas, São Paulo 01246-900, Brazil; Department of Infectious Disease, School of Medicine, University of São Paulo, São Paulo 05403-000, Brazil; Laboratory of Protozoology, Institute of Tropical Medicine, São Paulo 05403-000, Brazil
| | - Carlos Roberto Prudencio
- Immunology Center, Institute Adolfo Lutz, São Paulo 01246-902, Brazil; Program Interunits in Biotechnology, University of São Paulo, São Paulo 05508-000, Brazil.
| |
Collapse
|
23
|
Baker R, Lawlor R, Smith M, Price J, Eaton A, Lover A, Alfandari D, Reinhart P, Arcaro KF, Osborne BA. Antibody responses in blood and saliva post COVID-19 bivalent booster do not reveal an Omicron BA.4/BA.5- specific response. Front Immunol 2024; 15:1401209. [PMID: 38812500 PMCID: PMC11133519 DOI: 10.3389/fimmu.2024.1401209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Current SARS-CoV-2 strains continue to mutate and attempt to evade the antibody response elicited by previous exposures and vaccinations. In September of 2022, the first updated SARS-CoV-2 vaccines, designed to create immune responses specific for the variants circulating in 2022, were approved. These new vaccines, known commonly as the bivalent boost(er), include mRNA that encodes both the original Wuhan-Hu-1 spike protein as well as the spike protein specific to the Omicron BA.4 and BA.5 variants. Methods We recruited volunteers from University of Massachusetts student, faculty and staff members to provide samples of blood and saliva at four different time points, including pre-boost and three times post boost and analyzed samples for antibody production as well as neutralization of virus. Results Our data provide a comprehensive analysis of the antibody response following a single dose of the bivalent boost over a 6-month period and support previous findings that the response induced after the bivalent boost does not create a strong BA.4/BA.5-specific antibody response. Conclusion We found no evidence of a specific anti-BA.4/BA.5 response developing over time, including in a sub-population of individuals who become infected after a single dose of the bivalent booster. Additionally, we present data that support the use of saliva samples as a reliable alternative to blood for antibody detection against specific SARS-CoV-2 antigens.
Collapse
Affiliation(s)
- Ryan Baker
- Department of Veterinary and Animal Sciences, College of Natural Science, University of Massachusetts Amherst, Amherst, MA, United States
| | - Rebecca Lawlor
- Department of Veterinary and Animal Sciences, College of Natural Science, University of Massachusetts Amherst, Amherst, MA, United States
| | - Maeve Smith
- Department of Veterinary and Animal Sciences, College of Natural Science, University of Massachusetts Amherst, Amherst, MA, United States
| | - Jessica Price
- Department of Veterinary and Animal Sciences, College of Natural Science, University of Massachusetts Amherst, Amherst, MA, United States
| | - Ashley Eaton
- Institute for Applied Life Sciences (IALS) Clinical Testing Center (ICTC), University of Massachusetts Amherst, Amherst, MA, United States
| | - Andrew Lover
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, College of Natural Science, University of Massachusetts Amherst, Amherst, MA, United States
| | - Peter Reinhart
- Institute for Applied Life Sciences (IALS), University of Massachusetts Amherst, Amherst, MA, United States
| | - Kathleen F. Arcaro
- Department of Veterinary and Animal Sciences, College of Natural Science, University of Massachusetts Amherst, Amherst, MA, United States
| | - Barbara A. Osborne
- Department of Veterinary and Animal Sciences, College of Natural Science, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
24
|
Li P, Liu Y, Faraone JN, Hsu CC, Chamblee M, Zheng YM, Carlin C, Bednash JS, Horowitz JC, Mallampalli RK, Saif LJ, Oltz EM, Jones D, Li J, Gumina RJ, Liu SL. Distinct patterns of SARS-CoV-2 BA.2.87.1 and JN.1 variants in immune evasion, antigenicity, and cell-cell fusion. mBio 2024; 15:e0075124. [PMID: 38591890 PMCID: PMC11077997 DOI: 10.1128/mbio.00751-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
The rapid evolution of SARS-CoV-2 variants presents a constant challenge to the global vaccination effort. In this study, we conducted a comprehensive investigation into two newly emerged variants, BA.2.87.1 and JN.1, focusing on their neutralization resistance, infectivity, antigenicity, cell-cell fusion, and spike processing. Neutralizing antibody (nAb) titers were assessed in diverse cohorts, including individuals who received a bivalent mRNA vaccine booster, patients infected during the BA.2.86/JN.1-wave, and hamsters vaccinated with XBB.1.5-monovalent vaccine. We found that BA.2.87.1 shows much less nAb escape from WT-BA.4/5 bivalent mRNA vaccination and JN.1-wave breakthrough infection sera compared to JN.1 and XBB.1.5. Interestingly, BA.2.87.1 is more resistant to neutralization by XBB.1.5-monovalent-vaccinated hamster sera than BA.2.86/JN.1 and XBB.1.5, but efficiently neutralized by a class III monoclonal antibody S309, which largely fails to neutralize BA.2.86/JN.1. Importantly, BA.2.87.1 exhibits higher levels of infectivity, cell-cell fusion activity, and furin cleavage efficiency than BA.2.86/JN.1. Antigenically, we found that BA.2.87.1 is closer to the ancestral BA.2 compared to other recently emerged Omicron subvariants including BA.2.86/JN.1 and XBB.1.5. Altogether, these results highlight immune escape properties as well as biology of new variants and underscore the importance of continuous surveillance and informed decision-making in the development of effective vaccines. IMPORTANCE This study investigates the recently emerged SARS-CoV-2 variants, BA.2.87.1 and JN.1, in comparison to earlier variants and the parental D614G. Varied infectivity and cell-cell fusion activity among these variants suggest potential disparities in their ability to infect target cells and possibly pathogenesis. BA.2.87.1 exhibits lower nAb escape from bivalent mRNA vaccinee and BA.2.86/JN.1-infected sera than JN.1 but is relatively resistance to XBB.1.5-vaccinated hamster sera, revealing distinct properties in immune reason and underscoring the significance of continuing surveillance of variants and reformulation of vaccines. Antigenic differences between BA.2.87.1 and other earlier variants yield critical information not only for antibody evasion but also for viral evolution. In conclusion, this study furnishes timely insights into the spike biology and immune escape of the emerging variants BA.2.87.1 and JN.1, thus guiding effective vaccine development and informing public health interventions.
Collapse
Affiliation(s)
- Pei Li
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Yajie Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Julia N. Faraone
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, Ohio, USA
| | - Cheng Chih Hsu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Michelle Chamblee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Yi-Min Zheng
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Claire Carlin
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Joseph S. Bednash
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Jeffrey C. Horowitz
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Rama K. Mallampalli
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Linda J. Saif
- Center for Food Animal Health, Animal Sciences Department, OARDC, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Eugene M. Oltz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| | - Daniel Jones
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Richard J. Gumina
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
25
|
Wang Q, Guo Y, Bowen A, Mellis IA, Valdez R, Gherasim C, Gordon A, Liu L, Ho DD. XBB.1.5 monovalent mRNA vaccine booster elicits robust neutralizing antibodies against XBB subvariants and JN.1. Cell Host Microbe 2024; 32:315-321.e3. [PMID: 38377995 PMCID: PMC10948033 DOI: 10.1016/j.chom.2024.01.014] [Citation(s) in RCA: 93] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/04/2024] [Accepted: 01/26/2024] [Indexed: 02/22/2024]
Abstract
COVID-19 vaccines have recently been updated to specifically encode or contain the spike protein of the SARS-CoV-2 XBB.1.5 subvariant, but their immunogenicity in humans has yet to be fully evaluated and reported, particularly against emergent viruses that are rapidly expanding. We now report that administration of an updated monovalent mRNA vaccine booster (XBB.1.5 MV) to previously uninfected individuals boosted serum virus-neutralizing antibodies significantly against not only XBB.1.5 (27.0-fold increase) and EG.5.1 (27.6-fold increase) but also key emerging viruses such as HV.1, HK.3, JD.1.1, and JN.1 (13.3- to 27.4-fold increase). Individuals previously infected by an Omicron subvariant had the highest overall serum neutralizing titers (ID50 1,504-22,978) against all viral variants tested. While immunological imprinting was still evident with the updated vaccines, it was not nearly as severe as observed with the previously authorized bivalent BA.5 vaccine. Our findings strongly support the official recommendation to widely apply the updated COVID-19 vaccines.
Collapse
Affiliation(s)
- Qian Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yicheng Guo
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Anthony Bowen
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Ian A Mellis
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Riccardo Valdez
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carmen Gherasim
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aubree Gordon
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Lihong Liu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
26
|
Faraone JN, Wang X, Qu P, Zheng YM, Vincent E, Xu H, Liu SL. Neutralizing antibody response to SARS-CoV-2 bivalent mRNA vaccine in SIV-infected rhesus macaques: Enhanced immunity to XBB subvariants by two-dose vaccination. J Med Virol 2024; 96:e29520. [PMID: 38528837 PMCID: PMC10987079 DOI: 10.1002/jmv.29520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024]
Abstract
The evolution of SARS-CoV-2 paired with immune imprinting by prototype messenger RNA (mRNA) vaccine has challenged the current vaccination efficacy against newly emerged Omicron subvariants. In our study, we investigated a cohort of macaques infected by SIV and vaccinated with two doses of bivalent Pfizer mRNA vaccine containing wildtype and BA.5 spikes. Using a pseudotyped lentivirus neutralization assay, we determined neutralizing antibody (nAb) titers against new XBB variants, i.e., XBB.1.5, XBB.1.16, and XBB.2.3, alongside D614G and BA.4/5. We found that compared to humans vaccinated with three doses of monovalent mRNA vaccine plus a bivalent booster, the monkeys vaccinated with two doses of bivalent mRNA vaccines exhibited relatively increased titers against XBB subvariants. Of note, SIV-positive dam macaques had reduced nAb titers relative to SIV-negative dams. Additionally, SIV positive dams that received antiretroviral therapy had lower nAb titers than untreated dams. Our study underscores the importance of reformulating the COVID-19 vaccine to better protect against newly emerged XBB subvariants as well as the need for further investigation of vaccine efficacy in individuals living with HIV-1.
Collapse
Affiliation(s)
- Julia N. Faraone
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaolwei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, Covington, LA, 70433, USA
| | - Panke Qu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Yi-Min Zheng
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Eunice Vincent
- Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, Covington, LA, 70433, USA
| | - Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, Covington, LA, 70433, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
27
|
Lasrado N, Collier ARY, Miller J, Hachmann NP, Liu J, Anand T, A. Bondzie E, Fisher JL, Mazurek CR, Patio RC, Rodrigues SL, Rowe M, Surve N, Ty DM, Wu C, Chicz TM, Tong X, Korber B, McNamara RP, Barouch DH. Waning immunity and IgG4 responses following bivalent mRNA boosting. SCIENCE ADVANCES 2024; 10:eadj9945. [PMID: 38394195 PMCID: PMC10889350 DOI: 10.1126/sciadv.adj9945] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Messenger RNA (mRNA) vaccines were highly effective against the ancestral SARS-CoV-2 strain, but the efficacy of bivalent mRNA boosters against XBB variants was substantially lower. Here, we show limited durability of neutralizing antibody (NAb) responses against XBB variants and isotype switching to immunoglobulin G4 (IgG4) responses following bivalent mRNA boosting. Bivalent mRNA boosting elicited modest XBB.1-, XBB.1.5-, and XBB.1.16-specific NAbs that waned rapidly within 3 months. In contrast, bivalent mRNA boosting induced more robust and sustained NAbs against the ancestral WA1/2020 strain, suggesting immune imprinting. Following bivalent mRNA boosting, serum antibody responses were primarily IgG2 and IgG4 responses with poor Fc functional activity. In contrast, a third monovalent mRNA immunization boosted all isotypes including IgG1 and IgG3 with robust Fc functional activity. These data show substantial immune imprinting for the ancestral spike and isotype switching to IgG4 responses following bivalent mRNA boosting, with important implications for future booster designs and boosting strategies.
Collapse
Affiliation(s)
- Ninaad Lasrado
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ai-ris Y. Collier
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jessica Miller
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nicole P. Hachmann
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jinyan Liu
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Trisha Anand
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Esther A. Bondzie
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jana L. Fisher
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Camille R. Mazurek
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Robert C. Patio
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Marjorie Rowe
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nehalee Surve
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Darren M. Ty
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Cindy Wu
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Taras M. Chicz
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Xin Tong
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Bette Korber
- Los Alamos National Laboratory and New Mexico Consortium, Los Alamos, NM, USA
| | | | - Dan H. Barouch
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| |
Collapse
|
28
|
Jain S, Kumar S, Lai L, Linderman S, Malik AA, Ellis ML, Godbole S, Solis D, Sahoo MK, Bechnak K, Paredes I, Tanios R, Kazzi B, Dib SM, Litvack MB, Wimalasena ST, Ciric C, Rostad C, West R, Teng IT, Wang D, Edupuganti S, Kwong PD, Rouphael N, Pinsky BA, Douek DC, Wrammert J, Moreno A, Suthar MS. XBB.1.5 monovalent booster improves antibody binding and neutralization against emerging SARS-CoV-2 Omicron variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.578771. [PMID: 38370837 PMCID: PMC10871242 DOI: 10.1101/2024.02.03.578771] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The rapid emergence of divergent SARS-CoV-2 variants has led to an update of the COVID-19 booster vaccine to a monovalent version containing the XBB.1.5 spike. To determine the neutralization breadth following booster immunization, we collected blood samples from 24 individuals pre- and post-XBB.1.5 mRNA booster vaccination (∼1 month). The XBB.1.5 booster improved both neutralizing activity against the ancestral SARS-CoV-2 strain (WA1) and the circulating Omicron variants, including EG.5.1, HK.3, HV.1, XBB.1.5 and JN.1. Relative to the pre-boost titers, the XBB.1.5 monovalent booster induced greater total IgG and IgG subclass binding, particular IgG4, to the XBB.1.5 spike as compared to the WA1 spike. We evaluated antigen-specific memory B cells (MBCs) using either spike or receptor binding domain (RBD) probes and found that the monovalent booster largely increases non-RBD cross-reactive MBCs. These data suggest that the XBB.1.5 monovalent booster induces cross-reactive antibodies that neutralize XBB.1.5 and related Omicron variants.
Collapse
|
29
|
Kassianos G, MacDonald P, Aloysius I, Pather S. Responses to Common Misconceptions Relating to COVID-19 Variant-Adapted mRNA Vaccines. Vaccines (Basel) 2024; 12:57. [PMID: 38250870 PMCID: PMC10819631 DOI: 10.3390/vaccines12010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the waning of immunity over time has necessitated the use of booster doses of original coronavirus disease 2019 (COVID-19) vaccines. This has also led to the development and implementation of variant-adapted messenger RNA (mRNA) vaccines that include an Omicron sub-lineage component in addition to the antigen based on the wild-type virus spike protein. Subsequent emergence of the recombinant XBB sub-lineages triggered the development of monovalent XBB-based variant-adapted mRNA vaccines, which are available for vaccination campaigns in late 2023. Misconceptions about new variant-adapted vaccines may exacerbate vaccine fatigue and drive the lack of vaccine acceptance. This article aims to address common concerns about the development and use of COVID-19 variant-adapted mRNA vaccines that have emerged as SARS-CoV-2 has continued to evolve.
Collapse
Affiliation(s)
- George Kassianos
- Royal College of General Practitioners, London NW1 2FB, UK;
- British Global and Travel Health Association, London NW1 2FB, UK
| | | | | | | |
Collapse
|