1
|
Cong H, Hu J, Wang J, Chang B, Li R, Cui X, Zhang C, Ji H, Lin C, Tang J, Liu J. Bromocriptine mesylate-loaded nanoparticles co-modified with low molecular weight protamine and lactoferrin for enhanced nose-to-brain delivery in Parkinson's disease treatment. Int J Pharm 2025; 669:125054. [PMID: 39667592 DOI: 10.1016/j.ijpharm.2024.125054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Parkinson's disease confronts challenges in drug delivery due to the blood-brain barrier. Intranasal delivery bypasses the blood-brain barrier for improved drug bioavailability, yet narrow nasal space and brief retention time hinder clinical applicability. We conducted a Bromocriptine Mesylate-loaded PLGA nanoparticles co-modified with low molecular weight protamine (LMWP) and lactoferrin (Lf) (LMWP/Lf-BCM-NPs) for nose-to-brain delivery. The resulting LMWP/Lf-BCM-NPs were uniform spheres with an average size of 248.53 ± 16.25 nm and zeta potential of -2.63 ± 0.74 mV. Fourier transform infrared spectroscopy confirmed LMWP and Lf attachment. The co-modified nanoparticles showed improving cellular transport and good viability. The LMWP/Lf-BCM-NPs showed increased brain targeting efficiency in mice. In haloperidol-induced Parkinson mouse models, the LMWP/Lf-BCM-NPs showed increased brain targeting efficiency, enhanced behavioral regulatory effects, enhanced antioxidant effects and neuroprotection effects. This study paves the way for a novel, non-invasive brain-targeted therapy, offering a promising avenue for Parkinson's disease clinical treatment.
Collapse
Affiliation(s)
- Huijing Cong
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jing Hu
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jing Wang
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Baiyu Chang
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Rongtao Li
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Xinran Cui
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Chenghao Zhang
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Hongyu Ji
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Congcong Lin
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jingling Tang
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China.
| | - Jiaxin Liu
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China.
| |
Collapse
|
2
|
Achmad NA, Tuna RW, Kurniawan I, Khairiyah, Asaf MB, Rahman L, Manggau MA, Aliyah, Dominguez-Robles J, Aswad M, Permana AD. Development of Thermosensitive Mucoadhesive Gel Based Encapsulated Lipid Microspheres as Nose-to-Brain Rivastigmine Delivery System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:314-328. [PMID: 39714110 DOI: 10.1021/acs.langmuir.4c03530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Alzheimer's disease (ALZ) is a neurodegenerative disease that damages neuronal cells and causes decline in cognitive abilities. Administration of cholinesterase inhibitor compounds is the primary choice in the treatment of ALZ, one of which is rivastigmine (RVT). Several routes of administration of RVT are available, such as oral and transdermal. However, in the oral route, RVT has low bioavailability, undergoes first-pass metabolism, and the presence of the blood-brain barrier (BBB) reduces the therapeutic concentration of RVT. The transdermal route is nonselective target in the brain. This study aims to combine thermosensitive mucoadhesive gel (TG) and lipid microspheres (LM) as a drug delivery system to improve the efficacy of RVT. Combining these will prevent systemic side effects of RVT and increase drug concentration in the brain. LM was formulated with varying concentrations of Compritol polymer. The results of LM evaluation showed the values of particle size, PDI, and %EE and %DL were 8.519 μm, 0.018 ± 0.004, 72.54%, and 76.43%, respectively. The TG formulation can provide a liquid form at room temperature (25 °C) and a gel at nasal temperature (35 °C). Hemolytic and HET-CAM tests confirmed TG RVT LM's safety for use. Ex vivo studies showed controlled and sustained release of TG RVT LM, and in vivo studies showed TG RVT LM a higher pharmacokinetic profile in the brain than oral formulations and injections. The Cmax was found to be 7.05 ± 0.55 μg/cm3, Tmax was 24 h, and AUC0-24, which is related to the effectiveness of brain targeting, was 225.73 μg/cm3. In conclusion, this study shows the successful development of TG RVT LM, as evidenced by improved drug delivery to the brain, which is characterized by higher concentrations of RVT in the brain compared with oral and injectable RVT, this delivery system shows potential as a future treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Nurafni Annisa Achmad
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| | - Rachmatya W Tuna
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| | - Irfan Kurniawan
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| | - Khairiyah
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| | - Muhammad Bisfain Asaf
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| | - Latifah Rahman
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| | - Marianti A Manggau
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| | - Aliyah
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| | - Juan Dominguez-Robles
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Seville 41012, Spain
| | - Muhammad Aswad
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| |
Collapse
|
3
|
Chaudhri N, Rastogi V, Verma A. A Review on Lipid-based Nanoformulations for Targeting Brain through Non-invasive Nasal Route. Pharm Nanotechnol 2025; 13:143-154. [PMID: 38685789 DOI: 10.2174/0122117385293436240321090218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/02/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024]
Abstract
The nasal method for administering nanoformulations to the brain has been examined and proven successful by prior investigators. For the treatment of central nervous system (CNS) disorders such as neuropsychiatric, depression, Alzheimer and anxiety, intranasal administration has become more popular for delivering drugs to the brain. This method offers direct transport through neuronal pathways. The lipid-based nanocarriers like nanostructured lipid carriers (NLC) appear more favorable than other nanosystems for brain administration. The nanostructured lipid carriers (NLC) system can quickly transform into a gelling system to facilitate easy administration into the nasal passages. The various compatibility studies showed that the other lipid structured-based formulations may not work well for various reasons, including a low drug filing capacity; during storage, the formulation showed changes in the solid lipid structures, which gives a chance of medication ejection. Formulations containing NLC can minimize these problems by improving drug solubility and permeation rate by incorporating a ratio of liquid lipids with solid lipids, resulting in improved stability during storage and drug bioavailability because of the higher drug loading capacity. This review aimed to find and emphasize research on lipid-based nanocarrier formulations that have advanced the treatment of central nervous system illnesses using nasal passages to reach the targeted area's drug molecules.
Collapse
Affiliation(s)
- Nirvesh Chaudhri
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India
| | - Vaibhav Rastogi
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India
| | - Anurag Verma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India
| |
Collapse
|
4
|
Mishra G, Awasthi R, Mishra SK, Singh AK, Tiwari AK, Singh SK, Nandi MK. Development of Epigallocatechin and Ascorbic Acid Dual Delivery Transferosomes for Managing Alzheimer's Disease: In Vitro and in Vivo Studies. ACS OMEGA 2024; 9:35463-35474. [PMID: 39184506 PMCID: PMC11339821 DOI: 10.1021/acsomega.4c02140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 08/27/2024]
Abstract
Epigallocatechin-3-gallate (EGCG) and ascorbic acid (AA)-loaded transferosomes (TRANS) were developed for brain delivery. The investigation covered EGCG-TRANS, AA-TRANS, and EGCG-AA-TRANS formulations using the film hydration technique. We analyzed the formed transferosomes to confirm the presence of vesicles loaded with the respective drugs and their performance within a living organism. The sizes of the particles for EGCG-TRANS, AA-TRANS, and EGCG-AA-TRANS were measured correspondingly at 174.2 ± 1.80, 132.7 ± 12.22, and 184.31 ± 9.5 nm. The appearance of diffused rings in the scanning electron microscopic image suggests that the payload has a crystalline structure. The atomic force microscope image displayed minimal surface irregularities, potentially indicating the presence of a lipid layer on the surface. Hemolysis results indicated the safety of the vesicles. The results showed 10.23, 7.21, and 8.20% of hemolysis for EGCG-TRANS, AA-TRANS, and EGCG-AA-TRANS, respectively. In the case of EGCG-AA-TRANS, the release of EGCG was determined to be 61.65% ± 4.61 after 72 h when exposed to phosphate buffer saline (pH 7.4). In vivo studies show a good response against Alzheimer's disease (AD). EGCG-AA-TRANS (82.166%) exhibited a higher percentage of AChE inhibition in comparison to EGCG-TRANS (66.550%) and AA-TRANS (53.466%). Intranasal delivery of EGCG-AA-TRANS resulted in approximately a 5-fold enhancement in memory. Formulation allowed EGCG and AA to accumulate in various organs, including the brain. The results suggest that EGCG-AA-TRANS could be safe and effective for treating AD.
Collapse
Affiliation(s)
- Gaurav Mishra
- Department
of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Rajendra Awasthi
- Department
of Pharmaceutical Sciences, School of Health
Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Sunil Kumar Mishra
- Department
of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Anurag Kumar Singh
- Centre
of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Anurag Kumar Tiwari
- Department
of Gastroenterology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Santosh Kumar Singh
- Centre
of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Manmath K. Nandi
- Department
of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
5
|
Hnin HM, Tun T, Jansook P. Development and validation of high-performance liquid chromatography method for the simultaneous quantification of rivastigmine hydrogen tartrate and asiaticoside co-loaded in niosomes: A Box-Behnken design approach. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1241:124170. [PMID: 38805871 DOI: 10.1016/j.jchromb.2024.124170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Rivastigmine hydrogen tartrate (RHT), a reversible cholinesterase inhibitor, is considered as the first-line therapy for mild to moderate Alzheimer's disease. Asiaticoside (AS), a pentacyclic triterpenoid saponin, is well known as cognitive enhancer due to its antioxidant effect. Based on the hypothesis of their synergistic therapeutic potential, RHT and AS were co-encapsulated in niosomal formulation. A simple, precise, and accurate high-performance liquid chromatography method was developed for simultaneous quantitative analysis. The chromatographic parameters were optimized by Box-Behnken experimental design. The separation was performed on a reversed-phase Phenomenex C18 (150 mm × 4.6 mm, 5 μm) column at 30 °C under the UV detection of 210 nm. The optimized mobile phase consisted of a mixture of 20 mM potassium dihydrogen phosphate buffer (pH 2.6) and acetonitrile (72:28 % v/v) under the isocratic mode at the flow rate of 0.9 mL/min. The developed method was fully validated under the ICH guidelines and could be successfully applied for simultaneous quantitative analysis of RHT and AS in niosomal formulation.
Collapse
Affiliation(s)
- Hay Marn Hnin
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Theingi Tun
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Phatsawee Jansook
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Cyclodextrin Application and Nanotechnology-based Delivery Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
6
|
Sonawane D, Pokharkar V. Quercetin-Loaded Nanostructured Lipid Carrier In Situ Gel for Brain Targeting Through Intranasal Route: Formulation, In Vivo Pharmacokinetic and Pharmacodynamic Studies. AAPS PharmSciTech 2024; 25:30. [PMID: 38316672 DOI: 10.1208/s12249-024-02736-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/21/2023] [Indexed: 02/07/2024] Open
Abstract
Quercetin (QT) shows potential for protecting against neurodegenerative diseases like Alzheimer's. However, its limited bioavailability and instability in physiological pH hinder its clinical use. The purpose of this work is to construct QT-filled nanostructured lipid carriers (QT-NLC) intranasal in situ gel to enhance pharmacokinetic and pharmacodynamic performance. NLCs were developed using a melt emulsification-high-pressure homogenization and were optimized using design expert software with the Box-Behnken design. NLCs were then incorporated into an in situ gel based on Lutrol F127 and further characterized. The pharmacodynamics of the formulation was evaluated in neurodegeneration induced by trimethyl tin (TMT) Wistar rats. The optimized QT in situ gel had spherical shape, entrapment efficiency of 96.1 ± 4.40%, and in vitro drug release of 83.74 ± 1.40%. The mean particle size was 123.3 ± 5.46 nm. After intranasal administration, in vivo single-dose pharmacokinetic studies demonstrated a significant therapeutic concentration of drug in CNS, having Cmax 183.41 ± 11.76 ng/mL and Tmax of 2 h. The more brain targeting efficiency of NLCs was proved by the developed QT in situ gel, which had a higher drug targeting efficiency (DTE) of 117.47% and drug targeting potential (DTP) of 88.9%. As compared to the neurodegeneration control group, the QT in situ gel-treated group had significantly decreased escape latency and pathlength. Biochemical analysis and histological investigations demonstrated that QT in situ gel exhibited superior anti-Alzheimer's potential compared to standard drug, donepezil. The promising results of the developed and optimized intranasal QT in situ gel suggest its potential and can be used in Alzheimer's disease management.
Collapse
Affiliation(s)
- Devika Sonawane
- Department of Pharmaceutics, Bharati Vidyapeeth (Deemed to be University), Poona College of Pharmacy, Paud Road, Erandwane, Pune, 411038, India
| | - Varsha Pokharkar
- Department of Pharmaceutics, Bharati Vidyapeeth (Deemed to be University), Poona College of Pharmacy, Paud Road, Erandwane, Pune, 411038, India.
| |
Collapse
|
7
|
Halder T, Saha B, Dhas N, Acharya S, Acharya N. Development and evaluation of multi-functionalized sialic acid conjugated asiatic acid nanoconstruct to mitigate cognitive deficits in Alzheimer's disease. Drug Dev Res 2024; 85:e22146. [PMID: 38349270 DOI: 10.1002/ddr.22146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024]
Abstract
Sialic acid (SA) serves a critical role in neuronal repair and cognitive functions. SA is a nine-carbon carboxylated sugar with a glycoconjugate cap that acts as a ligand and surface decoration with SA facilitates delivery to the target site. The present research aimed to develop SA surface modified AA nanostructured lipid carrier (NLCs) with carbodiimide conjugation method. Sterylamine, poloxamer 188 and tween 80 were used as surfactants and several characterization studies including, differential scanning calorimetry, fourier transform infrared spectroscopy and x-ray photon spectroscopy were analyzed. Further, in vitro, neuroprotective efficiency was evaluated in SH-SY5Y cells and hCMEC/D3 cells and found significant potential effects with the treatments of developed NLCs. Pharmacodynamics studies were also assessed in beta-amyloid-injected rats following quantification of Alzheimer's disease (AD) hallmarks like, Aβ(1-42), tau-protein, glycogen synthase kinase-3β levels, interleukin-6 and tumor necrosis factor-α for neuroinflammatory responses. Characterization studies revealed the conjugation on developed NLCs. The in vitro and in vivo results showed significant effects of SA decorated NLCs in reversing the damage by toxicant which was further characterized by the levels of neurotransmitters like acetylcholinesterase, butyrylcholinesterase. The results revealed significant (p < .05) refurbishment of cholinergic functions after 28 days of treatment of developed NLCs. These preclinical findings support the use of SA as a ligand to deliver the AA at targeted site as well as to mitigate the cognitive deficits in AD.
Collapse
Affiliation(s)
- Tripti Halder
- Department of Pharmacognosy, Nirma University, Ahmedabad, Gujarat, India
- Faculty of Pharmacy, School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun, Uttarakhand, India
| | - Bijit Saha
- Department of Research and Development, Jodas Expoim Pvt Ltd, Kukatpally, Hyderabad, Telangana, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Sanjeev Acharya
- Faculty of Pharmacy, Institute of Pharmacy, Ganpat University, Kherva, Gujarat, India
| | - Niyati Acharya
- Department of Pharmacognosy, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
8
|
Tekade A, Kadam P, Jagdale S, Surwade S, Gaikwad A, Pawar P, Shinde R. Exploring Potential of Nano-formulations in the Treatment of Alzheimer's Disease through Nasal Route. Curr Alzheimer Res 2024; 21:693-709. [PMID: 38425107 DOI: 10.2174/0115672050290462240222092303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/15/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
Alzheimer's disease, a progressive neurodegenerative disorder, severely impacts cognitive function and daily living. The current treatment provides only symptomatic relief, and thus, disease-modifying therapies targeting underlying causes are needed. Although several potential therapies are in various stages of clinical trials, bringing a new Alzheimer's drug to market remains challenging. Hence, researchers are also exploring monoclonal antibodies, tau protein inhibitors, and anti-inflammatory drugs as treatment options. Conventionally designed dosage forms come with limitations like poor absorption, first-pass metabolism, and low bioavailability. They also cause systemic adverse effects because these designed systems do not provide target-specific drug delivery. Thus, in this review, the authors highlighted the current advancements in the development of intranasal nanoformulations for the treatment of Alzheimer's disease. This strategy of delivering anti-Alzheimer drugs through the nasal route may help to target the drug exactly to the brain, achieve rapid onset of action, avoid first-pass metabolism, and reduce the side effects and dose required for administration. Delivering drugs to the brain through the nasal route for treating Alzheimer's disease is crucial due to the limited efficacy of existing treatments and the profound impact of the disease on patients and their families. Thus, by exploring innovative approaches such as nose-to-brain drug delivery, it is possible to improve the quality of life for individuals living with Alzheimer's and alleviate its societal burden.
Collapse
Affiliation(s)
- Avinash Tekade
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Pune, India
| | - Prasad Kadam
- Department of Pharmacognosy, Marathwada Mitra Mandal's College of Pharmacy, Pune, India
| | - Sachin Jagdale
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Pune, India
| | - Samiksha Surwade
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Pune, India
| | - Anil Gaikwad
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Pune, India
| | - Parth Pawar
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Pune, India
| | - Rushikesh Shinde
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Pune, India
| |
Collapse
|
9
|
Dighe S, Jog S, Momin M, Sawarkar S, Omri A. Intranasal Drug Delivery by Nanotechnology: Advances in and Challenges for Alzheimer's Disease Management. Pharmaceutics 2023; 16:58. [PMID: 38258068 PMCID: PMC10820353 DOI: 10.3390/pharmaceutics16010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/11/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's disease, a progressive neurodegenerative condition, is characterized by a gradual decline in cognitive functions. Current treatment approaches primarily involve the administration of medications through oral, parenteral, and transdermal routes, aiming to improve cognitive function and alleviate symptoms. However, these treatments face limitations, such as low bioavailability and inadequate permeation. Alternative invasive methods, while explored, often entail discomfort and require specialized assistance. Therefore, the development of a non-invasive and efficient delivery system is crucial. Intranasal delivery has emerged as a potential solution, although it is constrained by the unique conditions of the nasal cavity. An innovative approach involves the use of nano-carriers based on nanotechnology for intranasal delivery. This strategy has the potential to overcome current limitations by providing enhanced bioavailability, improved permeation, effective traversal of the blood-brain barrier, extended retention within the body, and precise targeting of the brain. The comprehensive review focuses on the advancements in designing various types of nano-carriers, including polymeric nanoparticles, metal nanoparticles, lipid nanoparticles, liposomes, nanoemulsions, Quantum dots, and dendrimers. These nano-carriers are specifically tailored for the intranasal delivery of therapeutic agents aimed at combatting Alzheimer's disease. In summary, the development and utilization of intranasal delivery systems based on nanotechnology show significant potential in surmounting the constraints of current Alzheimer's disease treatment strategies. Nevertheless, it is essential to acknowledge regulatory as well as toxicity concerns associated with this route; meticulous consideration is required when engineering a carrier. This comprehensive review underscores the potential to revolutionize Alzheimer's disease management and highlights the importance of addressing regulatory considerations for safe and effective implementations. Embracing this strategy could lead to substantial advancements in the field of Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Sayali Dighe
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, India
| | - Sunil Jog
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, India
- Indoco Remedies Private Limited, Mumbai 400098, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
10
|
Kaboli Z, Hosseini MJ, Sadighian S, Rostamizadeh K, Hamidi M, Manjili HK. Valine conjugated polymeric nanocarriers for targeted co-delivery of rivastigmine and quercetin in rat model of Alzheimer disease. Int J Pharm 2023; 645:123418. [PMID: 37716484 DOI: 10.1016/j.ijpharm.2023.123418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Multifunctional nanocarriers are increasingly promising for disease treatment aimed at finding effective therapy and overcoming barriers in drug delivery. Herein, valine conjugated chitosan (VLCS) was used for surface modification of nanocarriers (NCs) based on Poly (ε-caprolactone)-Poly (ethylene glycol)-Poly (ε-caprolactone) (PCL-PEG-PCL) triblock copolymers (NCs@VLCS). The nanocarriers were co-loaded with rivastigmine (RV) and quercetin (QT) to yield the final RV/QT-NCs@VLCS as a multifunctional nanocarrier for Alzheimer's disease (AD) treatment. The large amino acid transporter 1 (LAT-1) was selected for the direction of the NCs to the brain. The biocompatibility of the nanocarrier was studied in HEK-293 and SH-SY5Y cells and rats. The Morris water maze test demonstrated a faster regain of memory loss with RV/QT-NCs@VLCS compared to the other groups. Furthermore, RV/QT-NCs@VLCS and RV/QT-NCs improved GSH depletion induced by scopolamine (SCO), with RV/QT-NCs@VLCS having a superior effect. The real-time PCR analysis revealed that co-delivery of RV and QT by NCs@VLCS showed significantly higher efficacy than sole delivery of RV. RV/QT-NCs@VLCS treatment also modulated the expression of BDNF, ACHE, and TNF-α. The findings revealed that NCs@VLCS co-loaded with RV and QT, significantly increased efficacy relative to the single use of RV and could be considered a potent multifunctional drug delivery system for Alzheimer's treatment.
Collapse
Affiliation(s)
- Zahra Kaboli
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Somayeh Sadighian
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Kobra Rostamizadeh
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Psychiatry and Behavioral Sciences, Department of Pharmacology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Mehrdad Hamidi
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamidreza Kheiri Manjili
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
11
|
Patil VS, Sutar KP, Pockle RD, Usulkar S, Jadhav VA. Formulation, optimization and evaluation of amisulpride-loaded niosomal intranasal gel for brain targeting. Ther Deliv 2023; 14:635-647. [PMID: 38050965 DOI: 10.4155/tde-2023-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Aim: To develop stable non-ionic surfactant vesicles containing amisulpride (AMS) to improve brain uptake via nose to brain mechanism. Methods: Niosomes were developed using a modified ethanol injection technique, optimized using 32 factorial design and evaluated for the vesicle size (VS), percent encapsulation efficiency (EE), zeta potential (ZP) and % cumulative drug release (%CDR). Results: Optimized niosomes (Span-60: cholesterol ratio 0:1) showed 191.4 nm VS, 84.25% EE, -38.2 ZP and 81.31% CDR. In situ gel with these niosomes displayed 78% CDR. TEM analysis revealed spherical niosomes. Pharmacokinetic and brain tissue distribution studies in rats showed enhanced plasma and brain concentrations, indicating successful brain targeting. Conclusion: This strategy demonstrates improved AMS permeation via the nasal cavity, enhancing bioavailability for treating schizophrenia.
Collapse
Affiliation(s)
- Vinayak S Patil
- Department of Pharmaceutics, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education & Research, Nehru Nagar, Belagavi, Karnataka, 590010, India
| | - Kishori P Sutar
- Department of Pharmaceutics, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education & Research, Nehru Nagar, Belagavi, Karnataka, 590010, India
| | - Rachana D Pockle
- Department of Pharmaceutics, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education & Research, Nehru Nagar, Belagavi, Karnataka, 590010, India
| | - Siddarth Usulkar
- Department of Pharmaceutics, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education & Research, Nehru Nagar, Belagavi, Karnataka, 590010, India
| | - Vishwanath A Jadhav
- Department of Pharmaceutics, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education & Research, Nehru Nagar, Belagavi, Karnataka, 590010, India
| |
Collapse
|
12
|
Subhash Hinge N, Kathuria H, Monohar Pandey M. Rivastigmine-DHA ion-pair complex improved loading in hybrid nanoparticles for better amyloid inhibition and nose-to-brain targeting in Alzheimer's. Eur J Pharm Biopharm 2023; 190:131-149. [PMID: 37330117 DOI: 10.1016/j.ejpb.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Rivastigmine hydrogen tartrate (RIV-HT) is given orally for Alzheimer's disease. However, oral therapy shows low brain bioavailability, short half-life and gastrointestinal-mediated adverse effects. RIV-HT intranasal delivery can avoid these side effects, but its low brain bioavailability remains challenging. These issues could be solved with hybrid lipid nanoparticles with enough drug loading to enhance RIV-HT brain bioavailability while avoiding oral route side effects. The RIV-HT and docosahexaenoic acid (DHA) ion-pair complex (RIV:DHA) was prepared to improve drug loading into lipid-polymer hybrid (LPH) nanoparticles. Two types of LPH, i.e., cationic (RIV:DHA LPH(+ve)) and anionic LPH (RIV:DHA LPH(-ve)) were developed. The effect of LPH surface charge on in-vitro amyloid inhibition, in-vivo brain concentrations and nose-to-brain drug targeting efficiency were investigated. LPH nanoparticles showed concentration dependant amyloid inhibition. RIV:DHA LPH(+ve) demonstrated relatively enhanced Aβ1-42 peptide inhibition. The thermoresponsive gel embedded with LPH nanoparticles improved nasal drug retention. LPH nanoparticles gel significantly improved pharmacokinetic parameters compared to RIV-HT gel. RIV:DHA LPH(+ve) gel showed better brain concentrations than RIV:DHA LPH(-ve) gel. The histological examination of nasal mucosa treated with LPH nanoparticles gel showed that the delivery system was safe. In conclusion, the LPH nanoparticle gel was safe and efficient in improving the nose-to-brain targeting of RIV, which can potentially be utilized in managing Alzheimer's.
Collapse
Affiliation(s)
- Nikita Subhash Hinge
- Department of Pharmacy, Birla Institute of Technology and Science, Vidya Vihar Campus, Pilani- 333031, Rajasthan, India
| | - Himanshu Kathuria
- Nusmetics Pte Ltd, E-Centre@Redhill, 3791 Jalan Bukit Merah, Singapore 159471, Republic of Singapore.
| | - Murali Monohar Pandey
- Department of Pharmacy, Birla Institute of Technology and Science, Vidya Vihar Campus, Pilani- 333031, Rajasthan, India.
| |
Collapse
|
13
|
Tekade AR, Suryavanshi MR, Shewale AB, Patil VS. Design and development of donepezil hydrochloride loaded nanostructured lipid carriers for efficient management of Alzheimer's disease. Drug Dev Ind Pharm 2023; 49:590-600. [PMID: 37733474 DOI: 10.1080/03639045.2023.2262035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
OBJECTIVE The primary objective of this study was to develop nanostructured lipid carriers of donepezil hydrochloride (DNZ HCl) for effective management of Alzheimer's disease (AD). SIGNIFICANCE Intranasal administration of DNZ NLC containing Nigella sativa (NS) oil as a liquid lipid may significantly improve nasal penetration and deliver the drug directly to the brain avoiding blood brain barrier (BBB). METHOD High pressure homogenization was used to prepare nanostructured lipid carriers (NLCs), followed by ultrasonication. Glyceryl monostearate (GMS), Tween 80, and Poloxamer 407 were used as solid lipid, surfactant and co-surfactant respectively, whereas, Nigella sativa oil was used as a liquid lipid. RESULT The particle size, polydispersity index and zeta potential were found to be 107.4 ± 2.64 nm, 0.25 ± 0.04 and -41.7 mV. The entrapment efficiency and drug content were found to be 70.20% and 89.05% respectively. After intranasal administration of Donepezil hydrochloride (DNZ HCl) loaded NLC's, the maximum concentrations (Cmax) of 4.597 µg/mL in brain and 2.2583 µg/mL in blood was achieved after 1 h (Tmax). CONCLUSION The formulated DNZ HCl loaded NLCs significantly improved nasal penetration and enhanced drug distribution in brain resulting in a potentially effective intranasal drug delivery system for the effective management of Alzheimer's disease.
Collapse
Affiliation(s)
- Avinash R Tekade
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Pune, India
| | - Mayuri R Suryavanshi
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Pune, India
| | - Ashutosh B Shewale
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Pune, India
| | - Vilas S Patil
- Department of Pharmacology, Marathwada Mitra Mandal's College of Pharmacy, Pune, India
| |
Collapse
|
14
|
Mohanty D, Alsaidan OA, Zafar A, Dodle T, Gupta JK, Yasir M, Mohanty A, Khalid M. Development of Atomoxetine-Loaded NLC In Situ Gel for Nose-to-Brain Delivery: Optimization, In Vitro, and Preclinical Evaluation. Pharmaceutics 2023; 15:1985. [PMID: 37514171 PMCID: PMC10386213 DOI: 10.3390/pharmaceutics15071985] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
The present study investigates the brain-targeted efficiency of atomoxetine (AXT)-loaded nanostructured lipid carrier (NLC)-laden thermosensitive in situ gel after intranasal administration. AXT-NLC was prepared by the melt emulsification ultrasonication method and optimized using the Box-Behnken design (BBD). The optimized formulation (AXT-NLC) exhibited particle size PDI, zeta potential, and entrapment efficiency (EE) of 108 nm, 0.271, -42.3 mV, and 84.12%, respectively. The morphology of AXT-NLC was found to be spherical, as confirmed by SEM analysis. DSC results displayed that the AXT was encapsulated within the NLC matrix. Further, optimized NLC (AXT-NLC13) was incorporated into a thermosensitive in situ gel using poloxamer 407 and carbopol gelling agent and evaluated for different parameters. The optimized in situ gel (AXT-NLC13G4) formulation showed excellent viscosity (2532 ± 18 Cps) at 37 °C and formed the gel at 28-34 °C. AXT-NLC13-G4 showed a sustained release of AXT (92.89 ± 3.98% in 12 h) compared to pure AXT (95.47 ± 2.76% in 4 h). The permeation flux through goat nasal mucosa of AXT from pure AXT and AXT-NLC13-G4 was 504.37 µg/cm2·h and 232.41 µg/cm2·h, respectively. AXT-NLC13-G4 intranasally displayed significantly higher absolute bioavailability of AXT (1.59-fold higher) than intravenous administration. AXT-NLC13-G4 intranasally showed 51.91% higher BTP than pure AXT (28.64%) when administered via the same route (intranasally). AXT-NLC13-G4 showed significantly higher BTE (207.92%) than pure AXT (140.14%) when administered intranasally, confirming that a high amount of the AXT reached the brain. With the disrupted performance induced by L-methionine, the AXT-NLC13-G4 showed significantly (p < 0.05) better activity than pure AXT as well as donepezil (standard). The finding concluded that NLC in situ gel is a novel carrier of AXT for improvement of brain delivery by the intranasal route and requires further investigation for more justification.
Collapse
Affiliation(s)
- Dibyalochan Mohanty
- Department of Pharmaceutics (Centre for Nanomedicine), School of Pharmacy, Anurag University, Hyderabad 500088, Telangana, India
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Trishala Dodle
- Department of Pharmaceutics (Centre for Nanomedicine), School of Pharmacy, Anurag University, Hyderabad 500088, Telangana, India
| | - Jeetendra Kumar Gupta
- Institute of Pharmaceutical Research, GLA University Mathura, Chaumuhan 281406, Uttar Pradesh, India
| | - Mohd Yasir
- Department of Pharmacy, College of Health Sciences, Arsi University, Asella P.O. Box 396, Ethiopia
| | - Anshuman Mohanty
- Product Development, Innovation and Science, Amway Global Services India Pvt. Ltd., Gurugram 122001, Haryana, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
15
|
Taléns-Visconti R, de Julián-Ortiz JV, Vila-Busó O, Diez-Sales O, Nácher A. Intranasal Drug Administration in Alzheimer-Type Dementia: Towards Clinical Applications. Pharmaceutics 2023; 15:pharmaceutics15051399. [PMID: 37242641 DOI: 10.3390/pharmaceutics15051399] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer-type dementia (ATD) treatments face limitations in crossing the blood-brain barrier and systemic adverse effects. Intranasal administration offers a direct route to the brain via the nasal cavity's olfactory and trigeminal pathways. However, nasal physiology can hinder drug absorption and limit bioavailability. Therefore, the physicochemical characteristics of formulations must be optimized by means of technological strategies. Among the strategies that have been explored, lipid-based nanosystems, particularly nanostructured lipid carriers, are promising in preclinical investigations with minimal toxicity and therapeutic efficacy due to their ability to overcome challenges associated with other nanocarriers. We review the studies of nanostructured lipid carriers for intranasal administration in the treatment of ATD. Currently, no drugs for intranasal administration in ATD have marketing approval, with only three candidates, insulin, rivastigmine and APH-1105, being clinically investigated. Further studies with different candidates will eventually confirm the potential of the intranasal route of administration in the treatment of ATD.
Collapse
Affiliation(s)
- Raquel Taléns-Visconti
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain
| | - Jesus Vicente de Julián-Ortiz
- Molecular Topology and Drug Design Research Unit, Department of Physical Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain
| | - Ofelia Vila-Busó
- Colloids Research Unit, Department of Physical Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain
| | - Octavio Diez-Sales
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Amparo Nácher
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| |
Collapse
|
16
|
Gadhave D, Gupta A, Khot S, Tagalpallewar A, Kokare C. Nose-to-brain delivery of paliperidone palmitate poloxamer-guar gum nanogel: Formulation, optimization and pharmacological studies in rats. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:315-333. [PMID: 36037930 DOI: 10.1016/j.pharma.2022.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/01/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022]
Abstract
Oral delivery of paliperidone palmitate (PPD), a potent antipsychotic agent, has been reported with a potential risk of very serious drug-induced adverse events such as tachycardia, hyperprolactinemia, sexual dysfunction, and neutropenia. Alternatively, the potential of nasal delivery has also been explored to treat CNS complications by delivering the medicines directly to the brain bypassing the blood-brain barrier. Hence, the objectives of current work were to formulate, design, optimize, and investigate the therapeutic potency of PPD-loaded intranasal in-situ gel (PPGISG) in the treatment of schizophrenia. PPD-nanoemulsion (PNE) was fabricated using water titration technique, was further optimized via Box-Behnken design. Furthermore, the optimized PNE was evaluated for parameters such as globule size, polydispersity index, zeta potential, and % entrapment efficiency were found to be 21.44±1.58nm, 0.268±0.02, -25.56±1.6mV, and 99.89±0.25%, respectively. PNE was further converted to PPGISG utilizing two polymers, poloxamer, and guar gum. Simultaneously, ex-vivo permeation for PNE, PPGISG, and PPD-suspension was found to be 211.40±4.8, 297.89±3.9 and 98.66±1.6μg/cm2, respectively. While PPGISG nanoparticles showed 1.58 and 5.65-folds more Jss than PNE and PPD-suspension. Behavioral studies confirmed that no extrapyramidal symptoms were observed in experimental animals post intranasal administration. Finally, the outcomes of the in-vivo hemato-compatibility study proved that intranasal formulation did not cause any alteration in leukocytes, RBCs, and neutrophils count. Therefore, intranasal delivery of PPGISG can be considered a novel tool for the safe delivery of PPD in schizophrenic patients.
Collapse
Affiliation(s)
- D Gadhave
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India; Department of Pharmaceutics, Dattakala Shikshan Sanstha's, Dattakala College of Pharmacy (Affiliated to Savitribai Phule Pune University), Swami Chincholi, Daund, Pune, 413130, Maharashtra, India.
| | - A Gupta
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India
| | - S Khot
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India
| | - A Tagalpallewar
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India; School of Pharmacy, Department of Pharmaceutics, MIT World Peace University, Pune, 411038, Maharashtra, India
| | - C Kokare
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India
| |
Collapse
|
17
|
Ibrahim SS. Nanostructured Lipid Carriers for Oral Delivery of a Corticosteroid: Role of Formulation on Biopharmaceutical Performance. J Pharm Sci 2023; 112:790-797. [PMID: 36270540 DOI: 10.1016/j.xphs.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
Corticosteroids are potent anti-inflammatory and immunosuppressive drugs widely used world-wide for treatment of diverse conditions. However, their use is restricted by their poor bioavailability and high risk-benefit ratio. Therefore, the aim of this study was to develop nanostructred lipid carriers (NLC) of prednisolone acetate (PA) to improve the drug's therapeutic outcome by altering its pharmacokinetic profile and/or allow preferential targeting to inflammatory tissues. PA-loaded NLCs were formulated by solvent injection method using Compritol (solid lipid), oleic acid (liquid lipid) and Tween 80 or Pluronic F68 (surfactant). Formulation conditions, such as liquid lipid concentration, total lipids, drug:lipid ratio and surfactant type were optimized based on particle size (PS), polydispersity index (PDI), and encapsulation efficiency (EE%) results. Optimized formulation was further characterized for its surface morphology, thermal properties, storage stability and anti-inflammatory activity in an animal acute inflammation model. Selected NLCs displayed PS of 170.7 nm, EE% of 67.4%, sustained release over 72 h and good stability for 30 days at refrigeration conditions. PA NLCs displayed superior anti-inflammatory activity of 83.9 ± 4.46% compared to PA suspension (40.5 ± 7.03%) and drug-free NLCs (54.7 ± 6.12%). The current work delineates the potential of NLCs for distinctly improved biopharmaceutical performance of PA.
Collapse
Affiliation(s)
- Shaimaa S Ibrahim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt.
| |
Collapse
|
18
|
Fatima GN, Maurya P, Nishtha, Saraf SK. In-situ Gels for Brain Delivery: Breaching the Barriers. Curr Pharm Des 2023; 29:3240-3253. [PMID: 37534480 DOI: 10.2174/1381612829666230803114513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/03/2023] [Accepted: 06/22/2023] [Indexed: 08/04/2023]
Abstract
The blood-brain barrier (BBB) regulates blood and chemical exchange in the central nervous system. It is made up of brain parenchyma capillary endothelial cells. It separates the interstitial cerebrospinal fluid from the circulation and limits brain drug entry. Peptides, antibodies, and even tiny hydrophilic biomolecules cannot flow across the BBB due to their semi-permeability. It protects the brain from poisons, chemicals, and pathogens, and blood cells penetrate brain tissue. BBB-facilitated carrier molecules allow selective permeability of nutrients such as D-glucose, L-lactic acid, L-phenylalanine, L-arginine, and hormones, especially steroid hormones. Brain barriers prevent drug molecules from entering, making medication delivery difficult. Drugs can reach specific brain regions through the nasal cavity, making it a preferred route. The in-situ gels are mucoadhesive, which extends their stay in the nasal cavity, allows them to penetrate deep and makes them a dependable way of transporting numerous medications, including peptides and proteins, straight into the central nervous system. This approach holds great potential for neurological therapy as they deliver drugs directly to the central nervous system, with less interference and better drug release control. The brain affects daily life by processing sensory stimuli, controlling movement and behaviour, and sustaining mental, emotional, and cognitive functioning. Unlike systemic routes, the nasal mucosa is extensively vascularized and directly contacts olfactory sensory neurons. Compared to the systemic circulation, this improves brain bioavailability of medications. Drugs can be delivered to the brain using in-situ gel formulations safely and efficiently, with a greater therapeutic impact than with traditional techniques.
Collapse
Affiliation(s)
- Gul Naz Fatima
- Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Sector II, Dr. Akhilesh Das Nagar, Faizabad Road, Lucknow, Uttar Pradesh, 226028, India
| | - Priyanka Maurya
- Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Sector II, Dr. Akhilesh Das Nagar, Faizabad Road, Lucknow, Uttar Pradesh, 226028, India
| | - Nishtha
- Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Sector II, Dr. Akhilesh Das Nagar, Faizabad Road, Lucknow, Uttar Pradesh, 226028, India
| | - Shailendra K Saraf
- Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Sector II, Dr. Akhilesh Das Nagar, Faizabad Road, Lucknow, Uttar Pradesh, 226028, India
| |
Collapse
|
19
|
Guler E, Polat EB, Cam ME. Drug delivery systems for neural tissue engineering. BIOMATERIALS FOR NEURAL TISSUE ENGINEERING 2023:221-268. [DOI: 10.1016/b978-0-323-90554-1.00012-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
20
|
Subhash Hinge N, Pandey MM. Sensitive RP-HPLC Method of Rivastigmine for Applicative Quantification of Nanostructured Lipid Carriers. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Mishra G, Awasthi R, Singh AK, Singh S, Mishra SK, Singh SK, Nandi MK. Intranasally Co-administered Berberine and Curcumin Loaded in Transfersomal Vesicles Improved Inhibition of Amyloid Formation and BACE-1. ACS OMEGA 2022; 7:43290-43305. [PMID: 36467923 PMCID: PMC9713875 DOI: 10.1021/acsomega.2c06215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Selective permeability of the blood-brain barrier restricts the treatment efficacy of neurologic diseases. Berberine (BBR) and curcumin (CUR)-loaded transferosomes (TRANS) were prepared for the effective management of Alzheimer's disease (AD). The study involved the syntheses of BBR-TRANS, CUR-TRANS, and BBR-CUR-TRANS by the film hydration method. Vesicles were characterized to ensure the formation of drug-loaded vesicles and their in vivo performance. The particle sizes of BBR-TRANS, CUR-TRANS, and BBR-CUR-TRANS were 139.2 ± 7, 143.4 ± 8, and 165.3 ± 6.5 nm, respectively. The presence of diffused rings in the SED image indicates the crystalline nature of the payload. Low surface roughness in an AFM image could be associated with the presence of a surface lipid. BBR-CUR-TRANS showed 41.03 ± 1.22 and 47.79 ± 3.67% release of BBR and 19.22 ± 1.47 and 24.67 ± 1.94% release of CUR, respectively, in phosphate buffer saline (pH 7.4) and acetate buffer (pH 4.0). Formulations showed sustained release of both loaded drugs. BBR-TRANS, CUR-TRANS, and BBR-CUR-TRANS exhibited a lower percentage of hemolysis than pure BBR and CUR, indicating the safety of the payload from delivery vesicles. Lower percentages of binding were recorded from BBR-CUR-TRANS than BBR-TRANS and CUR-TRANS. Acetylcholinesterase inhibition activity of the prepared transferosomes was greater than that of pure drugs, which are thought to have good cellular penetration. The spatial memory was improved in treated mice models. The level of malondialdehyde decreased in AD animals treated with BBR-TRANS, CUR-TRANS, and BBR-CUR-TRANS, respectively, as compared to the scopolamine-induced AD animals. BBR-CUR-TRANS-treated animals showed the highest decrease in the NO level. The catalase level was significantly restored in scopolamine-intoxicated animals treated with BBR-TRANS, CUR-TRANS, and BBR-CUR-TRANS. The immunohistochemistry result suggested that the BBR-TRANS, CUR-TRANS, and BBR-CUR-TRANS have significantly decreased the regulation of expression of BACE-1 through antioxidant activity. In conclusion, the study highlights the utility of formulated transferosomes as promising carriers for the co-delivery of drugs to the brain.
Collapse
Affiliation(s)
- Gaurav Mishra
- Department
of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh221 005, India
| | - Rajendra Awasthi
- Department
of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES), Energy Acres, Bidholi, Via-Prem
Nagar, Dehradun, Uttarakhand248 007, India
| | - Anurag Kumar Singh
- Cancer
Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, Alabama36101-0271, United States
- Centre
of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh221 005, India
| | - Snigdha Singh
- Mahatma
Gandhi Kashi Vidyapith, Varanasi, Uttar Pradesh221 002, India
| | - Sunil Kumar Mishra
- Department
of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh221 005, India
| | - Santosh Kumar Singh
- Centre
of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh221 005, India
| | - Manmath K. Nandi
- Department
of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh221 005, India
| |
Collapse
|
22
|
Nose-to-brain delivery of rotigotine redispersible nanosuspension: In vitro and in vivo characterization. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
23
|
Rajput A, Pingale P, Dhapte-Pawar V. Nasal delivery of neurotherapeutics via nanocarriers: Facets, aspects, and prospects. Front Pharmacol 2022; 13:979682. [PMID: 36176429 PMCID: PMC9513345 DOI: 10.3389/fphar.2022.979682] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the neurological ailments which continue to represent a major public health challenge, owing to increased life expectancy and aging population. Progressive memory loss and decrease in cognitive behavior, owing to irreversible destruction of neurons along with expensive therapeutic interventions, call for an effective, alternate, yet affordable treatment for Alzheimer’s disease. Safe and effective delivery of neurotherapeutics in Alzheimer’s like central nervous system (CNS) disorders still remains elusive despite the major advances in both neuroscience and drug delivery research. The blood–brain barrier (BBB) with its tight endothelial cell layer surrounded by astrocyte foot processes poses as a major barrier for the entry of drugs into the brain. Nasal drug delivery has emerged as a reliable method to bypass this blood–brain barrier and deliver a wide range of neurotherapeutic agents to the brain effectively. This nasal route comprises the olfactory or trigeminal nerves originating from the brain and terminating into the nasal cavity at the respiratory epithelium or olfactory neuroepithelium. They represent the most direct method of noninvasive entry into the brain, opening the most suitable therapeutic avenue for treatment of neurological diseases. Also, drugs loaded into nanocarriers can have better interaction with the mucosa that assists in the direct brain delivery of active molecules bypassing the BBB and achieving rapid cerebrospinal fluid levels. Lipid particulate systems, emulsion-based systems, vesicular drug delivery systems, and other nanocarriers have evolved as promising drug delivery approaches for the effective brain delivery of anti-Alzheimer’s drugs with improved permeability and bioavailability via the nasal route. Charge, size, nature of neurotherapeutics, and formulation excipients influence the effective and targeted drug delivery using nanocarriers via the nasal route. This article elaborates on the recent advances in nanocarrier-based nasal drug delivery systems for the direct and effective brain delivery of the neurotherapeutic molecules. Additionally, we have attempted to highlight various experimental strategies, underlying mechanisms in the pathogenesis and therapy of central nervous system diseases, computational approaches, and clinical investigations pursued so far to attain and enhance the direct delivery of therapeutic agents to the brain via the nose-to-brain route, using nanocarriers.
Collapse
Affiliation(s)
- Amarjitsing Rajput
- Department of Pharmaceutics, Poona College of Pharmacy, Bharti Vidyapeeth Deemed University, Pune, India
| | - Prashant Pingale
- Department of Pharmaceutics, GES’s Sir Dr. M. S. Gosavi College of Pharmaceutical Education and Research, Nashik, India
| | - Vividha Dhapte-Pawar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharti Vidyapeeth Deemed University, Pune, India
- *Correspondence: Vividha Dhapte-Pawar, ,
| |
Collapse
|
24
|
Mehta N, Pai R. Amalgamation of Nanoparticles within Drug Carriers: A Synergistic Approach or a Futile Attempt? Pharm Nanotechnol 2022; 10:PNT-EPUB-126127. [PMID: 36056844 DOI: 10.2174/2211738510666220902150449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 11/22/2022]
Abstract
In recent years, nanotechnology has gained much attention from scientists and significant advances in therapeutic potential. Nano-delivery systems have emerged as an effective way in order to improve the therapeutic properties of drugs including solubility, stability, prolongation of half-life as well as promoting the accumulation of drug at the target site. The nanoparticles have also been incorporated into various conventional drug delivery systems. This review study aims to introduce the amalgamation of nanoparticles into drug carriers. To overcome the limitations of single nanoparticles such as toxicity, high instability, rapid drug release as well as limited drug loading capacity, a multi-component system is developed. Liposomes, microparticles, nanofibers, dendrimers etc., are promising drug carriers, having some limitations that can be minimized, and the compilation of nanoparticles synergizes the properties. The amalgamated nanocarriers are used for the diagnostic purpose as well as treatment of various chronic diseases. It also increases the solubility of hydrophobic drugs. However, each system has its advantages and disadvantages based on its physicochemical properties, efficacy, and other parameters. This review details the past and present state of development for the fusion of nanoparticles within drug carriers and from which we identify future research works needed for the same.
Collapse
Affiliation(s)
- Nikhil Mehta
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM\\\'s NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai- 400056, India
| | - Rohan Pai
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM\\\'s NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai- 400056, India
| |
Collapse
|
25
|
Formulation and evaluation of nasal insert for nose-to-brain drug delivery of rivastigmine tartrate. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Hamimed S, Jabberi M, Chatti A. Nanotechnology in drug and gene delivery. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:769-787. [PMID: 35505234 PMCID: PMC9064725 DOI: 10.1007/s00210-022-02245-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
Over the last decade, nanotechnology has widely addressed many nanomaterials in the biomedical area with an opportunity to achieve better-targeted delivery, effective treatment, and an improved safety profile. Nanocarriers have the potential property to protect the active molecule during drug delivery. Depending on the employing nanosystem, the delivery of drugs and genes has enhanced the bioavailability of the molecule at the disease site and exercised an excellent control of the molecule release. Herein, the chapter discusses various advanced nanomaterials designed to develop better nanocarrier systems used to face different diseases such as cancer, heart failure, and malaria. Furthermore, we demonstrate the great attention to the promising role of nanocarriers in ease diagnostic and biodistribution for successful clinical cancer therapy.
Collapse
Affiliation(s)
- Selma Hamimed
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, CP 7021, Jarzouna, Tunisia. .,Departement of Biology, Faculty of Exact Sciences, Natural and Life Sciences, Chaikh Larbi Tebessi University, Tebessa, Algeria.
| | - Marwa Jabberi
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, CP 7021, Jarzouna, Tunisia.,Laboratory of Energy and Matter for Development of Nuclear Sciences (LR16CNSTN02), National Center for Nuclear Sciences and Technology (CNSTN), Sidi Thabet Technopark, 2020, Ariana, Tunisia
| | - Abdelwaheb Chatti
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, CP 7021, Jarzouna, Tunisia
| |
Collapse
|
27
|
Zha S, Wong K, All AH. Intranasal Delivery of Functionalized Polymeric Nanomaterials to the Brain. Adv Healthc Mater 2022; 11:e2102610. [PMID: 35166052 DOI: 10.1002/adhm.202102610] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/30/2022] [Indexed: 12/16/2022]
Abstract
Intravenous delivery of nanomaterials containing therapeutic agents and various cargos for treating neurological disorders is often constrained by low delivery efficacy due to difficulties in passing the blood-brain barrier (BBB). Nanoparticles (NPs) administered intranasally can move along olfactory and trigeminal nerves so that they do not need to pass through the BBB, allowing non-invasive, direct access to selective neural pathways within the brain. Hence, intranasal (IN) administration of NPs can effectively deliver drugs and genes into targeted regions of the brain, holding potential for efficacious disease treatment in the central nervous system (CNS). In this review, current methods for delivering conjugated NPs to the brain are primarily discussed. Distinctive potential mechanisms of therapeutic nanocomposites delivered via IN pathways to the brain are then discussed. Recent progress in developing functional NPs for applications in multimodal bioimaging, drug delivery, diagnostics, and therapeutics is also reviewed. This review is then concluded by discussing existing challenges, new directions, and future perspectives in IN delivery of nanomaterials.
Collapse
Affiliation(s)
- Shuai Zha
- Department of Chemistry Hong Kong Baptist University 224 Waterloo Road Kowloon Hong Kong SAR 000000 P. R. China
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom Hong Kong SAR 000000 P. R. China
| | - Ka‐Leung Wong
- Department of Chemistry Hong Kong Baptist University 224 Waterloo Road Kowloon Hong Kong SAR 000000 P. R. China
| | - Angelo H. All
- Department of Chemistry Hong Kong Baptist University 224 Waterloo Road Kowloon Hong Kong SAR 000000 P. R. China
| |
Collapse
|
28
|
Thermoresponsive in situ gel of curcumin loaded solid lipid nanoparticle: Design, optimization and in vitro characterization. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Garg J, Pathania K, Sah SP, Pawar SV. Nanostructured lipid carriers: a promising drug carrier for targeting brain tumours. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00414-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Background
In recent years, the field of nanotechnology and nanomedicine has transformed the pharmaceutical industry with the development of novel drug delivery systems that overcome the shortcomings of traditional drug delivery systems. Nanostructured lipid carriers (NLCs), also known as the second-generation lipid nanocarriers, are one such efficient and targeted drug delivery system that has gained immense attention all across due to their myriad advantages and applications. Scientific advancements have revolutionized our health system, but still, brain diseases like brain tumour have remained formidable owing to poor prognosis and the challenging drug delivery to the brain tissue. In this review, we highlighted the application and potential of NLCs in brain-specific delivery of chemotherapeutic agents.
Main body
NLCs are lipid-based formulations with a solid matrix at room temperature and offer advantages like enhanced stability, low toxicity, increased shelf life, improved drug loading capacity, and biocompatibility over other conventional lipid-based nanocarriers such as nanoemulsions and solid lipid nanoparticles. This review meticulously articulates the structure, classification, components, and various methods of preparation exemplified with various research studies along with their advantages and disadvantages. The concept of drug loading and release has been discussed followed by a brief about stability and strategies to improve stability of NLCs. The review also summarizes various in vitro and in vivo research studies on NLCs encapsulated with cytotoxic drugs and their potential application in brain-specific drug delivery.
Conclusion
NLCs are employed as an important carrier for the delivery of food, cosmetics, and medicines and recently have been used in brain targeting, cancer, and gene therapy. However, in this review, the applications and importance of NLCs in targeting brain tumour have been discussed in detail stating examples of various research studies conducted in recent years. In addition, to shed light on the promising role of NLCs, the current clinical status of NLCs has also been summarized.
Graphical Abstract
Collapse
|
30
|
Nguyen TTL, Maeng HJ. Pharmacokinetics and Pharmacodynamics of Intranasal Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Nose-to-Brain Delivery. Pharmaceutics 2022; 14:572. [PMID: 35335948 PMCID: PMC8948700 DOI: 10.3390/pharmaceutics14030572] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/01/2023] Open
Abstract
Nose-to-brain drug delivery has been of great interest for the treatment of many central nervous system (CNS) diseases and psychiatric disorders over past decades. Several nasally administered formulations have been developed to circumvent the blood-brain barrier and directly deliver drugs to the CNS through the olfactory and trigeminal pathways. However, the nasal mucosa's drug absorption is insufficient and the volume of the nasal cavity is small, which, in combination, make nose-to-brain drug delivery challenging. These problems could be minimized using formulations based on solid lipid nanoparticles (SLNs) or nanostructured lipid carriers (NLCs), which are effective nose-to-brain drug delivery systems that improve drug bioavailability by increasing drug solubility and permeation, extending drug action, and reducing enzymatic degradation. Various research groups have reported in vivo pharmacokinetics and pharmacodynamics of SLNs and NLCs nose-to-brain delivery systems. This review was undertaken to provide an overview of these studies and highlight research performed on SLN and NLC-based formulations aimed at improving the treatment of CNS diseases such neurodegenerative diseases, epilepsy, and schizophrenia. We discuss the efficacies and brain targeting efficiencies of these formulations based on considerations of their pharmacokinetic parameters and toxicities, point out some gaps in current knowledge, and propose future developmental targets.
Collapse
Affiliation(s)
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea;
| |
Collapse
|
31
|
Nguyen TT, Nguyen TTD, Tran NMA, Van Vo G. Lipid-Based Nanocarriers via Nose-to-Brain Pathway for Central Nervous System Disorders. Neurochem Res 2022; 47:552-573. [PMID: 34800247 DOI: 10.1007/s11064-021-03488-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 12/27/2022]
Abstract
Neurodegenerative disorders are distinguished by the gradual deterioration of the nervous system's structure and function due to oxidative stress, mitochondrial dysfunction, protein misfolding, excitotoxicity, and neuroinflammation. Among these NDs, Alzheimer's disease, Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis characterized an increasing dysfunction and loss of neuronal structure leading to neuronal cell death. Although there is currently no drug to totally reverse the effects of NDs, such novel formulations and administration routes are developed for better management and nose-to-brain delivery is one of delivery for treating NDs. This review aimed to highlight advances in research on various lipid based nanocarriers such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion, nanoemulsion, and cubosomes which are reported to treat and alleviate the symptoms of NDs via nose-to-brain route. The challenges during clinical translation of lipid nanocarriers from bench to bed side is also discussed.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Pharmacy, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, 700000, Vietnam
| | - Thi Thuy Dung Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Nguyen-Minh-An Tran
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420, Vietnam
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
- Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
32
|
Abo El-Enin HA, Elkomy MH, Naguib IA, Ahmed MF, Alsaidan OA, Alsalahat I, Ghoneim MM, Eid HM. Lipid Nanocarriers Overlaid with Chitosan for Brain Delivery of Berberine via the Nasal Route. Pharmaceuticals (Basel) 2022; 15:281. [PMID: 35337079 PMCID: PMC8955068 DOI: 10.3390/ph15030281] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
This research aimed to design, optimize, and evaluate berberine-laden nanostructured lipid carriers overlaid with chitosan (BER-CTS-NLCs) for efficient brain delivery via the intranasal route. The nanostructured lipid carriers containing berberine (BER-NLCs) were formulated via hot homogenization and ultrasonication strategy and optimized for the influence of a variety of causal variables, including the amount of glycerol monostearate (solid lipid), poloxamer 407 (surfactant) concentration, and oleic acid (liquid lipid) amount, on size of the particles, entrapment, and the total drug release after 24 h. The optimal BER-NLCs formulation was then coated with chitosan. Their diameter, in vitro release, surface charge, morphology, ex vivo permeability, pH, histological, and in vivo (pharmacokinetics and brain uptake) parameters were estimated. BER-CTS-NLCs had a size of 180.9 ± 4.3 nm, sustained-release properties, positive surface charge of 36.8 mV, and augmented ex-vivo permeation via nasal mucosa. The histopathological assessment revealed that the BER-CTS-NLCs system is safe for nasal delivery. Pharmacokinetic and brain accumulation experiments showed that animals treated intranasally with BER-CTS-NLCs had substantially greater drug levels in the brain. The ratios of BER brain/blood levels at 30 min, AUCbrain/AUCblood, drug transport percentage, and drug targeting efficiency for BER-CTS-NLCs (IN) were higher compared to BER solution (IN), suggesting enhanced brain targeting. The optimized nanoparticulate system is speculated to be a successful approach for boosting the effect of BER in treating CNS diseases, such as Alzheimer's disease, through intranasal therapy.
Collapse
Affiliation(s)
- Hadel A. Abo El-Enin
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, P.O. Box 2014, Sakaka 72341, Saudi Arabia;
| | - Ibrahim A. Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Marwa F. Ahmed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Omar A. Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, P.O. Box 2014, Sakaka 72341, Saudi Arabia;
| | - Izzeddin Alsalahat
- Complement Biology Group, Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XW, UK;
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, Faculty of Pharmacy, AlMaarefa University, P.O. Box 71666, Ad Diriyah 13713, Saudi Arabia;
| | - Hussein M. Eid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt;
| |
Collapse
|
33
|
Abdel-Mageed HM, Abd El Aziz AE, Mohamed SA, AbuelEzz NZ. The Tiny Big World of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: An Updated Review. J Microencapsul 2021; 39:72-94. [PMID: 34958628 DOI: 10.1080/02652048.2021.2021307] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nanotechnology is currently a field of endeavor that has reached a maturation phase beyond the initial hypotheses with an undercurrent challenge to optimize the safety, and scalability for production and clinical trials. Lipid-based nanoparticles (LNP), namely solid lipid nanoparticles (SLN) and nanostructured lipid (NLC), carriers are presently among the most attractive and fast-growing areas of research. SLN and NLC are safe, biocompatible nanotechnology-enabled platforms with ubiquitous applications. This review presents a modern vision that starts with a brief description of characteristics, preparation strategies, and composition ingredients, benefits, and limitations. Next, a discussion of applications and functionalization approaches for the delivery of therapeutics via different routes of delivery. Additionally, the review presents a concise perspective into limitations and future advances. A brief recap on the prospects of molecular dynamics simulations in better understanding NP bio-interface interactions is provided. Finally, the alliance between 3D printing and nanomaterials is presented here as well.
Collapse
Affiliation(s)
| | - Amira E Abd El Aziz
- Centre of Excellence, Arab Academy for Science and Technology and Maritime Transport, Alexandria, Egypt
| | - Saleh A Mohamed
- Molecular Biology Department, National Research Centre, Cairo, Dokki, Egypt
| | - Nermeen Z AbuelEzz
- Biochemistry Department, College of Pharmaceutical Sciences & Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| |
Collapse
|
34
|
Goel H, Kalra V, Verma SK, Dubey SK, Tiwary AK. Convolutions in the rendition of nose to brain therapeutics from bench to bedside: Feats & fallacies. J Control Release 2021; 341:782-811. [PMID: 34906605 DOI: 10.1016/j.jconrel.2021.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Brain, a subtle organ of multifarious nature presents plethora of physiological, metabolic and bio-chemical convolutions that impede the delivery of biomolecules and thereby resulting in truncated therapeutic outcome in pathological conditions of central nervous system (CNS). The absolute bottleneck in the therapeutic management of such devastating CNS ailments is the BBB. Another pitfall is the lack of efficient technological platforms (due to high cost and low approval rates) as well as limited clinical trials (due to failures of neuro‑leads in late-stage pipelines) for CNS disorders which has become a literal brain drain with poorest success rates compared to other therapeutic areas, owing to time consuming processes, tremendous convolutions and conceivable adverse effects. With the advent of intranasal delivery (via direct N2B or indirect nose to blood to brain), several novel drug delivery carriers viz. unmodified or surface modified nanoparticle based carriers, lipid based colloidal nanocarriers and drysolid/liquid/semisolid nanoformulations or delivery platforms have been designed as a means to deliver therapeutic agents (small and large molecules, peptides and proteins, genes) to brain, bypassing BBB for disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, schizophrenia and CNS malignancies primarily glioblastomas. Intranasal application offers drug delivery through both direct and indirect pathways for the peripherally administered psychopharmacological agents to CNS. This route could also be exploited for the repurposing of conventional drugs for new therapeutic uses. The limited clinical translation of intranasal formulations has been primarily due to existence of barriers of mucociliary clearance in the nasal cavity, enzyme degradation and low permeability of the nasal epithelium. The present review literature aims to decipher the new paradigms of nano therapeutic systems employed for specific N2B drug delivery of CNS drugs through in silico complexation studies using rationally chosen mucoadhesive polymers (exhibiting unique physicochemical properties of nanocarrier's i.e. surface modification, prolonging retention time in the nasal cavity, improving penetration ability, and promoting brain specific delivery with biorecognitive ligands) via molecular docking simulations. Further, the review intends to delineate the feats and fallacies associated with N2B delivery approaches by understanding the physiological/anatomical considerations via decoding the intranasal drug delivery pathways or critical factors such as rationale and mechanism of excipients, affecting the permeability of CNS drugs through nasal mucosa as well as better efficacy in terms of brain targeting, brain bioavailability and time to reach the brain. Additionally, extensive emphasis has also been laid on the innovative formulations under preclinical investigation along with their assessment by means of in vitro /ex vivo/in vivo N2B models and current characterization techniques predisposing an efficient intranasal delivery of therapeutics. A critical appraisal of novel technologies, intranasal products or medical devices available commercially has also been presented. Finally, it could be warranted that more reminiscent pharmacokinetic/pharmacodynamic relationships or validated computational models are mandated to obtain effective screening of molecular architecture of drug-polymer-mucin complexes for clinical translation of N2B therapeutic systems from bench to bedside.
Collapse
Affiliation(s)
- Honey Goel
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India.
| | - Vinni Kalra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, Indo-Soviet Friendship College of Pharmacy, Moga, Punjab, India
| | | | - Ashok Kumar Tiwary
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India.
| |
Collapse
|
35
|
Prajapati MK, Pai R, Vavia P. Tuning ligand number to enhance selectivity of paclitaxel liposomes towards ovarian cancer. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
36
|
Haroon HB, Mukherjee D, Anbu J, Teja BV. Thiolated Chitosan-Centella asiatica Nanocomposite: A Potential Brain Targeting Strategy Through Nasal Route. AAPS PharmSciTech 2021; 22:251. [PMID: 34668091 DOI: 10.1208/s12249-021-02131-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/27/2021] [Indexed: 01/02/2023] Open
Abstract
The major challenge associated with the treatment of neurological disorders is the inefficiency of drugs to enter the Central Nervous System (CNS). Polymer-drug conjugates are now being tailored to overcome this hindrance associated with conventional drugs. The study aimed at developing polymer hybrid nasal nanocomposite for enhanced delivery of Centella to the CNS. Thiolated chitosan was complexed with Centella to form a composite using EDAC hydrochloride. The composite was characterized by FTIR, XRD, NMR, and MS. Further, this composite was converted into a nanoformulation by the ionic-gelation method, characterized, and subjected to ex vivo permeation studies. Additionally, MTT assay was performed using Human Uumbilical cord Vein Endothelial Cells (HUVECs) mimicking Blood-Brain Barrier (BBB) to establish the safety of nanocomposite. The targeting efficacy was predicted by molecular docking studies against receptors associated with BBB. The FTIR, XRD, NMR, and MS studies confirmed the chemical conjugation of thiolated chitosan with Centella. Nanocomposite characterization through SEM, AFM, and DLS confirmed the size and stability of the developed nanocomposite having a zeta potential of - 14.5 mV and PDI of 0.260. The nanocomposite showed no signs of nasal ciliotoxicity and good permeation of 89.44 ± 1.75% (mean ± SD, n = 3) at 8 h across the nasal mucosa. MTT assay showed that the nanocomposite had lesser toxicity compared to the free drug (IC50 of Centella-269.1 μg/mL and IC50 of CTC nanocomposite-485.375 μg/mL). The affinity of polymer to the BBB receptors as proved by docking studies suggests the ability of polymer-based nanocomposite to concentrate in the brain post nasal administration.
Collapse
|
37
|
Tripathi S, Gupta U, Ujjwal RR, Yadav AK. Nano-lipidic formulation and therapeutic strategies for Alzheimer's disease via intranasal route. J Microencapsul 2021; 38:572-593. [PMID: 34591731 DOI: 10.1080/02652048.2021.1986585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIM The inability of drug molecules to cross the 'Blood-Brain Barrier' restrict the effective treatment of Alzheimer's disease. Lipid nanocarriers have proven to be a novel paradigm in brain targeting of bioactive by facilitating suitable therapeutic concentrations to be attained in the brain. METHODS The relevant information regarding the title of this review article was collected from the peer-reviewed published articles. Also, the physicochemical properties, and their in vitro and in vivo evaluations were presented in this review article. RESULTS Administration of lipid-based nano-carriers have abilities to target the brain, improve the pharmacokinetic and pharmacodynamics properties of drugs, and mitigate the side effects of encapsulated therapeutic active agents. CONCLUSION Unlike oral and other routes, the Intranasal route promises high bioavailability, low first-pass effect, better pharmacokinetic properties, bypass of the systemic circulation, fewer incidences of unwanted side effects, and direct delivery of anti-AD drugs to the brain via circumventing 'Blood-Brain Barrier'.
Collapse
Affiliation(s)
- Shourya Tripathi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Raebareli, Lucknow, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Raebareli, Lucknow, India
| | - Rewati Raman Ujjwal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Raebareli, Lucknow, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Raebareli, Lucknow, India
| |
Collapse
|
38
|
Gadhave D, Tupe S, Tagalpallewar A, Gorain B, Choudhury H, Kokare C. Nose-to-brain delivery of amisulpride-loaded lipid-based poloxamer-gellan gum nanoemulgel: In vitro and in vivo pharmacological studies. Int J Pharm 2021; 607:121050. [PMID: 34454028 DOI: 10.1016/j.ijpharm.2021.121050] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 12/22/2022]
Abstract
Unfavorable side effects of available antipsychotics limit the use of conventional delivery systems, where limited exposure of the drugs to the systemic circulation could reduce the associated risks. The potential of intranasal delivery is gaining interest to treat brain disorders by delivering the drugs directly to the brain circumventing the tight junctions of the blood-brain barrier with limited systemic exposure of the entrapped therapeutic. Therefore, the present research was aimed to fabricate, optimize and investigate the therapeutic efficacy of amisulpride (AMS)-loaded intranasal in situ nanoemulgel (AMS-NG) in the treatment of schizophrenia. In this context, AMS nanoemulsion (AMS-NE) was prepared by employing aqueous-titration method and optimized using Box-Behnken statistical design. The optimized nanoemulsion was subjected to evaluation of globule size, transmittance, zeta potential, and mucoadhesive strength, which were found to be 92.15 nm, 99.57%, -18.22 mV, and 8.90 g, respectively. The AMS-NE was converted to AMS-NG using poloxamer 407 and gellan gum. Following pharmacokinetic evaluation in Wistar rats, the brain Cmax for intranasal AMS-NG was found to be 1.48-folds and 3.39-folds higher when compared to intranasal AMS-NE and intravenous AMS-NE, respectively. Moreover, behavioral investigations of developed formulations were devoid of any extrapyramidal side effects in the experimental model. Finally, outcomes of the in vivo hematological study confirmed that intranasal administration of formulation for 28 days did not alter leukocytes and agranulocytes count. In conclusion, the promising results of the developed and optimized intranasal AMS-NG could provide a novel platform for the effective and safe delivery of AMS in schizophrenic patients.
Collapse
Affiliation(s)
- Dnyandev Gadhave
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India; Department of Pharmaceutics, HSBPVTS, GOI, College of Pharmacy (Affiliated to Savitribai Phule Pune University), Kashti, Ahmednagar 414701, Maharashtra, India
| | - Shrikant Tupe
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India
| | - Amol Tagalpallewar
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India; School of Pharmacy, Department of Pharmaceutics, MIT World Peace University, Pune 411038, Maharashtra, India
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor 47500, Malaysia.
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Chandrakant Kokare
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India.
| |
Collapse
|
39
|
Emad NA, Ahmed B, Alhalmi A, Alzobaidi N, Al-Kubati SS. Recent progress in nanocarriers for direct nose to brain drug delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102642] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
40
|
Singh AK, Singh SS, Rathore AS, Singh SP, Mishra G, Awasthi R, Mishra SK, Gautam V, Singh SK. Lipid-Coated MCM-41 Mesoporous Silica Nanoparticles Loaded with Berberine Improved Inhibition of Acetylcholine Esterase and Amyloid Formation. ACS Biomater Sci Eng 2021; 7:3737-3753. [PMID: 34297529 DOI: 10.1021/acsbiomaterials.1c00514] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Selective permeability of the blood-brain barrier limits effective treatment of neurodegenerative disorders. In the present study, brain-targeted lipid-coated mesoporous silica nanoparticles (MSNs) containing berberine (BBR) were synthesized for the effective treatment of Alzheimer's disease (AD). The study involved synthesis of Mobil Composition of Matter-41 (MCM-41) mesoporous silica nanoparticles (MSNs), BBR loading, and lipid coating of MSNs (MSNs-BBR-L) and in vitro and in vivo characterization of MSNs-BBR-L. The liposomes (for lipid coating) were prepared by the thin-film hydration method. Transmission electron microscopy (TEM) images indicated 5 nm thickness of the lipid coating. Dynamic light scattering (DLS) and TEM results confirmed that the size of synthesized MSNs-BBR-L was in the range of 80-100 nm. The X-ray diffraction (XRD) pattern demonstrated retention of the ordered structure of BBR after encapsulation and lipid coating. Fourier transform infrared (FTIR) spectrum confirmed the formation of a lipid coat over the MSN particles. MSNs-BBR-L displayed significantly (p < 0.05) higher acetylcholine esterase (AChE) inhibitory activity. The study confirmed significant (p < 0.05) amyloid fibrillation inhibition and decreased the malondialdehyde (MDA) level by MSNs-BBR-L. Pure BBR- and MSNs-BBR-L-treated AD animals showed a significant decrease in the BACE-1 level compared to scopolamine-intoxicated mice. Eight times higher area under the curve for MSNs-BBR-L (2400 ± 27.44 ng h/mL) was recorded compared to the pure BBR (295.5 ± 0.755 ng h/mL). Overall, these results highlight the utility of MSNs-BBR-L as promising drug delivery vehicles for brain delivery of drugs.
Collapse
Affiliation(s)
- Anurag Kumar Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Gaurav Mishra
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Rajendra Awasthi
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida 201303, Uttar Pradesh, India
| | - Sunil Kumar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Vibhav Gautam
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
41
|
Gao Y, Almalki WH, Afzal O, Panda SK, Kazmi I, Alrobaian M, Katouah HA, Altamimi ASA, Al-Abbasi FA, Alshehri S, Soni K, Ibrahim IAA, Rahman M, Beg S. Systematic development of lectin conjugated microspheres for nose-to-brain delivery of rivastigmine for the treatment of Alzheimer's disease. Biomed Pharmacother 2021; 141:111829. [PMID: 34147904 DOI: 10.1016/j.biopha.2021.111829] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
The current study focuses on development of nasal mucoadhesive microspheres for nose-to-brain delivery of rivastigmine for Alzheimer treatment. A systematic development was employed for optimization of the formulation and process parameters influential on the quality attributes of the microspheres. The risk assessment study revealed major influence of the polymer concentration (ethylcellulose: chitosan), the concentration of surfactant solution (polyvinyl alcohol), and stirring speed as the critical factors for optimization of the microspheres. These factors were systematically optimized using Box-Behnken design and microspheres were evaluated for the particle size, entrapment efficiency, and in vitro drug release as the response variables. The optimized microspheres containing 4.4% wt/vol polymers, 1% wt/vol surfactant, and stirring speed at 1500 rpm showed particle size of 19.9 µm, entrapment efficiency of 77.8%, and drug release parameters as T80% of 7.3 h. The surface modification of microspheres was performed with lectin by carbodiimide activation reaction and confirmed by difference in surface charge before and after chemical functionalization by zeta potential measurement which was found to be - 25.7 mV and 20.5 mV, respectively. Ex vivo study for bioadhesion strength evaluation on goat nasal mucosa indicated a significant difference (p < 0.001) between the plain (29%) and lectin functionalized microspheres (64%). In vivo behavioral and biochemical studies in the rats treated with lectin functionalized microspheres showed markedly better memory-retention vis-à-vis test and pure drug solution treated rats (p < 0.001). In a nutshell, the present studies showed successful development of nasal microspheres for enhanced brain delivery of rivastigmine for Alzheimer's treatment.
Collapse
Affiliation(s)
- Yang Gao
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, China
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, AlKharj, Saudi Arabia
| | | | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majed Alrobaian
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Hanadi A Katouah
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Kriti Soni
- Formulation Development, Dabur Research Foundation, 22 Site IV Sahibabad Industrial Area, Ghaziabad, Uttar Pradesh, India
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
42
|
Kulkarni P, Rawtani D, Barot T. Design, development and in-vitro/in-vivo evaluation of intranasally delivered Rivastigmine and N-Acetyl Cysteine loaded bifunctional niosomes for applications in combinative treatment of Alzheimer's disease. Eur J Pharm Biopharm 2021; 163:1-15. [PMID: 33774160 DOI: 10.1016/j.ejpb.2021.02.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/07/2021] [Accepted: 02/23/2021] [Indexed: 02/08/2023]
Abstract
The present investigation explores the potential of novel dual drug-loaded niosomes for nasal delivery of Rivastigmine (RIV) and N-Acetyl Cysteine (NAC) to the brain. The dual niosomes showed a particle size of 162.4 nm and % entrapment efficiencies of 97.7% for RIV and 85.9% for NAC. The niosomes were statistically validated using Box-Behnken experimental design (BBD) with good significance. Ultrastructural and chemical characterization of the niosomes using various analytical techniques like Fourier Transform Infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), Transmission electron microscopy (TEM) showcased drug-excipient compatibility and robust stability of 6 months in a liquid state at 4-8 °C. The dual drug-loaded niosomes showed a sustained drug release pattern up to 2 days. Acetylcholinesterase (AChE) and DPPH (1, 1-diphenyl-2- picrylhydrazyl) enzyme inhibition assays showed a better combinative effect than the free drug solutions. A 2-day nasal permeation proved the effectiveness and biocompatibility of the niosomes. In-vivo pharmacokinetic and organ biodistribution studies revealed a better drug profile and greater distribution of the niosomes in the brain compared to other organs, thereby indicating a direct nose-to-brain delivery of the niosomes.
Collapse
Affiliation(s)
- Pratik Kulkarni
- National Forensic Sciences University, Nr. DFS Head Quarters, Sector 9, Gandhinagar 382007, Gujarat, India.
| | - Deepak Rawtani
- National Forensic Sciences University, Nr. DFS Head Quarters, Sector 9, Gandhinagar 382007, Gujarat, India.
| | - Tejas Barot
- National Forensic Sciences University, Nr. DFS Head Quarters, Sector 9, Gandhinagar 382007, Gujarat, India.
| |
Collapse
|
43
|
Lohan S, Sharma T, Saini S, Swami R, Dhull D, Beg S, Raza K, Kumar A, Singh B. QbD-steered development of mixed nanomicelles of galantamine: Demonstration of enhanced brain uptake, prolonged systemic retention and improved biopharmaceutical attributes. Int J Pharm 2021; 600:120482. [PMID: 33737096 DOI: 10.1016/j.ijpharm.2021.120482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/13/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Numerous oral treatment options have been reported for neurological disorders, especially Alzheimer's disease (AD). Galantamine (GAL) is one of such drugs duly approved for management of AD. However, it exhibits poor brain penetration, low intestinal permeation and requires frequent dosing in AD treatment. The present studies, accordingly, were undertaken to develop DSPE-PEG 2000-based micelles loaded with GAL for efficient brain uptake, improved and extended pharmacokinetics, along with reduced dosing regimen. METHODS Mixed nanomicelles (MNMs) were systematically formulated using QbD approach, and characterized for morphology, entrapment efficiency andin vitrodrug release. RESULTS Studies on CaCo-2 and neuronal U-87 cell lines exhibited substantial enhancement in the cellular permeability and uptake of the developed MNMs. Pharmacokinetic studies performed on rats showed significantly improved values of plasma AUC (i.e., 2.28-fold, p < 0.001), ostensibly due to bypassing of hepatic first-pass metabolism and improved intestinal permeability, together with significant rise in MRT (2.08-fold, p < 0.001) and tmax (4.80-fold; p < 0.001) values, indicating immense potential for prolonged drug residence in body.Besides, substantial elevation in brain drug levels, distinctly improved levels of biochemical parameters in brain homogenates and cognitive improvement in β-amyloid-treated rats, testify the superiority in MNMs in therapeutic management of AD. CONCLUSIONS The preclinical findings of the developed nanocarrier systems successfully demonstrate the notable potential of enhanced drug efficacy, extended duration of action and improved patient compliance.
Collapse
Affiliation(s)
- Shikha Lohan
- National UGC Centre of Excellence in Application of Nanomaterials, Nanoparticles, and Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh 160014, India
| | - Teenu Sharma
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Sumant Saini
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Rajan Swami
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Dinesh Dhull
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Sarwar Beg
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Distt. Ajmer, Rajasthan 305 817, India
| | - Anil Kumar
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Bhupinder Singh
- National UGC Centre of Excellence in Application of Nanomaterials, Nanoparticles, and Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh 160014, India; University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
44
|
Fernandes F, Dias-Teixeira M, Delerue-Matos C, Grosso C. Critical Review of Lipid-Based Nanoparticles as Carriers of Neuroprotective Drugs and Extracts. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:563. [PMID: 33668341 PMCID: PMC7996241 DOI: 10.3390/nano11030563] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/13/2022]
Abstract
The biggest obstacle to the treatment of diseases that affect the central nervous system (CNS) is the passage of drugs across the blood-brain barrier (BBB), a physical barrier that regulates the entry of substances into the brain and ensures the homeostasis of the CNS. This review summarizes current research on lipid-based nanoparticles for the nanoencapsulation of neuroprotective compounds. A survey of studies on nanoemulsions (NEs), nanoliposomes/nanophytosomes and solid lipid nanoparticles (SLNs)/nanostructured lipid carriers (NLCs) was carried out and is discussed herein, with particular emphasis upon their unique characteristics, the most important parameters influencing the formulation of each one, and examples of neuroprotective compounds/extracts nanoencapsulated using these nanoparticles. Gastrointestinal absorption is also discussed, as it may pose some obstacles for the absorption of free and nanoencapsulated neuroprotective compounds into the bloodstream, consequently hampering drug concentration in the brain. The transport mechanisms through which compounds or nanoparticles may cross BBB into the brain parenchyma, and the potential to increase drug bioavailability, are also discussed. Additionally, factors contributing to BBB disruption and neurodegeneration are described. Finally, the advantages of, and obstacles to, conventional and unconventional routes of administration to deliver nanoencapsulated neuroprotective drugs to the brain are also discussed, taking into account the avoidance of first-pass metabolism, onset of action, ability to bypass the BBB and concentration of the drug in the brain.
Collapse
Affiliation(s)
- Filipe Fernandes
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (F.F.); (M.D.-T.); (C.D.-M.)
| | - Mónica Dias-Teixeira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (F.F.); (M.D.-T.); (C.D.-M.)
- NICiTeS—Núcleo de Investigação em Ciências e Tecnologias da Saúde, Escola Superior de Saúde Ribeiro Sanches, 1649-028 Lisbon, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (F.F.); (M.D.-T.); (C.D.-M.)
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (F.F.); (M.D.-T.); (C.D.-M.)
| |
Collapse
|
45
|
Ahmad J, Rizwanullah M, Amin S, Warsi MH, Ahmad MZ, Barkat MA. Nanostructured Lipid Carriers (NLCs): Nose-to-Brain Delivery and Theranostic Application. Curr Drug Metab 2020; 21:1136-1143. [PMID: 32682366 DOI: 10.2174/1389200221666200719003304] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/19/2020] [Accepted: 05/05/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nanostructured lipid carriers (NLCs) are in high demand in the existing pharmaceutical domain due to its high versatility. It is the newer generation of lipid nanoparticulate systems having a solid matrix and greater stability at room temperature. OBJECTIVE To review the evidence related to the current state of the art of the NLCs system and its drug delivery perspectives to the brain. METHODS Scientific data search, review of the current state of the art and drug delivery perspectives to the brain for NLCs were undertaken to assess the applicability of NLCs in the management of neurological disorders through an intranasal route of drug administration. RESULTS NLCs are designed to fulfill all the industrial needs like simple technology, low cost, scalability, and quantifications. Biodegradable and biocompatible lipids and surfactants used for NLCs have rendered them acceptable from regulatory perspectives as well. Apart from these, NLCs have unique properties of high drug payload, modulation of drug release profile, minimum drug expulsion during storage, and incorporation in various dosage forms like gel, creams, granules, pellets, powders for reconstitution and colloidal dispersion. Ease of surface- modification of NLCs enhances targeting efficiency and reduces systemic toxicity by providing site-specific delivery to the brain through the intranasal route of drug administration. CONCLUSION The present review encompasses the in-depth discussion over the current state of the art of NLCs, nose-to-brain drug delivery perspectives, and its theranostic application as useful tools for better management of various neurological disorders. Further, pharmacokinetic consideration and toxicity concern is also discussed specifically for the NLCs system exploited in nose-to-brain delivery.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Md Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Saima Amin
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Musarrat Husain Warsi
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif-Al-Haweiah 21974, Saudi Arabia
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al Jamiah, Hafr Al Batin 39524, Saudi Arabia
| |
Collapse
|
46
|
Zorkina Y, Abramova O, Ushakova V, Morozova A, Zubkov E, Valikhov M, Melnikov P, Majouga A, Chekhonin V. Nano Carrier Drug Delivery Systems for the Treatment of Neuropsychiatric Disorders: Advantages and Limitations. Molecules 2020; 25:E5294. [PMID: 33202839 PMCID: PMC7697162 DOI: 10.3390/molecules25225294] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Neuropsychiatric diseases are one of the main causes of disability, affecting millions of people. Various drugs are used for its treatment, although no effective therapy has been found yet. The blood brain barrier (BBB) significantly complicates drugs delivery to the target cells in the brain tissues. One of the problem-solving methods is the usage of nanocontainer systems. In this review we summarized the data about nanoparticles drug delivery systems and their application for the treatment of neuropsychiatric disorders. Firstly, we described and characterized types of nanocarriers: inorganic nanoparticles, polymeric and lipid nanocarriers, their advantages and disadvantages. We discussed ways to interact with nerve tissue and methods of BBB penetration. We provided a summary of nanotechnology-based pharmacotherapy of schizophrenia, bipolar disorder, depression, anxiety disorder and Alzheimer's disease, where development of nanocontainer drugs derives the most active. We described various experimental drugs for the treatment of Alzheimer's disease that include vector nanocontainers targeted on β-amyloid or tau-protein. Integrally, nanoparticles can substantially improve the drug delivery as its implication can increase BBB permeability, the pharmacodynamics and bioavailability of applied drugs. Thus, nanotechnology is anticipated to overcome the limitations of existing pharmacotherapy of psychiatric disorders and to effectively combine various treatment modalities in that direction.
Collapse
Affiliation(s)
- Yana Zorkina
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Olga Abramova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Valeriya Ushakova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Department of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Anna Morozova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Eugene Zubkov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Marat Valikhov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Pavel Melnikov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Alexander Majouga
- D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Vladimir Chekhonin
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
47
|
Agrawal M, Saraf S, Saraf S, Dubey SK, Puri A, Gupta U, Kesharwani P, Ravichandiran V, Kumar P, Naidu VGM, Murty US, Ajazuddin, Alexander A. Stimuli-responsive In situ gelling system for nose-to-brain drug delivery. J Control Release 2020; 327:235-265. [PMID: 32739524 DOI: 10.1016/j.jconrel.2020.07.044] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022]
Abstract
The diagnosis and treatment of neurological ailments always remain an utmost challenge for research fraternity due to the presence of BBB. The intranasal route appeared as an attractive and alternative route for brain targeting of therapeutics without the intrusion of BBB and GI exposure. This route directly and effectively delivers the therapeutics to different regions of the brain via olfactory and trigeminal nerve pathways. However, shorter drug retention time and mucociliary clearance curtail the efficiency of the intranasal route. The in situ mucoadhesive gel overthrow the limitations of direct nose-to-brain delivery by not only enhancing nasal residence time but also minimizing the mucociliary clearance and enzymatic degradation. This delivery system further improves the nasal absorption as well as bioavailability of drugs in the brain. The in situ mucoadhesive gel is a controlled and sustained release system that facilitates the absorption of various proteins, peptides and other larger lipophilic and hydrophilic moieties. Owing to multiple benefits, in situ gelling system has been widely explored to target the brain via nasal route. However, very few review works are reported which explains the application of in situ nasal gel for brain delivery of CNS acting moieties. Hence, in this piece of work, we have initially discussed the global statistics of neurological disorders reported by WHO and other reputed organizations, nasal anatomy, mechanism and challenges of nose-to-brain drug delivery. The work mainly focused on the use of different stimuli-responsive polymers, specifically thermoresponsive, pH-responsive, and ion triggered systems for the development of an effective and controlled dosage form, i.e., in situ nasal gel for brain targeting of bioactives. We have also highlighted the origin, structure, nature and phase transition behavior of the smart polymers found suitable for nasal administration, including poloxamer, chitosan, EHEC, xyloglucan, Carbopol, gellan gum and DGG along with their application in the treatment of neurological disorders. The article is aimed to gather all the information of the past 10 years related to the development and application of stimuli-responsive in situ nasal gel for brain drug delivery.
Collapse
Affiliation(s)
- Mukta Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Sunil K Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, (BITS-PILANI), Pilani Campus, Pilani, Rajasthan, India
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, NCI-Frederick, NIH, Frederick, USA
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - V Ravichandiran
- National Institute of Pharmaceutical Education and Research (NIPER-Kolkata), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| | - Pramod Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup-781101, Guwahati, Assam, India
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup-781101, Guwahati, Assam, India
| | - Upadhyayula Suryanarayana Murty
- National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup-781101, Guwahati, Assam, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup-781101, Guwahati, Assam, India.
| |
Collapse
|
48
|
Gadhave D, Rasal N, Sonawane R, Sekar M, Kokare C. Nose-to-brain delivery of teriflunomide-loaded lipid-based carbopol-gellan gum nanogel for glioma: Pharmacological and in vitro cytotoxicity studies. Int J Biol Macromol 2020; 167:906-920. [PMID: 33186648 DOI: 10.1016/j.ijbiomac.2020.11.047] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/26/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022]
Abstract
The research work was intended to formulate teriflunomide (TFM) loaded nano lipid-based (TNLC) carbopol-gellan gum in situ gel (TNLCGHG) and to investigate its therapeutic efficacy against glioma, a brain and spine tumor. Nanoformulation was developed using gellan gum and carbopol 974P as gelling and mucoadhesive agents, respectively, Glyceryl di-behenate and Glyceryl mono-linoleate blend as lipids, and Gelucire 44/14: water blend as surfactant system. Globule size, PDI, zeta potential, encapsulation efficiency, mucoadhesive strength, and nasal permeation were found to be 117.80 nm, 0.56, -21.86 mV, 81.16%, 4.80 g, and 904 μg/cm2, respectively. Anticancer efficacy of TFM-loaded nano lipid-based carbopol-gellan gum in situ gel (TNLCGHG) was determined in human U-87MG glioma cell line. IC50 was found 7.0 μg/mL for TNLCGHG, 4.8 μg/mL for pure TFM, and 78.5 μg/mL for TNLC, which approve the superiority of surfactant along with gellan gum as permeation enhancer. Brain Cmax for technetium (99mTC) labeled intranasal (i.n.) 99mTC-TNLCGHG was found 2-folds higher than 99mTC-TNLC (i.n.) and 99mTC-TNLC intravenous (i.v.) because the TNLCGHG formulation contains surfactant with natural gelling polymers, which promisingly improved drug permeability. Finally, this research revealed encouraging outcomes and successfully developed intranasal TNLCGHG nanoformulation as a novel tool for safe delivery of TFM in glioma patients.
Collapse
Affiliation(s)
- Dnyandev Gadhave
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (affiliated to Savitribai Phule Pune University), Narhe, Pune 411 041, India.
| | - Nishant Rasal
- Department of Chemistry, Baburaoji Gholap College (affiliated to Savitribai Phule Pune University), Sangvi, Pune 411027, Maharashtra, India
| | - Rahul Sonawane
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (affiliated to Savitribai Phule Pune University), Narhe, Pune 411 041, India
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh-30450, Perak, Malaysia
| | - Chandrakant Kokare
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (affiliated to Savitribai Phule Pune University), Narhe, Pune 411 041, India
| |
Collapse
|
49
|
Vigani B, Rossi S, Sandri G, Bonferoni MC, Caramella CM, Ferrari F. Recent Advances in the Development of In Situ Gelling Drug Delivery Systems for Non-Parenteral Administration Routes. Pharmaceutics 2020; 12:pharmaceutics12090859. [PMID: 32927595 PMCID: PMC7559482 DOI: 10.3390/pharmaceutics12090859] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 12/27/2022] Open
Abstract
In situ gelling drug delivery systems have gained enormous attention over the last decade. They are in a sol-state before administration, and they are capable of forming gels in response to different endogenous stimuli, such as temperature increase, pH change and the presence of ions. Such systems can be administered through different routes, to achieve local or systemic drug delivery and can also be successfully used as vehicles for drug-loaded nano- and microparticles. Natural, synthetic and/or semi-synthetic polymers with in situ gelling behavior can be used alone, or in combination, for the preparation of such systems; the association with mucoadhesive polymers is highly desirable in order to further prolong the residence time at the site of action/absorption. In situ gelling systems include also solid polymeric formulations, generally obtained by freeze-drying, which, after contact with biological fluids, undergo a fast hydration with the formation of a gel able to release the drug loaded in a controlled manner. This review provides an overview of the in situ gelling drug delivery systems developed in the last 10 years for non-parenteral administration routes, such as ocular, nasal, buccal, gastrointestinal, vaginal and intravesical ones, with a special focus on formulation composition, polymer gelation mechanism and in vitro release studies.
Collapse
|
50
|
Sita V, Jadhav D, Vavia P. Niosomes for nose-to-brain delivery of bromocriptine: Formulation development, efficacy evaluation and toxicity profiling. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101791] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|