1
|
Alqahtani MS, Syed R, Alqahtani AS, Almarfadi OM, Roni MA, Sadhu SS. Synthesis and bioactivity of a novel surfactin-based lipopeptide for mRNA delivery. NANOSCALE ADVANCES 2024:d4na00404c. [PMID: 39247856 PMCID: PMC11376094 DOI: 10.1039/d4na00404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
The effective delivery of messenger ribonucleic acid (mRNA) to specific cell types and target tissues poses a significant challenge in nonviral therapeutic strategies. Lipid-based nanoparticles (LNPs) have emerged as a leading carrier system for delivering mRNA, particularly for infectious diseases, such as COVID-19. This study aimed to describe the synthesis of a novel lipopeptide based on surfactin, a naturally occurring surfactant. Additionally, a series of novel LNPs were rationally designed, based on the modified surfactin, OleSurf, and were formulated and optimized. The physicochemical properties, morphologies, and stabilities of the particles were evaluated. All formulations containing OleSurf produced particles with a diameter <80 nm and an encapsulation efficiency >95%. OleSurf LNPs demonstrated excellent transfection efficiency and luciferase expression with no cytotoxicity, compared to lipofectamine 2000, a known transfection reagent, and were comparable to the DLin-MC3-DMA lipid. OleSurf-based LNPs behaved as efficient mRNA carriers and showed enhanced mRNA-binding capabilities, associated with facilitated intracellular release, endosomal escape, and protection from endonuclease degradation. In addition, OleSurf-LNPs showed a higher mRNA delivery efficiency, a more advantageous biodistribution pattern, and an improved safety profile in vivo. Overall, the novel OleSurf LNPs presented an optimal delivery platform for mRNA therapeutics.
Collapse
Affiliation(s)
- Mohammed S Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
- Department of Pharmaceutics, Nanomedicine & Biotechnology Research Unit, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
| | - Rabbani Syed
- Department of Pharmaceutics, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
- Department of Pharmaceutics, Nanomedicine & Biotechnology Research Unit, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
| | - Omer M Almarfadi
- Department of Pharmacognosy, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
| | - Monzurul A Roni
- Department of Health Sciences Education and Pathology, University of Illinois College of Medicine Peoria IL 61605 USA
| | - Satya S Sadhu
- Chemistry Department, Northern Michigan University 1401, Presque, Isle Marquette MI 49855 USA
| |
Collapse
|
2
|
Jörgensen AM, Steinbring C, Stengel D, To D, Schmid P, Bernkop‐Schnürch A. Self-Emulsifying Drug Delivery Systems (SEDDS) Containing Reverse Micelles: Advanced Oral Formulations for Therapeutic Peptides. Adv Healthc Mater 2023; 12:e2302034. [PMID: 37696266 PMCID: PMC11468804 DOI: 10.1002/adhm.202302034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/05/2023] [Indexed: 09/13/2023]
Abstract
Alternative methods to hydrophobic ion pairing for the formation of lipophilic complexes of peptide drugs to incorporate them in lipid-based nanocarriers such as self-emulsifying drug delivery systems (SEDDS) for oral administration are highly on demand. Such an alternative might be reverse micelles. Within this study, SEDDS containing dry reverse micelles (dRMsPMB ) formed with an anionic (sodium docusate; AOT), cationic (dimethyl-dioctadecyl-ammonium bromide; DODAB), amphoteric (soy lecithin; SL), or non-ionic (polysorbate 85; P85) surfactant loaded with the model peptide drug polymyxin B (PMB) are developed. They are characterized regarding size, payload, release kinetics, cellular uptake, and peptide activity. SEDDS exhibit sizes from 22.2 ± 1.7 (AOT-SEDDS-dRMsPMB ) to 61.7 ± 3.2 nm (P85-SEDDS-dRMsPMB ) with payloads up to 2% that are approximately sevenfold higher than those obtained via hydrophobic ion pairing. Within 6 h P85-SEDDS-dRMsPMB and AOT-SEDDS-dRMsPMB show no release of PMB in aqueous medium, whereas DODAB-SEDDS-dRMsPMB and SL-SEDDS-dRMsPMB show a sustained release. DODAB-SEDDS-dRMsPMB improves uptake by Caco-2 cells most efficiently reaching even ≈100% within 4 h followed by AOT-SEDDS-dRMsPMB with ≈20% and P85-/SL-SEDDS-dRMsPMB with ≈5%. The peptide drug maintains its antimicrobial activity in all SEDDS-dRMsPMB . According to these results, SEDDS containing dRMs might be a game changing strategy for oral peptide drug delivery.
Collapse
Affiliation(s)
- Arne Matteo Jörgensen
- Department of Pharmaceutical TechnologyUniversity of InnsbruckInstitute of PharmacyCenter for Chemistry and BiomedicineInnrain 80–82Innsbruck6020Austria
| | - Christian Steinbring
- Department of Pharmaceutical TechnologyUniversity of InnsbruckInstitute of PharmacyCenter for Chemistry and BiomedicineInnrain 80–82Innsbruck6020Austria
| | - Daniel Stengel
- Department of Pharmaceutical TechnologyUniversity of InnsbruckInstitute of PharmacyCenter for Chemistry and BiomedicineInnrain 80–82Innsbruck6020Austria
| | - Dennis To
- Department of Pharmaceutical TechnologyUniversity of InnsbruckInstitute of PharmacyCenter for Chemistry and BiomedicineInnrain 80–82Innsbruck6020Austria
| | - Pascal Schmid
- Department of Pharmaceutical TechnologyUniversity of InnsbruckInstitute of PharmacyCenter for Chemistry and BiomedicineInnrain 80–82Innsbruck6020Austria
| | - Andreas Bernkop‐Schnürch
- Department of Pharmaceutical TechnologyUniversity of InnsbruckInstitute of PharmacyCenter for Chemistry and BiomedicineInnrain 80–82Innsbruck6020Austria
| |
Collapse
|
3
|
Claus V, Sandmeier M, Hock N, Spleis H, Lindner S, Kalb M, Bernkop-Schnürch A. Counterion optimization for hydrophobic ion pairing (HIP): Unraveling the key factors. Int J Pharm 2023; 647:123507. [PMID: 37848166 DOI: 10.1016/j.ijpharm.2023.123507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
In the present study, various surfactants were combined with insulin (INS), bovine serum albumin (BSA) and horseradish peroxidase (HRP) via hydrophobic ion pairing to increase lipophilicity and facilitate incorporation into self-emulsifying drug delivery systems (SEDDS). Lipophilicity of model proteins was successfully increased, achieving log Dn-butanol/water values up to 3.5 (INS), 3.2 (BSA) and 1.2 (HRP). Hereby, key factors responsible for complex formation were identified. In particular, surfactants with branched alkyl chains or chain lengths greater than C12 showed favorable properties for hydrophobic ion pairs (HIP). Furthermore, flexibility of the carbon chain resulted in higher lipophilicity and suitability of polar head groups of surfactants for HIP decreased in the rank order sulfonate > sulfosuccinate > phosphate = sulfate > carbonate > phosphonic acids = sulfobetaines. Stability studies of formed HIP complexes were performed in various gastrointestinal fluids and their solubility was determined in commonly used SEDDS excipients. Formed complexes were stable in simulated gastrointestinal fluids and could be incorporated into SEDDS formulations (C1: 10% caprylocaproyl polyoxyl-8 glycerides, 20% PEG-40 hydrogenated castor oil, 20% medium-chain triglycerides, 50% n-butanol; C2: 10% caprylocaproyl polyoxyl-8 glycerides, 20% PEG-40 hydrogenated castor oil, 20% medium-chain triglycerides, 40% n-butanol, 10% 1,2-butanediol), resulting in suitable payloads of up to 11.9 mg/ml for INS, 1.0 mg/ml for BSA and 1.6 mg/ml for HRP.
Collapse
Affiliation(s)
- Victor Claus
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Matthias Sandmeier
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Nathalie Hock
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Helen Spleis
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Sera Lindner
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Monika Kalb
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria.
| |
Collapse
|
4
|
Jörgensen AM, Wibel R, Bernkop-Schnürch A. Biodegradable Cationic and Ionizable Cationic Lipids: A Roadmap for Safer Pharmaceutical Excipients. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206968. [PMID: 36610004 DOI: 10.1002/smll.202206968] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Cationic and ionizable cationic lipids are broadly applied as auxiliary agents, but their use is associated with adverse effects. If these excipients are rapidly degraded to endogenously occurring metabolites such as amino acids and fatty acids, their toxic potential can be minimized. So far, synthesized and evaluated biodegradable cationic and ionizable cationic lipids already showed promising results in terms of functionality and safety. Within this review, an overview about the different types of such biodegradable lipids, the available building blocks, their synthesis and cleavage by endogenous enzymes is provided. Moreover, the relationship between the structure of the lipids and their toxicity is described. Their application in drug delivery systems is critically discussed and placed in context with the lead compounds used in mRNA vaccines. Moreover, their use as preservatives is reviewed, guidance for their design is provided, and an outlook on future developments is given.
Collapse
Affiliation(s)
- Arne Matteo Jörgensen
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| | - Richard Wibel
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| |
Collapse
|
5
|
Uskoković V. Supplementation of Polymeric Reservoirs with Redox-Responsive Metallic Nanoparticles as a New Concept for the Smart Delivery of Insulin in Diabetes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:786. [PMID: 36676521 PMCID: PMC9862131 DOI: 10.3390/ma16020786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Type 1 diabetes is caused by the inability of the pancreatic beta cells to produce sufficient amounts of insulin, an anabolic hormone promoting the absorption of the blood glucose by various cells in the body, primarily hepatocytes and skeletal muscle cells. This form of impaired metabolism has been traditionally treated with subcutaneous insulin injections. However, because one such method of administration does not directly correspond to the glucose concentrations in the blood and may fail to reduce hyperglycemia or cause hypoglycemia, the delivery of insulin in a glucose-dependent manner has been researched intensely in the present and past. This study tested the novel idea that the supplementation of polymeric reservoirs containing insulin with metallic nanoparticle precursors responsive to the redox effect of glucose could be used to create triggers for the release of insulin in direct response to the concentration of glucose in the tissue. For that purpose, manganese oxide nanoparticles were dispersed inside a poly(ε-caprolactone) matrix loaded with an insulin proxy and the resulting composite was exposed to different concentrations of glucose. The release of the insulin proxy occurred in direct proportion to the concentration of glucose in the medium. Mechanistically, as per the central hypothesis of the study, glucose reduced the manganese cations contained within the metal oxide phase, forming finer and more dissipative zero-valent metallic nanoparticles, thus disrupting the polymeric network, opening up pores in the matrix and facilitating the release of the captured drug. The choice of manganese for this study over other metals was justified by its use as a supplement for protection against diabetes. Numerical analysis of the release mechanism revealed an increasingly nonlinear and anomalous release accompanied by a higher diffusion rate at the expense of chain rigidity as the glucose concentration increased. Future studies should focus on rendering the glucose-controlled release (i) feasible within the physiological pH range and (ii) sensitive to physiologically relevant glucose concentrations. These technical improvements of the fundamental new concept proven here may bring it closer to a real-life application for the mitigation of symptoms of hyperglycemia in patients with diabetes.
Collapse
Affiliation(s)
- Vuk Uskoković
- TardigradeNano LLC, 7 Park Vista, Irvine, CA 92604, USA; or or
- Department of Mechanical Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| |
Collapse
|
6
|
Matteo Jörgensen A, Knoll P, Haddadzadegan S, Fabian H, Hupfauf A, Gust R, Georg Jörgensen R, Bernkop-Schnürch A. Biodegradable arginine based steroid-surfactants: Cationic green agents for hydrophobic ion-pairing. Int J Pharm 2022; 630:122438. [PMID: 36464112 DOI: 10.1016/j.ijpharm.2022.122438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 12/03/2022]
Abstract
The aim of this study was to evaluate the safety and efficacy for hydrophobic ion-pairing of surfactants based on arginine (Arg). The prepared Arg-cholesteryl ester (ACE) and Arg-diosgenyl ester (ADE) were characterized regarding solubility, pKa, critical micellar concentration (CMC), biodegradability as well as membrane- and aquatic toxicity using DOTAP as reference. The ability for hydrophobic ion-pairing was evaluated and the lipophilicity of formed complexes was determined. NMR, FT-IR and MS confirmed successful synthesis of Arg-surfactants. The slightly soluble single-charged Arg-surfactants (pH < pKa3 (ACE = 10.42 ± 0.52; ADE = 10.38 ± 0.27)) showed CMCs of 27.17 µM for ACE and 35.67 µM for ADE. CMCs of the sparingly soluble double-charged species (pH < pKa2 (ACE = 5.30 ± 0.20; ADE = 5.55 ± 0.06)) were determined at concentrations of ≥ 250 µM for ACE and ≥ 850 µM for ADE. The enzymatic- and environmental biodegradability was proven by an entire cleavage of Arg-surfactants within 24 h, whereas DOTAP remained stable. Arg-surfactants exhibited lower membrane- (> 2-fold) and aquatic toxicity (> 15-fold) than DOTAP. The complexes formed with Arg-surfactants and insulin showed higher lipophilicity than the DOTAP-complex. According to these results, Arg-surfactants might be a promising safe tool for the delivery of peptide drugs.
Collapse
Affiliation(s)
- Arne Matteo Jörgensen
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria
| | - Patrick Knoll
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria
| | - Soheil Haddadzadegan
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria
| | - Hannah Fabian
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria
| | - Andrea Hupfauf
- Department of Pharmaceutical Chemistry, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria
| | - Ronald Gust
- Department of Pharmaceutical Chemistry, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria
| | - Rainer Georg Jörgensen
- Soil Biology and Plant Nutrition, University of Kassel, Nordbahnhofstr. 1a, 37023 Witzenhausen, Germany
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria.
| |
Collapse
|
7
|
Carvalho LT, Teixeira AJR, Moraes RM, Barbosa RF, Queiroz RC, Tada DB, Mulinari DR, Rosa DS, Ré MI, Medeiros SF. Preparation and characterization of cationic pullulan-based polymers with hydrophilic or amphiphilic characteristics for drug delivery. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Oral delivery of therapeutic peptides and proteins: Technology landscape of lipid-based nanocarriers. Adv Drug Deliv Rev 2022; 182:114097. [PMID: 34999121 DOI: 10.1016/j.addr.2021.114097] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/04/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
Abstract
The oral administration of therapeutic peptides and proteins is favoured from a patient and commercial point of view. In order to reach the systemic circulation after oral administration, these drugs have to overcome numerous barriers including the enzymatic, sulfhydryl, mucus and epithelial barrier. The development of oral formulations for therapeutic peptides and proteins is therefore necessary. Among the most promising formulation approaches are lipid-based nanocarriers such as oil-in-water nanoemulsions, self-emulsifying drug delivery systems (SEDDS), solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), liposomes and micelles. As the lipophilic character of therapeutic peptides and proteins can be tremendously increased such as by the formation of hydrophobic ion pairs (HIP) with hydrophobic counter ions, they can be incorporated in the lipophilic phase of these carriers. Since gastrointestinal (GI) peptidases as well as sulfhydryl compounds such as glutathione and dietary proteins are too hydrophilic to enter the lipophilic phase of these carriers, the incorporated therapeutic peptide or protein is protected towards enzymatic degradation as well as unintended thiol/disulfide exchange reactions. Stability of lipid-based nanocarriers towards lipases can be provided by the use to excipients that are not or just poorly degraded by these enzymes. Nanocarriers with a size <200 nm and a mucoinert surface such as PEG or zwitterionic surfaces exhibit high mucus permeating properties. Having reached the underlying absorption membrane, lipid-based nanocarriers enable paracellular and lymphatic drug uptake, induce endocytosis and transcytosis or simply fuse with the cell membrane releasing their payload into the systemic circulation. Numerous in vivo studies provide evidence for the potential of these delivery systems. Within this review we provide an overview about the different barriers for oral peptide and protein delivery, highlight the progress made on lipid-based nanocarriers in order to overcome them and discuss strengths and weaknesses of these delivery systems in comparison to other technologies.
Collapse
|
9
|
Zhang S, Li Y, Hu L. Physical and biological evaluation of glucose hydrazones as biodegradable emulsifiers. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Cai Y, Liu L, Xia M, Tian C, Wu W, Dong B, Chu X. SEDDS facilitate cinnamaldehyde crossing the mucus barrier: The perspective of mucus and Caco-2/HT29 co-culture models. Int J Pharm 2022; 614:121461. [PMID: 35026310 DOI: 10.1016/j.ijpharm.2022.121461] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/19/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
Self-emulsifying drug delivery systems (SEDDS) have potential applications in the delivery of hydrophobic components. Oral drugs are readily captured and cleared by intestinal mucus, a natural barrier that covers the mucosal epithelium and prevents the entry of foreign substances. In this study, we investigated for the first time the ability of SEDDS to deliver the lipophilic aldehyde cinnamaldehyde (CA-SEDDS) in rat mucus, mucin solution, Caco-2 and Caco-2/HT29 co-culture monolayer systems. CA-SEDDS was characterized by particle size, Zeta potential and the logDSEDDS/release medium. The capacity of CA-SEDDS to enhance mucus permeability was investigated in rat intestinal mucus gel and mucin solution with the period of in 12 h by Transwell® diffusion. We evaluated the potential of CA-SEDDS delivery of CA in a co-culture system of absorptive Caco-2 and mucus-secreting HT29 cells. CA-SEDDS exhibited excellent mucus permeability in mucus and mucin solutions, 5.1- and 2.8-fold higher than the free CA group, respectively. CA-SEDDS penetration increased by 2.5-fold compared with free CA when using the mucus-secreting co-culture cell model as a barrier. The relative oral bioavailability of CA-SEDDS was 242% compared to CA without formulation. These findings suggest that SEDDS exhibited good release and superior mucus permeability, displaying great potential for the future of hydrophobic oral applications.
Collapse
Affiliation(s)
- Ye Cai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, China
| | - Liu Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, China
| | - Mengqiu Xia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, China
| | - Chunling Tian
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, China
| | - Wenqing Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, China
| | - Baoqi Dong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, China.
| |
Collapse
|
11
|
Gaynanova G, Vasileva L, Kashapov R, Kuznetsova D, Kushnazarova R, Tyryshkina A, Vasilieva E, Petrov K, Zakharova L, Sinyashin O. Self-Assembling Drug Formulations with Tunable Permeability and Biodegradability. Molecules 2021; 26:6786. [PMID: 34833877 PMCID: PMC8624506 DOI: 10.3390/molecules26226786] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
This review focuses on key topics in the field of drug delivery related to the design of nanocarriers answering the biomedicine criteria, including biocompatibility, biodegradability, low toxicity, and the ability to overcome biological barriers. For these reasons, much attention is paid to the amphiphile-based carriers composed of natural building blocks, lipids, and their structural analogues and synthetic surfactants that are capable of self-assembly with the formation of a variety of supramolecular aggregates. The latter are dynamic structures that can be used as nanocontainers for hydrophobic drugs to increase their solubility and bioavailability. In this section, biodegradable cationic surfactants bearing cleavable fragments are discussed, with ester- and carbamate-containing analogs, as well as amino acid derivatives received special attention. Drug delivery through the biological barriers is a challenging task, which is highlighted by the example of transdermal method of drug administration. In this paper, nonionic surfactants are primarily discussed, including their application for the fabrication of nanocarriers, their surfactant-skin interactions, the mechanisms of modulating their permeability, and the factors controlling drug encapsulation, release, and targeted delivery. Different types of nanocarriers are covered, including niosomes, transfersomes, invasomes and chitosomes, with their morphological specificity, beneficial characteristics and limitations discussed.
Collapse
Affiliation(s)
- Gulnara Gaynanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russia; (L.V.); (R.K.); (D.K.); (R.K.); (A.T.); (E.V.); (K.P.); (L.Z.); (O.S.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Noh G, Keum T, Bashyal S, Seo JE, Shrawani L, Kim JH, Lee S. Recent progress in hydrophobic ion-pairing and lipid-based drug delivery systems for enhanced oral delivery of biopharmaceuticals. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00549-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Grau J, Azorín C, Benedé JL, Chisvert A, Salvador A. Use of green alternative solvents in dispersive liquid-liquid microextraction: A review. J Sep Sci 2021; 45:210-222. [PMID: 34490730 DOI: 10.1002/jssc.202100609] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 01/10/2023]
Abstract
Dispersive liquid-liquid microextraction is one of the most widely used microextraction techniques currently in the analytical chemistry field, mainly due to its simplicity and rapidity. The operational mode of this approach has been constantly changing since its introduction, adapting to new trends and applications. Most of these changes are related to the nature of the solvent employed for the microextraction. From the classical halogenated solvents (e.g., chloroform or dichloromethane), different alternatives have been proposed in order to obtain safer and non-pollutants microextraction applications. In this sense, low-density solvents, such as alkanols, switchable hydrophobicity solvents, and ionic liquids were the first and most popular replacements for halogenated solvents, which provided similar or better results than these classical dispersive liquid-liquid microextraction solvents. However, despite the good performances obtained with low-density solvents and ionic liquids, researchers have continued investigating in order to obtain even greener solvents for dispersive liquid-liquid microextraction. For that reason, in this review, the evolution over the last five years of the three types of solvents already mentioned and two of the most promising solvent alternatives (i.e., deep eutectic solvents and supramolecular solvents), have been studied in detail with the purpose of discussing which one provides the greenest alternative.
Collapse
Affiliation(s)
- José Grau
- Department of Analytical Chemistry, GICAPC Research group, University of Valencia, Burjassot, Spain
| | - Cristian Azorín
- Department of Analytical Chemistry, GICAPC Research group, University of Valencia, Burjassot, Spain
| | - Juan L Benedé
- Department of Analytical Chemistry, GICAPC Research group, University of Valencia, Burjassot, Spain
| | - Alberto Chisvert
- Department of Analytical Chemistry, GICAPC Research group, University of Valencia, Burjassot, Spain
| | - Amparo Salvador
- Department of Analytical Chemistry, GICAPC Research group, University of Valencia, Burjassot, Spain
| |
Collapse
|