1
|
Tsukidate T, Sahoo A, Pendyala G, Yang RS, Welch J, Madabhushi S, Li X. Discovery of Chemical Tools for Polysorbate-Degradative Enzyme Control in the Biopharmaceutical Upstream Process via Multi-Omic Profiling of Host Cell Clones. ACS Chem Biol 2025. [PMID: 40249937 DOI: 10.1021/acschembio.5c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
Host cell proteins are process-related impurities in biotherapeutics and can potentially pose risks to patient safety and product quality. Specifically, certain host cell-derived enzymes, including lipases, can degrade the formulation excipient polysorbate (PS) in biopharmaceutical formulations, affecting drug product stability in liquid formulations. We leveraged multiomics approaches, including transcriptomics, proteomics, and activity-based protein profiling (ABPP), to identify mechanisms that regulate PS-degradative enzyme (PSDE) abundance and to develop strategies for their control. Comparative multiomics analysis of two monoclonal antibody (mAb)-producing host cell clones revealed differential lipase profiles at the mRNA, protein, and enzyme activity levels and associated increased lipase activity with upregulated lipid catabolic pathways such as the fatty acid beta oxidation pathway. Further, for the first time in the literature, we identified peroxisome proliferator-activated receptor γ (PPARγ) as a key regulator of PSDEs in manufacturing Chinese Hamster Ovary (CHO) cells. Downregulation of the PPARγ pathway with its antagonists resulted in a selective reduction of PSDE levels and improved PS stability without compromising mAb productivity or quality. This study highlights the potential of PPARγ modulators as chemical tools for PSDE control at the gene regulation level, offering significant implications for biopharmaceutical process development and control.
Collapse
Affiliation(s)
- Taku Tsukidate
- Analytical Research & Development Mass Spectrometry, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Ansuman Sahoo
- Biologics Process Research & Development, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Geetanjali Pendyala
- Biologics Process Research & Development, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Rong-Sheng Yang
- Analytical Research & Development Mass Spectrometry, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Jonathan Welch
- Biologics Analytical Research & Development, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Sri Madabhushi
- Biologics Process Research & Development, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Xuanwen Li
- Analytical Research & Development Mass Spectrometry, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
2
|
Yang RS, Li C, Henriquez L, Wang H, Panchal J, Zhong W, Schuessler H. Impact of citrate on mitigating iron mediated polysorbate 80 degradation in biotherapeutic formulation placebos. J Pharm Sci 2025; 114:857-865. [PMID: 39547649 DOI: 10.1016/j.xphs.2024.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
Polysorbate 80 (PS80), a widely used polymeric surfactant in biotherapeutic formulation, possesses a unique structural composition that effectively prevents protein aggregation in highly concentrated protein drug formulations. However, PS80 is susceptible to hydrolysis, due to the presence of fatty acid esters that can be enzymatically hydrolyzed, The unsaturated bonds in the fatty acids are prone to oxidative degradation when exposed to air, especially in the presence of transition metals such as iron and copper, which may be introduced during production and purification processes or from contamination in raw materials used in drug formulation. The degradation of PS80, particularly through metal-mediated oxidative degradation, poses a significant challenge for the industry. Among the identified trace metals, iron plays a crucial role as the redox reaction between ferrous ion (Fe(II)) and ferric ion (Fe(III)) generates radicals that initiate the degradation process. In order to investigate the impact of iron on PS80 degradation and understand the mechanism of iron-catalyzed oxidation, we utilized charge-reduction mass spectrometry and two-dimensional ion density mapping technologies to characterize the degradation of PS80. This method has proven to be a convenient and effective tool for the quick and detailed profiling of PS80, allowing for visual monitoring and examination of the changes that reflect the difficult-to-identify and easy-to-miss oxidized species of PS80. Additionally, a high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry method was developed for the separation and measurement of Fe(II) and Fe(III). Through this investigation, we determined that the involvement of Fe(II)/Fe(III) in PS80 degradation is a temperature dependent process. Furthermore, we found citrate not only promotes the conversion of Fe(II) to Fe(III), but it also chelates Fe(III) and prevents its reduction to Fe(II), thus inhibiting the initiation of the PS80 degradation. Therefore, the addition of citrate can be a crucial ingredient for controlling the degradation of PS80 in biologic drug substances and products. Overall, this investigation has provided valuable insights to enhance product stability, optimize processes, and ensure the quality of formulations containing PS80.
Collapse
Affiliation(s)
- Rong-Sheng Yang
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA.
| | - Chengbei Li
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA.
| | - Liliana Henriquez
- Sterile and Specialty Products, Biologics Development and Biopharmaceutics, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Hongxia Wang
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| | - Jainik Panchal
- Sterile and Specialty Products, Biologics Development and Biopharmaceutics, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Wendy Zhong
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| | - Hillary Schuessler
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| |
Collapse
|
3
|
Guo J, Kufer R, Greenwood-Goodwin M, Wohlrab S, Woodruff F, Li D, Reckermann K, Youn J, Kandula DKR, Xiong L, Yang F. A workflow for accurate and consistent quantitation of host cell proteins by SWATH LC-MS/MS analysis to support process development. J Pharm Sci 2025; 114:1002-1009. [PMID: 39551235 DOI: 10.1016/j.xphs.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
Residual host cell proteins (HCPs) in drug products may impact product quality, stability, efficacy and safety. To support consistent and accurate quantitative analysis for low levels of HCPs (≥ 1 ppm), the data-independent sequential window acquisition of all theoretical fragment ion spectra (SWATH) MS/MS-based method provides unique advantages over data dependent acquisition (DDA) or targeted methods for HCP identification and quantification. However, SWATH MS/MS-based methods can generate biased quantitative results that are highly dependent on the selected reference protein. In this study, we enhanced the accuracy of SWATH-based HCP quantitation relative to a spiked-in reference protein by selecting appropriate reference proteins based on their ranking values. We developed a reliable SWATH-based method for quantifying specific HCPs by adding sodium deoxycholate (SDC) during digestion to enhance both protein detection and quantitation consistency. By combining SWATH-based quantitation with standard addition, we showed its use in measuring HCP levels with good accuracy and reproducibility, confirmed by both targeted MRM-MS/MS and ELISA. Additionally, we demonstrated an automated Spectronaut data analysis workflow can efficiently generate SWATH quantitative results for HCPs in different in-process pools. Using SWATH-based quantitation, we were able to measure specific HCPs (e.g. Peroxiredoxin-1) and support process development with good throughput and quantitation consistency.
Collapse
Affiliation(s)
- Jia Guo
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, United States.
| | - Regina Kufer
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Penzberg, Germany
| | - Midori Greenwood-Goodwin
- Biological Technology, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Stefanie Wohlrab
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Penzberg, Germany
| | - Fem Woodruff
- Digital Sciences, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Delia Li
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Katharina Reckermann
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Penzberg, Germany
| | | | | | - Lei Xiong
- Sciex, Redwood City, CA, United States
| | - Feng Yang
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, United States.
| |
Collapse
|
4
|
Felix MN, Waerner T, Lakatos D, Reisinger B, Fischer S, Garidel P. Polysorbates degrading enzymes in biotherapeutics - a current status and future perspectives. Front Bioeng Biotechnol 2025; 12:1490276. [PMID: 39867473 PMCID: PMC11760601 DOI: 10.3389/fbioe.2024.1490276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/02/2024] [Indexed: 01/28/2025] Open
Abstract
Polysorbates, in particular polysorbate (PS) 20 and 80, are the most commonly used surfactants for stabilising biotherapeutics produced by biotechnological processes. PSs are derived from ethoxylated sorbitan (a derivative of sorbitol) esterified with fatty acids of varying chain length and degree of saturation. In the past, these surfactants have been reported to have specific liabilities. Chemical (oxidations and hydrolyses) and enzymatic degradations have been reported to affect the stability of PS in drug products. Specifically, the presence of trace amounts (sub-ppm) of certain host cell proteins (HCPs) can induce enzymatic PS degradation, which can lead to the release of free fatty acids during storage over time. Enzymatic polysorbate degradation may impair the functionality of the surfactant in stabilising therapeutic proteins, leading to the formation of visible and/or sub-visible particles in biopharmaceutical drug products. This review summarises the enzymes currently known to be involved in the degradation of polysorbate in mammalian biotechnological processes for therapeutic proteins. In recent years, advanced analytical methods have been developed to qualify and quantify the PS-degrading enzymes. Most of these assays are based on mass spectrometry with a preceding HCP enrichment approach. Efforts were made to measure the enzyme activity and correlate it with observed PS degradation. The impact on drug product quality attributes, including fatty acid solubility and phase separation, up to the formation of visible particles, and the potential induction of protein and protein/fatty acid mixed particles as well as the sensitivity of specific PS quality towards enzymatic degradation, was considered. Various drug substance (DS) mitigation strategies related to the occurrence of PS degrading enzymes are discussed as amongst them the generation of stable HCP knockout cell lines, which are also carefully analysed. The underlying opinion article reflects the undergoing discussions related to PS degrading enzymes and focusses on (i) impact on drug product, (ii) analytics for identification/quantification (characterisation) of the PS degrading enzymes, (iii) enzyme activity (iv) currently identified enzymes, and (v) potential mitigation strategies to avoid enzymatic PS degradation during DS manufacturing.
Collapse
Affiliation(s)
- Marius Nicolaus Felix
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| | - Thomas Waerner
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| | - Daniel Lakatos
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| | - Bernd Reisinger
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| | - Simon Fischer
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| | - Patrick Garidel
- Pharmaceutical Development Biologicals, TIP, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| |
Collapse
|
5
|
Maier M, Schneider S, Weiss L, Fischer S, Lakatos D, Studts J, Franzreb M. Tailoring polishing steps for effective removal of polysorbate-degrading host cell proteins in antibody purification. Biotechnol Bioeng 2024; 121:3181-3195. [PMID: 38853584 DOI: 10.1002/bit.28767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
Ensuring the quality and safety of biopharmaceutical products requires the effective separation of monoclonal antibodies (mAbs) from host cell proteins (HCPs). A major challenge in this field is the enzymatic hydrolysis of polysorbates (PS) in drug products. This study addresses this issue by investigating the removal of polysorbate-degrading HCPs during the polishing steps of downstream purification, an area where knowledge about individual HCP behavior is still limited. We investigated the separation of different mAb formats from four individual polysorbate degrading hydrolases (CES1F, CES2C, LPLA2, and PAF-AH) using cation exchange (CEX) and mixed-mode chromatography (MMC) polishing steps. Our research identified a key challenge: The similar elution behavior of mAbs and HCPs during chromatographic separation. To investigate this phenomenon, we performed high-throughput binding screenings for recombinant polysorbate degrading hydrolases and representative mAb candidates on CEX and MMC chromatography resins. We then employed a three-step strategy that also served as a scale-up process, optimizing separation conditions and leading to the successful removal of specific HCPs while maintaining high mAb recovery rates (>96%). This strategy involved the use of surface response models and miniature columns for screening, followed by validation on larger columns using a chromatography system. Our results highlight the critical role of the inherent properties of mAbs for successful separation from HCPs. These results underscore the need to tailor the purification process to leverage the slight differences in binding behavior and elution profiles between mAbs and specific HCPs. This approach lays the foundation for developing more effective strategies for overcoming the challenge of enzymatic polysorbate degradation, paving the way for improved quality and safety in biopharmaceutical products.
Collapse
Affiliation(s)
- Melanie Maier
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Stefan Schneider
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach an der Riss, Germany
| | - Linus Weiss
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach an der Riss, Germany
| | - Simon Fischer
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Daniel Lakatos
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Joey Studts
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Matthias Franzreb
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
6
|
Malarvannan M, Ravichandiran V, Paul D. Advances in analytical technologies for emerging drug modalities and their separation challenges in LC-MS systems. J Chromatogr A 2024; 1732:465226. [PMID: 39111181 DOI: 10.1016/j.chroma.2024.465226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024]
Abstract
The last few years have seen a rise in the identification and development of bio-therapeutics through the use of cutting-edge delivery methods or bio-formulations, which has created bio-analytical difficulties. Every year, new bio-pharmaceutical product innovations come out, but the analytical development of these products is challenging. Quantifying the products and components of conjugated molecular structures is essential for preclinical and clinical research in order to guide therapeutic development, given their intrinsic complexity. Furthermore, a significant amount of information is needed for the measurement of these unique modalities by LC-MS techniques. Numerous LC-MS based methods have been developed, including AEX-HPLC-MS, RP-IP-LCMS, HILIC-MS, LCHRMS, Microflow-LC-MS, ASMS, Hybrid LBA/LC-MS, and more. However, these methods continue to face problems, prompting the development of alternative approaches. Therefore, developing bio-molecules that are this complicated and, low in concentration requires a skilled LC-MS based approach and knowledgeable personnel. This review covers general novel modalities classifications, sample preparation techniques, current status and bio-analytical strategies for analyzing various novel modalities, including gene bio-therapeutics, oligonucleotides, antibody-drug conjugates, monoclonal antibodies and PROTACs. It also covers how these strategies have been used in the past and how they are being used now to address challenges in the development of LC-MS based methods, as well as improvement strategies, current advancements and recent developed methods. We additionally covered on the benefits and drawbacks of different LC-MS based techniques for the examination of bio-pharmaceutical products and the future perspectives.
Collapse
Affiliation(s)
- M Malarvannan
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Maniktala, Kolkata, West Bengal 700054, India
| | - V Ravichandiran
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Maniktala, Kolkata, West Bengal 700054, India
| | - David Paul
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Maniktala, Kolkata, West Bengal 700054, India.
| |
Collapse
|
7
|
Kiyonami R, Melani R, Chen Y, Leon AID, Du M. Applying UHPLC-HRAM MS/MS Method to Assess Host Cell Protein Clearance during the Purification Process Development of Therapeutic mAbs. Int J Mol Sci 2024; 25:9687. [PMID: 39273634 PMCID: PMC11396427 DOI: 10.3390/ijms25179687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Host cell proteins (HCPs) are one of the process-related impurities that need to be well characterized and controlled throughout biomanufacturing processes to assure the quality, safety, and efficacy of monoclonal antibodies (mAbs) and other protein-based biopharmaceuticals. Although ELISA remains the gold standard method for quantification of total HCPs, it lacks the specificity and coverage to identify and quantify individual HCPs. As a complementary method to ELISA, the LC-MS/MS method has emerged as a powerful tool to identify and profile individual HCPs during the downstream purification process. In this study, we developed a sensitive, robust, and reproducible analytical flow ultra-high-pressure LC (UHPLC)-high-resolution accurate mass (HRAM) data-dependent MS/MS method for HCP identification and monitoring using an Orbitrap Ascend BioPharma Tribrid mass spectrometer. As a case study, the developed method was applied to an in-house trastuzumab product to assess HCP clearance efficiency of the newly introduced POROS™ Caprylate Mixed-Mode Cation Exchange Chromatography resin (POROS Caprylate mixed-mode resin) by monitoring individual HCP changes between the trastuzumab sample collected from the Protein A pool (purified by Protein A chromatography) and polish pool (purified by Protein A first and then further purified by POROS Caprylate mixed-mode resin). The new method successfully identified the total number of individual HCPs in both samples and quantified the abundance changes in the remaining HCPs in the polish purification sample.
Collapse
Affiliation(s)
| | | | - Ying Chen
- Thermo Fisher Scientific, Bedford, MA 01730, USA
| | - A I De Leon
- Thermo Fisher Scientific, Bedford, MA 01730, USA
| | - Min Du
- Thermo Fisher Scientific, Lexington, MA 02421, USA
| |
Collapse
|
8
|
Zarei M, Jonveaux J, Razvi A, Jahn M. Integrated strategy for deep profiling of host cell proteins in downstream processing of therapeutic monoclonal antibodies: Novel approach to isolate and digest host cell proteins. Eur J Pharm Biopharm 2024; 201:114369. [PMID: 38885909 DOI: 10.1016/j.ejpb.2024.114369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Host cell proteins (HCPs) are process-related impurities generated during the production of biopharmaceuticals, which may contaminate the final product unless they are efficiently removed. Due to their potential impact on product safety, quality and efficacy, regulatory authorities require removal of HCPs during processing down to trace amounts in final manufactured biopharmaceuticals. The current standard method for detecting HCPs is enzyme-linked immunosorbent assay (ELISA), which should reveal the total amount of HCPs. A necessary orthogonal technique to get more granular information on HCPs is obtained by application of liquid chromatography-mass spectrometry (LC-MS) techniques that permit identification and quantification of individual HCPs. However, differences in sample preparation methods and MS acquisition techniques have led to discrepancies in detected HCPs between studies, which may compromise product safety, quality and efficacy. To address this issue, we have developed a novel and reproducible workflow for isolation, digestion, and mass spectrometry detection of HCPs that is applicable to downstream process characterization of therapeutic monoclonal antibodies (mAbs). This article describes a rapid and efficient workflow for the isolation, digestion and identification of HCPs. For the first time, Fc-receptor (FcγRIIIa) affinity chromatography is employed to isolate the HCP fraction from the mAb. Next, the HCPs are precipitated with acetone and digested using a newly developed "single-pot" method that improves digestion performance and prevents sample loss of problematic low-abundant HCPs. The new HCP isolation method outperforms protein A affinity chromatography for monitoring problematic HCPs.
Collapse
Affiliation(s)
- Mostafa Zarei
- Lonza AG, Drug Product Services, Hochbergerstrasse 60G, CH-4057 Basel, Switzerland.
| | - Jérôme Jonveaux
- Lonza AG, Drug Product Services, Hochbergerstrasse 60G, CH-4057 Basel, Switzerland
| | - Abbas Razvi
- Lonza AG, Drug Product Services, Hochbergerstrasse 60G, CH-4057 Basel, Switzerland
| | - Michael Jahn
- Lonza AG, Drug Product Services, Hochbergerstrasse 60G, CH-4057 Basel, Switzerland
| |
Collapse
|
9
|
Šprager E, Möller J, Lin Y, Reisinger V, Bratkovič T, Lunder M, Vašl J, Krajnc A. Identification of Acyl-Protein Thioesterase-1 as a Polysorbate-Degrading Host Cell Protein in a Monoclonal Antibody Formulation Using Activity-Based Protein Profiling. J Pharm Sci 2024; 113:2128-2139. [PMID: 38772451 DOI: 10.1016/j.xphs.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
Polysorbate (PS) degradation in monoclonal antibody (mAb) formulations poses a significant challenge in the biopharmaceutical industry. PS maintains protein stability during drug product's shelf life but is vulnerable to breakdown by low-abundance residual host cell proteins (HCPs), particularly hydrolytic enzymes such as lipases and esterases. In this study, we used activity-based protein profiling (ABPP) coupled with mass spectrometry to identify acyl-protein thioesterase-1 (APT-1) as a polysorbate-degrading HCP in one case of mAb formulation with stability problems. We validated the role of APT1 by matching the polysorbate degradation fingerprint in the mAb formulation with that of a recombinant APT1 protein. Furthermore, we found an agreement between APT1 levels and PS degradation rates in the mAb formulation, and we successfully halted PS degradation using APT1-specific inhibitors ML348 and ML211. APT1 was found to co-purify with a specific mAb via hitchhiking mechanism. Our work provides a streamlined approach to identifying critical HCPs in PS degradation, supporting quality-by-design principles in pharmaceutical development.
Collapse
Affiliation(s)
- Ernest Šprager
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia; Novartis Technical Research & Development, Biologics Technical Development Mengeš, Novartis Pharmaceutical Manufacturing LLC, Slovenia
| | - Jens Möller
- Novartis Technical Research & Development, Analytical Characterization, Novartis Pharmaceutical Manufacturing GmbH, Kundl, Austria
| | - Yuhsien Lin
- Novartis Technical Research & Development, Analytical Characterization, Novartis Pharmaceutical Manufacturing GmbH, Kundl, Austria
| | - Veronika Reisinger
- Novartis Technical Research & Development, Analytical Characterization, Novartis Pharmaceutical Manufacturing GmbH, Kundl, Austria
| | - Tomaž Bratkovič
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Mojca Lunder
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Jožica Vašl
- Novartis Technical Research & Development, Biologics Technical Development Mengeš, Novartis Pharmaceutical Manufacturing LLC, Slovenia
| | - Aleksander Krajnc
- Novartis Technical Research & Development, Biologics Technical Development Mengeš, Novartis Pharmaceutical Manufacturing LLC, Slovenia.
| |
Collapse
|
10
|
Dow XY, Gao Q, Sperduto JL, Wen X, Thai C, Zhang L, McCoy MA. High-Throughput Fluorometric Assay For Quantifying Polysorbate In Biopharmaceutical Products Using Micelle Activated Fluorescence Probe N-Phenyl-1-Naphthylamine. Pharm Res 2024; 41:1455-1473. [PMID: 38955997 DOI: 10.1007/s11095-024-03723-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE Polysorbates are among the most used surfactants in biopharmaceutical products containing proteins. Our work aims to develop a high-throughput fluorometric assay to further diversify the analytical toolbox for quantification of PSs. METHOD The assay leverages the micelle activated fluorescence signal from N-Phenyl-1-Naphthylamine (NPN). The development and optimization of assay parameters were guided by the pre-defined analytical target profile. Furthermore, NMR was used to probe the interaction between protein, PS80 and NPN in the measurement system and understand protein interference. RESULTS All assay parameters including excitation and emission wavelengths, standard curve, NPN concentration, and incubation time have been optimized and adapted to a microplate format, making it compatible with automated solutions that will be pursued in the near future to drive consistency and efficiency in our workflows. The specificity, accuracy, and precision of the assay have been demonstrated through a case study. Furthermore, NMR results provided additional insight into the change of the interaction dynamics between PS80 and NPN as the protein concentration increases. The results indicate minimal interaction between the protein and PS80 at lower concentration. However, when the concentration exceeds 75 mg/mL, there is a significant interaction between the protein and PS-80 micelle and monomer. CONCLUSION A high-throughput fluorometric assay has been developed for quantification of polysorbates in biopharmaceutical samples including in-process samples, drug substance and drug product. The assay reported herein could serve as a powerful analytical tool for polysorbate quantification and control, complementing the widely used liquid chromatography with charged aerosol detection method.
Collapse
Affiliation(s)
- Ximeng Y Dow
- Analytical Research & Development, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA.
| | - Qi Gao
- Analytical Research & Development, MRL, Merck & Co., Inc., 126 E Lincoln Ave, Rahway, NJ, 07065, USA
| | - John L Sperduto
- Process Research & Development, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Xiaona Wen
- Analytical Research & Development, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Christopher Thai
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Lei Zhang
- Analytical Research & Development, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Mark A McCoy
- Quantitative Biosciences, MRL, Merck & Co., Inc., 126 E Lincoln Ave, Rahway, NJ, 07065, USA
| |
Collapse
|
11
|
Hu Y, Hu M, Ye X, Wu Z, Kang J, Wong C, Palackal N, Qiu H, Li N. A simple and sensitive differential digestion method to analyze adeno-associated virus residual host cell proteins by LC-MS. J Pharm Biomed Anal 2024; 242:116009. [PMID: 38354541 DOI: 10.1016/j.jpba.2024.116009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/24/2024] [Accepted: 02/03/2024] [Indexed: 02/16/2024]
Abstract
Many methods using liquid chromatography-mass spectrometry (LC-MS) have been established for identifying residual host cell proteins (HCPs) to aid in the process development and quality control of therapeutic proteins. However, the use of MS-based techniques for adeno-associated virus (AAV) is still in its infancy, with few methods reported and minimal information available on potentially problematic HCPs. In this study, we developed a highly sensitive and effective differential digestion method to profile residual HCPs in AAV. Unlike direct digestion, which completely digests both AAV and HCPs, our differential digestion method takes advantage of AAV's unique characteristics to maintain the integrity of AAV while preferentially digesting HCPs under denaturing and reducing conditions. This differential digestion method requires only several micrograms of sample and significantly enhances the identification of HCPs. Furthermore, this method can be applied to all five different AAV serotypes for comprehensive HCP profiling. Our work fills a gap in AAV HCP analysis by providing a sensitive and robust strategy for detecting, monitoring, and measuring HCPs.
Collapse
Affiliation(s)
- Yunli Hu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591-6707, USA.
| | - Mengqi Hu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591-6707, USA
| | - Xiang Ye
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591-6707, USA
| | - Zhijie Wu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591-6707, USA
| | - Jianming Kang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591-6707, USA
| | - Christina Wong
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591-6707, USA
| | - Nisha Palackal
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591-6707, USA
| | - Haibo Qiu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591-6707, USA.
| | - Ning Li
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591-6707, USA
| |
Collapse
|
12
|
Panikulam S, Hanke A, Kroener F, Karle A, Anderka O, Villiger TK, Lebesgue N. Host cell protein networks as a novel co-elution mechanism during protein A chromatography. Biotechnol Bioeng 2024; 121:1716-1728. [PMID: 38454640 DOI: 10.1002/bit.28678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/29/2024] [Accepted: 02/10/2024] [Indexed: 03/09/2024]
Abstract
Host cell proteins (HCPs) are process-related impurities of therapeutic proteins produced in for example, Chinese hamster ovary (CHO) cells. Protein A affinity chromatography is the initial capture step to purify monoclonal antibodies or Fc-based proteins and is most effective for HCP removal. Previously proposed mechanisms that contribute to co-purification of HCPs with the therapeutic protein are either HCP-drug association or leaching from chromatin heteroaggregates. In this study, we analyzed protein A eluates of 23 Fc-based proteins by LC-MS/MS to determine their HCP content. The analysis revealed a high degree of heterogeneity in the number of HCPs identified in the different protein A eluates. Among all identified HCPs, the majority co-eluted with less than three Fc-based proteins indicating a drug-specific co-purification for most HCPs. Only ten HCPs co-purified with over 50% of the 23 Fc-based proteins. A correlation analysis of HCPs identified across multiple protein A eluates revealed their co-elution as HCP groups. Functional annotation and protein interaction analysis confirmed that some HCP groups are associated with protein-protein interaction networks. Here, we propose an additional mechanism for HCP co-elution involving protein-protein interactions within functional networks. Our findings may help to guide cell line development and to refine downstream purification strategies.
Collapse
Affiliation(s)
- Sherin Panikulam
- Institute of Pharma Technology, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Alexander Hanke
- Analytical Development and Characterization, Biopharmaceutical Product and Process Development, Technical Research and Development, Novartis Pharma AG, Basel, Switzerland
| | - Frieder Kroener
- Analytical Development and Characterization, Biopharmaceutical Product and Process Development, Technical Research and Development, Novartis Pharma AG, Basel, Switzerland
| | - Anette Karle
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Oliver Anderka
- Analytical Development and Characterization, Biopharmaceutical Product and Process Development, Technical Research and Development, Novartis Pharma AG, Basel, Switzerland
| | - Thomas K Villiger
- Institute of Pharma Technology, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland
| | - Nicolas Lebesgue
- Analytical Development and Characterization, Biopharmaceutical Product and Process Development, Technical Research and Development, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
13
|
Dehghani A, Binder F, Zorn M, Feigler A, Fischer KI, Felix MN, Happersberger P, Reisinger B. Investigating pH Effects on Enzymes Catalyzing Polysorbate Degradation by Activity-Based Protein Profiling. J Pharm Sci 2024; 113:744-753. [PMID: 37758159 DOI: 10.1016/j.xphs.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
Host cell proteins (HCPs) are process-related impurities that can negatively impact the quality of biotherapeutics. Some HCPs possess enzymatic activity and can affect the active pharmaceutical ingredient (API) or excipients such as polysorbates (PS). PSs are a class of non-ionic surfactants commonly used as excipients in biotherapeutics to enhance the stability of APIs. The enzyme activity of certain HCPs can result in the degradation of PSs, leading to particle formation and decreased shelf life of biotherapeutics. Identifying and characterizing these HCPs is therefore crucial. This study employed the Activity-Based Protein Profiling (ABPP) technique to investigate the effect of pH on the activity of HCPs that have the potential to degrade polysorbates. Two probes were utilized: the commercially available fluorophosphonate (FP)-Desthiobiotin probe and a probe based on the antiobesity drug, Orlistat. Over 50 HCPs were identified, showing a strong dependence on pH-milieu regarding their enzyme activity. These findings underscore the importance of accounting for pH variations in the ABPP method and other investigations of HCP activity. Notably, the Orlistat-based probe (OBP) enabled us to investigate the enzymatic activity of a wider range of HCPs, emphasizing the advantage of using more than one probe for ABPP. Finally, this study led to the discovery of previously unreported active enzymes, including three HCPs from the carboxylesterase enzyme family.
Collapse
Affiliation(s)
- Alireza Dehghani
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany
| | - Florian Binder
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany
| | - Michael Zorn
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany
| | - Andreas Feigler
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany
| | - Kathrin Inge Fischer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany
| | - Marius Nicolaus Felix
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany
| | - Peter Happersberger
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany
| | - Bernd Reisinger
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany.
| |
Collapse
|
14
|
Zhang S, Xiao H, Li N. Analysis of Host Cell Proteins in AAV Products with ProteoMiner Protein Enrichment Technology. Anal Chem 2024; 96:1890-1897. [PMID: 38262068 DOI: 10.1021/acs.analchem.3c03884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Despite substantial efforts to detect host cell proteins (HCPs) in antibody drugs, information regarding HCPs in gene therapy products remains limited and has not been widely integrated into the host cell engineering or purification processes. Most methods that have successfully detected HCPs in antibody drugs are not applicable to gene therapy products, except for the ProteoMiner enrichment method. Here, we demonstrate that ProteoMiner beads effectively enrich HCPs in adeno-associated virus (AAV) products and simultaneously remove the detergent Pluronic F-68 without a loss of low-abundance HCPs. Following optimization of this technique, there was up to a 34-fold increase in the enrichment of HCPs compared to direct digestion. Moreover, the detection limit was significantly lowered with the ability to detect HCPs at levels as low as 0.1 ng/mL after ProteoMiner treatment. This approach holds promise in AAV HCP analysis and may be adaptable to other gene therapy products. The findings from this study provide valuable insights into HCPs in AAV products and may facilitate process development and host cell line optimization. The high sensitivity of this approach also facilitates detection of critical low-abundance HCPs, thereby contributing to risk assessment of their impact on the safety and quality of the AAV-based gene therapy products.
Collapse
Affiliation(s)
- Sisi Zhang
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6706, United States
| | - Hui Xiao
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6706, United States
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6706, United States
| |
Collapse
|
15
|
Koehnlein W, Kastenmueller E, Meier T, Treu T, Falkenstein R. The beneficial impact of kosmotropic salts on the resolution and selectivity of Protein A chromatography. J Chromatogr A 2024; 1715:464585. [PMID: 38183781 DOI: 10.1016/j.chroma.2023.464585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/08/2024]
Abstract
During the manufacturing of therapeutic antibodies, effective Protein A chromatography as initial column step is crucial to simplify the remaining purification effort for subsequent polishing steps. This is particularly relevant for molecules with high impurity content so that desired product purity can be attained. The present study demonstrates beneficial effects on impurity removal when applying kosmotropic salts, e.g., sodium sulfate or sodium chloride, in the elution phase. Initially, a screen using negative linear pH gradient elution evaluated the impact of the kosmotropic salts in comparison to no additive and chaotropic urea using three mAbs and three common resins. Retaining acceptable yield, the kosmotropic salts improved resolution of monomer and impurities and reduced the contents of process-related host cell proteins and DNA as well as of product-related low and high molecular weight forms, despite some resin- and mAb-dependent variations. Moreover, a decrease in hydrolytic activity measured by a new assay for polysorbase activity was observed. In contrast, urea was hardly effective. The findings served to establish optimized step elution conditions with 0.25 M of sodium sulfate for a challenging mAb with complex format (bispecific 2 + 1 CrossMab) displaying high relative hydrophobicity and impurity levels. With yield and purity both in the range of 90 %, the contents of all impurity components were reduced, e.g., low molecular weight forms by two-fold and polysorbase activity by four-fold. The study indicates the potential of kosmotropic salts to establish efficient and comprehensive impurity separation by Protein A for facilitated downstream processing and economic manufacturing of complex antibodies.
Collapse
Affiliation(s)
| | | | - Tobias Meier
- Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Tabea Treu
- Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | | |
Collapse
|
16
|
Maier M, Weiß L, Zeh N, Schmieder-Todtenhaupt V, Dehghani A, Felix MN, Heinzelmann D, Lindner B, Schmidt M, Studts J, Schulz P, Reisinger B, Otte K, Franzreb M, Lakatos D, Fischer S. Illuminating a biologics development challenge: systematic characterization of CHO cell-derived hydrolases identified in monoclonal antibody formulations. MAbs 2024; 16:2375798. [PMID: 38984665 PMCID: PMC11238916 DOI: 10.1080/19420862.2024.2375798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/30/2024] [Indexed: 07/11/2024] Open
Abstract
Monoclonal antibodies (mAb) and other biological drugs are affected by enzymatic polysorbate (PS) degradation that reduces product stability and jeopardizes the supply of innovative medicines. PS represents a critical surfactant stabilizing the active pharmaceutical ingredients, which are produced by recombinant Chinese hamster ovary (CHO) cell lines. While the list of potential PS-degrading CHO host cell proteins (HCPs) has grown over the years, tangible data on industrially relevant HCPs are still scarce. By means of a highly sensitive liquid chromatography-tandem mass spectrometry method, we investigated seven different mAb products, resulting in the identification of 12 potentially PS-degrading hydrolases, including the strongly PS-degrading lipoprotein lipase (LPL). Using an LPL knockout CHO host cell line, we were able to stably overexpress and purify the remaining candidate hydrolases through orthogonal affinity chromatography methods, enabling their detailed functional characterization. Applying a PS degradation assay, we found nine mostly secreted, PS-active hydrolases with varying hydrolytic activity. All active hydrolases showed a serine-histidine-aspartate/glutamate catalytical triad. Further, we subjected the active hydrolases to pH-screenings and revealed a diverse range of activity optima, which can facilitate the identification of residual hydrolases during bioprocess development. Ultimately, we compiled our dataset in a risk matrix identifying PAF-AH, LIPA, PPT1, and LPLA2 as highly critical hydrolases based on their cellular expression, detection in purified antibodies, active secretion, and PS degradation activity. With this work, we pave the way toward a comprehensive functional characterization of PS-degrading hydrolases and provide a basis for a future reduction of PS degradation in biopharmaceutical drug products.
Collapse
Affiliation(s)
- Melanie Maier
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Linus Weiß
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
- Institute for Applied Biotechnology, University of Applied Sciences Biberach, Biberach an der Riss, Germany
| | - Nikolas Zeh
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | - Alireza Dehghani
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Marius Nicolaus Felix
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Daniel Heinzelmann
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Benjamin Lindner
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Moritz Schmidt
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Joey Studts
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Patrick Schulz
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Bernd Reisinger
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Kerstin Otte
- Institute for Applied Biotechnology, University of Applied Sciences Biberach, Biberach an der Riss, Germany
| | - Matthias Franzreb
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Daniel Lakatos
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Simon Fischer
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
17
|
Weiß L, Schmieder-Todtenhaupt V, Haemmerling F, Lakatos D, Schulz P, Fischer S. Multi-lipase gene knockdown in Chinese hamster ovary cells using artificial microRNAs to reduce host cell protein mediated polysorbate degradation. Biotechnol Bioeng 2024; 121:329-340. [PMID: 37743807 DOI: 10.1002/bit.28563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023]
Abstract
A large number of companies observe polysorbate (PS) degradation and associated (sub-)visible particle formation in biological drug formulations, which compromise the stability of the drug product, ultimately posing a risk toward delivering innovative medicines to patients. The main culprits of PS degradation are hydrolytic host cell proteins (HCPs) originating from the production cell lines, which are mostly Chinese hamster ovary (CHO) cell derived. Here, a small portion of particularly difficult-to-remove HCPs-mainly lipases-cause hydrolytic cleavage of PS resulting in the accumulation of free fatty acid aggregates/particles. One possible mitigation strategy is the removal of such critical HCPs in the production cell line. Multigene regulation can be achieved via microRNAs (miRNAs) thereby serving as a smart tool to reduce the expression of different target genes using a single miRNA. To enable a tailored gene regulation of multiple specific target lipases self-designed and non-naturally occurring artificial miRNAs (amiRNA) can be designed. Based on micro-conserved regions in the mRNA sequence of two sets of target HCPs, we provide a proof-of-concept for a simultaneous multi-lipase knockdown in CHO cells using single amiRNAs. By this, we were not only able to reduce PS degradation but laid the foundation to expand this tool to other areas of cell line phenotype engineering.
Collapse
Affiliation(s)
- Linus Weiß
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Valerie Schmieder-Todtenhaupt
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Frank Haemmerling
- Early Stage Pharmaceutical Development, Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Daniel Lakatos
- Late Stage DSP, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Patrick Schulz
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Simon Fischer
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
18
|
Zhao Y, Li H, Fan Z, Wang T. Effect of Host Cell Protein on Chinese Hamster Ovary Recombinant Protein Production and its Removal Strategies: A Mini Review. Curr Pharm Biotechnol 2024; 25:665-675. [PMID: 37594091 DOI: 10.2174/1389201024666230818112633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/01/2023] [Accepted: 07/12/2023] [Indexed: 08/19/2023]
Abstract
Chinese hamster ovary cells are the main expression system for recombinant therapeutic proteins. During the production of these proteins, certain host cell proteins are secreted, broken down, and released by host cells in the culture along with the proteins of interest. These host cell proteins are often difficult to remove during the downstream purification process, and thus affect the quality, safety, and effectiveness of recombinant protein biopharmaceutical products and increase the production cost of recombinant therapeutic proteins. Therefore, host cell protein production must be reduced as much as possible during the production process and eliminated during purification. This article reviews the harm caused by host cell proteins in the production of recombinant protein drugs using Chinese hamster ovary cell, factors affecting host cell proteins, the monitoring and identification of these proteins, and methods to reduce their type and quantity in the final product.
Collapse
Affiliation(s)
- Yaru Zhao
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, China
| | - He Li
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, China
| | - Zhenlin Fan
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, China
| | - Tianyun Wang
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
19
|
Gregoritza K, Theodorou C, Heitz M, Graf T, Germershaus O, Gregoritza M. Enzymatic degradation pattern of polysorbate 20 impacts interfacial properties of monoclonal antibody formulations. Eur J Pharm Biopharm 2024; 194:74-84. [PMID: 38042510 DOI: 10.1016/j.ejpb.2023.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Polysorbate 20 (PS20) is widely used to maintain protein stability in biopharmaceutical formulations. However, PS20 is susceptible to hydrolytic degradation catalyzed by trace amounts of residual host cell proteins present in monoclonal antibody (mAb) formulations. The resulting loss of intact surfactant and the presence of PS20 degradation products, such as free fatty acids (FFAs), may impair protein stability. In this study, two hydrolytically-active immobilized lipases, which primarily targeted either monoester or higher-order ester species in PS20, were used to generate partially-degraded PS20. The impact of PS20 degradation pattern on critical micelle concentration (CMC), surface tension, interfacial rheology parameters and agitation protection was assessed. CMC was slightly increased upon monoester degradation, but significantly increased upon higher-order ester degradation. The PS20 degradation pattern also significantly impacted the dynamic surface tension of a mAb formulation, whereas changes in the equilibrium surface tension were mainly caused by the adsorption of FFAs onto the air-water interface. In an agitation protection study, monoester degradation resulted in the formation of soluble mAb aggregates and proteinaceous particles, suggesting that preferential degradation of PS20 monoester species can significantly impair mAb stability. Additional mAbs should be tested in the future to assess the impact of the protein format.
Collapse
Affiliation(s)
- Kathrin Gregoritza
- Pharmaceutical and Processing Development, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Christos Theodorou
- Pharmaceutical and Processing Development, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Marc Heitz
- Pharmaceutical and Processing Development, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Tobias Graf
- Analytical Development and Quality Control, Pharma Technical Development Biologics Europe, Roche Diagnostics GmbH, Penzberg, Germany
| | - Oliver Germershaus
- Institute for Pharma Technology, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Manuel Gregoritza
- Analytical Development and Quality Control, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
20
|
Vitharana S, Stillahn JM, Katayama DS, Henry CS, Manning MC. Application of Formulation Principles to Stability Issues Encountered During Processing, Manufacturing, and Storage of Drug Substance and Drug Product Protein Therapeutics. J Pharm Sci 2023; 112:2724-2751. [PMID: 37572779 DOI: 10.1016/j.xphs.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The field of formulation and stabilization of protein therapeutics has become rather extensive. However, most of the focus has been on stabilization of the final drug product. Yet, proteins experience stress and degradation through the manufacturing process, starting with fermentaition. This review describes how formulation principles can be applied to stabilize biopharmaceutical proteins during bioprocessing and manufacturing, considering each unit operation involved in prepration of the drug substance. In addition, the impact of the container on stabilty is discussed as well.
Collapse
Affiliation(s)
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
21
|
Tsukidate T, Stiving AQ, Mengisen S, McKechnie WS, Carrillo R, Li X. Heat Inactivation of Host Cell-Derived Enzymes as a Control Strategy for Polysorbate Degradation. J Pharm Sci 2023; 113:S0022-3549(23)00464-1. [PMID: 39492476 DOI: 10.1016/j.xphs.2023.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
Polysorbate degradation in biotherapeutics formulations is an industry-wide problem and mainly caused by residual host cell-derived enzymes. We present a proof-of-concept study of a control strategy which takes advantage of lower thermal stability of such enzymes relative to therapeutic proteins. We profiled heat sensitivity of host cell-derived enzyme activity with chemical proteomics and observed that PLA2G7 became inactive after brief heating. Further biophysical studies indicated that these enzymes were less thermally stable than a monoclonal antibody. Importantly, brief heat treatment had minimal impact on the stability of the antibody. Consequently, heat inactivation of polysorbate-spiked protein-A pool decelerated polysorbate degradation. This study suggests that heat inactivation of host cell-derived enzymes could be a control stragy for polysorbate degradation.
Collapse
Affiliation(s)
| | | | | | | | - Ralf Carrillo
- Biologics Development & Biopharmaceutics Research Pharmacy, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States.
| | - Xuanwen Li
- Analytical Research & Development Mass Spectrometry.
| |
Collapse
|
22
|
Li X. Recent applications of quantitative mass spectrometry in biopharmaceutical process development and manufacturing. J Pharm Biomed Anal 2023; 234:115581. [PMID: 37494866 DOI: 10.1016/j.jpba.2023.115581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/27/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Biopharmaceutical products have seen rapid growth over the past few decades and continue to dominate the global pharmaceutical market. Aligning with the quality by design (QbD) framework and realization, recent advances in liquid chromatography-mass spectrometry (LC-MS) instrumentation and related techniques have enhanced biopharmaceutical characterization capabilities and have supported an increased development of biopharmaceutical products. Beyond its routine qualitative characterization, the quantitative feature of LC-MS has unique applications in biopharmaceutical process development and manufacturing. This review describes the recent applications and implications of the advancement of quantitative MS methods in biopharmaceutical process development, and characterization of biopharmaceutical product, product-related variants, and process-related impurities. We also provide insights on the emerging applications of quantitative MS in the lifecycle of biopharmaceutical product development including quality control in the Good Manufacturing Practice (GMP) environment and process analytical technology (PAT) practices during process development and manufacturing. Through collaboration with instrument and software vendors and regulatory agencies, we envision broader adoption of phase-appropriate quantitative MS-based methods for the analysis of biopharmaceutical products, which in turn has the potential to enable manufacture of higher quality products for patients.
Collapse
Affiliation(s)
- Xuanwen Li
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA.
| |
Collapse
|
23
|
Kozuch B, Weber J, Buske J, Mäder K, Garidel P, Diederichs T. Comparative Stability Study of Polysorbate 20 and Polysorbate 80 Related to Oxidative Degradation. Pharmaceutics 2023; 15:2332. [PMID: 37765302 PMCID: PMC10537708 DOI: 10.3390/pharmaceutics15092332] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The surfactants polysorbate 20 (PS20) and polysorbate 80 (PS80) are utilized to stabilize protein drugs. However, concerns have been raised regarding the degradation of PSs in biologics and the potential impact on product quality. Oxidation has been identified as a prevalent degradation mechanism under pharmaceutically relevant conditions. So far, a systematic stability comparison of both PSs under pharmaceutically relevant conditions has not been conducted and little is known about the dependence of oxidation on PS concentration. Here, we conducted a comparative stability study to investigate (i) the different oxidative degradation propensities between PS20 and PS80 and (ii) the impact of PS concentration on oxidative degradation. PS20 and PS80 in concentrations ranging from 0.1 mg⋅mL-1 to raw material were stored at 5, 25, and 40 °C for 48 weeks in acetate buffer pH 5.5 and water, respectively. We observed a temperature-dependent oxidative degradation of the PSs with strong (40 °C), moderate (25 °C), and weak/no degradation (5 °C). Especially at elevated temperatures such as 40 °C, fast oxidative PS degradation processes were detected. In this case study, a stronger degradation and earlier onset of oxidation was observed for PS80 in comparison to PS20, detected via the fluorescence micelle assay. Additionally, degradation was found to be strongly dependent on PS concentration, with significantly less oxidative processes at higher PS concentrations. Iron impurities, oxygen in the vial headspaces, and the pH values of the formulations were identified as the main contributing factors to accelerate PS oxidation.
Collapse
Affiliation(s)
- Benedykt Kozuch
- PDB-TIP, Innovation Unit, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Johanna Weber
- Institute of Pharmacy, Faculty of Biosciences, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Germany
| | - Julia Buske
- PDB-TIP, Innovation Unit, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Karsten Mäder
- Institute of Pharmacy, Faculty of Biosciences, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Germany
| | - Patrick Garidel
- PDB-TIP, Innovation Unit, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Tim Diederichs
- PDB-TIP, Innovation Unit, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| |
Collapse
|
24
|
Bai L, Zhang Y, Zhang C, Lu Y, Li Z, Huang G, Meng B. Investigation of excipients impact on polysorbate 80 degradation in biopharmaceutical formulation buffers. J Pharm Biomed Anal 2023; 233:115496. [PMID: 37285658 DOI: 10.1016/j.jpba.2023.115496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
A study on the polysorbate 80 stability in various formulation buffers commonly used in biopharmaceuticals was performed, to investigate the excipients influence on polysorbate 80 degradation. Polysorbate 80 is a common excipient in biopharmaceutical products. However, its degradation will potentially impact the drug product quality, and may trigger protein aggregation and particles formation. Due to the heterogeneity of the polysorbates and the mutual effects with other formulation compositions, the study of polysorbate degradation is challenging. Herein, a real-time stability study was designed and performed. The polysorbate 80 degradation trend was monitored by fluorescence micelle-based assay (FMA), reversed-phase-ultra-performance liquid chromatography-evaporative light scattering detector (RP-UPLC-ELSD) assay, and LC-MS assay. These assays provide orthogonal results to reveal both the micelle-forming capability and the compositional changes of polysorbate 80 in different buffer systems. The degradation occurred after a period of storage under 25 °C in different trend, which indicates the excipients could impact the degradation kinetics. Upon comparison, the degradation is prone to happen in histidine buffer than in acetate, phosphate or citrate buffers. LC-MS confirms oxidation as an independent degradation pathway with detection of the oxidative aldehyde. Thus, it is necessary to pay more attention to the excipients selection and their potential impact on polysorbate 80 stability to achieve longer shelf life for the biopharmaceuticals. Besides, the protective roles of several additives were figured out, which could be applied as potential industrial solutions to the polysorbate 80 degradation issues.
Collapse
Affiliation(s)
- Ling Bai
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Yanlan Zhang
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Cai Zhang
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Yuchen Lu
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Zhiguo Li
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Gang Huang
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Bo Meng
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China.
| |
Collapse
|
25
|
Gupta SK, Graf T, Edelmann FT, Seelmann H, Reintinger M, Hilringhaus L, Bergmann F, Wiedmann M, Falkenstein R, Wegele H, Yuk IH, Leiss M. A fast and sensitive high-throughput assay to assess polysorbate-degrading hydrolytic activity in biopharmaceuticals. Eur J Pharm Biopharm 2023; 187:120-129. [PMID: 37116764 DOI: 10.1016/j.ejpb.2023.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 04/30/2023]
Abstract
Hydrolysis of polysorbate in biopharmaceutical products has been ascribed to the enzymatic activity from trace levels of residual host cell proteins. In recent years, significant efforts to identify the causative enzymes typically used elaborate, material-intensive and time-consuming approaches. Therefore, the lack of fast and sensitive assays to monitor their activity remains a major bottleneck for supporting process optimization and troubleshooting activities where time and sample throughput are crucial constraints. To address this bottleneck, we developed a novel Electrochemiluminescence-based Polysorbase Activity (EPA) assay to measure hydrolytic activities in biotherapeutics throughout the drug substance manufacturing process. By combining the favorable features of an in-house designed surrogate substrate with a well-established detection platform, the method yields fast (∼36 h turnaround time) and highly sensitive readouts compatible with high-throughput testing. The assay capability for detecting substrate conversion in a precise and reliable manner was demonstrated by extensive qualification studies and by employing a number of recombinant hydrolases associated with polysorbate hydrolysis. In addition, high assay sensitivity and wide applicability were confirmed for in-process pool samples of three different antibody products by performing a head-to-head comparison between this method and an established liquid chromatography - mass spectrometry based assay for the quantification of free fatty acids. Overall, our results suggest that this new approach is well-suited to resolve differences in hydrolytic activity through all stages of purification.
Collapse
Affiliation(s)
- Sanjay K Gupta
- Pharma Technical Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Tobias Graf
- Pharma Technical Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Franziska T Edelmann
- Pharma Technical Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Helen Seelmann
- Pharma Technical Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Markus Reintinger
- Reagent Research and Design, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Lars Hilringhaus
- Reagent Research and Design, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Frank Bergmann
- Reagent Research and Design, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Michael Wiedmann
- Pharma Technical Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Roberto Falkenstein
- Pharma Technical Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Harald Wegele
- Pharma Technical Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Inn H Yuk
- Pharma Technical Development, Genentech, 1 DNA Way, South San Francisco, California, USA
| | - Michael Leiss
- Pharma Technical Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany.
| |
Collapse
|
26
|
Zhang S, Zhao B, Adaniya S, Xiao H, Li N. Ultrasensitive Quantification Method for Understanding Biologically Relevant Concentrations of Host Cell Proteins in Therapeutics. Anal Chem 2023; 95:6002-6008. [PMID: 36977129 DOI: 10.1021/acs.analchem.3c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Certain host cell proteins (HCPs) in biotherapeutic drugs may be detrimental to drug product quality even when they are present at the subppm level. Therefore, an analytical method that can reliably quantify trace amounts of HCPs is desirable. This study demonstrates a novel strategy to quantify HCPs present at subppm levels with ProteoMiner enrichment coupled with limited digestion followed by targeted analysis with nano-liquid chromatography-parallel reaction monitoring. The method can achieve LLOQ values as low as 0.06 ppm, with an accuracy of 85%-111% of the theoretical value, and inter-run and intrarun precision within 12% and 25%, respectively. The approach was applied to the quantification of five high-risk HCPs in drug products. The results indicated that 2.5 ppm lysosomal acid lipase, 0.14 ppm liver carboxylesterase, 1.8 ppm palmitoyl-protein thioesterase 1, and 1 ppm cathepsin D affected the stability of drug products, whereas drug products could safely contain 1.5 ppm lipoprotein lipase, 0.1 ppm lysosomal acid lipase, or 0.3 ppm cathepsin D. In combination with lipase activity analysis, the accurate quantification of lipases/esterases in drug products enables better understanding and comparison of the enzymatic activity of polysorbate degradation from endogenous proteins.
Collapse
Affiliation(s)
- Sisi Zhang
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6706, United States
| | - Bo Zhao
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6706, United States
| | - Stephanie Adaniya
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6706, United States
| | - Hui Xiao
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6706, United States
| | - Ning Li
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6706, United States
| |
Collapse
|
27
|
Characterization of Recombinantly-Expressed Hydrolytic Enzymes from Chinese Hamster Ovary Cells: Identification of Host Cell Proteins that Degrade Polysorbate. J Pharm Sci 2023; 112:1351-1363. [PMID: 36646283 DOI: 10.1016/j.xphs.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/15/2023]
Abstract
Enzymatic hydrolysis of polysorbate in drug products is a major challenge for the biopharmaceutical industry. Polysorbate hydrolysis caused by host cell proteins (HCPs) co-purified during bioprocessing can reduce the protective effects of the surfactant for the active pharmaceutical ingredient and cause the accumulation of low-solubility degradation products over the long-term storage. The identities of such HCPs are elusive due to their extremely low concentrations after the efficient purification processes of most biopharmaceuticals. In this work, 20 enzymes-selected for their known or putative hydrolytic activity and potential to degrade polysorbate-were recombinantly expressed, purified, and characterized via orthogonal methods. First, these recombinant HCPs were assessed for hydrolytic activity against a fluorogenic esterase substrate in a recently-developed, high-throughput assay. Second, these HCPs were screened for hydrolytic activity against polysorbate in a representative mAb formulation. Third, HCPs that displayed hydrolytic activities in the first two assays were subjected to more detailed characterization of their enzyme kinetics against polysorbates. Finally, these HCPs were evaluated for substrate specificity towards different sub-species of polysorbates. This work provides critical new insights for targeted LC-MS/MS approaches for identification of relevant polysorbate-degrading enzymes and supports improvements to remove such HCPs, including knockouts or targeted removal during purification.
Collapse
|
28
|
Waller JA, Zheng J, Dyer R, Slaney T, Wu W, Tao L, Ghose S. Ceramic hydroxyapatite chromatography plays a critical role in bispecific antibody purification process for impurity removal. Antib Ther 2023; 6:30-37. [PMID: 36683764 PMCID: PMC9847337 DOI: 10.1093/abt/tbac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/20/2022] Open
Abstract
Background Significant challenges exist in downstream purification of bispecific antibodies (BsAbs) due to the complexity of BsAb architecture. A unique panel of mispaired species can result in a higher level of product-related impurities. In addition to process-related impurities such as host cell proteins (HCPs) and residual DNA (resDNA), these product-related impurities must be separated from the targeted BsAb product to achieve high purity. Therefore, development of an efficient and robust chromatography purification process is essential to ensure the safety, quality, purity and efficacy of BsAb products that consequently meet regulatory requirements for clinical trials and commercialization. Methods We have developed a robust downstream BsAb process consisting of a mixed-mode ceramic hydroxyapatite (CHT) chromatography step, which offers unique separation capabilities tailored to BsAbs, and assessed impurity clearance. Results We demonstrate that the CHT chromatography column provides additional clearance of low molecular weight (LMW) and high molecular weight (HMW) species that cannot be separated by other chromatography columns such as ion exchange for a particular BsAb, resulting in ≥98% CE-SDS (non-reduced) purity. Moreover, through Polysorbate-80 (PS-80) spiking and LC-MS HCP assessments, we reveal complete clearance of potential PS-80-degrading HCP populations in the CHT eluate product pool. Conclusions In summary, these results demonstrate that CHT mixed-mode chromatography plays an important role in separation of product- and process-related impurities in the BsAb downstream process.
Collapse
Affiliation(s)
- Jessica A Waller
- Biologics Development, Bristol Myers Squibb, Summit, NJ 07901 USA
| | - Ji Zheng
- Biologics Development, Bristol Myers Squibb, Summit, NJ 07901 USA
| | - Rachel Dyer
- Biologics Development, Bristol Myers Squibb, Devens, MA 01434 USA
| | - Thomas Slaney
- Biologics Development, Bristol Myers Squibb, New Brunswick, NJ 08901 USA
| | - Wei Wu
- Biologics Development, Bristol Myers Squibb, New Brunswick, NJ 08901 USA
| | - Li Tao
- Biologics Development, Bristol Myers Squibb, New Brunswick, NJ 08901 USA
| | - Sanchayita Ghose
- Biologics Development, Bristol Myers Squibb, Devens, MA 01434 USA
| |
Collapse
|
29
|
High Throughput FAMS - A Fatty Acid Mass Spectrometry Method for Monitoring Polysorbate Hydrolysis in QC. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1220:123614. [PMID: 36989769 DOI: 10.1016/j.jchromb.2023.123614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/29/2023]
Abstract
Surfactant degradation in biopharmaceuticals has recently gained significant attention in the pharmaceutical industry. Specifically, hydrolytic degradation of polysorbates, leading to the release of free fatty acids potentially forming visible particles, is a key theme in technical development. To address this emerging topic, we present the development of a fully automated liquid-chromatography single quad mass detector method for the quantification of free fatty acids in biopharmaceuticals. For the first time, we have quantified the longer chain fatty acid degradation products of polysorbate, palmitic and stearic acid, allowing reliable detection and early critical insights for process improvements. This high-throughput method was validated underlining its robust performance in an interlaboratory trial as well as high flexibility allowing different robotic platforms and preparation techniques. The combination of automated sample preparation, separation by liquid chromatography and single quad mass detection makes the validated fatty acid mass spectrometry assay ready for routine use in a regulated environment.
Collapse
|
30
|
Guo J, Kufer R, Li D, Wohlrab S, Greenwood-Goodwin M, Yang F. Technical advancement and practical considerations of LC-MS/MS-based methods for host cell protein identification and quantitation to support process development. MAbs 2023; 15:2213365. [PMID: 37218066 PMCID: PMC10208169 DOI: 10.1080/19420862.2023.2213365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Host cell proteins (HCPs) are process-related impurities derived from the manufacturing of recombinant biotherapeutics. Residual HCP in drug products, ranging from 1 to 100 ppm (ng HCP/mg product) or even below sub-ppm level, may affect product quality, stability, efficacy, or safety. Therefore, removal of HCPs to appropriate levels is critical for the bioprocess development of biotherapeutics. Liquid chromatography-mass spectrometry (LC-MS) analysis has become an important tool to identify, quantify, and monitor the clearance of individual HCPs. This review covers the technical advancement of sample preparation strategies, new LC-MS-based techniques, and data analysis approaches to robustly and sensitively measure HCPs while overcoming the high dynamic range analytical challenges. We also discuss our strategy for LC-MS-based HCP workflows to enable fast support of process development throughout the product life cycle, and provide insights into developing specific analytical strategies leveraging LC-MS tools to control HCPs in process and mitigate their potential risks to drug quality, stability, and patient safety.
Collapse
Affiliation(s)
- Jia Guo
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, USA
| | - Regina Kufer
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Penzberg, Germany
| | - Delia Li
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, USA
| | - Stefanie Wohlrab
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Penzberg, Germany
| | | | - Feng Yang
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, USA
| |
Collapse
|
31
|
Mittag JJ, Trutschel ML, Kruschwitz H, Mäder K, Buske J, Garidel P. Characterization of radicals in polysorbate 80 using electron paramagnetic resonance (EPR) spectroscopy and spin trapping. Int J Pharm X 2022; 4:100123. [PMID: 35795322 PMCID: PMC9251573 DOI: 10.1016/j.ijpx.2022.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Abstract
Polysorbates are an important class of nonionic surfactants that are widely used to stabilize biopharmaceuticals. The degradation of polysorbate 20 and 80 and the related particle formation in biologics are heavily discussed in the pharmaceutical community. Although a lot of experimental effort was spent in the detailed study of potential degradation pathways, the underlying mechanisms are only sparsely understood. Besides enzymatic hydrolysis, another proposed mechanism is associated with radical-induced (auto)oxidation of polysorbates. To characterize the types and the origin of the involved radicals and their propagation in bulk material as well as in diluted polysorbate 80 solutions, we applied electron paramagnetic resonance (EPR) spectroscopy using a spin trapping approach. The prerequisite for a meaningful experiment using spin traps is an understanding of the trapping rate, which is an interplay of (i) the presence of the spin trap at the scene of action, (ii) the specific reactivity of the selected spin trap with a certain radical as well as (iii) the stability of the formed spin adducts (a slow decay rate). We discuss whether and to which extent these criteria are fulfilled regarding the identification of different radical classes that might be involved in polysorbate oxidative degradation processes. The ratio of different radicals for different scenarios was determined for various polysorbate 80 quality grades in bulk material and in aqueous solution, showing differences in the ratio of present radicals. Possible correlations between the radical content and product parameters such as the quality grade, the manufacturing date, the manufacturer, the initial peroxide content according to the certificate of analysis of polysorbate 80 are discussed.
Collapse
Key Words
- 5,5-dimethyl-1-pyrroline-N-oxide, DMPO
- DMPO
- EPR
- Oxidation
- Peroxide
- Polysorbate
- Radical
- Spin trap
- alkoxyl radical, RO•
- alkyl radical, R•
- all-oleate, AO
- certificate of analysis, CoA
- china grade, CG
- electron paramagnetic resonance, EPR
- fatty acid, FA
- high purity, HP
- hydrogen peroxide, H2O2
- hydroperoxide, ROOH
- hydroxyl radical, HO•
- peroxyl radical, ROO•
- polyoxyethylene, POE
- polysorbate, PS
- reactive oxygen species, ROS
- super-refined, SR
- superoxide, O2•−
Collapse
Affiliation(s)
- Judith J. Mittag
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Marie-Luise Trutschel
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Helen Kruschwitz
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Karsten Mäder
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| |
Collapse
|
32
|
Castañeda Ruiz AJ, Shetab Boushehri MA, Phan T, Carle S, Garidel P, Buske J, Lamprecht A. Alternative Excipients for Protein Stabilization in Protein Therapeutics: Overcoming the Limitations of Polysorbates. Pharmaceutics 2022; 14:2575. [PMID: 36559072 PMCID: PMC9781097 DOI: 10.3390/pharmaceutics14122575] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Given their safety and efficiency in protecting protein integrity, polysorbates (PSs) have been the most widely used excipients for the stabilization of protein therapeutics for years. In recent decades, however, there have been numerous reports about visible or sub-visible particles in PS-containing biotherapeutic products, which is a major quality concern for parenteral drugs. Alternative excipients that are safe for parenteral administration, efficient in protecting different protein drugs against various stress conditions, effective in protein stabilization in high-concentrated liquid formulations, stable under the storage conditions for the duration of the product's shelf-life, and compatible with other formulation components and the primary packaging are highly sought after. The aim of this paper is to review potential alternative excipients from different families, including surfactants, carbohydrate- and amino acid-based excipients, synthetic amphiphilic polymers, and ionic liquids that enable protein stabilization. For each category, important characteristics such as the ability to stabilize proteins against thermal and mechanical stresses, current knowledge related to the safety profile for parenteral administration, potential interactions with other formulation components, and primary packaging are debated. Based on the provided information and the detailed discussion thereof, this paper may pave the way for the identification or development of efficient excipients for biotherapeutic protein stabilization.
Collapse
Affiliation(s)
- Angel J. Castañeda Ruiz
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| | | | - Tamara Phan
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Stefan Carle
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Alf Lamprecht
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
33
|
Yuk IH, Koulis T, Doshi N, Gregoritza K, Hediger C, Lebouc-Haefliger V, Giddings J, Khan TA. Formulation mitigations for particle formation induced by enzymatic hydrolysis of polysorbate 20 in protein-based drug products: insights from a full-factorial longitudinal study. AAPS OPEN 2022. [DOI: 10.1186/s41120-022-00064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Hydrolytic degradation of the polysorbate 20 (PS20) surfactant in protein-based liquid formulations releases free fatty acids (FFAs), which can accumulate to form particles in drug products during real-time (long-term) storage. To identify formulation conditions that mitigate the risk of particle formation, we conducted a longitudinal study using purified recombinant monoclonal antibody (mAb) formulated in 24 conditions. In this real-time stability study at 5 °C, three key formulation parameters—mAb concentration, initial PS20 concentration, and pH—were varied across representative ranges in a full-factorial design. A longitudinal regression analysis was used to evaluate the effects of these parameters and their interactions on PS20 degradation (via measurements of PS20, FFAs, and PS20 ester distribution) and on particle formation (via visible particle observations and subvisible particle counts). The time-dependent onset of visible particles trended with the rise in subvisible particle counts and FFA levels and fall in PS20 concentration. In the ranges studied here, lower mAb concentration and higher initial PS20 concentration delayed the onset of particles, whereas pH had a negligible effect. These observations were consistent with the general trends predicted by our previously published FFA solubility model. Taken together, these findings highlight the complex relationships between formulation parameters, PS20 degradation, and particle formation.
Collapse
|
34
|
Wuchner K, Yi L, Chery C, Nikels F, Junge F, Crotts G, Rinaldi G, Starkey JA, Bechtold-Peters K, Shuman M, Leiss M, Jahn M, Garidel P, de Ruiter R, Richer SM, Cao S, Peuker S, Huille S, Wang T, Brun VL. Industry Perspective on the Use and Characterization of Polysorbates for Biopharmaceutical Products Part 2: Survey Report on Control Strategy Preparing for the Future. J Pharm Sci 2022; 111:2955-2967. [PMID: 36002077 DOI: 10.1016/j.xphs.2022.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 12/14/2022]
Abstract
Polysorbate (PS) 20 and 80 are the main surfactants used to stabilize biopharmaceutical products. Industry practices on various aspects of PS based on a confidential survey and following discussions by 16 globally acting major biotechnology companies is presented in two publications. Part 1 summarizes the current practice and use of PS during manufacture in addition to aspects like current understanding of the (in)stability of PS, the routine QC testing and control of PS, and selected regulatory aspects of PS.1 The current part 2 of the survey focusses on understanding, monitoring, prediction, and mitigation of PS degradation pathways in order to propose an effective control strategy. The results of the survey and extensive cross-company discussions are put into relation with currently available scientific literature.
Collapse
Affiliation(s)
- Klaus Wuchner
- Janssen R&D, DPDS BTDS Analytical Development, Hochstr. 201, 8200 Schaffhausen, Switzerland.
| | - Linda Yi
- Analytical Development, Biogen, Morrisville, NC 27709, USA
| | - Cyrille Chery
- UCB, Analytical Development Sciences for Biologicals, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| | - Felix Nikels
- Boehringer Ingelheim Pharma GmbH & Co KG, Innovation Unit, Birkendorfer Str. 65, 88397 Biberach an der Riss, Germany
| | - Friederike Junge
- Analytical Research and Development, NBE Analytical R&D, AbbVie Deutschland GmbH& Co. KG, Knollstraße, 67061 Ludwigshafen, Germany
| | - George Crotts
- GlaxoSmithKline, 1250 S Collegeville Rd, Collegeville, PA 19426, USA
| | - Gianluca Rinaldi
- Merck Serono SpA, Guidonia Montecelio, Italy, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Jason A Starkey
- Pfizer, Inc. Biotherapeutics Pharmaceutical Sciences, Analytical Research and Development 875 W. Chesterfield Parkway, Chesterfield, MO 63017, USA
| | | | - Melissa Shuman
- GlaxoSmithKline, 1250 S Collegeville Rd, Collegeville, PA 19426, USA
| | - Michael Leiss
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg, 82377, Germany
| | - Michael Jahn
- Lonza AG, Drug Product Services, Hochbergerstr. 60G, CH-4057 Basel, Switzerland
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co KG, Innovation Unit, Birkendorfer Str. 65, 88397 Biberach an der Riss, Germany
| | - Rien de Ruiter
- Byondis B.V., Downstream Processing, Nijmegen, the Netherlands
| | - Sarah M Richer
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Shawn Cao
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Sebastian Peuker
- Bayer AG, Product Supply, Analytical Development and Clinical QC for Biotech Products, Friedrich-Ebert-Str. 217-233, 42117 Wuppertal, Germany
| | - Sylvain Huille
- Sanofi R&D, Biologics Drug Products Development,13 quai Jules Guesde, 94403 Vitry-sur Seine, France
| | - Tingting Wang
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Virginie Le Brun
- Lonza AG, Drug Product Services, Hochbergerstr. 60G, CH-4057 Basel, Switzerland
| |
Collapse
|
35
|
Zhang S, Xiao H, Li N. Ultrasensitive method for profiling host cell proteins by coupling limited digestion to ProteoMiner technology. Anal Biochem 2022; 657:114901. [PMID: 36130653 DOI: 10.1016/j.ab.2022.114901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022]
Abstract
Host cell proteins (HCPs) are process-related impurities that remain in therapeutic protein -at trace levels. HCPs must be closely monitored because they may be detrimental to drug product quality. Liquid chromatography coupled to mass spectrometry (LC-MS) is a powerful tool for detecting individual HCPs; however, HCP-derived peptides can be four to ten orders of magnitude less abundant than therapeutic protein-derived peptides in drug products, thus posing a major challenge in LC-MS detection. We previously demonstrated that low abundant HCPs can be enriched several hundreds fold through ProteoMiner. This study further improved the degree of enrichment by coupling limited digestion to ProteoMiner technology (PMLD). HCPs with low abundance were enriched 7694-fold, thus enabling detection of HCPs at concentrations as low as 0.002 ppm. A total of 850 HCPs were detected with high confidence from a NIST monoclonal antibody preparation, a number 40% higher than previously reported.
Collapse
Affiliation(s)
- Sisi Zhang
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591-6706, United States
| | - Hui Xiao
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591-6706, United States.
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591-6706, United States
| |
Collapse
|
36
|
Liu GY, Nie S, Zheng X, Li N. Activity-Based Protein Profiling Probe for the Detection of Enzymes Catalyzing Polysorbate Degradation. Anal Chem 2022; 94:8625-8632. [PMID: 35679579 DOI: 10.1021/acs.analchem.2c00059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polysorbates are nonionic surfactants that have been widely used in biotherapeutic formulations to prevent protein aggregation and denaturation. However, polysorbates are subject to degradation after prolonged storage if certain lipases are present in the biotherapeutic product. Because the degradation of polysorbates compromises the shelf life of biotherapeutics and leads to the formation of undesirable products such as protein aggregates and subvisible particles, it is important to identify the active enzymes that catalyze polysorbate hydrolysis. In this study, we developed a novel fluorophosphonate activity-based protein profiling (ABPP) probe (termed the REGN probe), which mimics the structure of polysorbate and targets lipases catalyzing polysorbate degradation. We demonstrated that the REGN probe could enrich certain lipases from Chinese hamster ovary (CHO) cell lysate by more than 100-fold compared with direct tryptic digestion. Furthermore, we found that the REGN probe had higher lipase enrichment efficiency than commercially available ABPP probes including fluorophosphonate-biotin (FP-biotin) and FP-desthiobiotin. Remarkably, the REGN probe can enrich several lipases that cannot be labeled by commercial probes, such as lysosomal acid lipase and cytosolic phospholipase A2. Additionally, we showed that lipases with abundances as low as 0.08 ppm in drug substances were detected by the REGN probe enrichment and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Collectively, we have developed a novel ABPP probe with higher enrichment efficiency and broader coverage for lipases compared with commercial probes, and this probe can be used to detect the trace level of lipases in biotherapeutic products and to facilitate their development and manufacturing.
Collapse
Affiliation(s)
- Gao-Yuan Liu
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Song Nie
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Xiaojing Zheng
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| |
Collapse
|
37
|
A Mechanistic Understanding of Monoclonal Antibody Interfacial Protection by Hydrolytically Degraded Polysorbate 20 and 80 under IV Bag Conditions. Pharm Res 2022; 39:563-575. [PMID: 35277841 DOI: 10.1007/s11095-022-03217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Polysorbates (PS) contain polyoxyethylene (POE) sorbitan/isosorbide fatty acid esters that can partially hydrolyze over time in liquid drug products to generate degradants and a remaining intact PS fraction with a modified ester distribution. The degradants are composed of free fatty acids (FFAs) --primarily lauric acid for PS20 and oleic acid for PS80-- and POE head groups. We previously demonstrated that under IV bag agitation conditions, mAb1 (a surface-active IgG4) aggregation increased with increasing amounts of degradants for PS20 but not for PS80. The purpose of this work is to understand the mechanism behind this observation. METHODS The surface tension of the remaining intact PS fraction without degradants was modeled and compared with that of enzymatically degraded PS solutions. Next, mAb1 aggregation in saline was measured in the presence of laurate and oleate salts during static storage. Lastly, colloidal and conformational stability of mAb1 in the presence of these salts was investigated through differential scanning fluorimetry and dynamic light scattering under IV bag solution conditions. RESULTS The surface tension was primarily influenced by FFAs rather than the modified ester distribution of the remaining intact PS. MAb1 bulk aggregation increased in the presence of laurate but not oleate salts. Both salt types increased the melting temperature of mAb1 indicating FFA-mAb1 interactions. However, only laurate salt increased mAb1 self-association potentially explaining the higher aggregation propensity in its presence. CONCLUSION Our results help explain the observed differences between hydrolytically degraded PS20 and PS80 in affecting mAb1 aggregation under IV bag agitation conditions.
Collapse
|
38
|
Li X, Wang F, Li H, Richardson DD, Roush DJ. The measurement and control of high-risk host cell proteins for polysorbate degradation in biologics formulation. Antib Ther 2022; 5:42-54. [PMID: 35155990 PMCID: PMC8826928 DOI: 10.1093/abt/tbac002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Accepted: 01/02/2022] [Indexed: 11/13/2022] Open
Abstract
Nonionic surfactant polysorbates, including PS-80 and PS-20, are commonly used in the formulation of biotherapeutic products for both preventing surface adsorption and acting as stabilizer against protein aggregation. Trace levels of residual host cell proteins (HCPs) with lipase or esterase enzymatic activity have been shown to degrade polysorbates in biologics formulation. The measurement and control of these low abundance, high-risk HCPs for polysorbate degradation are an industry-wide challenge to achieve desired shelf life of biopharmaceuticals in liquid formulation, especially for high-concentration formulation product development. Here, we reviewed the challenges, recent advances, and future opportunities of analytical method development, risk assessment, and control strategies for polysorbate degradation during formulation development with a focus on enzymatic degradation. Continued efforts to advance our understanding of polysorbate degradation in biologics formulation will help develop high-quality medicines for patients.
Collapse
Affiliation(s)
- Xuanwen Li
- Analytical Research & Development, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
- To whom correspondence should be addressed: Xuanwen Li, Analytical Research & Development Mass Spectrometry, Merck & Co. Inc., 770 Sumneytown Pike, WPP042A-4015, West Point, PA 19486. Tel: 215-652-1829;
| | - Fengqiang Wang
- Analytical Research & Development, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Hong Li
- Biologics Process Research & Development, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Douglas D Richardson
- Analytical Research & Development, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - David J Roush
- Biologics Process Research & Development, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
| |
Collapse
|
39
|
Identification of the specific causes of polysorbate 20 degradation in monoclonal antibody formulations containing multiple lipases. Pharm Res 2022; 39:75-87. [PMID: 34981317 DOI: 10.1007/s11095-021-03160-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/21/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE Polysorbates (PS) are excipients used in the biotech industry to stabilize monoclonal antibody (mAb) protein products. However, PS in drug product formulations can be degraded during storage and lead to particle formation because of the limited solubility of the free fatty acids released through the enzymatic hydrolysis of PS-a process driven by residual host cell proteins, especially lipases, that are co-purified with the drugs. When multiple lipases are present, it is very difficult to know the cause for PS degradation. In this study, we aim to determine the cause of PS degradation from two lipases, lysosomal acid lipase (LAL) and lipoprotein lipase (LPL). METHODS PS degradation pattern of the drug product was compared with those induced by recombinant lipases. Correlations between the concentration of LPL or LAL and PS20 loss were compared. Specific inhibitors, LAL inhibitor lalistat2 and LPL inhibitor GSK264220A, were used to differentiate their degradation of PS in the drug products. RESULTS The complete inhibition of PS20 degradation by lalistat2 suggested that LAL, rather than LPL, was responsible for the PS20 degradation. In addition, LAL was more strongly correlated than LPL with the percentage of PS20 degradation. No PS20 degradation was observed for several mAbs containing similar levels of LPL (0.5-1.5 ppm) in the absence of LAL, suggesting that LPL concentrations below 1.5 ppm does not degrade PS20 in drug products. CONCLUSIONS LAL was determined to be the cause of the PS20 degradation. This study provides a practical strategy to determine the root cause of PS degradation.
Collapse
|
40
|
Hecht ES, Mehta S, Wecksler AT, Aguilar B, Swanson N, Phung W, Dubey Kelsoe A, Benner WH, Tesar D, Kelley RF, Sandoval W, Sreedhara A. Insights into ultra-low affinity lipase-antibody noncovalent complex binding mechanisms. MAbs 2022; 14:2135183. [PMID: 36284469 PMCID: PMC9621051 DOI: 10.1080/19420862.2022.2135183] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Detection of host cell protein (HCP) impurities is critical to ensuring that recombinant drug products, including monoclonal antibodies (mAbs), are safe. Mechanistic characterization as to how HCPs persist in drug products is important to refining downstream processing. It has been hypothesized that weak lipase-mAb interactions enable HCP lipases to evade drug purification processes. Here, we apply state-of-the-art methods to establish lipase-mAb binding mechanisms. First, the mass spectrometry (MS) approach of fast photochemical oxidation of proteins was used to elucidate putative binding regions. The CH1 domain was identified as a conserved interaction site for IgG1 and IgG4 mAbs against the HCPs phospholipase B-like protein (PLBL2) and lysosomal phospholipase A2 (LPLA2). Rationally designed mutations in the CH1 domain of the IgG4 mAb caused a 3- to 70-fold KD reduction against PLBL2 by surface plasmon resonance (SPR). LPLA2-IgG4 mutant complexes, undetected by SPR and studied using native MS collisional dissociation experiments, also showed significant complex disruption, from 16% to 100%. Native MS and ion mobility (IM) determined complex stoichiometries for four lipase-IgG4 complexes and directly interrogated the enrichment of specific lipase glycoforms. Confirmed with time-course and exoglycosidase experiments, deglycosylated lipases prevented binding, and low-molecular-weight glycoforms promoted binding, to mAbs. This work demonstrates the value of integrated biophysical approaches to characterize micromolar affinity complexes. It is the first in-depth structural report of lipase-mAb binding, finding roles for the CH1 domain and lipase glycosylation in mediating binding. The structural insights gained offer new approaches for the bioengineering of cells or mAbs to reduce HCP impurity levels.Abbreviations: CAN, Acetonitrile; AMAC, Ammonium acetate; BFGS, Broyden-Fletcher-Goldfarb-Shanno; CHO, Chinese Hamster Ovary; KD, Dissociation constant; DTT, Dithiothreitol; ELISA, Enzyme-linked immunosorbent assay; FPOP, Fast photochemical oxidation of proteins; FA, Formic acid; F(ab'), Fragment antibodies; HCP, Host cell protein; IgG, Immunoglobulin; IM, Ion mobility; LOD, Lower limit of detection; LPLA2, Lysosomal phospholipase A2; Man, Mannose; MS, Mass spectrometry; MeOH, Methanol; MST, Microscale thermophoresis; mAbs, Monoclonal antibodies; PPT1, Palmitoyl protein thioesterase; ppm, Parts per million; PLBL2, Phospholipase B-like protein; PLD3, Phospholipase D3; PS-20, Polysorbate-20; SP, Sphingomyelin phosphodiesterase; SPR, Surface plasmon resonance; TFA, Trifluoroacetic acid.
Collapse
Affiliation(s)
- Elizabeth Sara Hecht
- Microchemistry, Proteomics, and Lipidomics, Genentech, IncSouth San Francisco, CA, USA
| | - Shrenik Mehta
- Pharmaceutical Development, Genentech, IncSouth San Francisco, CA, USA
| | - Aaron T. Wecksler
- Protein Analytical Chemistry, Genentech, IncSouth San Francisco, CA, USA
| | | | - Nathaniel Swanson
- Pharmaceutical Development, Genentech, IncSouth San Francisco, CA, USA
| | - Wilson Phung
- Microchemistry, Proteomics, and Lipidomics, Genentech, IncSouth San Francisco, CA, USA
| | | | | | - Devin Tesar
- Pharmaceutical Development, Genentech, IncSouth San Francisco, CA, USA
| | - Robert F. Kelley
- Pharmaceutical Development, Genentech, IncSouth San Francisco, CA, USA
| | - Wendy Sandoval
- Microchemistry, Proteomics, and Lipidomics, Genentech, IncSouth San Francisco, CA, USA,CONTACT Wendy Sandoval Microchemistry, Proteomics, and Lipidomics, Genentech, Inc South San Francisco, CA, USA
| | - Alavattam Sreedhara
- Pharmaceutical Development, Genentech, IncSouth San Francisco, CA, USA,Alavattam Sreedhara Pharmaceutical Development, Genentech, Inc, 1 DNA Way, South San Francisco, CA94080, USA
| |
Collapse
|
41
|
Yang F, Li D, Kufer R, Cadang L, Zhang J, Dai L, Guo J, Wohlrab S, Greenwood-Goodwin M, Shen A, Duan D, Li H, Yuk IH. Versatile LC-MS-Based Workflow with Robust 0.1 ppm Sensitivity for Identifying Residual HCPs in Biotherapeutic Products. Anal Chem 2021; 94:723-731. [PMID: 34927411 DOI: 10.1021/acs.analchem.1c03095] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Residual host cell proteins (HCPs) in the drug product can affect product quality, stability, and/or safety. In particular, highly active hydrolytic enzymes at sub-ppm levels can negatively impact the shelf life of drug products but are challenging to identify by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) due to their high dynamic range between HCPs and biotherapeutic proteins. We employed new strategies to address the challenge: (1) native digest at a high protein concentration; (2) sodium deoxycholate added during the reduction step to minimize the inadvertent omission of HCPs observed with native digestion; and (3) solid phase extraction with 50% MeCN elution prior to LC-MS/MS analysis to ensure effective mAb removal. A 50 cm long nanoflow charged surface hybrid column was also packed to allow for higher sample load for increased sensitivity. Our workflow has increased the sensitivity for HCP identification by 10- to 100-fold over previous reports and showed the robustness as low as 0.1 ppm for identifying HCPs (34.5 to 66.2 kDa MW). The method capability was further confirmed by consistently identifying >85% of 48 UPS-1 proteins (0.10 to 1.34 ppm, 6.3 to 82.9 kDa MW) in a monoclonal antibody (mAb) and the largest number (746) of mouse proteins from NIST mAb reported to date by a single analysis. Our work has filled a significant gap in HCP analysis for detecting and demonstrating HCP clearance, in particular, extremely low-level hydrolases in drug process development.
Collapse
Affiliation(s)
- Feng Yang
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - Delia Li
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - Regina Kufer
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Penzberg 82377, Germany
| | - Lance Cadang
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - Jennifer Zhang
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - Lu Dai
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - Jia Guo
- Analytical Operations, Genentech, A Member of the Roche Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - Stefanie Wohlrab
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Penzberg 82377, Germany
| | - Midori Greenwood-Goodwin
- Analytical Operations, Genentech, A Member of the Roche Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - Amy Shen
- Cell Culture and Bioprocess Operations, Genentech, A Member of the Roche Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - Dana Duan
- Cell Culture and Bioprocess Operations, Genentech, A Member of the Roche Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - Hong Li
- Protein Chemistry, Genentech, A Member of the Roche Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - Inn H Yuk
- Cell Culture and Bioprocess Operations, Genentech, A Member of the Roche Group, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|